Regularitet og Automater

Størrelse: px
Starte visningen fra side:

Download "Regularitet og Automater"

Transkript

1 Plan dregaut 2007 Regularitet og Automater Hvad er Regularitet og Automater? Praktiske oplysninger om kurset Ugens emner Introduktion til ugens opgaver 2 Regularitet og Automater Formål med kurset: at præsentere matematiske teknikker og centrale begreber, der anvendes i datalogi rekursive definitioner, induktionsbeviser formelle sprog modeller for beregnelighed regularitet ( egenskaber som generelt kendetegner beregningsprocesser i it-systemer med begrænset mange tilstande ) fundament for andre kurser Logik og Beregnelighed, Oversættelse, Sprog og Semantik, Søgning og Optimering,... Tekstgenkendelse Specificere og genkende tekststrenge søgning i tekster (Unix grep) leksikalsk analyse i oversættere (flex) HTML input validering (PowerForms)... Konkret anvendelse af regulære udtryk og endelige automater 3 4

2 HTML formularer HTML formularer indeholder input-felter, hvor brugeren kan indtaste tekststrenge Eks.: datoer telefonnumre CPR-numre adresser URL er... 5 HTML input validering Brugeren må ikke indtaste ugyldige strenge Den traditionelle løsning: Programmer input validering i JavaScript (til browseren så input valideres løbende mens formularen udfyldes), og Java (til serveren for det tilfælde at browseren ikke udfører JavaScript-koden) Problemer: det er svært at programmere JavaScript, der virker på alle (nyere) browsere vi skal skrive den samme kode i to forskellige sprog store dele af koden skal skrives igen og igen... 6 Den datalogiske løsning Regulære udtryk 1. Analysér problemområdet 2. Design et domæne-specifikt højniveau sprog 3. Lav en oversætter, der genererer JavaScript- og Java-koden fra højniveau specifikationer Sproget PowerForms er udviklet efter denne metode input-felter beskrives med regulære udtryk, der oversættes til endelige automater 7 Et alfabet er en endelig mængde af tegn En streng er en endelig sekvens af tegn fra alfabetet Et sprog er en mængde af strenge Et regulært udtryk beskriver et sprog: Ø den tomme mængde af strenge Λ mængden bestående af den tomme streng a Σ mængden bestående af en enkelt streng, som er det ene tegn a fra alfabetet Σ r 1 +r 2 de strenge der beskrives af r 1 eller r 2 r 1 r 2 de strenge der kan opdeles i to dele, så venstre del beskrives af r 1 og højre del af r 2 r* de strenge der kan opdeles i et antal dele, der hver beskrives af r 8

3 Eksempler på regulære udtryk Et mere realistisk eksempel Gyldige datoer, telefonnumre, CPR-numre, adresser, URL er,... Strenge over alfabetet Σ={0,1} af lige længde: ( )* eller: ((0+1)(0+1))* Strenge over alfabetet Σ={0,1} med ulige antal 1 er: 0*10*(10*10*)* eller: 0*1(0*10*1)*0* eller:... 9 Floating-point tal (i Pascal): alfabet: Σ={0,1,2,3,4,5,6,7,8,9,+,-,.,E} eksempler på gyldige strenge: E forkortelser: d d + d*d s Λ+++- samlet udtryk: sd + (.d + +.d + Esd + + Esd + ) 10 Genkendelse af strenge Endelige automater Givet et regulært udtryk r og en streng x, hvordan undersøger vi om x matcher r? Den naive løsning: Vi prøver os frem, afhængigt af strukturen af r Ø matcher intet Λ matcher kun den tomme streng a Σ matcher kun strengen a r 1 +r 2 matcher x hvis r 1 eller r 2 matcher x r 1 r 2 opdel x så x=x 1 x 2 på alle mulige måder, check om der eksisterer en opdeling så r 1 matcher x 1 og r 2 matcher x 2 r* opdel x så x=x 1 x 2...x n på alle mulige måder, check om der eksisterer en opdeling så r matcher x i for alle i=1...n Det virker! men er håbløst ineffektivt En endelig automat, der genkender strenge over alfabetet Σ={0,1} med ulige antal 1 er: Automaten læser strengen ét tegn ad gangen, fra venstre mod højre Hver tilstand repræsenterer en viden om den læste delstreng Hvis automaten ender i en accept-tilstand, så accepteres(=genkendes) strengen 12

4 Kleenes sætning Regulære udtryk og endelige automater har samme udtrykskraft Konstruktive beviser: ethvert regulært udtryk kan oversættes til en ækvivalent endelig automat enhver endelig automat kan oversættes til et ækvivalent regulært udtryk PowerForms eksempel Lad R være et regulært udtryk, der svarer til gyldige datoer på form dd/mm-åååå Oversæt R til en ækvivalent endelig automat F Repræsenter F som et JavaScript-program, der kan svare på om en streng x er accepteret ikke accepteret, men der er en sti til accept ikke accepteret og ingen sti til accept PowerForms eksempel 29/02 29/ Endelige automater til modellering af systemer Endelige automater er også nyttige uden regulære udtryk Endelige automater kan modellere systemer og egenskaber De teoretiske resultater om endelige automater kan bruges til at kombinere modeller og verificere om et givet system har en given egenskab 15 16

5 Verifikation Beregnelighed En endelig automat, der modellerer en togsimulator (fra VisualSTATE): Input PROGRAM Output 1421 del-automater transitioner 2981 inputs 2667 outputs 3204 lokale tilstande ialt antal tilstande: Input og Output er strenge PROGRAM er en algoritme, der kører på en maskine Eks.: Givet et naturligt tal N som input, maskinen beregner N 2 som output Virker toget? Beslutningsproblemer Beslutningsproblemer og sprog Ethvert beslutningsproblem P er et sprog: L = { de strenge x, hvor svaret på P er ja } Input PROGRAM ja/nej Hvis vi ignorerer effektivitet, så kan ethvert beregningsproblem omformuleres som et beslutningsproblem Eks.: Givet to naturlige tal N og M som input, maskinen svarer ja hvis og kun hvis M=N 2 Ethvert sprog L er et beslutningsproblem: P: er input x i L? 19 20

6 Eksempler på beslutningsproblemer Givet en streng, er den en gyldig dato på form dd/mm-åååå? er den et syntaktisk korrekt Java program? er den et primtal? er den en konfiguration i skak hvor det er muligt for hvid at vinde? er den et semantisk korrekt Java-program? er den en syntaktisk korrekt sætning i dansk? er den en litterær klassiker? Endelige automater som model for beregnelighed Vi vil studere følgende emne: Hvilke problemer kan afgøres af en maskine med endeligt meget hukommelse? Med andre ord: Hvilke sprog kan genkendes af endelige automater? vi vil kun se på formelle sprog og veldefinerede problemer Mere generelle modeller for beregnelighed Klasser af formelle sprog Turing-maskiner: endelige automater med adgang til en uendeligt stor notesblok kan udføre vilkårlige algoritmer (Church-Turing-tesen) svarer til uindskrænkede grammatikker (hvor endelige automater svarer til regulære grammatikker) Pushdown-automater: endelige automater med adgang til en vilkårligt stor stak (last-in-first-out) anvendes ofte i parsere i oversættere svarer til kontekstfri grammatikker klassen af alle sprog (over et givet alfabet) de regulære sprog de endelige sprog de rekursivt numerable sprog (svarer til Turing-maskiner) de kontekstfri sprog 23 24

