Forén og find. Introduktion Hurtig find Hurtig forening Vægtet forening Stikompression Dynamiske sammenhængskomponenter.

Størrelse: px
Starte visningen fra side:

Download "Forén og find. Introduktion Hurtig find Hurtig forening Vægtet forening Stikompression Dynamiske sammenhængskomponenter."

Transkript

1 Forén og find Introduktion Hurtig find Hurtig forening Vægtet forening Stikompression Dynamiske sammenhængskomponenter Philip Bille

2 Forén og find Introduktion Hurtig find Hurtig forening Vægtet forening Stikompression Dynamiske sammenhængskomponenter

3 Forén og find Forén og find (union-find). Vedligehold en dynamisk familie af mængder under operationer: INIT(n): opret mængder {0}, {1},, {n-1} UNION(i,j): forener de to mængder der indeholder i og j. Hvis i og j er i samme mængde skal der ingenting ske. FIND(i): returnerer en repræsentant for mængden der indeholder i. INIT(9) {0} {1} {2} {3} {4} {5} {6} {7} {8} UNION(5,0) {1, 0, 6} {8, 3, 2, 7} {4, 5} {1, 0, 6, 4, 5} {8, 3, 2, 7} Repræsentant kan være et hvilket som helst element i mængden. FIND(i) == FIND(j) hvis og kun hvis i og j er i samme mængde.

4 Forén og find Anvendelser. Dynamiske sammenhængskomponenter. Mindste udspændende træ. Unificering i logik og oversættere (afgør om udtryk er ens). Nærmeste fælles forfader i træer. Hoshen-Kopelman algoritme i fysik Spil (Hex og Go) Illustration af snedige teknikker til design af datastrukturer.

5 Forén og find Introduktion Hurtig find Hurtig forening Vægtet forening Stikompression Dynamiske sammenhængskomponenter

6 Hurtig find Hurtig find (quick-find). Vedligehold en tabel id[0..n-1] så id[i] er repræsentant for i. INIT(n): sæt alle elementer til at være deres egen repræsentant UNION(i,j): opdater repræsentant for alle elementer i den ene mængde. FIND(i): returner repræsentant. INIT(9) {0} {1} {2} {3} {4} {5} {6} {7} {8} id[] id[] UNION(5,0) {1, 0, 6} {8, 3, 2, 7} {4, 5} {1, 0, 6, 4, 5} {8, 3, 2, 7}

7 Hurtig find INIT(n): for k = 0 to n-1 id[k] = k FIND(i): return id[i] UNION(i,j): iid = FIND(i) jid = FIND(j) if (iid jid) for k = 0 to n-1 if (id[k] == iid) id[k] = jid id[] UNION(5,0) {1, 0, 6} {8, 3, 2, 7} {4, 5} {1, 0, 6, 4, 5} {8, 3, 2, 7} Tid. O(n) tid for INIT, O(n) tid for UNION og O(1) tid for FIND.

8 Hurtig find Theorem. Vi kan løse forén og find med n elementer i O(n) tid for INIT O(1) tid for FIND O(n) tid for UNION

9 Forén og find Introduktion Hurtig find Hurtig forening Vægtet forening Stikompression Dynamiske sammenhængskomponenter

10 Hurtig forening Hurtig forening (quick-union). Vedligehold hver mængde som et rodfæstet træ repræsenteret ved tabel p[0..n-1] af forældrepegere. Roden af træ er repræsentant for mængde og p[rod] = rod. INIT(n): lav n træer med et element hver. UNION(i,j): hvis FIND(i) FIND(j), gør rod af det ene træ til barn af roden af det andet træ. FIND(i): følg sti til rod og returner rod UNION(5,0) p[]

11 Hurtig forening INIT(n): lav n træer med et element hver. UNION(i,j): hvis FIND(i) FIND(j), gør rod af det ene træ til barn af roden af det andet træ. FIND(i): følg sti til rod og returner rod. Opgave. Vis datastruktur efter hver operation i følgende sekvens. INIT(7), UNION(0,1), UNION(2,3), UNION(5,1), UNION(5,0), UNION(0,3), UNION(5,2), UNION(4,3), UNION(4,6).

12 Hurtig forening INIT(n): for k = 0 to n-1 p[k] = k FIND(i): while (i!= p[i]) i = p[i] return i UNION(i,j): r i = FIND(i) r j = FIND(j) if (r i r j ) p[r i ] = r j UNION(5,0) Tid. O(n) tid for INIT, O(d) tid for UNION og O(d) tid for FIND.

13 Hurtig forening Theorem. Vi kan løse forén og find med n elementer i O(n) tid for INIT O(d) tid for FIND O(d) tid for UNION Dybden d af T er den maksimale længde af en sti fra rod til blad. Dårlig nyhed. Dybden kan være n-1. Udfordring. Kan vi sætte sammen træerne snedigt sammen så vi begrænser dybden? d = 4 d = n-1

14 Forén og find Introduktion Hurtig find Hurtig forening Vægtet forening Stikompression Dynamiske sammenhængskomponenter

15 Vægtet forening Vægtet forening (weighted quick-union). Udvidelse af hurtig forening. Vedligehold tabel sz[1..n] med størrelse af hver knude = antallet af knuder i deltræ. INIT: (næsten) som før. FIND: som før. UNION(i,j): hvis FIND(i) FIND(j), gør rod af det mindste træ til barn af roden af det største træ. Intuition. Vægtet forening balancerer træerne. ri rj UNION(i,j) rj ri i j i j sz[rj] = sz[ri] + sz[rj]

16 Vægtet forening UNION(i,j): r i = FIND(i) r j = FIND(j) if (r i r j ) if (sz[r i ] < sz[r j ]) p[r i ] = r j sz[r j ] = sz[r i ] + sz[r j ] else p[r j ] = r i sz[r i ] = sz[r i ] + sz[r j ] ri rj UNION(i,j) rj ri i j i j

17 Vægtet forening Lemma. Med vægtet forening er dybden af en knude højst log2 n. Bevis. Kig på en knude i med dybde di. Initielt er di = 0. di øges med 1 når træet med i forenes med et større træ. Det forenede træ er mindst dobbelt så stort. Vi kan fordoble størrelse af træer højst log2 n gange. di log2 n. i i

18 Vægtet forening Theorem. Vi kan løse forén og find med n elementer i O(n) tid for INIT O(log n) tid for FIND O(log n) tid for UNION

19 Forén og find Datastruktur UNION FIND hurtig find O(n) O(1) hurtig forening O(n) O(n) vægtet forening O(log n) O(log n) Udfordring. Kan vi gøre det endnu bedre? Hvad er den bedste man kan håbe på?

