INSTITUT FOR DATALOGI, AARHUS UNIVERSITET

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Starte visningen fra side:

Download "INSTITUT FOR DATALOGI, AARHUS UNIVERSITET"

Transkript

1 INSTITUT FOR DATALOGI, AARHUS UNIVERSITET Science and Technology EKSAMEN Antal sider i opgavesættet (incl. forsiden): 6 (seks) Eksamensdag: Fredag den 22. juni 2012, kl Eksamenslokale: Finlandsgade 8, bygning , 8200 Aarhus N Tilladte medbragte hjælpemidler: Alle sædvanlige hjælpemidler (lærebøger, notater, lommeregner). Computer må ikke medbringes. Materiale der udleveres til eksaminanden: OPGAVETEKSTEN BEGYNDER PÅ NÆSTE SIDE ooo

2 Side 2 af 6 sider Opgave 1 (25%) Betragt nedenstående vægtede orienterede graf. Det antages, at grafen er givet ved incidenslister, hvor incidenslisterne er sorteret alfabetisk Q I J K L E F G H A B C D M N O Spørgsmål a: Angiv et BFS-træ for ovenstående graf, hvor BFS-gennemløbet starter i knuden A. Angiv kanterne i BFS-træet og BFS-numrene for knuderne. Spørgsmål b: Angiv et DFS-træ for ovenstående graf, hvor DFS-gennemløbet starter i knuden A, og en DFS-nummerering af knuderne. Angiv for hver knude discovery time og finishing time. Spørgsmål c: Angiv et korteste veje (SSSP) træ for ovenstående graf, når korteste veje beregningen sker med hensyn til startknuden A. For hver knude v angiv også afstanden fra startknuden A til v. Spørgsmål d: Angiv de stærke sammenhængskomponenter i ovenstående graf. For hver komponent angiv knuderne i komponenten Q M N O I J K L E F G H A B C D Spørgsmål e: Angiv kanterne i et minimum udspændende træ for ovenstående uorienterede graf med vægte på kanterne.

3 Side 3 af 6 sider Opgave 2 (15%) Betragt nedenstående netværk med de angivne kapaciteter på kanterne. 18 I s 17 M L H 12 F 9 K 8 A 3 t G 12 C Spørgsmål a: Angiv en maksimal strømning (maximum flow) fra s til t i netværket (angiv for hver kant strømningen langs kanten), angiv værdien af en maksimal strømning, og angiv et snit (cut) (dvs. opdeling af knuderne i to disjunkte mængder) hvor kapaciteten af snittet er lig værdien af en maksimal strømning. Spørgsmål b: Betragt Edmonds-Karp algoritmen anvendt på ovenstående graf til beregning af en maksimal strømning. Angiv de forbedrende stier (augmenting paths) der anvendes under udførslen af Edmonds-Karp algoritmen. For hver forbedrende sti angiv knuderne på stien og strømningen, man forbedrer med, langs stien.

4 Side 4 af 6 sider Opgave 3 (20%) I denne opgave ønsker vi inden for tiden T at fragte flest mulige tog fra s til t i en uorienteret graf repræsenterende et tognet. Vi antager at til et vilkårligt tidspunkt kan et tog enten være i knuderne s eller t, eller på en af grafens kanter. Til ethvert tidspunkt kan der højst være ét tog på hver kant. I knuderne s og t kan der være et vilkårligt antal tog. Et tog der til tiden i befinder sig på en kant e (eller i s), kan til tiden i+1 stadig befinde sig på e (eller i s) eller skifte til en kant e (eller t), såfremt e (eller s) og e (eller t) deler et endepunkt. Til tiden 0 er alle tog i s og til tiden T skal alle tog være nået til t. s e 1 Tid i e 2 e 4 Thomas s e t 1 e 2 e 4 e 4 e 5 t t Gordon s s e 1 e 3 e 5 t t t Percy s s s e 1 e 2 e 4 e 5 t e 3 e 5 Ovenstående er et eksempel på at få tre tog Thomas, Gordon og Percy fra s til t til tiden T = 7. Bemærk at på intet tidspunkt befinder der sig to tog på samme kant, og at Thomas er på kanten e 4 både til tiden 3 og 4, så Gordon kan køre fra e 3 til e 5 uden stop. Spørgsmål a: Hvad er den mindste tid T, der skal til for at få de fire tog Daisy, Rusty, Toby og Edward fra s til t i nedenstående graf? Angiv T og en tabel, der for en mulig løsning angiver hvor hvert tog er til tiderne 0,...,T. s e 4 e5 e 9 e 3 e 6 e 1 e 2 e7 e 8 e 10 t e 11 Spørgsmål b: Hvad er det største antal tog man kan få fra s til t i tiden T = 5 i ovenstående graf? Angiv for en mulig løsning hvor hvert tog er til tiderne 0,...,5. Spørgsmål c: Beskriv en algoritme, der givet en tid T og en sammenhængene graf med m kanter repræsenterende et tognet, finder det største antal tog man kan få transporteret fra s til t inden for tiden T. Angiv algoritmens udførselstid som funktion af m og T. Hint: Konstruer en ny graf hvor hver kant i det oprindelige tognet svarer til flere knuder.

5 Side 5 af 6 sider Opgave 4 (20%) I denne opgave ønsker vi, givet et heltal n 2, at finde det mindste antal primtal p 1,p 2,...,p k således at n kan skrives som summen n = p 1 + +p k, hvor hvert primtal p i 2. F.eks. kan 27 skrives som summen af tre primtal, f.eks. 27 = , men 27 kan ikke skrives som summen af to primtal. Bemærk at primtallene i summen ikke behøver at være forskellige. Vi lader K(n) betegne det mindste antal primtal, hvor n kan skrives som summen af K(n) primtal. F.eks. er K(27) = 3. n K(n) Sum K(n) kan bestemmes ved følgende rekursionsformel: K(n) = { 1 hvis n er et primtal min{1+k(n p) p et primtal 2 p n 2} ellers Spørgsmål a: Angiv K(57) og primtal p 1,...,p K(57), hvor 57 = p 1 + +p K(57). I det følgende kan antages at man har givet et array P, således at { 1 hvis n er et primtal P[n] = 0 ellers Spørgsmål b: Angiv en algoritme baseret på dynamisk programmering, der givet et heltal n 2 beregner K(n). Angiv algoritmens udførselstid. Spørgsmål c: Udvid algoritmen fra spørgsmål b) til også at rapportere K(n) primtal p 1,...,p K(n), hvor n = p 1 + +p K(n). Angiv algoritmens udførselstid.