7 Hvorfor nøjes med endelige automater? Klassen af regulære sprog har mange pæne egenskaber: afgørlighed (f.eks, givet en FA M, accepterer den nogen strenge overhovedet? ) lukkethed (snit, forening,...) Til sammenligning: Ved Turing-maskiner er næsten alt uafgørligt (Rices sætning: alt interessant vedrørende sproget for en Turing-maskine er uafgørligt ) Pushdown-automater / kontekstfri grammatikker: en mellemting, både med udtrykskraft og afgørlighedsegenskaber Uafgørlighed Her er et lille program: while (x 1) { if (even(x)) x = x/2; else x = 3*x+1; } Terminerer programmet for alle input x>0? Ja eller nej? Tilsyneladende ja, men ingen har endnu bevist det! Men vi kan bevise, at der ikke findes et program (=en Turing-maskine), der kan afgøre det generelle problem givet et program P, terminerer P på alle input? Plan Hvad er Regularitet og Automater? Praktiske oplysninger om kurset Ugens emner Introduktion til ugens opgaver Praktiske oplysninger om kurset Kursushjemmeside Forelæsninger Anders Møller tirsdage 11-14, uge (påskeferie uge 15) Studiecafé torsdage Holdøvelser 2 timer pr. uge, mandag torsdag (i den følgende uge) 27 28

8 Hold og instruktorer Materiale Hold 1: mandag 16-18, Johnni Hold 2: torsdag 9-11, Brian Hold DA2: mandag onsdag 8-10, Sigurd Hold DA3: tirsdag 9-11, Kasper Hold DA4: mandag 12-14, Brian John Martin Introduction to Languages and the Theory of Computation 3. udgave, McGraw-Hill, 2002 ISBN: eller opgaver på ugesedlerne Aktivitet 3 timers forelæsning 2 timers studiecafé 2 timers holdøvelser 8 timers hjemmearbejde! ialt: 15 timer pr. uge Der forventes, at man læser de angivne kapitler i bogen løser opgaverne (brug instruktorerne!) Opgaver Teoretiske opgaver udfordrer forståelsen af det gennemgåede materiale øvelse i typisk datalogisk matematik Programmeringsprojekt (dregaut Java-pakken) implementation af de gennemgåede algoritmer, der udledes af konstruktive beviser supplement til teoretiske opgaver øvelse i Java-programmering 31 32

9 Afleveringsopgaver Hver uge vil der blive stillet en obligatorisk afleveringsopgave Tidsfrist aftales med instruktor Disse opgaver er simple check -opgaver Plan for kurset Uge 14: Introduktion, Regulære udtryk Uge 16: Endelige automater Uge 17: Nondeterminisme Uge 18: Minimering af automater Uge 19: Lukketheds- og afgørlighedsegenskaber Uge 20: Kontekstfri grammatikker Uge 21: Introduktion til Turing-maskiner, Afslutning Eksamen Mundtlig, ekstern censur, 13-skalaen 20 min. per person, uden forberedelsestid For at kunne indstilles til eksamen skal man have godkendt besvarelser af de obligatoriske opgaver Eksamen Formålet med kurset at den studerende skal opnå følgende kompetencer: referere den basale terminologi (strenge, sprog, klasser af sprog, samt basale operationer på disse) beskrive basale abstrakte sprogformalismer (regulære udtryk, endelige automater, regulære grammatikker, kontekstfri grammatikker) - fra intuitivt niveau og konkrete eksempler til formel notation og generelle definitioner beskrive egenskaber ved formalismerne, bl.a. ækvivalens, begrænsninger og beslutningsprocedurer forklare og udføre algoritmer, der oversætter mellem formalismerne eller afgør beslutningsproblemer - fra konkrete eksempler til generelle og formelle beskrivelser bevise og analysere egenskaber ved formalismerne (ved hjælp af konstruktive beviser og induktionsbeviser) - fra intuitivt niveau til formelle detaljer. 35 Eksamen vil vurdere i hvor høj grad den studerende besidder disse kompetencer 36

10 Plan Hvad er Regularitet og Automater? Praktiske oplysninger om kurset Ugens emner Introduktion til ugens opgaver Ugens emner Regulære udtryk [Martin, kap. 1.5, 3.1] specifikation og genkendelse af tekststrenge strenge, sprog, rekursive definitioner, induktionsbeviser regulære udtryk, regulære sprog Java: dregaut.regexp klassen Alfabeter, strenge og sprog Et alfabet Σ er en endelig mængde (af tegn/symboler) eks.: Σ={a,b,c} En streng x er en endelig sekvens af tegn fra alfabetet eks.: x=abba Λ repræsenterer den tomme streng (strengen af længde 0), Λ Σ Et sprog L er en (vilkårlig) mængde af strenge eks.: L={Λ,cab,abba} Σ* er mængden af alle strenge over Σ dvs. L Σ* hvis L er et sprog over Σ eks.: hvis Σ={a,b,c} så er Σ*={Λ,a,b,c,aa,ab,ac,aaa,aab,...} Konkatenering af strenge Hvis x,y Σ*, så er x y (konkateneringen af x og y) den streng, der fremkommer ved at sætte tegnene i x før tegnene i y Eks.: hvis x=abb og y=a, så er x y=abba y x=aabb Bemærk: x Λ=Λ x=x for alle x x y skrives ofte xy (uden ) 39 40

11 Konkatenering af sprog Hvis L 1,L 2 Σ*, så er L 1 L 2 (konkateneringen af L 1 og L 2 ) defineret ved L 1 L 2 = {x y x L 1 y L 2 } Eks.: Hvis Σ={0,1,2,a,b,c} og L 1 ={Λ,10,212} L 2 ={cab,abba} så er L 1 L 2 ={cab,10cab,212cab,abba,10abba,212abba} Bemærk: L {Λ} = {Λ} L = L for alle L L Ø = Ø L = Ø for alle L Kleene stjerne L k = LL L konkatenering af k forekomster af L L 0 = {Λ} L* = U i=0... L i (Kleene stjerne af L) L + = L*L L 1 L 2 skrives ofte L 1 L 2 (uden ) Rekursive definitioner En definition er rekursiv, hvis den refererer til sig selv Eks.: Fibonacci f: ΙΝ ΙΝ 1 hvis n=0 eller n=1 f(n) = f(n-1)+f(n-2) ellers Enhver selv-reference skal referere til noget mindre og føre til endeligt mange selvreferencer En rekursiv definition af strenge x er en streng over alfabetet Σ, dvs. x Σ*, hvis x = Λ, eller x = y a hvor y Σ* og a Σ (underforstået: Σ* er den mindste mængde, der opfylder dette) Eksempel: abc = (((Λ a) b) c) Σ* (hvor Σ={a,b,c,d}) 43 44

12 Syntaks af regulære udtryk Mængden R af regulære udtryk over Σ er den mindste mængde, der indeholder følgende: Ø Λ a for hver a Σ (r 1 +r 2 ) hvor r 1,r 2 R (r 1 r 2 ) hvor r 1,r 2 R (r*) hvor r R Semantik af regulære udtryk Sproget L(r) af et regulært udtryk r defineres i strukturen af r: L(Ø) = Ø L(Λ) = {Λ} L(a) = {a} L( (r 1 +r 2 ) ) = L(r 1 ) L(r 2 ) L( (r 1 r 2 ) ) = L(r 1 )L(r 2 ) L( (r*) ) = (L(r))* Regulære sprog Definition: Et sprog S er regulært hvis og kun hvis der eksisterer et regulært udtryk r hvor L(r)=S Parenteser i regulære udtryk Forening og konkatenering er associative, så vi vælger at tillade f.eks. at(a+(b+c)) kan skrives a+b+c at(a(bc)) kan skrives abc Vi definerer præcedens for operatorerne: * binder stærkest konkatenering binder middel + binder svagest eks.: (a+((b*)c)) kan skrives a+b*c 47 48