20 Forén og find Introduktion Hurtig find Hurtig forening Vægtet forening Stikompression Dynamiske sammenhængskomponenter

21 Stikompression Stikompression. Komprimer stien ved FIND = alle knuder på sti bliver barn af rod. Ændrer ikke på tid for en FIND operation. Efterfølgende FIND operationer bliver hurtigere. Virker både med hurtig forening og vægtet forening. 13 FIND(9)

22 Stikompression Theorem [Tarjan 1975]. Med stikompression tager enhver sekvens af m FIND og UNION operationer over n elementer O(n + m α(m,n)) tid. α(m,n) er den inverse til Ackermanns funktion. α(m,n) 5 for ethvert praktisk input. Theorem [Fredman-Saks 1985]. Det er ikke muligt at understøtte m FIND og UNION operationer O(n + m) tid. 13 FIND(9)

23 Forén og find Datastruktur hurtig find hurtig forening m UNION og FIND O(mn) O(mn) vægtet forening O(n + mlog n) vægtet forening + stikompression O(n + m α(m,n)) umuligt O(n + m)

24 Forén og find Introduktion Hurtig find Hurtig forening Vægtet forening Stikompression Dynamiske sammenhængskomponenter

25 Dynamiske sammenhængskomponenter Dynamiske sammenhængskomponenter. Vedligehold en dynamisk graf under operationer. INIT(n): opret en graf G med n knuder og ingen kanter. CONNECTED(u,v): afgør om u og v er sammenhængende. INSERT(u, v): tilføj kant (u,v). Vi antager (u,v) ikke allerede findes INSERT(3,4)

26 Dynamiske sammenhængskomponenter Implementation med forén og find. INIT(n): initialiser en forén og find datastruktur med n elementer. CONNECTED(u,v): FIND(u) == FIND(v). INSERT(u, v): UNION(u,v) INSERT(3,4)

27 Dynamiske sammenhængskomponenter Theorem. Vi kan løse dynamiske sammenhængskomponenter i en graf med n knuder i O(n) tid for INIT O(log n) tid for CONNECTED O(log n) tid for INSERT

28 Forén og find Introduktion Hurtig find Hurtig forening Vægtet forening Stikompression Dynamiske sammenhængskomponenter

Mindste udspændende træ. Mindste udspændende træ. Introduktion. Introduktion

Mindste udspændende træ. Mindste udspændende træ. Introduktion. Introduktion Philip Bille Introduktion (MST). Udspændende træ af minimal samlet vægt. Introduktion (MST). Udspændende træ af minimal samlet vægt. 0 0 Graf G Ikke sammenhængende Introduktion (MST). Udspændende træ af

Læs mere

Mindste udspændende træ

Mindste udspændende træ Mindste udspændende træ Introduktion Repræsentation af vægtede grafer Egenskaber for mindste udspændende træer Prims algoritme Kruskals algoritme Philip Bille Mindste udspændende træ Introduktion Repræsentation

Læs mere

Prioritetskøer og hobe. Philip Bille

Prioritetskøer og hobe. Philip Bille Prioritetskøer og hobe Philip Bille Plan Prioritetskøer Træer Hobe Repræsentation Prioritetskøoperationer Konstruktion af hob Hobsortering Prioritetskøer Prioritetskø Vedligehold en dynamisk mængde S af

Læs mere

Binære søgetræer. Binære søgetræer. Nærmeste naboer. Nærmeste nabo

Binære søgetræer. Binære søgetræer. Nærmeste naboer. Nærmeste nabo Philip Bille er. Vedligehold en dynamisk mængde S af elementer. Hvert element har en nøgle x.key og satellitdata x.data. operationer. PREDECESSOR(k): returner element x med største nøgle k. SUCCESSOR(k):

Læs mere

Binære søgetræer. Binære søgetræer. Nærmeste naboer. Nærmeste nabo

Binære søgetræer. Binære søgetræer. Nærmeste naboer. Nærmeste nabo Philip Bille Nærmeste naboer. Vedligehold en dynamisk mængde S af elementer. Hvert element har en nøgle key[] og satellitdata data[]. operationer. PREDECESSOR(k): returner element med største nøgle k.

Læs mere

Binære søgetræer. Nærmeste naboer Binære søgetræer Indsættelse Predecessor og successor Sletning Trægennemløb. Philip Bille

Binære søgetræer. Nærmeste naboer Binære søgetræer Indsættelse Predecessor og successor Sletning Trægennemløb. Philip Bille Binære søgetræer Nærmeste naboer Binære søgetræer Indsættelse Predecessor og successor Sletning Trægennemløb Philip Bille Binære søgetræer Nærmeste naboer Binære søgetræer Indsættelse Predecessor og successor

Læs mere

UNION-FIND. UNION-FIND-problemet. Forbundethed kan være svær at afgøre (især for en computer) Eksempel på udførelse

UNION-FIND. UNION-FIND-problemet. Forbundethed kan være svær at afgøre (især for en computer) Eksempel på udførelse UNION-FIND-problemet UNION-FIND inddata: en følge af heltalspar (p, q); betydning: p er forbundet med q uddata: intet, hvis p og q er forbundet, ellers (p, q) Eksempel på anvendelse: Forbindelser i computernetværk

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet Eksamen 0205, Forår 205 side af 5 Danmarks Tekniske Universitet Skriftlig prøve, den 22. maj 205. Kursusnavn: Algoritmer og datastrukturer Kursusnummer: 0205 Hjælpemidler: Skriftlige hjælpemidler. Det

Læs mere

Orienterede grafer. Orienterede grafer. Orienterede grafer. Vejnetværk

Orienterede grafer. Orienterede grafer. Orienterede grafer. Vejnetværk Philip Bille Orienteret graf (directed graph). Mængde af knuder forbundet parvis med orienterede kanter. Vejnetværk Knude = vejkryds, kant = ensrettet vej. deg + (6) =, deg - (6) = sti fra til 6 8 7 9

Læs mere

Grådige algoritmer. Et algoritme-konstruktionsprincip ( paradigme ) for optimeringsproblemer.

