Optimering og afprøvning af solfanger til solvarmecentraler

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Starte visningen fra side:

Download "Optimering og afprøvning af solfanger til solvarmecentraler"

Transkript

1 Optimering og afprøvning af solfanger til solvarmecentraler DANMARKS TEKNISKE UNIVERSITET Sagsrapport BYG DTU SR ISSN

2

3 Optimering og afprøvning af solfanger til solvarmecentraler Jianhua Fan og Simon Furbo

4

5 Indholdsfortegnelse 1. Introduktion Baggrund Forbedringsmuligheder Solfangerstørrelse Isolering Flow og manifold Hældning Længde af solfangerrækkerne Seriekobling af solfangere Effektivitetsmåling for ny solfanger Effektivitet og ydelse med en 3% propylenglykol/vand blanding som solfangervælske Flowfordelings-/kogningsproblemer Varmetabsmålinger Konklusion...34 Referencer

6 1. Introduktion Denne rapport beskriver undersøgelser vedrørende Arcon Solvarme A/S s HT solfangere. Undersøgelserne er gennemført ved BYG.DTU i i forbindelse med PSOprojektet: Optimeret solvarmeproduktion i et liberaliseret elmarked. Demonstration af fuldskalaanlæg, j.nr Baggrund Effektiviteten af Arcon Solvarme A/S s HT solfanger med teflonfolie mellem absorber og dækglas er igennem et intensivt udviklingsarbejde de sidste år blevet stærkt forbedret, [1], [2]. Effektivitet og indfaldsvinkelkorrektionsfaktor for solfangeren, som er vist skematisk på figur 1, blev i 25 bestemt til: Tm Ta η = Kθ,81 2,91*, hvor G K θ = 1 tan 4,4 ( θ / 2) Figur 1. Snit af HT solfanger med teflonfolie. Solfangerens areal er 12,53 m² og solfangerens absorber består af 16 parallelle Sunstrips mellem to manifoldrør. Bagsiden af absorberen er isoleret med 75 mm mineraluld. 6

7 3. Forbedringsmuligheder Forskellige forbedringsmuligheder for solfangeren er vurderet i et samarbejde mellem Arcon Solvarme A/S og BYG.DTU. Mulighederne er beskrevet i de følgende afsnit, afsnit Solfangerstørrelse Det vurderes at solfangerens effektivitet samt solfangerfeltets ydelse kan forbedres en smule ved at gøre solfangerens højde og bredde større end henholdsvis 2,27 m og 5,96 m. Med større dimensioner kan solfangerens varmetabskoefficient nemlig reduceres da kanttabets betydning reduceres. Desuden kan længden af og dermed varmetabet fra rørene mellem solfangerne i rækkerne reduceres. Det bør bemærkes at der måske med større solfangerdimensioner er specielle problemer vedrørende flowfordeling gennem absorberne og termiske udvidelser. Dette bør klarlægges før solfangerdimensionerne gøres større. Det vurderes at de forøgede omkostninger ved at producere og transportere større solfangerelementer ikke inden for dette projekts rammer retfærdiggør udvikling af et større solfangerelement. 3.2 Isolering Indledningsvis blev der gennemført termovisionsundersøgelser af solfangeren, der blev afprøvet i 25, for at klarlægge om isoleringsforholdene kan forbedres. Figur 2, 3 og 4 viser termovisionsbilleder af solfangeren. Figur 2 viser solfangerens overfladetemperaturer med solskin på solfangeren og med en middelsolfangervæsketemperatur på 55 C. Solfangervæsken pumpes igennem solfangeren fra højre mod venstre. Det ses at glastemperaturen er lidt højere i venstre del af solfangeren end i højre del, og at EPDM listerne mellem og omkring dækglassene er forholdsvis varme. Disse høje temperaturer, som skyldes den direkte solstråling på de mørke overflader, er de eneste høje overfladetemperaturer på forsiden af solfangeren. Figur 3 viser forsidens overfladetemperaturer efter solnedgang. Varm solfangervæske cirkuleres gennem solfangeren. Middelsolfangervæsketemperaturen er 42 C. Det ses at EPDM listernes overfladetemperaturer nu er forholdsvis lave. Termovisionsbillederne viser altså at forsiden af solfangeren ikke har kuldebroer af betydning. Figur 4 viser overfladetemperaturer for bagsiden af solfangeren efter solnedgang mens varm solfangervæske cirkuleres gennem solfangeren. Middelsolfangervæsketemperaturen er 42 C. Det ses at heller ikke bagsiden af solfangeren har kuldebroer af betydning. Det vurderes derfor at der ikke er behov for at ændre solfangeren for at reducere kuldebroer. Solfangerens varmetab kan reduceres ved at benytte vakuumisoleringspaneler som en del af bagsideisoleringen. På basis af priserne for forskellige markedsførte vakuumisoleringspaneler vurderes det dog at være for dyrt at benytte disse paneler i solfangeren. 7

8 Figur 2. Termovisionsbillede af forside af HT solfanger med teflonfolie af prøvet i august kl. 16:3. Middelsolfangervæsketemperatur: 55 C Figur 3. Termovisionsbillede af forside af HT solfanger med teflonfolie afprøvet i august 25 kl. 21:1. Middelsolfangervæsketemperatur: 42 C. 8