13 Eksempel Betragt følgende regulære udtryk r over alfabetet {0,1}: r = (1+Λ)001 På grund af parentesreglerne er dette det samme som r = ((((1+Λ)0)0)1) Så sproget for r er L(r) = ((({1} {Λ}){0}){0}){1}) = {1001,001} Quiz! 1. Hvad betyder {a,bc}*? 2. Hvad er betingelsen for at et sprog S er regulært? Reverse-operatoren Givet en streng x Σ*, definer reverse(x) i strukturen af x: reverse(λ) = Λ reverse(ya) = a(reverse(y)) hvor y Σ*, a Σ Eksempel: reverse(123) =... = 321 Reverse på sprog Givet et sprog L Σ*, definer Reverse(L) = { reverse(x) x L } Eksempel: Hvis L={Λ,123,abc} så er Reverse(L)={Λ,321,cba} 51 52

14 Rekursive definitioner og induktionsbeviser Rekursive definitioner giver ofte anledning til induktionsbeviser Hvis vi skal bevise noget på form for alle X gælder P(X), hvor mængden af X er er defineret rekursivt, så kan vi prøve bevisteknikken induktion i strukturen af X Et induktionsbevis Påstand: Hvis S er et regulært sprog, så er Reverse(S) også regulært (dvs. de regulære sprog er lukkede under Reverse) Bevis: S er regulært, så der eksisterer et regulært udtryk r så L(r)=S Vi vil vise ved induktion i strukturen af r, at der eksisterer et regulært udtryk r hvor L(r )=Reverse(L(r)), hvilket medfører, at Reverse(S) er regulært Basis Induktionsskridt r = Ø: vælg r = Ø L(r ) = Ø = Reverse(Ø) = Reverse(L(r)) r = Λ: vælg r = Λ... r = a hvor a Σ: vælg r = a For alle deludtryk s af r kan vi udnytte induktionshypotesen: der eksisterer et regulært udtryk s hvor L(s )=Reverse(L(s)) r = r 1 +r 2 hvor r 1,r 2 R : vælg r = r 1 +r 2 hvor r 1 og r 2 er givet af i.h.... r = r 1 r 2 hvor r 1,r 2 R : vælg r = r 2 r 1... r = r 1 * hvor r 1 R : vælg r = (r 1 )*... Lemma 1: x,y Σ*: reverse(xy)= reverse(y)reverse(x) bevis: induktion i strukturen (eller længden) af y Lemma 2: i 0,E Σ*: Reverse(E i ) = (Reverse(E)) i bevis: induktion i i 56

15 Konstruktive beviser Bemærk at dette induktionsbevis indeholder en algoritme til givet et regulært udtryk for S at konstruere et regulært udtryk for Reverse(S) Sådanne beviser kaldes konstruktive Husk altid både konstruktionen og beviset for dens korrekthed Input: et regulært udtryk r Algoritme Definer en rekursiv funktion REV ved: REV(Ø) = Ø REV(Λ) = Λ REV(a) = a, hvor a Σ REV(r 1 +r 2 ) = REV(r 1 ) + REV(r 2 ) REV(r 1 r 2 ) = REV(r 2 ) REV(r 1 ) REV(r 1 *) = (REV(r 1 ))* Output: det regulære udtryk REV(r) dregaut.regexp Java-repræsentation af regulære udtryk Speciel syntax: # betyder Ø % betyder Λ Resume Alfabeter, strenge, sprog Regulære udtryk og regulære sprog Rekursive definitioner, induktionsbeviser, konstruktive beviser Java: dregaut.regexp klassen Alfabetet angives som en mængde af Unicode tegn 59 60

16 Opgaver [Martin]: Læs, forstå og konstruer regulære udtryk Ekstraopgaver: Regulære udtryk for URL er og -adresser Java: Ingen programmering før næste uge (kig evt. på javadoc-dokumentationen af hør mere om dregaut-pakken) induktionsbeviser Ugens finurlige opgave: til STUDIECAFÉ Vis ved strukturel induktion i regulære udtryk at klassen af regulære sprog er lukket under Prefix Afleveringsopgave: Bevis at enhver streng i sproget af det regulære udtryk ((a+λ)cbc)* har et lige antal c er 61

1. Seminar EVU RegAut

1. Seminar EVU RegAut 1. Seminar EVU RegAut Sigurd Meldgaard Datalogisk Institut Århus Universitet stm@cs.au.dk 27/08 2010 S. Meldgaard (AU) 1. Seminar EVU RegAut 27/08 2010 1 / 105 Plan Introduktion Hvad er Regularitet og

Læs mere

Seminar 1 Regularitet og Automater 28/1-2012

Seminar 1 Regularitet og Automater 28/1-2012 Seminar 1 Regularitet og Automater 28/1-2012 Jesper Gulmann Henriksen jgh@wincubate.net Agenda Introduktion Hvad er Regularitet og Automater? Praktiske Oplysninger om Kurset Regulære Udtryk + Øvelser Induktion

Læs mere

1. Seminar EVU RegAut

1. Seminar EVU RegAut 1. Seminar EVU RegAut Sigurd Meldgaard Datalogisk Institut Århus Universitet stm@cs.au.dk 27/08 2010 S. Meldgaard (AU) 1. Seminar EVU RegAut 27/08 2010 1 / 105 Plan Introduktion Hvad er Regularitet og

Læs mere

Ugens emner. Regulære sprog og digitale billeder. Adressering af områder. Et alfabet. Dette billede: kan repræsenteres af en FA med 832 tilstande

Ugens emner. Regulære sprog og digitale billeder. Adressering af områder. Et alfabet. Dette billede: kan repræsenteres af en FA med 832 tilstande Ugens emner Regulære sprog og digitale billeder Digitale billeder og regulære sprog Regulære udtryk i Java og Unix Dette billede: Turing-maskiner [uddrag af Martin kap. 9-0] Church-Turing tesen, beregnelighed

Læs mere

Regulære udtryk og endelige automater

Regulære udtryk og endelige automater Regulære udtryk og endelige automater Regulære udtryk: deklarative dvs. ofte velegnede til at specificere regulære sprog Endelige automater: operationelle dvs. bedre egnet til at afgøre om en given streng

Læs mere

Regularitet & Automater Eksamensnotater

Regularitet & Automater Eksamensnotater Regularitet & Automater Eksamensnotater Michael Lind Mortensen, 20071202, DAT4 10. juni 2008 Indhold 1 Regulære udtryk (1.5 & 3.1) 4 1.1 Disposition............................ 4 1.2 Noter...............................

Læs mere

Regularitet og Automater. Tobias Brixen Q4-2012

Regularitet og Automater. Tobias Brixen Q4-2012 Regularitet og Automater Tobias Brixen Q4-2012 1 Noterne er skrevet med inspiration fra http://cs.au.dk/ illio/courses/dregaut/dregautnoter.pdf Contents 1 Regulære udtryk 3 1.1 RegEx.................................