Grådige algoritmer. Et algoritme-konstruktionsprincip ( paradigme ) for optimeringsproblemer. Grådige algoritmer Grådige algoritmer Et algoritme-konstruktionsprincip ( paradigme ) for optimeringsproblemer. Grådige algoritmer Et algoritme-konstruktionsprincip ( paradigme ) for optimeringsproblemer.

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet side af sider Danmarks Tekniske Universitet Skriftlig prøve, den 6. maj 0. Kursusnavn: Algoritmer og datastrukturer I Kursus nr. 005. Tilladte hjælpemidler: Skriftlige hjælpemidler. Varighed: timer Vægtning

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet side af sider Danmarks Tekniske Universitet Skriftlig prøve, den. maj 00. Kursusnavn Algoritmer og datastrukturer Kursus nr. 06. Tilladte hjælpemidler: Alle hjælpemidler. Vægtning af opgaverne: Opgave

Læs mere

Algoritmer og datastrukturer Course No. 02105 Cheat Sheet 2012. May 15, 2012

Algoritmer og datastrukturer Course No. 02105 Cheat Sheet 2012. May 15, 2012 Algoritmer og datastrukturer Course No. 02105 Cheat Sheet 2012 May 15, 2012 1 CONTENTS 2012 CONTENTS Contents 1 Kompleksitet 3 1.1 Køretid................................................ 3 1.2 Asymptotisk

Læs mere

Definition : Et træ er en sammenhængende ikke-orienteret graf uden simple kredse. Sætning : En ikke-orienteret graf er et træ hvis og kun hvis der er

Definition : Et træ er en sammenhængende ikke-orienteret graf uden simple kredse. Sætning : En ikke-orienteret graf er et træ hvis og kun hvis der er Definition : Et træ er en sammenhængende ikke-orienteret graf uden simple kredse. Sætning : En ikke-orienteret graf er et træ hvis og kun hvis der er en unik simpel vej mellem ethvert par af punkter i

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet ksamen 06, side af sider anmarks Tekniske Universitet Skriftlig prøve, den 6. maj 0. ursusnavn: lgoritmer og datastrukturer ursus nr. 06. Tilladte hjælpemidler: Skriftlige hjælpemidler. Varighed: timer

Læs mere

Introduktion til datastrukturer. Introduktion til datastrukturer. Introduktion til datastrukturer. Datastrukturer

Introduktion til datastrukturer. Introduktion til datastrukturer. Introduktion til datastrukturer. Datastrukturer Introduktion til datastrukturer Introduktion til datastrukturer Philip Bille Datastrukturer Datastruktur. Metode til at organise data så det kan søges i/tilgås/manipuleres effektivt. Mål. Hurtig Kompakt

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet ksamen 06, F side af sider anmarks Tekniske Universitet Skriftlig prøve, den 9. maj 0. ursusnavn: lgoritmer og datastrukturer ursus nr. 06. jælpemidler: Skriftlige hjælpemidler. et er ikke tilladt at medbringe

Læs mere

Et generelt algoritme-konstruktionsprincip ( paradigme ) for optimeringsproblemer. Ideen er simpel:

Et generelt algoritme-konstruktionsprincip ( paradigme ) for optimeringsproblemer. Ideen er simpel: Grådige algoritmer Grådige algoritmer Et generelt algoritme-konstruktionsprincip ( paradigme ) for optimeringsproblemer. Ideen er simpel: Opbyg løsningen skridt for skridt ved hele tiden af vælge lige

Læs mere

Datastrukturer (recap)

Datastrukturer (recap) Dictionaries Datastrukturer (recap) Data: Datastruktur = data + operationer herpå En ID (nøgle) + associeret data. Operationer: Datastrukturens egenskaber udgøres af de tilbudte operationer (API for adgang

Læs mere

DATALOGISK INSTITUT, AARHUS UNIVERSITET

DATALOGISK INSTITUT, AARHUS UNIVERSITET DATALOGISK INSTITUT, AARHUS UNIVERSITET Det Naturvidenskabelige Fakultet EKSAMEN Grundkurser i Datalogi Algoritmer og Datastrukturer (00-ordning) Antal sider i opgavesættet (incl. forsiden): 6 (seks) Eksamensdag:

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet side af 3 sider anmarks Tekniske Universitet Skriftlig prøve, den 29. maj 203. ursusnavn: lgoritmer og datastrukturer ursus nr. 02326. jælpemidler: Skriftlige hjælpemidler. et er ikke tilladt at medbringe

Læs mere

DM507 Algoritmer og datastrukturer

DM507 Algoritmer og datastrukturer DM507 Algoritmer og datastrukturer Forår 2012 Projekt, del II Institut for matematik og datalogi Syddansk Universitet 15. marts, 2012 Dette projekt udleveres i tre dele. Hver del har sin deadline, således

Læs mere

Et udtrykstrç med de ære regnearter, heltalskonstanter og variabler beskrives. Type Expr = Sumèplus, minus, times, div: Args, const: Int, name: Textè

Et udtrykstrç med de ære regnearter, heltalskonstanter og variabler beskrives. Type Expr = Sumèplus, minus, times, div: Args, const: Int, name: Textè Opgave 1 è20èè Et udtrykstrç med de ære regnearter, heltalskonstanter og variabler beskrives af fçlgende rekursive Trine-type: Type Expr = Sumèplus, minus, times, div: rgs, const: Int, name: Textè Type

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet Eksamen 005, F09 side af sider Danmarks Tekniske Universitet Skriftlig prøve, den 6. maj 009. Kursusnavn Algoritmik og datastrukturer I Kursus nr. 005. Tilladte hjælpemidler: Alle skriftlige hjælpemidler.

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet Eksamen 005, F side af sider Danmarks Tekniske Universitet Skriftlig prøve, den 6. maj 0. Kursusnavn: Algoritmer og datastrukturer I Kursus nr. 005. Tilladte hjælpemidler: Skriftlige hjælpemidler. Varighed:

Læs mere

Opskriv følgende funktioner efter stigende orden med hensyn til O-notationen: 23n log n. 4 n (log n) log n

Opskriv følgende funktioner efter stigende orden med hensyn til O-notationen: 23n log n. 4 n (log n) log n Eksamen. kvarter 00 Algoritmer og Datastrukturer (00-ordning) Side af sider Opgave (%) Ja Nej n er O(n )? n er O(n )? n er O(n + 0 n)? n + n er O(n )? n log n er Ω(n )? Opgave (%) Opskriv følgende funktioner

Læs mere

Minimum udspændende Træer (MST)

Minimum udspændende Træer (MST) Minimum udspændende Træer (MST) Træer Et (frit/u-rodet) træ er en uorienteret graf G = (V, E) som er Sammenhængende: der er en sti mellem alle par af knuder. Acyklisk: der er ingen kreds af kanter. Træ

Læs mere

Binære søgetræer. Nærmeste naboer Binære søgetræer Indsættelse Predecessor og successor Sletning Algoritmer på træer og trægennemløb.