9 Figur 4. Termovisionsbillede af bagside af HT solfanger med teflonfolie afprøvet i august kl. 21:1. Middelsolfangervæsketemperatur: 42 C. Solfangerens varmetab kan også reduceres ved at erstatte Rockwool 4 med Rockwool 8 som varmeisoleringsmateriale, idet varmeledningsevnen for Rockwool 8 er lidt mindre varmeledningsevnen end Rockwool 4. For at vurdere hvor store ydelsesmæssige fordele der kan opnås herved blev der gennemført teoretiske beregninger af hvorledes solfangereffektiviteten og solfangerydelsen afhænger af isoleringsmaterialet. Der er gennemført beregninger med isoleringsmaterialet Rockwool 4, som blev anvendt i solfangeren der blev afprøvet i 25, og Rockwool 8. Beregningerne er gennemført med beregningsprogrammet SOLEFF, [3] og regnearket Solvarmecentraler, [4]. Figur 5 viser for en solbestrålingsstyrke på 8 W/m² og en indfaldsvinkel på den målte effektivitetskurve for solfangeren afprøvet i 25 samt de beregnede effektivitetskurver, både med Rockwool 4 og Rockwool 8. Input til SOLEFF programmet er justeret således at den beregnede årlige ydelse af solfangeren med Rockwool 4 bliver identisk med den beregnede årlige ydelse af den afprøvede solfanger. Det ses, at effektivitetskurverne for de tre solfangere næsten er identiske. Kun for høje x-axe værdier er effektiviteten af solfangeren med Rockwool 8 en smule højere end effektiviteten af solfangeren med Rockwool 4. Figur 6 viser den beregnede årlige ydelse for solfangeren med Rockwool 4 og Rockwool 8 som funktion af solfangervæsketemperaturen, som holdes konstant igennem hele året. Solfangerne er sydvendte med en hældning på 4 og vejrdata fra det danske referenceår er benyttet. Figur 7 viser merydelsen ved at benytte Rockwool 8 i stedet for Rockwool 4. Merydelsen er,9% ved en solfangervæsketemperatur på 6 C, 1,3% ved en solfangervæsketemperatur på 8 C og 1,8% ved en solfangervæsketemperatur på 1 C. 9

10 9 8 7 G = 8 W/m 2 Effektivitet [%] HT målt HT beregnet 4 HT beregnet 8,5,1,15,2,25 (T m -T a )/G, [Km 2 /W] Figur 5. Teoretisk beregnet effektivitet for HT solfanger med Rockwool 4 og Rockwool 8. Desuden er den i 25 målte effektivitet vist HT beregnet 4 HT beregnet 8 Årlig ydelse, [KWh/(år*m 2 )] Solfangervæsketemperatur, [ C] Figur 6. Beregnet årsydelse for HT solfanger med teflonfolie med Rockwool 4 og Rockwool 8. 1

11 1,2 1,18 1,16 HT beregnet 4 HT beregnet 8 1,14 1,12 Relativ ydelse 1,1 1,8 1,6 1,4 1,2 1, Solfangervæsketemperatur, [ C] Figur 7. Beregnet ekstra årsydelse ved at benytte Rockwool 8 i stedet for at benytte Rockwool 4. På basis af beregningerne blev det besluttet at ændre solfangerens varmeisoleringsmateriale fra Rockwool 4 til Rockwool 8 og at forbedre kantisoleringen. Effektiviteten af den forbedrede solfanger blev målt i 26, se afsnit Flow og manifold Der er gennemført CFD (Computational Fluid Dynamics) beregninger af effektiviteten af HT solfangeren uden teflonfolie for forskellige volumenstrømme mellem 3,3 l/min og 25 l/min for en 4% propylenglykol/vand blanding som solfangervæske, [5]. Beregningerne, som blandt andet tager flowfordelingen igennem absorberen i beregning, viser at flowfordelingen gennem absorberen er mest jævn for volumenstrømme mellem 6 l/min og 1 l/min. Hvis volumenstrømmen igennem solfangeren er lavere, vil volumenstrømmen igennem de øverste strips blive meget lav. Hvis volumenstrømmen igennem solfangeren er højere, vil volumenstrømmen igennem de nederste strips blive forholdsvis lav. Det bevirker at solfangereffektiviteten er højest for volumenstrømme mellem 6 l/min og 1 l/min, mens effektiviteten falder kraftigt hvis volumenstrømmen reduceres, og en smule når volumenstrømmen forøges, se figur 8. 11