Læs mere

Ja! det beviste vi uge 16+17

Ja! det beviste vi uge 16+17 Ugens emner Lukketheds- og afgørlighedsegenskaber [5.3-5.5] lukkethed under,,,, * lukkethed under homomorfi og invers homomorfi pumping -lemmaet beslutningsproblemer: membership, emptiness, finiteness

Læs mere

En karakteristik af de regulære sprog. Ugens emner. FA minimering [5.1-5.2] MyHill-Nerode-sætningen en algoritme til minimering af FA er

En karakteristik af de regulære sprog. Ugens emner. FA minimering [5.1-5.2] MyHill-Nerode-sætningen en algoritme til minimering af FA er Ugens emner FA minimering [.-.] MyHill-Nerode-sætningen en algoritme til minimering af FA er En karakteristik af de regulære sprog Et sprog L er regulært hvis og kun hvis L beskrives af et regulært udtryk

Læs mere

Studieordning for diplomuddannelsen i informationsteknologi

Studieordning for diplomuddannelsen i informationsteknologi Studieordning for diplomuddannelsen i informationsteknologi April 2007 [v3] 1 Introduktion... 2 2 Formål... 2 3 Indhold... 2 4 Adgangskrav... 3 5 Eksaminer... 3 6 Studieplan... 3 6.1 Formelle modeller

Læs mere

Skriftlig Eksamen Beregnelighed (DM517)

Skriftlig Eksamen Beregnelighed (DM517) Skriftlig Eksamen Beregnelighed (DM517) Institut for Matematik & Datalogi Syddansk Universitet Torsdag den 1 November 212, kl. 1 14 Alle sædvanlige hjælpemidler (lærebøger, notater etc.) samt brug af computer

Læs mere

Dat 2/BAIT6/SW4: Syntaks og semantik En manual for studerende

Dat 2/BAIT6/SW4: Syntaks og semantik En manual for studerende Dat 2/BAIT6/SW4: Syntaks og semantik En manual for studerende Hans Hüttel Foråret 2011 Indhold Indhold 1 1 Kurset er lavet om! 1 2 Kursets indhold 2 2.1 Kursets emner................................ 2

Læs mere

Dat 2/F6S/SW4: Syntaks og semantik En manual for studerende

Dat 2/F6S/SW4: Syntaks og semantik En manual for studerende Dat 2/F6S/SW4: Syntaks og semantik En manual for studerende Hans Hüttel Foråret 2010 Indhold Indhold 1 1 Om denne manual 1 2 Om kursets indhold 2 2.1 Hvilke emner rummer kurset?.................. 2 2.2

Læs mere

Matematisk induktion

Matematisk induktion Induktionsbeviser MT01.0.07 1 1 Induktionsbeviser Matematisk induktion Sætninger der udtaler sig om hvad der gælder for alle naturlige tal n N, kan undertiden bevises ved matematisk induktion. Idéen bag

Læs mere

Rolf Fagerberg. Forår 2012

Rolf Fagerberg. Forår 2012 Forår 2012 Mål for i dag Dagens program: 1 2 3 4 5 6 Forudsætninger: DM502 og DM503 Timer: 50% forelæsninger, 50% øvelser Forudsætninger: DM502 og DM503 Eksamenform: Skriftlig eksamen: Timer: 50% forelæsninger,

Læs mere

Introduktion til DM507

Introduktion til DM507 Introduktion til DM507 Rolf Fagerberg Forår 2017 1 / 20 Hvem er vi? Underviser: Rolf Fagerberg, IMADA Forskningsområde: algoritmer og datastrukturer 2 / 20 Hvem er vi? Underviser: Rolf Fagerberg, IMADA

Læs mere

Algoritmer og Datastrukturer 1. Gerth Stølting Brodal Aarhus Universitet

Algoritmer og Datastrukturer 1. Gerth Stølting Brodal Aarhus Universitet Algoritmer og Datastrukturer 1 Gerth Stølting Brodal Aarhus Universitet Kursusbeskrivelsen Kursusbeskrivelsen: Algoritmer og datastrukturer 1 Formål Deltagerne vil efter kurset have indsigt i algoritmer

Læs mere

1 Beregnelighed. 1.1 Disposition. 1.2 Præsentation. Def. TM. Def. RE/R. Def. 5 egenskaber for RE/R. Def. NSA. Bevis. NSA!RE. Def. SA. Bevis. SA!

1 Beregnelighed. 1.1 Disposition. 1.2 Præsentation. Def. TM. Def. RE/R. Def. 5 egenskaber for RE/R. Def. NSA. Bevis. NSA!RE. Def. SA. Bevis. SA! 1 Beregnelighed 1.1 Disposition Def. TM Def. RE/R Def. 5 egenskaber for RE/R Def. NSA Bevis. NSA!RE Def. SA Bevis. SA!R Bevis. SA RE Def. Beslutningsproblem Arg. Self-Accepting er uløselig 1.2 Præsentation

Læs mere

Algoritmer og Datastrukturer 1. Gerth Stølting Brodal

Algoritmer og Datastrukturer 1. Gerth Stølting Brodal Algoritmer og Datastrukturer 1 Gerth Stølting Brodal Kursusbeskrivelsen Kursusbeskrivelsen: Algoritmer og datastrukturer 1 Formål Deltagerne vil efter kurset have indsigt i algoritmer som model for sekventielle

Læs mere

Rolf Fagerberg. Forår 2015

Rolf Fagerberg. Forår 2015 Forår 2015 Dagens program 1 2 3 4 5 Underviser:, IMADA Forskningsområde: algoritmer og datastrukturer Underviser:, IMADA Forskningsområde: algoritmer og datastrukturer Deltagere: BA i Datalogi BA i Software

Læs mere

Bevisteknikker. Bevisteknikker (relevant både ved design og verifikation) Matematisk induktion. Matematisk induktion uformel beskrivelse

Bevisteknikker. Bevisteknikker (relevant både ved design og verifikation) Matematisk induktion. Matematisk induktion uformel beskrivelse Bevisteknikker Bevisteknikker (relevant både ved design og verifikation) Bevisførelse ved modstrid (indirekte bevis) Antag, at det givne teorem er falsk Konkluder, at dette vil føre til en modstrid Teorem:

Læs mere

Orienterede grafer. Introduktion Repræsentation Søgning Topologisk sortering og DAGs Stærke sammenhængskomponenter Implicitte grafer.

Orienterede grafer. Introduktion Repræsentation Søgning Topologisk sortering og DAGs Stærke sammenhængskomponenter Implicitte grafer. Orienterede grafer Introduktion Repræsentation Søgning Topologisk sortering og DAGs Stærke sammenhængskomponenter Implicitte grafer Philip Bille Orienterede grafer Introduktion Repræsentation Søgning Topologisk

Læs mere

1 Opsumering fra tidligere. 2 Dagsorden 3 BIMS. 4 Programtilstande. Statements/kommandoer (Stm) i bims. 3.1 Abstrakt syntaks for bims

1 Opsumering fra tidligere. 2 Dagsorden 3 BIMS. 4 Programtilstande. Statements/kommandoer (Stm) i bims. 3.1 Abstrakt syntaks for bims 1 Opsumering fra tidligere Hvis A er kontekstfrit, S er der et p > 0 s Alle s A hvor s p kan splittes op som s = uvxyz så argument 1-3 holder A er ikke kontekstfrit, hvis for ethvert bud på p kan findes

Læs mere

Orienterede grafer. Orienterede grafer. Orienterede grafer. Vejnetværk

Orienterede grafer. Orienterede grafer. Orienterede grafer. Vejnetværk Philip Bille Orienteret graf (directed graph). Mængde af knuder forbundet parvis med orienterede kanter. Vejnetværk Knude = vejkryds, kant = ensrettet vej. deg + (6) =, deg - (6) = sti fra til 6 8 7 9

Læs mere

Orienterede grafer. Orienterede grafer. Orienterede grafer. Orienterede grafer

Orienterede grafer. Orienterede grafer. Orienterede grafer. Orienterede grafer Philip Bille Orienteret graf. Mængde af knuder forbundet parvis med orienterede kanter. deg + (7) =, deg - (7) = Lemma. v V deg - (v) = v V deg + (v) = m. Bevis. Hver kant har netop en startknude og slutknude.