6 Side 6 af 6 sider Opgave 5 (20%) Antag at vi er givet en streng T = x 1...x n af længde n. Et skift af T med s, 0 s < n, er strengen T s = x s+1 x s+2...x n x 1 x 2...x s. I denne opgave ønsker vi at finde det leksikografisk mindste skift, d.v.s. et skift med s hvor T s er leksikografisk mindst blandt T 0,...,T n 1. F.eks. er T 2 = T 7 = aababaabab de leksikografisk mindste skift af strengen T = abaababaab Spørgsmål a: Angiv alle s hvor T s er et leksikografisk mindste skift af strengen T = bcabaabcabaabcabaa I det følgende kan det antages at et suffikstræ for en streng af længde n over et alfabet med O(1) tegn kan konstrueres i O(n) tid. Spørgsmål b: Beskriv en algoritme, der givet en streng T af længde n over et alfabet med O(1) tegn, finder alle s hvor T s er et leksikografisk mindste skift af strengen T. Angiv algoritmens udførselstid.

INSTITUT FOR DATALOGI, AARHUS UNIVERSITET

INSTITUT FOR DATALOGI, AARHUS UNIVERSITET INSTITUT FOR ATALOGI, AARHUS UNIVERSITET Science and Technology EKSAMEN Algoritmer og atastrukturer (00-ordning) Antal sider i opgavesættet (incl. forsiden): (elleve) Eksamensdag: Fredag den. august 0,

Læs mere

DATALOGISK INSTITUT, AARHUS UNIVERSITET

DATALOGISK INSTITUT, AARHUS UNIVERSITET DATALOGISK INSTITUT, AARHUS UNIVERSITET Det Naturvidenskabelige Fakultet EKSAMEN Grundkurser i Datalogi Antal sider i opgavesættet (incl. forsiden): 6 (seks) Eksamensdag: Fredag den 24. juni 2011, kl.

Læs mere

DATALOGISK INSTITUT, AARHUS UNIVERSITET

DATALOGISK INSTITUT, AARHUS UNIVERSITET DATALOGISK INSTITUT, AARHUS UNIVERSITET Det Naturvidenskabelige Fakultet EKSAMEN Grundkurser i Datalogi Algoritmer og Datastrukturer (00-ordning) Antal sider i opgavesættet (incl. forsiden): 6 (seks) Eksamensdag:

Læs mere

DATALOGISK INSTITUT, AARHUS UNIVERSITET

DATALOGISK INSTITUT, AARHUS UNIVERSITET DATALOGISK INSTITUT, AARHUS UNIVERSITET Det Naturvidenskabelige Fakultet EKSAMEN Grundkurser i Datalogi Antal sider i opgavesættet (incl. forsiden): 6 (seks) Eksamensdag: Fredag den 25. juni 200, kl. 9.00-.00

Læs mere

INSTITUT FOR DATALOGI, AARHUS UNIVERSITET

INSTITUT FOR DATALOGI, AARHUS UNIVERSITET INSTITUT FOR DTLOGI, RHUS UNIVERSITET Science and Technology EKSEN lgoritmer og Datastrukturer (00-ordning) ntal sider i opgavesættet (incl. forsiden): 11 (elleve) Eksamensdag: Torsdag den 1. juni 01,

Læs mere

INSTITUT FOR DATALOGI, AARHUS UNIVERSITET

INSTITUT FOR DATALOGI, AARHUS UNIVERSITET INSTITUT FOR DTLOGI, RHUS UNIVERSITET Science and Technology EKSMEN ntal sider i opgavesættet (incl. forsiden): (elleve) Eksamensdag: Mandag den. august 07, kl. 9.00-.00 Tilladte medbragte hjælpemidler:

Læs mere

INSTITUT FOR DATALOGI, AARHUS UNIVERSITET

INSTITUT FOR DATALOGI, AARHUS UNIVERSITET INSTITUT FOR DTOI, RUS UNIVERSITET Science and Technology ESEN lgoritmer og Datastrukturer (00-ordning) ntal sider i opgavesættet (incl. forsiden): (elleve) Eksamensdag: Fredag den. juni 0, kl. 9.00-.00

Læs mere

INSTITUT FOR DATALOGI, AARHUS UNIVERSITET

INSTITUT FOR DATALOGI, AARHUS UNIVERSITET NSTTUT OR TO, RUS UNVRSTT Science and Technology SN lgoritmer og atastrukturer (00-ordning) ntal sider i opgavesættet (incl. forsiden): 11 (elleve) ksamensdag: redag den 1. august 015, kl. 9.00-.00 Tilladte

Læs mere

INSTITUT FOR DATALOGI, AARHUS UNIVERSITET

INSTITUT FOR DATALOGI, AARHUS UNIVERSITET STTUT R T, RUS UVRSTT Science and Technology S lgoritmer og atastrukturer (00-ordning) ntal sider i opgavesættet (incl. forsiden): (elleve) ksamensdag: Tirsdag den. august 0, kl. 9.00-.00 Tilladte medbragte

Læs mere

DATALOGISK INSTITUT, AARHUS UNIVERSITET

DATALOGISK INSTITUT, AARHUS UNIVERSITET DATALOGISK INSTITUT, AARHUS UNIVERSITET Det Naturvidenskabelige Fakultet EKSAMEN Grundkurser i Datalogi Antal sider i opgavesættet (incl. forsiden): 5 (fem) Eksamensdag: Fredag den 10. august 007, kl.