Binære søgetræer. Nærmeste naboer Binære søgetræer Indsættelse Predecessor og successor Sletning Algoritmer på træer og trægennemløb. Binære søgetræer Nærmeste naboer Binære søgetræer Indsættelse Predecessor og successor Sletning Algoritmer på træer og trægennemløb Philip Bille Binære søgetræer Nærmeste naboer Binære søgetræer Indsættelse

Læs mere

Korteste veje. Korteste veje. Introduktion. Introduktion. Introduktion Egenskaber for korteste veje Dijkstras algoritme Korteste veje på DAGs

Korteste veje. Korteste veje. Introduktion. Introduktion. Introduktion Egenskaber for korteste veje Dijkstras algoritme Korteste veje på DAGs Kortete veje Egenkaber for kortete veje Dijktra algoritme Kortete veje på DAG Kortete veje Egenkaber for kortete veje Dijktra algoritme Kortete veje på DAG Philip Bille Introduktion Kortete veje. Givet

Læs mere

Minimum udspændende Træer (MST)

Minimum udspændende Træer (MST) Minimum udspændende Træer (MST) Træer Et (frit/u-rodet) træ er en uorienteret graf G = (V, E) som er Sammenhængende: der er en sti mellem alle par af knuder. Acyklisk: der er ingen lukket kreds af kanter

Læs mere

Opskriv følgende funktioner efter stigende orden med hensyn til O-notationen: n 2 n (log n) 2. 3 n /n 2 n + (log n) 4

Opskriv følgende funktioner efter stigende orden med hensyn til O-notationen: n 2 n (log n) 2. 3 n /n 2 n + (log n) 4 Eksamen. kvarter 00 Side 1 af sider Opgave 1 ( %) Ja Nej n log n er O(n / )? n 1/ er O(log n)? n + n er O(n )? n( n + log n) er O(n / )? n er Ω(n )? Opgave ( %) Opskriv følgende funktioner efter stigende

Læs mere

DM507 Algoritmer og datastrukturer

DM507 Algoritmer og datastrukturer DM507 Algoritmer og datastrukturer Forår 2012 Projekt, del III Institut for matematik og datalogi Syddansk Universitet 29. april, 2012 Dette projekt udleveres i tre dele. Hver del har sin deadline, således

Læs mere

Skriftlig Eksamen Kombinatorik, sandsynlighed og randomiserede algoritmer (DM528)

Skriftlig Eksamen Kombinatorik, sandsynlighed og randomiserede algoritmer (DM528) Skriftlig Eksamen Kombinatorik, sandsynlighed og randomiserede algoritmer (DM58) Institut for Matematik & Datalogi Syddansk Universitet Torsdag den 7 Januar 010, kl. 9 13 Alle sædvanlige hjælpemidler (lærebøger,

Læs mere

Introduktion. Introduktion. Algoritmer og datastrukturer. Eksempel: Maksimalt tal

Introduktion. Introduktion. Algoritmer og datastrukturer. Eksempel: Maksimalt tal Philip Bille Algoritmer og datastrukturer Algoritmisk problem. Præcist defineret relation mellem input og output. Algoritme. Metode til at løse et algoritmisk problem. Beskrevet i diskrete og entydige

Læs mere

DATALOGISK INSTITUT, AARHUS UNIVERSITET

DATALOGISK INSTITUT, AARHUS UNIVERSITET DATALOGISK INSTITUT, AARHUS UNIVERSITET Det Naturvidenskabelige Fakultet EKSAMEN Grundkurser i Datalogi Antal sider i opgavesættet (incl. forsiden): 5 (fem) Eksamensdag: Fredag den 10. august 007, kl.

Læs mere

Sommeren 2001, opgave 1

Sommeren 2001, opgave 1 Sommeren 2001, opgave 1 Vi antager at k 3, da det ellers er uklart hvordan trekanterne kan sættes sammen i en kreds. Vi ser nu at for hver trekant er der en knude i kredsen, og en spids. Derfor er n =

Læs mere

Dynamisk programmering

Dynamisk programmering Dynamisk programmering Dynamisk programmering Et algoritme-konstruktionsprincip ( paradigme ) for optimeringsproblemer. Har en hvis lighed med divide-and-conquer: Begge opbygger løsninger til større problemer

Læs mere

INSTITUT FOR DATALOGI, AARHUS UNIVERSITET

INSTITUT FOR DATALOGI, AARHUS UNIVERSITET INSTITUT FOR DATALOGI, AARHUS UNIVERSITET Science and Technology EKSAMEN Antal sider i opgavesættet (incl. forsiden): 6 (seks) Eksamensdag: Fredag den 22. juni 2012, kl. 9.00-13.00 Eksamenslokale: Finlandsgade

Læs mere

DATALOGISK INSTITUT, AARHUS UNIVERSITET

DATALOGISK INSTITUT, AARHUS UNIVERSITET DATALOGISK INSTITUT, AARHUS UNIVERSITET Det Naturvidenskabelige Fakultet EKSAMEN Grundkurser i Datalogi Antal sider i opgavesættet (incl. forsiden): 12 (tolv) Eksamensdag: Fredag den 1. april 200, kl..00-11.00

Læs mere

Grafer og graf-gennemløb

Grafer og graf-gennemløb Grafer og graf-gennemløb Grafer En mængde V af knuder (vertices). En mængde E V V af kanter (edges). Dvs. ordnede par af knuder. Grafer En mængde V af knuder (vertices). En mængde E V V af kanter (edges).

Læs mere

Grafteori. 1 Terminologi. Indhold

Grafteori. 1 Terminologi. Indhold Grafteori Dette er en introduktion til de vigtigste begreber i grafteori, udvalgt teori samt eksempler på opgavetyper inden for emnet med fokus på de opgavetyper der typisk er til internationale matematikkonkurrencer.