Læs mere

Bevisteknikker (relevant både ved design og verifikation)

Bevisteknikker (relevant både ved design og verifikation) Bevisteknikker 1 Bevisteknikker (relevant både ved design og verifikation) Bevisførelse ved modstrid (indirekte bevis) Antag, at det givne teorem er falsk Konkluder, at dette vil føre til en modstrid Teorem:

Læs mere

Rolf Fagerberg. Forår 2015

Rolf Fagerberg. Forår 2015 Forår 2015 Dagens program 1 2 3 4 5 Underviser:, IMADA Forskningsområde: algoritmer og datastrukturer Deltagere: BA i Datalogi BA i Software Engineering BA i Matematik-Økonomi BA i Anvendt Matematik BA

Læs mere

Oversættere. Vejledende løsninger til Skriftlig eksamen onsdag d. 20. april 2005

Oversættere. Vejledende løsninger til Skriftlig eksamen onsdag d. 20. april 2005 Københavns Universitet Naturvidenskabelig Embedseksamen Oversættere Vejledende løsninger til Skriftlig eksamen onsdag d. 20. april 2005 Eksamenstiden er to timer. Opgavernes vægt i procent er angivet ved

Læs mere

Rolf Fagerberg. Forår 2014

Rolf Fagerberg. Forår 2014 Forår 2014 Mål for i dag Dagens program: 1 2 3 4 5 6 Forudsætninger: Format: Programmering og Diskret matematik I (forelæsninger), TE (øvelser), S (arbejde selv og i studiegrupper) Eksamenform: Skriftlig

Læs mere

Dynamisk programmering

Dynamisk programmering Dynamisk programmering Dynamisk programmering Et algoritme-konstruktionsprincip ( paradigme ) for optimeringsproblemer. Har en hvis lighed med divide-and-conquer: Begge opbygger løsninger til større problemer

Læs mere

Om at løse problemer En opgave-workshop Beregnelighed og kompleksitet

Om at løse problemer En opgave-workshop Beregnelighed og kompleksitet Om at løse problemer En opgave-workshop Beregnelighed og kompleksitet Hans Hüttel 27. oktober 2004 Mathematics, you see, is not a spectator sport. To understand mathematics means to be able to do mathematics.

Læs mere

Introduktion til prædikatlogik

Introduktion til prædikatlogik Introduktion til prædikatlogik Torben Braüner Datalogisk Afdeling Roskilde Universitetscenter 1 Plan Symbolisering af sætninger Syntaks Semantik 2 Udsagnslogik Sætningen er den mindste syntaktiske enhed

Læs mere

Oversættere Skriftlig eksamen onsdag d. 24. januar 2007

Oversættere Skriftlig eksamen onsdag d. 24. januar 2007 Københavns Universitet Naturvidenskabelig Embedseksamen Oversættere Skriftlig eksamen onsdag d. 24. januar 2007 Eksamenstiden er to timer. Opgavernes vægt i procent er angivet ved hver opgave. Den skriftlige

Læs mere

Sproget Six. Til brug i rapportopgaven på kurset Oversættere. Vinter 2006. Abstract

Sproget Six. Til brug i rapportopgaven på kurset Oversættere. Vinter 2006. Abstract Sproget Six Til brug i rapportopgaven på kurset Oversættere Vinter 2006 Abstract Six er baseret på det sprog, der vises i figur 6.2 og 6.4 i Basics of Compiler Design. Den herværende tekst beskriver basissproget

Læs mere

STUDIEORDNING for Diplomuddannelsen i informationsteknologi under IT-Vest-samarbejdet

STUDIEORDNING for Diplomuddannelsen i informationsteknologi under IT-Vest-samarbejdet STUDIEORDNING for Diplomuddannelsen i informationsteknologi under IT-Vest-samarbejdet Revideret 16.05.2011 Indholdsfortegnelse 1. Indledning 2. Uddannelsens formål 3. Uddannelsens varighed 4. Uddannelsens

Læs mere

Programmering 2. dprog2 E2012. http://www.cs.au.dk/dprog2/

Programmering 2. dprog2 E2012. http://www.cs.au.dk/dprog2/ Programmering 2 dprog2 E2012 http://www.cs.au.dk/dprog2/ Læringsmål Deltagerne skal ved afslutningen af kurset kunne: forklare og anvende både basale og videregående elementer af et moderne programmeringssprog,

Læs mere

Programmering 2. dprog2 E2013. http://www.cs.au.dk/dprog2/

Programmering 2. dprog2 E2013. http://www.cs.au.dk/dprog2/ Programmering 2 dprog2 E2013 http://www.cs.au.dk/dprog2/ Læringsmål Deltagerne skal ved afslutningen af kurset kunne: forklare og anvende både basale og videregående elementer af et moderne programmeringssprog,

Læs mere

Oversættere Vejledende løsninger til Skriftlig eksamen onsdag d. 24. januar 2007

Oversættere Vejledende løsninger til Skriftlig eksamen onsdag d. 24. januar 2007 Københavns Universitet Naturvidenskabelig Embedseksamen Oversættere Vejledende løsninger til Skriftlig eksamen onsdag d. 24. januar 2007 Eksamenstiden er to timer. Opgavernes vægt i procent er angivet

Læs mere

Datamatiker Datalog. For studerende startet 2015

Datamatiker Datalog. For studerende startet 2015 Datamatiker Datalog For studerende startet 2015 http://studerende.au.dk/studier/fagportaler/datalogi/studiemiljoe/inf ormationsmoeder/studieorientering-f2015/ 14-08-2015 Datamatiker 2015 1 Datamatiker

Læs mere

Skriftlig eksamen, Programmer som Data Onsdag 6. januar Spørgsmål 1 (20 %): Regulære udtryk og automater

Skriftlig eksamen, Programmer som Data Onsdag 6. januar Spørgsmål 1 (20 %): Regulære udtryk og automater Skriftlig eksamen, Programmer som Data Onsdag 6. januar 2010 Dette eksamenssæt har 5 sider. Tjek med det samme at du har alle siderne. Eksamens varighed er 4 timer. Der er fire spørgmål. For at få fuldt

Læs mere

DATALOGI 1E. Skriftlig eksamen fredag den 7. juni 2002

DATALOGI 1E. Skriftlig eksamen fredag den 7. juni 2002 Københavns Universitet Naturvidenskabelig Embedseksamen DATALOGI 1E Skriftlig eksamen fredag den 7. juni 2002 Opgaverne vægtes i forhold til tidsangivelsen, og hver opgaves besvarelse bedømmes som en helhed.

Læs mere

Studieordning for diplomuddannelsen i informationsteknologi

Studieordning for diplomuddannelsen i informationsteknologi Studieordning for diplomuddannelsen i informationsteknologi 19/5 2003 1 Introduktion... 2 2 Formål... 2 3 Indhold... 2 4 Adgangskrav... 3 5 Eksaminer... 3 6 Studieplan... 3 7 Beskrivelse af de enkelte

Læs mere

Programmering, algoritmik og matematik en nødvendig sammenblanding?