Læs mere

DATALOGISK INSTITUT, AARHUS UNIVERSITET

DATALOGISK INSTITUT, AARHUS UNIVERSITET DTLOS NSTTUT, RUS UNVERSTET Det Naturvidenskabelige akultet ESMEN rundkurser i Datalogi ntal sider i opgavesættet (incl. forsiden): 7 (syv) Eksamensdag: Torsdag den 14. juni 007, kl. 9.00-1.00 Eksamenslokale:

Læs mere

Minimum udspændende Træer (MST)

Minimum udspændende Træer (MST) Minimum udspændende Træer (MST) Træer Et (frit/u-rodet) træ er en uorienteret graf G = (V, E) som er Sammenhængende: der er en sti mellem alle par af knuder. Acyklisk: der er ingen kreds af kanter. Træ

Læs mere

Minimum udspændende Træer (MST)

Minimum udspændende Træer (MST) Minimum udspændende Træer (MST) Træer Et (frit/u-rodet) træ er en uorienteret graf G = (V, E) som er Sammenhængende: der er en sti mellem alle par af knuder. Acyklisk: der er ingen lukket kreds af kanter

Læs mere

Skriftlig Eksamen Algoritmer og Datastrukturer (DM507)

Skriftlig Eksamen Algoritmer og Datastrukturer (DM507) Skriftlig Eksamen Algoritmer og Datastrukturer (DM507) Institut for Matematik og Datalogi Syddansk Universitet, Odense Onsdag den 0. juni 009, kl. 9 Alle sædvanlige hjælpemidler (lærebøger, notater, osv.)

Læs mere

Skriftlig Eksamen Algoritmer og Datastrukturer (DM507)

Skriftlig Eksamen Algoritmer og Datastrukturer (DM507) Skriftlig Eksamen Algoritmer og Datastrukturer (DM507) Institut for Matematik og Datalogi Syddansk Universitet, Odense Mandag den 7. juni 00, kl. 9 Alle sædvanlige hjælpemidler (lærebøger, notater, osv.)

Læs mere

Skriftlig Eksamen Algoritmer og Datastrukturer (dads)

Skriftlig Eksamen Algoritmer og Datastrukturer (dads) Skriftlig Eksamen Algoritmer og Datastrukturer (dads) Datalogisk Institut Aarhus Universitet Tirsdag den 27. maj 2003, kl. 9.00 3.00 Opgave (25%) For konstanten π = 3.4592... gælder identiteten π 2 6 =

Læs mere

DATALOGISK INSTITUT, AARHUS UNIVERSITET. Det Naturvidenskabelige Fakultet EKSAMEN. Grundkurser i Datalogi

DATALOGISK INSTITUT, AARHUS UNIVERSITET. Det Naturvidenskabelige Fakultet EKSAMEN. Grundkurser i Datalogi DATALOGISK INSTITUT, AARHUS UNIVERSITET Det Naturvidenskabelige Fakultet EKSAMEN Grundkurser i Datalogi Antal sider i opgavesættet (incl. forsiden): 1 (tretten) Eksamensdag: Tirsdag den 8. april 2008,

Læs mere

DATALOGISK INSTITUT, AARHUS UNIVERSITET

DATALOGISK INSTITUT, AARHUS UNIVERSITET DATALOGISK INSTITUT, AARHUS UNIVERSITET Det Naturvidenskabelige Fakultet EKSAMEN Grundkurser i Datalogi Algoritmer og Datastrukturer 1 (003-ordning) Antal sider i opgavesættet (incl. forsiden): 10 (ti)

Læs mere

Skriftlig Eksamen DM507 Algoritmer og Datastrukturer

Skriftlig Eksamen DM507 Algoritmer og Datastrukturer Skriftlig Eksamen DM507 Algoritmer og Datastrukturer Institut for Matematik og Datalogi Syddansk Universitet, Odense Tirsdag den 24. juni 2014, kl. 10:00 14:00 Besvarelsen skal afleveres elektronisk. Se

Læs mere

Skriftlig Eksamen Algoritmer og Datastrukturer (dads)

Skriftlig Eksamen Algoritmer og Datastrukturer (dads) Skriftlig Eksamen Algoritmer og Datastrukturer (dads) Datalogisk Institut Aarhus Universitet Onsdag den. august 200, kl. 9.00.00 Opgave (25%) Lad A = A[] A[n] være et array af heltal. Længden af det længste

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet side af 3 sider anmarks Tekniske Universitet Skriftlig prøve, den 29. maj 203. ursusnavn: lgoritmer og datastrukturer ursus nr. 02326. jælpemidler: Skriftlige hjælpemidler. et er ikke tilladt at medbringe

Læs mere

DATALOGISK INSTITUT, AARHUS UNIVERSITET

DATALOGISK INSTITUT, AARHUS UNIVERSITET DATALOGISK INSTITUT, AARHUS UNIVERSITET Det Naturvidenskabelige Fakultet EKSAMEN Grundkurser i Datalogi Antal sider i opgavesættet (incl. forsiden): 12 (tolv) Eksamensdag: Fredag den 1. april 200, kl..00-11.00

Læs mere

P2-projektforslag Kombinatorik: grafteori og optimering.