Læs mere

Datastrukturer. Datastruktur = data + operationer herpå

Datastrukturer. Datastruktur = data + operationer herpå Prioritetskøer Prioritetskøer? Datastrukturer Datastruktur = data + operationer herpå Datastrukturer Data: Datastruktur = data + operationer herpå Ofte en ID + associeret data. ID kaldes også en nøgle

Læs mere

Sortering. De n tal i sorteret orden. Eksempel: Kommentarer:

Sortering. De n tal i sorteret orden. Eksempel: Kommentarer: Sortering Sortering Input: Output: n tal De n tal i sorteret orden Eksempel: Kommentarer: 6, 2, 9, 4, 5, 1, 4, 3 1, 2, 3, 4, 4, 5, 9 Sorteret orden kan være stigende eller faldende. Vi vil i dette kursus

Læs mere

Skriftlig eksamen i Datalogi

Skriftlig eksamen i Datalogi Roskilde Universitetscenter side 1 af 9 sider Skriftlig eksamen i Datalogi Modul 1 Vinter 1999/2000 Opgavesættet består af 6 opgaver, der ved bedømmelsen tillægges følgende vægte: Opgave 1 5% Opgave 2

Læs mere

Dynamisk programmering. Flere eksempler

Dynamisk programmering. Flere eksempler Dynamisk programmering Flere eksempler Eksempel 1: Længste fælles delstreng Alfabet = mængde af tegn: {a,b,c,...,z}, {A,C,G,T}, {,1} Streng = sekvens x 1 x 2 x 3... x n af tegn fra et alfabet: helloworld

Læs mere

Grafer og graf-gennemløb

Grafer og graf-gennemløb Grafer og graf-gennemløb Grafer En mængde V af knuder (vertices). En mængde E V V af kanter (edges). Dvs. ordnede par af knuder. Figur: Terminologi: n = V, m = E (eller V og E (mis)bruges som V og E ).

Læs mere

Analyse af algoritmer. Analyse af algoritmer. Analyse af algoritmer. Køretid

Analyse af algoritmer. Analyse af algoritmer. Analyse af algoritmer. Køretid Philip Bille Mål. At bestemme og forudsige resourceforbrug og korrekthed af algoritmer Eks. Virker min algoritme til at beregne korteste veje i grafer? Hvor hurtigt kører min algoritme til at søge efter

Læs mere

INSTITUT FOR DATALOGI, AARHUS UNIVERSITET

INSTITUT FOR DATALOGI, AARHUS UNIVERSITET INSTITUT FOR ATALOGI, AARHUS UNIVERSITET Science and Technology EKSAMEN Algoritmer og atastrukturer (00-ordning) Antal sider i opgavesættet (incl. forsiden): (elleve) Eksamensdag: Fredag den. august 0,

Læs mere

DKAL Snitflader REST Register

DKAL Snitflader REST Register DKAL Snitflader REST Register 1 Indholdsfortegnelse A2.1 INTRODUKTION 3 A2.1.1 HENVISNINGER 3 A2.1.2 LÆSEVEJLEDNING 4 A2.1.2.1 SÅDAN LÆSES EN REST GRAF 4 A2.1.2.2 SÅDAN LÆSES EN RESSOURCE OG EN TYPE 4

Læs mere

Hashing. Hashing. Ordbøger. Ordbøger. Ordbøger Hægtet hashing Hashfunktioner Lineær probering. Ordbøger Hægtet hashing Hashfunktioner Lineær probering

Hashing. Hashing. Ordbøger. Ordbøger. Ordbøger Hægtet hashing Hashfunktioner Lineær probering. Ordbøger Hægtet hashing Hashfunktioner Lineær probering Philip Bille. Vedligehold en dynamisk mængde S af elementer. Hvert element har en nøgle x.key fra et univers af nøgler U og satellitdata x.data. Ordbogsoperationer. SEARCH(k): afgør om element med nøgle

Læs mere

Symmetrisk Traveling Salesman Problemet

Symmetrisk Traveling Salesman Problemet Symmetrisk Traveling Salesman Problemet Videregående Algoritmik, Blok 2 2008/2009, Projektopgave 2 Bjørn Petersen 9. december 2008 Dette er den anden af to projektopgaver på kurset Videregående Algoritmik,

Læs mere

Et udtryk på formena n kaldes en potens med grundtal a og eksponent n. Vi vil kun betragte potenser hvor grundtallet er positivt, altså a>0.

Et udtryk på formena n kaldes en potens med grundtal a og eksponent n. Vi vil kun betragte potenser hvor grundtallet er positivt, altså a>0. Konkrete funktioner Potenser Som udgangspunkt er brugen af potenser blot en forkortelse for at gange et tal med sig selv et antal gange. Hvis a Rskriver vi a 2 for a a a 3 for a a a a 4 for a a a a (1).

Læs mere

Divide-and-Conquer algoritmer

Divide-and-Conquer algoritmer Divide-and-Conquer algoritmer Divide-and-Conquer algoritmer Det samme som rekursive algoritmer. Divide-and-Conquer algoritmer Det samme som rekursive algoritmer. 1. Opdel problem i mindre delproblemer

Læs mere

Definition (Pseudo-graf): En pseudo-graf G = (V, E) består af V, en ikke-tom mængde hvis elementer kaldes punkter, en mængde E samt en funktion f : E

Definition (Pseudo-graf): En pseudo-graf G = (V, E) består af V, en ikke-tom mængde hvis elementer kaldes punkter, en mængde E samt en funktion f : E Grafteori Definition (Simpel graf): En simpel graf G = (V, E) består af V, en mængde hvis elementer kaldes punkter, og E, en mængde af uordnede par af forskellige elementer fra V. Et element fra E kaldes

Læs mere

Sortering. Sortering ved fletning (merge-sort) Del-og-hersk. Merge-sort

Sortering. Sortering ved fletning (merge-sort) Del-og-hersk. Merge-sort Sortering Sortering ved fletning (merge-sort) 7 2 9 4! 2 4 7 9 7 2! 2 7 9 4! 4 9 7! 7 2! 2 9! 9 4! 4 1 2 Del-og-hersk Merge-sort Del-og-hersk er et generelt paradigme til algoritmedesign Del: opdel input-data

Læs mere

På nedenstående billede skal du finde den figur som optræder nøjagtig 3 gange.