Programmering, algoritmik og matematik en nødvendig sammenblanding? Programmering, algoritmik og matematik en nødvendig sammenblanding? Oplæg til IDA møde, 29. november 2004 Martin Zachariasen DIKU 1 Egen baggrund B.Sc. i datalogi 1989; Kandidat i datalogi 1995; Ph.D.

Læs mere

DM02 opgaver ugeseddel 2

DM02 opgaver ugeseddel 2 DM0 opgaver ugeseddel af Fiona Nielsen 16. september 003 Øvelsesopgaver 9/9, 10/9 og 11/9 1. Vis, at 1 3 + 3 3 + 5 3 +... + (n 1) 3 = n 4 n. Omskriver til summationsformel: (i 1) 3 = n 4 n Bevis ved induktion

Læs mere

3 Algebraisk Specifikation af Abstrakte Datatyper.

3 Algebraisk Specifikation af Abstrakte Datatyper. 3 Algebraisk Specifikation af Abstrakte Datatyper. Specifikation kontra program. Bestanddele af en algebraisk specifikation. Klassificering af funktioner i en ADT. Systematisk definition af ligninger.

Læs mere

Ufuldstændighed, mængdelære og beregnelighed

Ufuldstændighed, mængdelære og beregnelighed Ufuldstændighed, mængdelære og beregnelighed Thomas Bolander, DTU Informatik Matematik: Videnskaben om det uendelige Folkeuniversitetet i København, efteråret 2009 Thomas Bolander, FUKBH 09 s. 1/27 Sidste

Læs mere

Et generelt algoritme-konstruktionsprincip ( paradigme ) for optimeringsproblemer. Ideen er simpel:

Et generelt algoritme-konstruktionsprincip ( paradigme ) for optimeringsproblemer. Ideen er simpel: Grådige algoritmer Grådige algoritmer Et generelt algoritme-konstruktionsprincip ( paradigme ) for optimeringsproblemer. Ideen er simpel: Opbyg løsningen skridt for skridt ved hele tiden af vælge lige

Læs mere

DATALOGISK INSTITUT, AARHUS UNIVERSITET

DATALOGISK INSTITUT, AARHUS UNIVERSITET DTLOS NSTTUT, RUS UNVERSTET Det Naturvidenskabelige akultet ESMEN rundkurser i Datalogi ntal sider i opgavesættet (incl. forsiden): 7 (syv) Eksamensdag: Torsdag den 14. juni 007, kl. 9.00-1.00 Eksamenslokale:

Læs mere

01017 Diskret Matematik E12 Alle bokse fra logikdelens slides

01017 Diskret Matematik E12 Alle bokse fra logikdelens slides 01017 Diskret Matematik E12 Alle bokse fra logikdelens slides Thomas Bolander 1 Udsagnslogik 1.1 Formler og sandhedstildelinger symbol står for ikke eller og ( A And) hvis... så... hvis og kun hvis...

Læs mere

Aalborg University. Synopsis. Titel: Traveling Salesman Problem

Aalborg University. Synopsis. Titel: Traveling Salesman Problem Aalborg University Department of Computer Science. Fredrik Bajers Vej 7E, 9220 Aalborg Ø. Titel: Traveling Salesman Problem Projektperiode: 16. maj 2003 til 20. juni 2003 Semester: BOS03 Gruppebetegnelse:

Læs mere

Introduktion. Algoritmer og datastrukturer Toppunkter Algoritme 1 Algoritme 2 Algoritme 3. Philip Bille

Introduktion. Algoritmer og datastrukturer Toppunkter Algoritme 1 Algoritme 2 Algoritme 3. Philip Bille Introduktion Algoritmer og datastrukturer Toppunkter Algoritme 1 Algoritme 2 Algoritme 3 Philip Bille Introduktion Algoritmer og datastrukturer Toppunkter Algoritme 1 Algoritme 2 Algoritme 3 Algoritmer

Læs mere

Skriftlig eksamen i Datalogi

Skriftlig eksamen i Datalogi Roskilde Universitetscenter side 1 af 9 sider Skriftlig eksamen i Datalogi Modul 1 Vinter 1999/2000 Opgavesættet består af 6 opgaver, der ved bedømmelsen tillægges følgende vægte: Opgave 1 5% Opgave 2

Læs mere

Skriftlig Eksamen Algoritmer og Datastrukturer (DM507)

Skriftlig Eksamen Algoritmer og Datastrukturer (DM507) Skriftlig Eksamen Algoritmer og Datastrukturer (DM507) Institut for Matematik og Datalogi Syddansk Universitet, Odense Mandag den 7. juni 00, kl. 9 Alle sædvanlige hjælpemidler (lærebøger, notater, osv.)

Læs mere

Det gyldne snit, forløb i 1. g

Det gyldne snit, forløb i 1. g Det gyldne snit, forløb i 1. g Mål - Træne at skrive elementære matematiske tekster på computer inkl. billeder, formler og tabeller - Bruge geometriprogram - Læse en elementær tekst selv om et fagligt

Læs mere

DM502. Peter Schneider-Kamp (petersk@imada.sdu.dk) http://imada.sdu.dk/~petersk/dm502/

DM502. Peter Schneider-Kamp (petersk@imada.sdu.dk) http://imada.sdu.dk/~petersk/dm502/ DM502 Peter Schneider-Kamp (petersk@imada.sdu.dk) http://imada.sdu.dk/~petersk/dm502/ 1 DM502 Bog, ugesedler og noter De første øvelser Let for nogen, svært for andre Kom til øvelserne! Lav opgaverne!

Læs mere

1 Program for forelæsningen

1 Program for forelæsningen 1 Program for forelæsningen Udvidelser af Bims (Kontrolstrukturer) Repeat-løkker For-løkker Non-determinisme God Ond parallelitet Alle emner hører under semantisk ækvivalens. 1.0.1 Fra tidligere.. Bims

Læs mere

Sproget Rascal (v. 2)

Sproget Rascal (v. 2) Sproget Rascal (v. 2) Til brug i K1 på kurset Oversættere Opdateret 29/11 2004 Abstract Rascal er et simpelt Pascal-lignende imperativt sprog. Dette dokument beskriver uformelt Rascals syntaks og semantik

Læs mere

Grundlæggende Matematik

Grundlæggende Matematik Grundlæggende Matematik Hayati Balo, AAMS August 2012 1. Matematiske symboler For at udtrykke de verbale udsagn matematisk korrekt, så det bliver lettere og hurtigere at skrive, indføres en række matematiske

Læs mere

Grafer og graf-gennemløb

Grafer og graf-gennemløb Grafer og graf-gennemløb Grafer En mængde V af knuder (vertices). En mængde E V V af kanter (edges). Dvs. ordnede par af knuder. Grafer En mængde V af knuder (vertices). En mængde E V V af kanter (edges).

Læs mere

Fejlkorligerende køder Fejlkorrigerende koder

Fejlkorligerende køder Fejlkorrigerende koder Fejlkorligerende køder Fejlkorrigerende koder Olav Geil Skal man sende en fødselsdagsgave til fætter Børge, så pakker man den godt ind i håb om, at kun indpakningen er beskadiget ved modtagelsen. Noget

Læs mere

INSTITUT FOR DATALOGI, AARHUS UNIVERSITET

INSTITUT FOR DATALOGI, AARHUS UNIVERSITET INSTITUT FOR ATALOGI, AARHUS UNIVERSITET Science and Technology EKSAMEN Algoritmer og atastrukturer (00-ordning) Antal sider i opgavesættet (incl. forsiden): (elleve) Eksamensdag: Fredag den. august 0,

Læs mere

Introduktion Til Konkurrenceprogrammering

Introduktion Til Konkurrenceprogrammering Introduktion Til Konkurrenceprogrammering Søren Dahlgaard og Mathias Bæk Tejs Knudsen {soerend,knudsen}@di.ku.dk Version 0.1 Indhold Indhold i Introduktion 1 1 Palindromer 3 1.1 Introduktion til Python...............