P2-projektforslag Kombinatorik: grafteori og optimering. P2-projektforslag Kombinatorik: grafteori og optimering. Vejledere: Leif K. Jørgensen, Diego Ruano 1. februar 2013 1 Indledning Temaet for projekter på 2. semester af matematik-studiet og matematikøkonomi-studiet

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet side af sider Danmarks Tekniske Universitet Skriftlig prøve, den. maj 00. Kursusnavn Algoritmer og datastrukturer Kursus nr. 06. Tilladte hjælpemidler: Alle hjælpemidler. Vægtning af opgaverne: Opgave

Læs mere

Skriftlig Eksamen Algoritmer og sandsynlighed (DM538)

Skriftlig Eksamen Algoritmer og sandsynlighed (DM538) Skriftlig Eksamen Algoritmer og sandsynlighed (DM538) Institut for Matematik & Datalogi Syddansk Universitet Fredag den 9 Januar 2015, kl. 10 14 Alle sædvanlige hjælpemidler(lærebøger, notater etc.) samt

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet Eksamen 02105, F14 side 1 af 14 Danmarks Tekniske Universitet Skriftlig prøve, den 22. maj 2014. Kursusnavn: Algoritmer og datastrukturer 1 Kursusnummer: 02105 Hjælpemidler: Skriftlige hjælpemidler. Det

Læs mere

Mindste udspændende træ

Mindste udspændende træ Mindste udspændende træ Introduktion Repræsentation af vægtede grafer Egenskaber for mindste udspændende træer Prims algoritme Kruskals algoritme Philip Bille Mindste udspændende træ Introduktion Repræsentation

Læs mere

Skriftlig Eksamen Introduktion til lineær og heltalsprogrammering (DM515)

Skriftlig Eksamen Introduktion til lineær og heltalsprogrammering (DM515) Skriftlig Eksamen Introduktion til lineær og heltalsprogrammering (DM55) Institut for Matematik & Datalogi Syddansk Universitet Tirsdag den Juni 009, kl. 9 Alle sædvanlige hjælpemidler (lærebøger, notater

Læs mere

Sammenhængskomponenter i grafer

Sammenhængskomponenter i grafer Sammenhængskomponenter i grafer Ækvivalensrelationer Repetition: En relation R på en mængde S er en delmængde af S S. Når (x, y) R siges x at stå i relation til y. Ofte skrives x y, og relationen selv

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet side af 2 sider Danmarks Tekniske Universitet Skriftlig prøve, den 2. maj 200. Kursusnavn Algoritmer og datastrukturer Kursus nr. 02326. Tilladte hjælpemidler: Alle hjælpemidler. Vægtning af opgaverne:

Læs mere

Minimum udspændende Træer (MST)

Minimum udspændende Træer (MST) Minimum udspændende Træer (MST) Træer Et (frit/u-rodet) træ er en uorienteret graf G = (V, E) som er Sammenhængende: der er en sti mellem alle par af knuder. Acyklisk: der er ingen kreds af kanter. Træer

Læs mere

Skriftlig eksamen i Datalogi

Skriftlig eksamen i Datalogi Roskilde Universitetscenter side 1 af 9 sider Skriftlig eksamen i Datalogi Modul 1 Vinter 1999/2000 Opgavesættet består af 6 opgaver, der ved bedømmelsen tillægges følgende vægte: Opgave 1 5% Opgave 2

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet side af sider Danmarks Tekniske Universitet Skriftlig prøve, den 6. maj 0. Kursusnavn: Algoritmer og datastrukturer Kursus nr. 06. Tilladte hjælpemidler: Skriftlige hjælpemidler. Varighed: timer Vægtning

Læs mere

Oplæg og øvelser, herunder frugt og vand Gerth Stølting Brodal

Oplæg og øvelser, herunder frugt og vand Gerth Stølting Brodal Oplæg og øvelser, herunder frugt og vand Gerth Stølting Brodal Datalogisk Institut Aarhus Universitet MasterClass Matematik, Mærsk Mc-Kinney Møller Videncenter, Sorø, 29-31. oktober 2009 Algoritmer: Matricer

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet side af sider Danmarks Tekniske Universitet Skriftlig prøve, den. maj 00. Kursusnavn Algoritmer og datastrukturer I Kursus nr. 005. Tilladte hjælpemidler: Alle skriftlige hjælpemidler. Vægtning af opgaverne:

Læs mere

DATALOGI 0GB. Skriftlig eksamen tirsdag den 6. januar 2004

DATALOGI 0GB. Skriftlig eksamen tirsdag den 6. januar 2004 Københavns Universitet bacheloruddannelsen i datalogi side 1 af 6 DATALOGI 0GB Skriftlig eksamen tirsdag den 6. januar 2004 Dette opgavesæt består af 6 nummererede sider. Eksamensdeltagerne bør straks

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet side af 2 sider anmarks Tekniske Universitet Skriftlig prøve, den 23. maj 20. Kursusnavn: lgoritmer og datastrukturer Kursus nr. 02326. Varighed: 4 timer Tilladte hjælpemidler: lle skriftlige hjælpemidler.

Læs mere

Algorithms & Architectures I 2. lektion

Algorithms & Architectures I 2. lektion Algorithms & Architectures I 2. lektion Design-teknikker: Divide-and-conquer Rekursive algoritmer (Recurrences) Dynamisk programmering Greedy algorithms Backtracking Dagens lektion Case eksempel: Triple

Læs mere

Skriftlig Eksamen Kombinatorik, sandsynlighed og randomiserede algoritmer (DM528)

Skriftlig Eksamen Kombinatorik, sandsynlighed og randomiserede algoritmer (DM528) Skriftlig Eksamen Kombinatorik, sandsynlighed og randomiserede algoritmer (DM58) Institut for Matematik & Datalogi Syddansk Universitet Torsdag den 7 Januar 010, kl. 9 13 Alle sædvanlige hjælpemidler (lærebøger,

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet side af sider Danmarks Tekniske Universitet Skriftlig prøve, den 6. maj 0. Kursusnavn: Algoritmer og datastrukturer I Kursus nr. 005. Tilladte hjælpemidler: Skriftlige hjælpemidler. Varighed: timer Vægtning

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet ksamen 06, F side af sider anmarks Tekniske Universitet Skriftlig prøve, den 9. maj 0. ursusnavn: lgoritmer og datastrukturer ursus nr. 06. jælpemidler: Skriftlige hjælpemidler. et er ikke tilladt at medbringe

Læs mere

i x-aksens retning, så fås ). Forskriften for g fås altså ved i forskriften for f at udskifte alle forekomster af x med x x 0

i x-aksens retning, så fås ). Forskriften for g fås altså ved i forskriften for f at udskifte alle forekomster af x med x x 0 BAndengradspolynomier Et polynomium er en funktion på formen f ( ) = an + an + a+ a, hvor ai R kaldes polynomiets koefficienter. Graden af et polynomium er lig med den højeste potens af, for hvilket den

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet Eksamen 005, F0 side af sider Danmarks Tekniske Universitet Skriftlig prøve, den 6. maj 00. Kursusnavn Algoritmik og datastrukturer I Kursus nr. 005. Tilladte hjælpemidler: Alle skriftlige hjælpemidler.