På nedenstående billede skal du finde den figur som optræder nøjagtig 3 gange. Navn: Klasse: Materiale ID: PIC.33.1.1.da Lærer: Dato: Klasse: Materiale ID: PIC.33.1.1.da Navn: Klasse: Materiale ID: PIC.33.2.1.da Lærer: Dato: Klasse: Materiale ID: PIC.33.2.1.da Navn: Klasse: Materiale

Læs mere

18 Multivejstræer og B-træer.

18 Multivejstræer og B-træer. 18 Multivejstræer og B-træer. Multivejs søgetræer. Søgning i multivejssøgetræer. Pragmatisk lagring af data i multivejstræer. B-træer. Indsættelse i B-træer. Eksempel på indsættelse i B-træ. Facts om B-træer.

Læs mere

19 Hashtabeller. Noter. PS1 -- Hashtabeller. Hashing problemet. Hashfunktioner. Kollision. Søgning og indsættelse.

19 Hashtabeller. Noter. PS1 -- Hashtabeller. Hashing problemet. Hashfunktioner. Kollision. Søgning og indsættelse. 19 Hashtabeller. Hashing problemet. Hashfunktioner. Kollision. Søgning og indsættelse. Sammenligning af hashtabeller og søgetræer. 281 Hashing-problemet (1). Vi ønsker at afbilde n objekter på en tabel

Læs mere

Algorithms and Architectures I Rasmus Løvenstein Olsen (RLO) Mm2: Rekursive algoritmer og rekurrens - October 12, 2010

Algorithms and Architectures I Rasmus Løvenstein Olsen (RLO) Mm2: Rekursive algoritmer og rekurrens - October 12, 2010 Algorithms and Architectures I Rasmus Løvenstein Olsen (RLO) Mm2: Rekursive algoritmer og rekurrens - October 12, 2010 1 Algorithms and Architectures II 1. Introduction to analysis and design of algorithms

Læs mere

16. marts P NP. Essentielle spørgsmål: NP P? Et problem Q kaldes NP -fuldstændigt 1 Q NP 2 R NP : R pol Q. Resume sidste gang

16. marts P NP. Essentielle spørgsmål: NP P? Et problem Q kaldes NP -fuldstændigt 1 Q NP 2 R NP : R pol Q. Resume sidste gang 16. marts Resume sidste gang Abstrakt problem konkret instans afgørlighedsproblem Effektiv kodning (pol. relateret til binær kodning) Sprog L : mængden af instanser for et afgørlighedsproblem hvor svaret

Læs mere

PHP 3 UGERS FORLØB PHP, MYSQL & SQL

PHP 3 UGERS FORLØB PHP, MYSQL & SQL PHP 3 UGERS FORLØB PHP, MYSQL & SQL Uge 1 & 2 Det basale: Det primære mål efter uge 1 og 2, er at få forståelse for hvordan AMP miljøet fungerer i praksis, og hvordan man bruger PHP kodesproget til at

Læs mere

En karakteristik af de regulære sprog. Ugens emner. FA minimering [5.1-5.2] MyHill-Nerode-sætningen en algoritme til minimering af FA er

En karakteristik af de regulære sprog. Ugens emner. FA minimering [5.1-5.2] MyHill-Nerode-sætningen en algoritme til minimering af FA er Ugens emner FA minimering [.-.] MyHill-Nerode-sætningen en algoritme til minimering af FA er En karakteristik af de regulære sprog Et sprog L er regulært hvis og kun hvis L beskrives af et regulært udtryk

Læs mere

6. december. Motivation. Internettet: Login til DIKU (med password) Handel med dankort Fortrolig besked Digital signatur

6. december. Motivation. Internettet: Login til DIKU (med password) Handel med dankort Fortrolig besked Digital signatur 6. december Talteoretiske algoritmer, RSA kryptosystemet, Primtalstest Motivation Definitioner Euclids algoritme Udvidet Euclid RSA kryptosystemet Randominserede algoritmer Rabin-Miller primtalstest Svært

Læs mere

Algoritmer og Datastrukturer 1. Gerth Stølting Brodal Aarhus Universitet

Algoritmer og Datastrukturer 1. Gerth Stølting Brodal Aarhus Universitet Algoritmer og Datastrukturer 1 Gerth Stølting Brodal Aarhus Universitet Kursusbeskrivelsen Kursusbeskrivelsen: Algoritmer og datastrukturer 1 Formål Deltagerne vil efter kurset have indsigt i algoritmer

Læs mere

DMX styring med USB-interface

DMX styring med USB-interface DMX styring med USB-interface Introduktion...2 DMX bibliotek...3 Programmering af kanaler...7 Sådan skabes et show/en lyssekvens...11 Introduktion DMX LightPlayer er en avanceret men meget brugervenlig

Læs mere

Matroider Majbritt Felleki

Matroider Majbritt Felleki 18 Rejselegatsformidlingsaktivitet Matroider Majbritt Felleki Den amerikanske matematiker Hassler Whitney fandt i 1935 sammenhænge mellem sætninger i grafteori og sætninger i lineær algebra. Dette førte

Læs mere

Eksamen i softwareudvikling

Eksamen i softwareudvikling Test af hashtabelmodul 8. april 2008 Introduktion Svært at overskue modulet (intet namespace eller opdeling i header og src ler). Brugt lang tid på at oversætte modulet. Masser af todos, memory leaks etc.

Læs mere

Algoritmer og Datastrukturer 1. Gerth Stølting Brodal

Algoritmer og Datastrukturer 1. Gerth Stølting Brodal Algoritmer og Datastrukturer 1 Gerth Stølting Brodal Kursusbeskrivelsen Kursusbeskrivelsen: Algoritmer og datastrukturer 1 Formål Deltagerne vil efter kurset have indsigt i algoritmer som model for sekventielle

Læs mere

Eksamen i Diskret Matematik

Eksamen i Diskret Matematik Eksamen i Diskret Matematik Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet 15. juni, 2015. Kl. 9-13. Nærværende eksamenssæt består af 12 nummererede sider med ialt 17 opgaver. Tilladte hjælpemidler:

Læs mere

1. Redegør for Lister, stakke og køer mht struktur og komplexitet af de relevante operationer

1. Redegør for Lister, stakke og køer mht struktur og komplexitet af de relevante operationer 1. Redegør for Lister, stakke og køer mht struktur og komplexitet af de relevante operationer på disse. Typer af lister: Array Enkelt linket liste Dobbelt linket Cirkulære lister Typer af køer: FILO FIFO