Læs mere

t a l e n t c a m p d k Matematiske Metoder Anders Friis Anne Ryelund 25. oktober 2014 Slide 1/42

t a l e n t c a m p d k Matematiske Metoder Anders Friis Anne Ryelund 25. oktober 2014 Slide 1/42 Slide 1/42 Hvad er matematik? 1) Den matematiske metode 2) Hvad vil det sige at bevise noget? 3) Hvor begynder det hele? 4) Hvordan vælger man et sæt aksiomer? Slide 2/42 Indhold 1 2 3 4 Slide 3/42 Mængder

Læs mere

16. december. Resume sidste gang

16. december. Resume sidste gang 16. december Resume sidste gang Abstrakt problem, konkret instans, afgørlighedsproblem Effektiv kodning (pol. relateret til binær kodning) Sprog L : mængden af instanser for et afgørlighedsproblem hvor

Læs mere

Ordbog over Symboler

Ordbog over Symboler Ordbog over Symboler Frank Nasser 20. april 2011 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Bemærk: Dette

Læs mere

GESA, et GEnerelt System til Analyse af naturlige sprog, udformet som et oversætter-fortolker system med virtuel mellemkode

GESA, et GEnerelt System til Analyse af naturlige sprog, udformet som et oversætter-fortolker system med virtuel mellemkode Jens Erlandsen laml Njalsgade 96 DK 2300 kbh. S. GESA, et GEnerelt System til Analyse af naturlige sprog, udformet som et oversætter-fortolker system med virtuel mellemkode. Parsingsystemer til automatisk

Læs mere

Projekt 1.4 De reelle tal og 2. hovedsætning om kontinuitet

Projekt 1.4 De reelle tal og 2. hovedsætning om kontinuitet Projekt 1.4 De reelle tal og 2. hovedsætning om kontinuitet Mens den 1. hovedsætning om kontinuerte funktioner kom forholdsvis smertefrit ud af intervalrusebetragtninger, så er 2. hovedsætning betydeligt

Læs mere

DATALOGISK INSTITUT, AARHUS UNIVERSITET

DATALOGISK INSTITUT, AARHUS UNIVERSITET DATALOGISK INSTITUT, AARHUS UNIVERSITET Det Naturvidenskabelige Fakultet EKSAMEN Grundkurser i Datalogi Antal sider i opgavesættet (incl. forsiden): 6 (seks) Eksamensdag: Fredag den 25. juni 200, kl. 9.00-.00

Læs mere

Introduktion. Introduktion. Algoritmer og datastrukturer. Eksempel: Maksimalt tal

Introduktion. Introduktion. Algoritmer og datastrukturer. Eksempel: Maksimalt tal Philip Bille Algoritmer og datastrukturer Algoritmisk problem. Præcist defineret relation mellem input og output. Algoritme. Metode til at løse et algoritmisk problem. Beskrevet i diskrete og entydige

Læs mere

DATALOGI 1E. Skriftlig eksamen fredag d. 16. januar 2004

DATALOGI 1E. Skriftlig eksamen fredag d. 16. januar 2004 Københavns Universitet Naturvidenskabelig Embedseksamen DATALOGI 1E Skriftlig eksamen fredag d. 16. januar 2004 Opgaverne vægtes i forhold til tidsangivelsen herunder, og hver opgaves besvarelse bedømmes

Læs mere

DATALOGI 1E. Skriftlig eksamen torsdag den 3. juni 2004

DATALOGI 1E. Skriftlig eksamen torsdag den 3. juni 2004 Københavns Universitet Naturvidenskabelig Embedseksamen DATALOGI 1E Skriftlig eksamen torsdag den 3. juni 2004 Opgaverne vægtes i forhold til tidsangivelsen herunder, og hver opgaves besvarelse bedømmes

Læs mere

Dynamisk programmering. Flere eksempler

Dynamisk programmering. Flere eksempler Dynamisk programmering Flere eksempler Eksempel 1: Længste fælles delstreng Alfabet = mængde af tegn: {a,b,c,...,z}, {A,C,G,T}, {,1} Streng = sekvens x 1 x 2 x 3... x n af tegn fra et alfabet: helloworld

Læs mere

Primtal - hvor mange, hvordan og hvorfor?

Primtal - hvor mange, hvordan og hvorfor? Johan P. Hansen 1 1 Institut for Matematiske Fag, Aarhus Universitet Gult foredrag, EULERs Venner, oktober 2009 Disposition 1 EUKLIDs sætning. Der er uendelig mange primtal! EUKLIDs bevis Bevis baseret

Læs mere

Grundlæggende Matematik

Grundlæggende Matematik Grundlæggende Matematik Hayati Balo, AAMS Juli 2013 1. Matematiske symboler For at udtrykke de verbale udsagn matematisk korrekt, så det bliver lettere og hurtigere at skrive, indføres en række matematiske

Læs mere

Baggrundsnote om logiske operatorer

Baggrundsnote om logiske operatorer Baggrundsnote om logiske operatorer Man kan regne på udsagn ligesom man kan regne på tal. Regneoperationerne kaldes da logiske operatorer. De tre vigtigste logiske operatorer er NOT, AND og. Den første

Læs mere

Rekursion og dynamisk programmering

Rekursion og dynamisk programmering Rekursion og dynamisk programmering Datastrukturer & Algoritmer, Dat C Forelæsning 12/10-2004 Henning Christiansen Rekursion: at en procedure kalder sig selv eller et antal metoder kalder hinanden gensidigt.

Læs mere

Notat om syntaks og syntaksgenkendelse, særligt regulære udtryk og tilstandsmaskiner og lidt om anvendelser i bioinformatik

Notat om syntaks og syntaksgenkendelse, særligt regulære udtryk og tilstandsmaskiner og lidt om anvendelser i bioinformatik Datalogi C 2004, Roskilde Universitetscenter Notat om syntaks og syntaksgenkendelse, særligt regulære udtryk og tilstandsmaskiner og lidt om anvendelser i bioinformatik Henning Christiansen November 2004

Læs mere

Algoritmer og Datastrukturer 1

Algoritmer og Datastrukturer 1 Algoritmer og Datastrukturer 1 Gerth Stølting Brodal Analyseværktøjer [CLRS, 1-3.1] Eksempler på en beregningsprocess Puslespil ved ombytninger Maximum delsum Hvad er udførselstiden for en algoritme? Maskinkode

Læs mere

Oversættere, ugeopgave 3

Oversættere, ugeopgave 3 Oversættere, ugeopgave 3 Anders jerg Pedersen (andersbp@me.com) 29. november 2009 Opgave 1 Vi konsrer først NFA er for grammatikken fra opgave 3.22 med produktionen tilføjet: Produktion NFA 0 A 1 C D 2

Læs mere

Studieordning for diplomuddannelsen i informationsteknologi

Studieordning for diplomuddannelsen i informationsteknologi Studieordning for diplomuddannelsen i informationsteknologi 1. Introduktion...2 2. Formål...2 3. Indhold...2 4. Adgangskrav...3 5. Eksaminer...3 6. Rammer for sammensætning af studieplan...3 Samlet oversigt

Læs mere

Skriftlig Eksamen Diskret Matematik (DM528)

Skriftlig Eksamen Diskret Matematik (DM528) Skriftlig Eksamen Diskret Matematik (DM528) Institut for Matematik & Datalogi Syddansk Universitet Tirsdag den 20 Januar 2009, kl. 9 13 Alle sædvanlige hjælpemidler (lærebøger, notater etc.) samt brug

Læs mere

Introduktion. Philip Bille

Introduktion. Philip Bille Introduktion Philip Bille Plan Algoritmer og datastrukturer Toppunkter Algoritme 1 Algoritme 2 Algoritme 3 Algoritmer og datastrukturer Hvad er det? Algoritmisk problem: præcist defineret relation mellem

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet Eksamen 005, F0 side af sider Danmarks Tekniske Universitet Skriftlig prøve, den 6. maj 00. Kursusnavn Algoritmik og datastrukturer I Kursus nr. 005. Tilladte hjælpemidler: Alle skriftlige hjælpemidler.