Læs mere

Version august 2012 Side 1 af 7

Version august 2012 Side 1 af 7 Side 1 af 7 Indholdsfortegnelse Indholdsfortegnelse... 2 7. Valgmuligheder ved skriftlige prøver... 3 8.Generelle regler vedrørende skriftlige prøver... 3 9. Specifikke regler vedrørende elektronisk aflevering

Læs mere

Grafer og graf-gennemløb

Grafer og graf-gennemløb Grafer og graf-gennemløb Grafer En mængde V af knuder (vertices). En mængde E V V af kanter (edges). Dvs. ordnede par af knuder. Figur: Terminologi: n = V, m = E (eller V og E (mis)bruges som V og E ).

Læs mere

Skriftlig Eksamen Diskret Matematik (DM528)

Skriftlig Eksamen Diskret Matematik (DM528) Skriftlig Eksamen Diskret Matematik (DM528) Institut for Matematik & Datalogi Syddansk Universitet Tirsdag den 20 Januar 2009, kl. 9 13 Alle sædvanlige hjælpemidler (lærebøger, notater etc.) samt brug

Læs mere

Grafer og graf-gennemløb

Grafer og graf-gennemløb Grafer og graf-gennemløb Grafer En mængde V af knuder (vertices). En mængde E V V af kanter (edges). Dvs. ordnede par af knuder. Grafer En mængde V af knuder (vertices). En mængde E V V af kanter (edges).

Læs mere

Grafer og graf-gennemløb

Grafer og graf-gennemløb Grafer og graf-gennemløb Grafer En mængde V af knuder (vertices). En mængde E V V af kanter (edges). Dvs. ordnede par af knuder. Grafer En mængde V af knuder (vertices). En mængde E V V af kanter (edges).

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet ksamen 06, side af sider anmarks Tekniske Universitet Skriftlig prøve, den 6. maj 0. ursusnavn: lgoritmer og datastrukturer ursus nr. 06. Tilladte hjælpemidler: Skriftlige hjælpemidler. Varighed: timer

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet Eksamen 005, F side af sider Danmarks Tekniske Universitet Skriftlig prøve, den 6. maj 0. Kursusnavn: Algoritmer og datastrukturer I Kursus nr. 005. Tilladte hjælpemidler: Skriftlige hjælpemidler. Varighed:

Læs mere

Grafteori, Kirsten Rosenkilde, september 2007 1. Grafteori

Grafteori, Kirsten Rosenkilde, september 2007 1. Grafteori Grafteori, Kirsten Rosenkilde, september 007 1 1 Grafteori Grafteori Dette er en kort introduktion til de vigtigste begreber i grafteori samt eksempler på opgavetyper inden for emnet. 1.1 Definition af

Læs mere

Orienterede grafer. Orienterede grafer. Orienterede grafer. Orienterede grafer

Orienterede grafer. Orienterede grafer. Orienterede grafer. Orienterede grafer Philip Bille Orienteret graf. Mængde af knuder forbundet parvis med orienterede kanter. deg + (7) =, deg - (7) = Lemma. v V deg - (v) = v V deg + (v) = m. Bevis. Hver kant har netop en startknude og slutknude.

Læs mere

DM72 Diskret matematik med anvendelser

DM72 Diskret matematik med anvendelser DM72 Diskret matematik med anvendelser En hurtig gennemgang af de vigtigste resultater. (Dvs. ikke alle resultater). Logik Åbne udsagn 2 + 3 = 5 Prædikater og kvantorer P (x) := x er et primtal x N : n

Læs mere

Grafer og graf-gennemløb

Grafer og graf-gennemløb Grafer og graf-gennemløb Grafer En mængde V af knuder (vertices). En mængde E V V af kanter (edges). Dvs. ordnede par af knuder. Grafer En mængde V af knuder (vertices). En mængde E V V af kanter (edges).

Læs mere

Navn Skole By. Når datofristen er passeret, får læreren besked om, hvilke hold, der kan komme med til Flensborg.

Navn Skole By. Når datofristen er passeret, får læreren besked om, hvilke hold, der kan komme med til Flensborg. Side 1 af 8 Navn Skole By 55. matematik-olympiade skoleåret 2015/16 Første runde 4. klasse Mest for læreren og evt. forældrene Organisering første runde på skolerne, i klassen Hver skole eller lærer organiserer

Læs mere

Gamle eksamensopgaver. Diskret Matematik med Anvendelser (DM72) & Diskrete Strukturer (DM504)

Gamle eksamensopgaver. Diskret Matematik med Anvendelser (DM72) & Diskrete Strukturer (DM504) For et givent positivt heltal n og en given mængde af familier, antages at sandsynligheden for at familien har i børn, for 1 i n, er p i, således at n i=1 p i = 1. Endvidere er de 2 i mulige måder at få

Læs mere

EUX-eksamensreglement for Den Jydske Haandværkerskole

EUX-eksamensreglement for Den Jydske Haandværkerskole EUX-eksamensreglement for Den Jydske Haandværkerskole Skriftlige prøver Generelt 1. Det er aldrig lovligt at kommunikere med andre end eksamensvagterne under en skriftlig prøve. Og denne kommunikation

Læs mere

Opgave: FIL File Paths

Opgave: FIL File Paths Opgave: FIL File Paths danish BOI 2015, dag 2. Tilgængelig hukommelse: 256 MB. 1.05.2015 Byteasar kan godt lide at leve på kanten. Han løber med sakse, indsender besvarelser til konkurrenceproblemer uden

Læs mere

DATALOGI MASKINARKITEKTUR Blok 2 samt Reeksamination i DATALOGI MASKINARKITEKTUR Blok 1 og arkitekturdelen af DATALOGI 1E

DATALOGI MASKINARKITEKTUR Blok 2 samt Reeksamination i DATALOGI MASKINARKITEKTUR Blok 1 og arkitekturdelen af DATALOGI 1E Københavns Universitet Naturvidenskabelig Embedseksamen DATALOGI MASKINARKITEKTUR Blok 2 samt Reeksamination i DATALOGI MASKINARKITEKTUR Blok 1 og arkitekturdelen af DATALOGI 1E Vejledende løsninger til

Læs mere

Korteste veje i vægtede grafer. Længde af sti = sum af vægte af kanter på sti.