Læs mere

Grundlæggende køretidsanalyse af algoritmer

Grundlæggende køretidsanalyse af algoritmer Grundlæggende køretidsanalyse af algoritmer Algoritmers effektivitet Størrelse af inddata Forskellige mål for køretid Store -notationen Klassiske effektivitetsklasser Martin Zachariasen DIKU 1 Algoritmers

Læs mere

Køreplan Matematik 1 - FORÅR 2005

Køreplan Matematik 1 - FORÅR 2005 Lineær algebra modulo n og kryptologi Køreplan 01005 Matematik 1 - FORÅR 2005 1 Introduktion Kryptologi er en ældgammel disciplin, som går flere tusinde år tilbage i tiden. Idag omfatter disciplinen mange

Læs mere

17 Søgning og Søgetræer.

17 Søgning og Søgetræer. 17 Søgning og Søgetræer. Lineær og inær søgning i lister. inære søgetræer. Søgning efter knude i træ. Indsættelse af knude i træ. Søgning i og sortering af inært søgetræ. Sletning af knude i inært søgetræ.

Læs mere

SKOVTUREN Tag på skovtur. I skal bruge: tre terninger og en skovtur. 1 6 7 8 3 2 9 10 4 5 11 12 Spillet går ud på at komme først ud i skoven og hjem igen. 12 hjem igen SPILLETS GANG 5 6 11 4 9 10 2 3 8

Læs mere

Typografidefinition: Typografi1: Skrifttype: 10 pkt, (intet) DKAL Snitflader REST Afhentningssystem

Typografidefinition: Typografi1: Skrifttype: 10 pkt, (intet) DKAL Snitflader REST Afhentningssystem Typografidefinition: Typografi1: Skrifttype: 10 pkt, (intet) DKAL Snitflader REST Afhentningssystem 1 Indholdsfortegnelse A3.1 INTRODUKTION 3 A3.1.1 HENVISNINGER 3 A3.1.2 LÆSEVEJLEDNING 4 A3.1.2.1 SÅDAN

Læs mere

A Comparative Analysis of Three Different Priority Deques af: Søren Skov & Jesper Holm Olsen

A Comparative Analysis of Three Different Priority Deques af: Søren Skov & Jesper Holm Olsen A Comparative Analysis of Three Different Priority Deques af: Søren Skov & Jesper Holm Olsen Agenda: Hvad er en Priority Deque? Hvad kan det bruges til? De tre datastrukturer: MinMax-heap The Deap (påpeget

Læs mere

Videregående Algoritmik. Version med vejledende løsninger indsat!

Videregående Algoritmik. Version med vejledende løsninger indsat! Videregående Algoritmik DIKU, timers skriftlig eksamen, 1. april 009 Nils Andersen og Pawel Winter Alle hjælpemidler må benyttes, dog ikke lommeregner, computer eller mobiltelefon. Opgavesættet består

Læs mere

Algoritmer og Datastrukturer 2 (Sommer 2004)

Algoritmer og Datastrukturer 2 (Sommer 2004) Algoritmer og Datastrukturer 2 (Sommer 2004) 1a n = rk + 2. m = 2k + 2(r 1)(k 1). Dijkstra: O(m log n) = O((2k + 2(r 1)(k 1))log(rk + 2)) = O(rk log(rk)). 1b 2 / 1 t 1 2 1 / 1 3 / 3 1 3 s 0 / 0 På grafen

Læs mere

CCU-9944 manual Opret: 4. januar 2008 Opdateret: 4. januar 2008 Side 1 af 26 oz5pz Poul Rosenbeck Mosbækvej 29 Skivum 9240 Nibe mail:

CCU-9944 manual Opret: 4. januar 2008 Opdateret: 4. januar 2008 Side 1 af 26 oz5pz Poul Rosenbeck Mosbækvej 29 Skivum 9240 Nibe mail: CCU-9944 manual Opret: 4. januar 2008 Opdateret: 4. januar 2008 Side 1 af 26 CCU-9944 manual Opret: 4. januar 2008 Opdateret: 4. januar 2008 Side 2 af 26 CCU-9944 manual Opret: 4. januar 2008 Opdateret:

Læs mere

Regulære udtryk og endelige automater

Regulære udtryk og endelige automater Regulære udtryk og endelige automater Regulære udtryk: deklarative dvs. ofte velegnede til at specificere regulære sprog Endelige automater: operationelle dvs. bedre egnet til at afgøre om en given streng

Læs mere

Differentiation af Logaritmer

Differentiation af Logaritmer Differentiation af Logaritmer Frank Nasser 11. juli 2011 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Indhold

Læs mere

PHP Snippets. De små korte. Skrevet af Daniel Pedersen

PHP Snippets. De små korte. Skrevet af Daniel Pedersen PHP Snippets De små korte Skrevet af Daniel Pedersen Indhold PHP Snippets De små korte er en samling af små og praktiske kode eksempler med kort forklaring, som med formål at kunne benyttes til opsalgsværk

Læs mere

Stifinder V. Allan Ebdrup. Heuristik til at finde sti for firkantet objekt mellem firkantede forhindringer

Stifinder V. Allan Ebdrup. Heuristik til at finde sti for firkantet objekt mellem firkantede forhindringer Stifinder V. Allan Ebdrup Heuristik til at finde sti for firkantet objekt mellem firkantede forhindringer Motivation dotnet Terrarium http://www.gotdotnet.com/terrarium/ Rovdyr Jagte andre dyr Løbe væk

Læs mere

Christer Vindberg & Kim Birkelund. Avancerede Algoritmer og. Datastrukturer. Projekt 1

Christer Vindberg & Kim Birkelund. Avancerede Algoritmer og. Datastrukturer. Projekt 1 Christer Vindberg & Kim Birkelund Avancerede Algoritmer og Projekt 1 Datastrukturer 7 Indholdsfortegnelse At implementere heaps... 3 Binary-heap... 3 Fibonacci-heap... 3 Størrelser... 4 Worst-case tider...