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Juni 2016 Institution CampusVejle Uddannelse Fag og niveau Lærer(e) Hold Hhx Informationsteknologi C Peter

Læs mere

BRP 6.9.2006 Kursusintroduktion og Java-oversigt

BRP 6.9.2006 Kursusintroduktion og Java-oversigt BRP 6.9.2006 Kursusintroduktion og Java-oversigt 1. Kursusintroduktion 2. Java-oversigt (A): Opgave P4.4 3. Java-oversigt (B): Ny omvendings -opgave 4. Introduktion til næste kursusgang Kursusintroduktion:

Læs mere

Oversættere / Datalogi 1E

Oversættere / Datalogi 1E Københavns Universitet Naturvidenskabelig Embedseksamen Oversættere / Datalogi 1E Skriftlig eksamen onsdag d. 26. januar 2005 Eksamenstiden er to timer. Opgavernes vægt i procent er angivet ved hver opgave.

Læs mere

JavaScript. nedarvning.

JavaScript. nedarvning. JavaScript er et sprog, der kan give en hjemmeside mere funktionalitet og gøre den interaktiv, så den reagerer på læsernes handlinger. CGI (Common Gateway Interface) har hidtil været de protokoller, man

Læs mere

Kursusgang Rekursive definitioner. 14. april Mystiske eksempler. Hvad er en rekursiv definition egentlig? Partielle ordninger

Kursusgang Rekursive definitioner. 14. april Mystiske eksempler. Hvad er en rekursiv definition egentlig? Partielle ordninger Kursusgang 15 14. april 2011 1 Rekursive definitioner Hvad er en rekursiv definition egentlig? Partielle ordninger cpo er (fuldstændige partielle) ordninger Monotone og kontinente funktioner Sætning om

Læs mere

Induktive og rekursive definitioner

Induktive og rekursive definitioner Induktive og rekursive definitioner Denne note omhandler matematiske objekter, som formelt er opbygget fra et antal basale byggesten, kaldet basistilfælde eller blot basis, ved gentagen brug af et antal

Læs mere

Nogle grundlæggende begreber

Nogle grundlæggende begreber BE2-kursus 2010 Jørgen Larsen 5. februar 2010 Nogle grundlæggende begreber Lidt simpel mængdelære Mængder består af elementer; mængden bestående af ingen elementer er, den tomme mængde. At x er element

Læs mere

DATALOGISK INSTITUT, AARHUS UNIVERSITET. Det Naturvidenskabelige Fakultet EKSAMEN. Grundkurser i Datalogi

DATALOGISK INSTITUT, AARHUS UNIVERSITET. Det Naturvidenskabelige Fakultet EKSAMEN. Grundkurser i Datalogi DATALOGISK INSTITUT, AARHUS UNIVERSITET Det Naturvidenskabelige Fakultet EKSAMEN Grundkurser i Datalogi Antal sider i opgavesættet (incl. forsiden): 1 (tretten) Eksamensdag: Tirsdag den 8. april 2008,

Læs mere

DATALOGI 1E. Skriftlig eksamen mandag den 23. juni 2003

DATALOGI 1E. Skriftlig eksamen mandag den 23. juni 2003 Københavns Universitet Naturvidenskabelig Embedseksamen DATALOGI 1E Skriftlig eksamen mandag den 23. juni 2003 Opgaverne vægtes i forhold til tidsangivelsen herunder, og hver opgaves besvarelse bedømmes

Læs mere

Kombinatoriske Spil. Noter til QGM Math Club af Tobias Kildetoft

Kombinatoriske Spil. Noter til QGM Math Club af Tobias Kildetoft Kombinatoriske Spil Noter til QGM Math Club af Tobias Kildetoft 1 Forord Disse noter er i stor grad baseret på bogen Lessons in Play af Michael H. Albert, Richard J. Nowakowski og David Wolfe (fra nu af

Læs mere

DM72 Diskret matematik med anvendelser

DM72 Diskret matematik med anvendelser DM72 Diskret matematik med anvendelser En hurtig gennemgang af de vigtigste resultater. (Dvs. ikke alle resultater). Logik Åbne udsagn 2 + 3 = 5 Prædikater og kvantorer P (x) := x er et primtal x N : n

Læs mere

Sproget Limba. Til brug i G1 og K1. Dat1E 2003

Sproget Limba. Til brug i G1 og K1. Dat1E 2003 Sproget Limba Til brug i G1 og K1 Dat1E 2003 Abstract Limba er et simpelt imperativt sprog med hoballokerede tupler. Dette dokument beskriver uformelt Limbas syntaks og semantik samt en fortolker for Limba,

Læs mere

Grådige algoritmer. Et algoritme-konstruktionsprincip ( paradigme ) for optimeringsproblemer.

Grådige algoritmer. Et algoritme-konstruktionsprincip ( paradigme ) for optimeringsproblemer. Grådige algoritmer Grådige algoritmer Et algoritme-konstruktionsprincip ( paradigme ) for optimeringsproblemer. Grådige algoritmer Et algoritme-konstruktionsprincip ( paradigme ) for optimeringsproblemer.

Læs mere

Ideer til datalogiprojekter. Keld Helsgaun

Ideer til datalogiprojekter. Keld Helsgaun Ideer til datalogiprojekter Keld Helsgaun 1 Keld Helsgaun Forskning: kombinatorisk optimering heuristisk søgning (kunstig intelligens) programmeringsværktøjer Undervisning: programmering, datastrukturer

Læs mere

Skriftlig eksamen, Programmer som Data Onsdag 5. januar 2011

Skriftlig eksamen, Programmer som Data Onsdag 5. januar 2011 Skriftlig eksamen, Programmer som Data Onsdag 5. januar 2011 Version 1.1 af 2011-01-28 Dette eksamenssæt har 7 sider. Tjek med det samme at du har alle siderne. Eksamens varighed er 4 timer. Der er fire

Læs mere

FSFI s guide til DFR s elektronisk bevissystem

FSFI s guide til DFR s elektronisk bevissystem FSFI s guide til DFR s elektronisk bevissystem Dette er en kort guide i anvendelsen af Dansk Førstehjælpsråd elektroniske bevissystem. Guiden viser og forklarer, hvordan du som instruktør og medlem af

Læs mere

De rigtige reelle tal

De rigtige reelle tal De rigtige reelle tal Frank Villa 17. januar 2014 Dette dokument er en del af MatBog.dk 2008-2012. IT Teaching Tools. ISBN-13: 978-87-92775-00-9. Se yderligere betingelser for brug her. Indhold 1 Introduktion

Læs mere