Korteste veje i vægtede grafer. Længde af sti = sum af vægte af kanter på sti. Korteste veje Korteste veje i vægtede grafer Længde af sti = sum af vægte af kanter på sti. Korteste veje i vægtede grafer Længde af sti = sum af vægte af kanter på sti. δ(u, v) = længden af en korteste

Læs mere

Grafer / Otto Knudsen 20-11-06

Grafer / Otto Knudsen 20-11-06 Grafer / Otto Knudsen -- Grafer Definition En graf er pr. definition et par G = (V, E). Grafen består af en mængde knuder V (eng: vertices) og en mængde kanter E (eng: edges), som forbinder knuderne. A

Læs mere

AARHUS UNIVERSITET Formular II - side 1. Omprøve E 2014

AARHUS UNIVERSITET Formular II - side 1. Omprøve E 2014 AARHUS UNIVERSITET Formular II - side 1 Det Samfundsvidenskabelige Fakultet Juridisk kandidateksamen Del/delprøve/fase: 2. år af bacheloruddannelsen Fag: Forvaltningsret Opgavetype: AO Antal sider i opgavesættet

Læs mere

Et generelt algoritme-konstruktionsprincip ( paradigme ) for optimeringsproblemer. Ideen er simpel:

Et generelt algoritme-konstruktionsprincip ( paradigme ) for optimeringsproblemer. Ideen er simpel: Grådige algoritmer Grådige algoritmer Et generelt algoritme-konstruktionsprincip ( paradigme ) for optimeringsproblemer. Ideen er simpel: Opbyg løsningen skridt for skridt ved hele tiden af vælge lige

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet Eksamen 0205, Forår 205 side af 5 Danmarks Tekniske Universitet Skriftlig prøve, den 22. maj 205. Kursusnavn: Algoritmer og datastrukturer Kursusnummer: 0205 Hjælpemidler: Skriftlige hjælpemidler. Det

Læs mere

Korteste veje i vægtede grafer. Længde af sti = sum af vægte af kanter på sti.

Korteste veje i vægtede grafer. Længde af sti = sum af vægte af kanter på sti. Korteste veje Korteste veje i vægtede grafer Længde af sti = sum af vægte af kanter på sti. Korteste veje i vægtede grafer Længde af sti = sum af vægte af kanter på sti. δ(u, v) = længden af en korteste

Læs mere

HF/GS-EKSAMEN december 2015

HF/GS-EKSAMEN december 2015 HF/GS-EKSAMEN december 2015 information til kursister Kære kursist I denne folder finder du vigtige informationer om HF/GS-eksamen. Er der noget, du bliver i tvivl om, kan du enten spørge dine faglærere

Læs mere

Orienterede grafer. Introduktion Repræsentation Søgning Topologisk sortering og DAGs Stærke sammenhængskomponenter Implicitte grafer.

Orienterede grafer. Introduktion Repræsentation Søgning Topologisk sortering og DAGs Stærke sammenhængskomponenter Implicitte grafer. Orienterede grafer Introduktion Repræsentation Søgning Topologisk sortering og DAGs Stærke sammenhængskomponenter Implicitte grafer Philip Bille Orienterede grafer Introduktion Repræsentation Søgning Topologisk

Læs mere

Skriftlig Eksamen Introduktion til lineær og heltalsprogrammering (DM515)

Skriftlig Eksamen Introduktion til lineær og heltalsprogrammering (DM515) Skriftlig Eksamen Introduktion til lineær og heltalsprogrammering (DM55) Institut for Matematik & Datalogi Syddansk Universitet Mandag den 2 Juni 2008, kl. 9 Alle sædvanlige hjælpemidler (lærebøger, notater

Læs mere

Varmeligningen og cosinuspolynomier.

Varmeligningen og cosinuspolynomier. Varmeligningen og cosinuspolynomier. Projekt for MM50 Marts 009 Hans J. Munkholm 0. Praktiske oplysninger Dette projekt besvares af de studerende, som er tilmeldt eksamen i MM50 uden at være tilmeldt eksamen

Læs mere

Værd at vide om eksamen

Værd at vide om eksamen Værd at vide om eksamen 2015 Høng Gymnasium og HF Hvor finder jeg information om de enkelte fag? Det er god ide at vide besked om prøveformer og bedømmelseskriterier i de fag, man skal til eksamen i. Derfor

Læs mere

Eksamensopgaver datalogi, dlc 2011 side 1/5. 1. Lodtrækningssystem

Eksamensopgaver datalogi, dlc 2011 side 1/5. 1. Lodtrækningssystem Eksamensopgaver datalogi, dlc 2011 side 1/5 1. Lodtrækningssystem Der skal fremstilles et program, som kan foretage en lodtrækning. Programmet skal kunne udtrække en eller flere personer (eller andet)

Læs mere

EKSAMENSGUIDE for Højere Handelseksamen på Grenaa Handelsskole H2. år

EKSAMENSGUIDE for Højere Handelseksamen på Grenaa Handelsskole H2. år EKSAMENSGUIDE for Højere Handelseksamen på Grenaa Handelsskole H2. år 2010 Indholdsfortegnelse: Forord Diverse praktiske oplysninger Eksamensreglement Øvrige regler ved mundtlig eksamen Vilkår for anvendelse

Læs mere

Dynamisk programmering

Dynamisk programmering Dynamisk programmering Dynamisk programmering Et algoritme-konstruktionsprincip ( paradigme ) for optimeringsproblemer. Har en hvis lighed med divide-and-conquer: Begge opbygger løsninger til større problemer