Læs mere

Rolf Fagerberg. Forår 2012

Rolf Fagerberg. Forår 2012 Forår 2012 Mål for i dag Dagens program: 1 2 3 4 5 6 Forudsætninger: DM502 og DM503 Timer: 50% forelæsninger, 50% øvelser Forudsætninger: DM502 og DM503 Eksamenform: Skriftlig eksamen: Timer: 50% forelæsninger,

Læs mere

Om binære søgetræer i Java

Om binære søgetræer i Java Om binære søgetræer i Java Mads Rosendahl 7. november 2002 Resumé En fix måde at gemme data på er i en træstruktur. Måden er nyttig hvis man får noget data ind og man gerne vil have at det gemt i en sorteret

Læs mere

Søgning og Sortering. Søgning og Sortering. Søgning. Linæer søgning

Søgning og Sortering. Søgning og Sortering. Søgning. Linæer søgning Søgning og Sortering Søgning og Sortering Philip Bille Søgning. Givet en sorteret tabel A og et tal x, afgør om der findes indgang i, så A[i] = x. Sorteret tabel. En tabel A[0..n-1] er sorteret hvis A[0]

Læs mere

Approximations-algoritmer. Løsningsmetoder for NP -hårde opt.problemer

Approximations-algoritmer. Løsningsmetoder for NP -hårde opt.problemer Motivation Definitioner Approximations-algoritme for nudeoverdæning Approximations-algoritme for TSP med treantsulighed Negativt resultat om generel TSP Approximations-algoritme for SET-OVERING Fuldt polynomiel-tids

Læs mere

Løs til optimalitet i eksponentiel tid Find tilnærmet løsning i polynomielt tid Optimeringsproblemer kan ikke altid verificeres i polynomiel

Løs til optimalitet i eksponentiel tid Find tilnærmet løsning i polynomielt tid Optimeringsproblemer kan ikke altid verificeres i polynomiel I dag Løsning af NP -hårde optimeringsproblemer Repetition: branch-and-bound Flere begreber Konkret eksempel: TSP Lagrange relaxering Parallel branch-and-bound 1 Opsummering Løsning af NP -hårde optimeringsproblemer

Læs mere

DM507 Algoritmer og datastrukturer

DM507 Algoritmer og datastrukturer DM507 Algoritmer og datastrukturer Forår 2015 Projekt, del I Institut for matematik og datalogi Syddansk Universitet 3. marts, 2015 Dette projekt udleveres i to dele. Hver del har sin deadline, således

Læs mere

FPTAS er for korteste vej med restriktion

FPTAS er for korteste vej med restriktion FPTAS er for korteste vej med restriktion DIKU-opgave i kurset Approksimationsalgoritmer Allan Nordlunde Hjorth Tommy Clausen Kenneth Lyneborg Hvam 18. december 2003 INDHOLD INDHOLD Indhold 1 Forord 3

Læs mere

OPC ACCESS HEARTBEAT 1

OPC ACCESS HEARTBEAT 1 OPC Access Heartbeat Dette dokument gennemgår i et kort eksempel, hvordan OPC Access konfigureres til at anvende Heartbeat funktionen til at dokumentere kontinuerlig forbindelse mellem SQL Server og OPC

Læs mere

dpersp Uge 40 - Øvelser Internetalgoritmer

dpersp Uge 40 - Øvelser Internetalgoritmer Øvelse 1 dpersp Uge 40 - Øvelser Internetalgoritmer (Øvelserne 4 og 6 er afleveringsopgaver) a) Hver gruppe får en terning af instruktoren. Udfør 100 skridt af nedenstående RandomWalk på grafen, som også

Læs mere

Parallelisering/Distribuering af Genetiske Algoritmer

Parallelisering/Distribuering af Genetiske Algoritmer Parallelisering/Distribuering af Genetiske Algoritmer Hvorfor parallelisere/distribuere? Standard GA algoritme Modeller Embarassing parallel Global (fitness evaluering) Island (subpopulation) Grid/Cellular

Læs mere

Induktive og rekursive definitioner

Induktive og rekursive definitioner Induktive og rekursive definitioner Denne note omhandler matematiske objekter, som formelt er opbygget fra et antal basale byggesten, kaldet basistilfælde eller blot basis, ved gentagen brug af et antal

Læs mere

Skriftlig Eksamen ST501: Science Statistik Tirsdag den 8. juni 2010 kl

Skriftlig Eksamen ST501: Science Statistik Tirsdag den 8. juni 2010 kl Skriftlig Eksamen ST501: Science Statistik Tirsdag den 8. juni 2010 kl. 9.00 12.00 IMADA Syddansk Universitet Alle skriftlige hjælpemidler samt brug af lommeregner er tilladt. Opgavesættet består af 5

Læs mere

DesignMat Kvadratiske matricer, invers matrix, determinant

DesignMat Kvadratiske matricer, invers matrix, determinant DesignMat Kvadratiske matricer, invers matrix, determinant Preben Alsholm Uge 5 Forår 010 1 Kvadratiske matricer, invers matrix, determinant 1.1 Invers matrix I Invers matrix I Definition. En n n-matrix

Læs mere

Multimedier Modul 4 4.1:1. Huffman indkodning (statisk) Dynamisk Huffman-kodning er ikke pensum. Tekst: Lempel-Ziv og Lempel-Ziv-Welsh kodning

Multimedier Modul 4 4.1:1. Huffman indkodning (statisk) Dynamisk Huffman-kodning er ikke pensum. Tekst: Lempel-Ziv og Lempel-Ziv-Welsh kodning Multimedier Modul 4 4.1:1 KOMPRESSION Lidt kodningsteori (Entropi) Huffman indkodning (statisk) Dynamisk Huffman-kodning er ikke pensum. Aritmetisk indkodning Tekst: Lempel-Ziv og Lempel-Ziv-Welsh kodning

Læs mere

FællesNettet en introduktion

FællesNettet en introduktion FællesNettet en introduktion Læs om det samlende led i jeres SkoleIntra-hverdag Version: August 2012 Indholdsfortegnelse Hvad er FællesNettet?...4 Kom på FællesNettet...4 FællesNettet vist i LærerIntra...4

Læs mere

Skriftlig Eksamen Introduktion til lineær og heltalsprogrammering (DM515)

Skriftlig Eksamen Introduktion til lineær og heltalsprogrammering (DM515) Skriftlig Eksamen Introduktion til lineær og heltalsprogrammering (DM55) Institut for Matematik & Datalogi Syddansk Universitet Tirsdag den Juni 009, kl. 9 Alle sædvanlige hjælpemidler (lærebøger, notater

Læs mere