Læs mere

Undervisnings- og eksamensregler ved Det Natur- og Biovidenskabelige Fakultet gældende for studieåret 2015-16 (September 2015)

Undervisnings- og eksamensregler ved Det Natur- og Biovidenskabelige Fakultet gældende for studieåret 2015-16 (September 2015) Undervisnings- og eksamensregler ved Det Natur- og Biovidenskabelige Fakultet gældende for studieåret 2015-16 (September 2015) De overordnede rammer for disse regler er fastlagt i nedenstående love, bekendtgørelser

Læs mere

Eksamen og årsprøver i gymnasiet Til 1g Herlev Gymnasium og HF 2014

Eksamen og årsprøver i gymnasiet Til 1g Herlev Gymnasium og HF 2014 OM EKSAMENSUDTRÆK for STX-elever Både skriftlige og mundtlige prøver er med i udtrækket. Reglerne om prøver i løbet af de 3 år er 1) der aflægges altid prøve i 3g i AT (mundtlig prøve) 2) der aflægges

Læs mere

Mindste udspændende træ. Mindste udspændende træ. Introduktion. Introduktion

Mindste udspændende træ. Mindste udspændende træ. Introduktion. Introduktion Philip Bille Introduktion (MST). Udspændende træ af minimal samlet vægt. Introduktion (MST). Udspændende træ af minimal samlet vægt. 0 0 Graf G Ikke sammenhængende Introduktion (MST). Udspændende træ af

Læs mere

Orienterede grafer. Orienterede grafer. Orienterede grafer. Vejnetværk

Orienterede grafer. Orienterede grafer. Orienterede grafer. Vejnetværk Philip Bille Orienteret graf (directed graph). Mængde af knuder forbundet parvis med orienterede kanter. Vejnetværk Knude = vejkryds, kant = ensrettet vej. deg + (6) =, deg - (6) = sti fra til 6 8 7 9

Læs mere

Algoritmer og datastrukturer Course No. 02105 Cheat Sheet 2012. May 15, 2012

Algoritmer og datastrukturer Course No. 02105 Cheat Sheet 2012. May 15, 2012 Algoritmer og datastrukturer Course No. 02105 Cheat Sheet 2012 May 15, 2012 1 CONTENTS 2012 CONTENTS Contents 1 Kompleksitet 3 1.1 Køretid................................................ 3 1.2 Asymptotisk

Læs mere

Deskriptiv statistik. Version 2.1. Noterne er et supplement til Vejen til matematik AB1. Henrik S. Hansen, Sct. Knuds Gymnasium

Deskriptiv statistik. Version 2.1. Noterne er et supplement til Vejen til matematik AB1. Henrik S. Hansen, Sct. Knuds Gymnasium Deskriptiv (beskrivende) statistik er den disciplin, der trækker de væsentligste oplysninger ud af et ofte uoverskueligt materiale. Det sker f.eks. ved at konstruere forskellige deskriptorer, d.v.s. regnestørrelser,

Læs mere

Bestemmelser for eksaminander. for sikkerhedsrådgivere

Bestemmelser for eksaminander. for sikkerhedsrådgivere Bestemmelser for eksaminander om eksamen for sikkerhedsrådgivere Udgivet af: Beredskabsstyrelsen Trafik- og Byggestyrelsen Datavej 16 Edvard Thomsens Vej 14 3460 Birkerød 2300 København Telefon: 45 90

Læs mere

Dynamisk programmering

Dynamisk programmering Dynamisk programmering Dynamisk programmering Optimeringsproblem: man ønsker at finde bedste den kombinatoriske struktur blandt mange mulige. Dynamisk programmering Optimeringsproblem: man ønsker at finde

Læs mere

Matematiske metoder - Opgaver

Matematiske metoder - Opgaver Matematiske metoder - Opgaver Anders Friis, Anne Ryelund 25. oktober 2014 Logik Opgave 1 Find selv på tre udtalelser (gerne sproglige). To af dem skal være udsagn, mens det tredje ikke må være et udsagn.

Læs mere

Videregående Algoritmik. Version med vejledende løsninger indsat!

Videregående Algoritmik. Version med vejledende løsninger indsat! Videregående Algoritmik DIKU, timers skriftlig eksamen, 1. april 009 Nils Andersen og Pawel Winter Alle hjælpemidler må benyttes, dog ikke lommeregner, computer eller mobiltelefon. Opgavesættet består

Læs mere

KØBENHAVNS UNIVERSITET NATURVIDENSKABELIG BACHELORUDDANNELSE

KØBENHAVNS UNIVERSITET NATURVIDENSKABELIG BACHELORUDDANNELSE KØBENHAVNS UNIVERSITET NATURVIDENSKABELIG BACHELORUDDANNELSE Fysik 2, Klassisk Mekanik 2 Skriftlig eksamen 23. januar 2009 Tilladte hjælpemidler: Medbragt litteratur, noter og lommeregner Besvarelsen må

Læs mere

DM507 Algoritmer og datastrukturer

DM507 Algoritmer og datastrukturer DM507 Algoritmer og datastrukturer Forår 2017 Projekt, del III Institut for matematik og datalogi Syddansk Universitet 6. april, 2017 Dette projekt udleveres i tre dele. Hver del har sin deadline, således

Læs mere

DM507 Algoritmer og datastrukturer

DM507 Algoritmer og datastrukturer DM507 Algoritmer og datastrukturer Forår 2016 Projekt, del III Institut for matematik og datalogi Syddansk Universitet 20. april, 2016 Dette projekt udleveres i tre dele. Hver del har sin deadline, således

Læs mere

Grønland. Matematik A. Højere teknisk eksamen

Grønland. Matematik A. Højere teknisk eksamen Grønland Matematik A Højere teknisk eksamen Onsdag den 12. maj 2010 kl. 9.00-14.00 Matematik A Prøvens varighed er 5 timer. Alle hjælpemidler er tilladt. Ved valgopgaver må kun det anførte antal afleveres

Læs mere

Mindste udspændende træ. Mindste udspændende træ. Introduktion. Introduktion

Mindste udspændende træ. Mindste udspændende træ. Introduktion. Introduktion Philip Bille Introduktion (MST). Udspændende træ af minimal samlet vægt. Introduktion (MST). Udspændende træ af minimal samlet vægt. 0 0 Graf G Ikke sammenhængende Introduktion (MST). Udspændende træ af

Læs mere

DATALOGI 1E. Skriftlig eksamen torsdag den 3. juni 2004

DATALOGI 1E. Skriftlig eksamen torsdag den 3. juni 2004 Københavns Universitet Naturvidenskabelig Embedseksamen DATALOGI 1E Skriftlig eksamen torsdag den 3. juni 2004 Opgaverne vægtes i forhold til tidsangivelsen herunder, og hver opgaves besvarelse bedømmes

Læs mere

Mindste udspændende træ

Mindste udspændende træ Mindste udspændende træ Introduktion Repræsentation af vægtede grafer Egenskaber for mindste udspændende træer Prims algoritme Kruskals algoritme Philip Bille Mindste udspændende træ Introduktion Repræsentation

Læs mere

Vinderseminar 2007. Diskret matematik. Kirsten Rosenkilde. 1. Diskret matematik.

Vinderseminar 2007. Diskret matematik. Kirsten Rosenkilde. 1. Diskret matematik. Vinderseminar 2007. Diskret matematik. Kirsten Rosenkilde. 1 1 Paritet Diskret matematik. I mange matematikopgaver er det en god ide at se på paritet dvs. hvornår en bestemt størrelse er henholdsvis lige

Læs mere

P (n): rekursiv beregning af f n kræver f n beregninger af f 1. P (n) er sand for alle n 2.

P (n): rekursiv beregning af f n kræver f n beregninger af f 1. P (n) er sand for alle n 2. P (n): rekursiv beregning af f n kræver f n beregninger af f 1. P (n) er sand for alle n 2. Bevis ved stærk induktion. Basisskridt: P (2) er sand og P (3) er sand. Induktionsskridt: Lad k 2 og antag P

Læs mere

Appendiks 1: Om baggrund og teori bag valg af skala

Appendiks 1: Om baggrund og teori bag valg af skala Appendiks 1: Om baggrund og teori bag valg af skala De nationale test gav i 2010 for første gang danske lærere mulighed for at foretage en egentlig måling på en skala af deres elevers præstationer på grundlag

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet side af sider Danmarks Tekniske Universitet Skriftlig prøve, den 3. maj 0. Kursusnavn: Algoritmer og datastrukturer I Kursus nr. 005. Varighed: timer Tilladte hjælpemidler: Alle skriftlige hjælpemidler.

Læs mere

Prioritetskøer og hobe. Philip Bille

Prioritetskøer og hobe. Philip Bille Prioritetskøer og hobe Philip Bille Plan Prioritetskøer Træer Hobe Repræsentation Prioritetskøoperationer Konstruktion af hob Hobsortering Prioritetskøer Prioritetskø Vedligehold en dynamisk mængde S af

Læs mere

INDLEDNING... 3 VIGTIGE DATOER... 3 EKSAMENSFAG... 3 SKRIFTLIGE EKSAMINER OG ÅRSPRØVER... 4 MUNDTLIGE EKSAMINER/ÅRSPRØVER... 5

INDLEDNING... 3 VIGTIGE DATOER... 3 EKSAMENSFAG... 3 SKRIFTLIGE EKSAMINER OG ÅRSPRØVER... 4 MUNDTLIGE EKSAMINER/ÅRSPRØVER... 5 INDHOLDSFORTEGNELSE INDLEDNING... 3 VIGTIGE DATOER... 3 EKSAMENSFAG... 3 SKRIFTLIGE EKSAMINER OG ÅRSPRØVER... 4 MUNDTLIGE EKSAMINER/ÅRSPRØVER... 5 Forberedelse... 6 Eksamination... 6 SÆRLIGE SITUATIONER...

Læs mere

AARHUS UNIVERSITET Formular II - side 1. Omprøve E 2014. Business and Social Sciences

AARHUS UNIVERSITET Formular II - side 1. Omprøve E 2014. Business and Social Sciences AARHUS UNIVERSITET Formular II - side 1 Business and Social Sciences Omprøve E 2014 Juridisk kandidateksamen Ordning: Del/delprøve/fase: Kandidatuddannelsen Fag: Skatteret I Opgavetype: Skriftlig eksamen

Læs mere

Ligninger... 1 Funktioner & modeller... 3 Regression... 6 Sjove opgaver... 7

Ligninger... 1 Funktioner & modeller... 3 Regression... 6 Sjove opgaver... 7 Træningsopgaver 1 Indhold Ligninger... 1 Funktioner & modeller... 3 Regression... 6 Sjove opgaver... 7 Ligninger Opgave L0) Opgave L1) Opgave L2) a) 2x 5 5x 7 b) 3x 7 3x 11 c) 3 (2x 3) 2( x 1) d) En funktion

Læs mere

Et udtryk på formena n kaldes en potens med grundtal a og eksponent n. Vi vil kun betragte potenser hvor grundtallet er positivt, altså a>0.

Et udtryk på formena n kaldes en potens med grundtal a og eksponent n. Vi vil kun betragte potenser hvor grundtallet er positivt, altså a>0. Konkrete funktioner Potenser Som udgangspunkt er brugen af potenser blot en forkortelse for at gange et tal med sig selv et antal gange. Hvis a Rskriver vi a 2 for a a a 3 for a a a a 4 for a a a a (1).

Læs mere

HF/GS-EKSAMEN august 2014

HF/GS-EKSAMEN august 2014 HF/GS-EKSAMEN august 2014 Information til kursister Kære kursist I denne folder finder du vigtige informationer om HF/GS-eksamen. Er der noget, du bliver i tvivl om, kan du enten spørge dine faglærere

Læs mere