12 Effektivitet, [-],9,8,7,6,5,4,3 Volumenstrøm 3,3 l/min Volumenstrøm 4, l/min Volumenstrøm 6, l/min Volumenstrøm 1, l/min Volumenstrøm 25, l/min,2,1,2,4,6,8,1,12,14,16,18 (T m -T a )/G, [Km 2 /W] Figur 8. Beregnede effektiviteter for HT solfangeren uden teflonfolie for forskellige volumenstrømme. Hvis volumenstrømmen bliver så høj, at strømningen i de enkelte strips bliver turbulent vil solfangereffektiviteten dog forøges. Dette sker for volumenstrømme højere end 25 l/min. Normalt benyttes volumenstrømme noget højere end 25 l/min i solfangerfelter for solvarmecentraler. Derfor er effektiviteten for solfangere i solfangerfelter normalt lige så høj eller højere end effektiviteten for solfangeren for volumenstrømme mellem 6 l/min og 1 l/min. Flowfordelingen igennem solfangeren og dermed solfangereffektiviteten for forskellige volumenstrømme afhænger af dimensionerne for striprørene og manifoldrørene. Med tanke på de normalt høje volumenstrømme der benyttes i store solfangerfelter vurderes det at der ikke er behov for at ændre dimensionerne for striprørene og manifoldrørene. 3.4 Hældning I [2] er der gennemført beregninger af solfangereffektiviteten og årsydelsen af solfangeren for forskellige solfangerhældninger. Beregningerne viste at solfangereffektiviteten forøges lidt når solfangerhældningen forøges. Desuden viste beregningerne at den største årsydelse opnås når solfangerhældningen er placeret i intervallet For lave driftstemperaturer er den optimale solfangerhældning 4, for høje driftstemperaturer er den optimale solfangerhældning 45. Der er i beregningerne ikke taget højde for skygger fra foranstående solfangere. Disse skygger vil reducere de optimale solfangerhældninger en smule. 12

13 3.5 Længde af solfangerrækkerne Jo længere solfangerrækkerne er des højere volumenstrøm bør benyttes igennem hver enkelt række. Som nævnt i afsnit 3.3 vil solfangereffektiviteten forøges når volumenstrømmen forøges til mere end 25 l/min. Desuden reduceres solfangerfeltets totale rørlængde ved at benytte lange solfangerrækker, hvorved varmetabet fra rørene reduceres. Ud fra et ydelsesmæssigt synspunkt er det derfor fordelagtigt med lange solfangerrækker. Selvfølgelig skal der tages højde for det forøgede tryktab i solfangerfeltet og det bør sikres at væskehastigheden ikke bliver så høj at der er risiko for turbulenskorrosion i solfangere og rør. Det vurderes at volumenstrømmen ikke bør være højere end 35 l/min, da væskehastigheden ellers bliver så høj i manifoldrørene, at der er risiko for korrosion. Det vurderes at en volumenstrøm på 35 l/min er passende til 14 seriekoblede solfangere. 3.6 Seriekobling af solfangere Solfangerrækker kan med fordel opbygges af en række forskellige seriekoblede solfangere. Billige laveffektive solfangere benyttes først i solfangerrækken hvor driftstemperaturen er lav. Dyre højeffektive solfangere benyttes sidst i solfangerrækken hvor driftstemperaturen er høj. Måske kan HT solfangere uden teflonfolie med fordel benyttes som de første par solfangere i en solfangerrække, mens HT solfangere med teflonfolie kan benyttes i resten af rækken? For at vurdere dette er der gennemført beregninger af årsydelsen for den nye HT solfanger med teflonfolie og for HT solfangeren uden teflonfolie. Figur 9 viser de beregnede årlige ydelser pr. m² solfanger for de to solfangere som funktion af solfangervæsketemperaturen, og figur 1 viser den beregnede ekstra årsydelse for den nye HT solfanger med teflonfolie i forhold til HT solfangeren uden teflonfolie som funktion af solfangervæsketemperaturen. Der er regnet med sydvendte solfangere med en solfangerhældning på 4. Det danske referenceårs vejrdata er benyttet i beregningerne. Det ses, at solfangeren uden teflonfolie yder mere end solfangeren med teflonfolie så længe driftstemperaturen er lavere end ca. 3 C. For højere driftstemperaturer yder solfangeren med teflonfolie mere end solfangeren uden teflonfolie. Selv ved højere driftstemperaturer end 3 C kan det være en fordel at benytte solfangere uden teflonfolie, da disse solfangere er lidt billigere end solfangere med teflonfolie. Figur 1 kan sammen med priser for solfangeren med og uden teflonfolie benyttes til en grov vurdering af ved hvilket temperaturniveau det er fordelagtigt at skifte fra den ene solfanger til den anden. En nøjagtig bestemmelse af hvor mange solfangere uden teflonfolie der bør benyttes i en solfangerrække for at opnå den økonomisk bedste løsning kræver detaljerede beregninger af ydelsen af hele rækken, idet en lille ydelsesreduktion for de første solfangere i en række delvist kan kompenseres af en forøget ydelse for de solfangere der er placeret sidst i rækken. På basis af ydelses- og prisvurderinger er det besluttet at anvende solfangere uden teflonfolie som de første 2 solfangere i rækker med 14 solfangere. 13

14 12 11 Uden Teflon: η =,83-3,48*(T m -T a )/G -,56*(T m -T a ) 2 /G K θ =4,8 Med Tefon: η =,81-2,89*(T m -T a )/G K θ =4,4 Uden Teflon Med Teflon Årlig ydelse, [kwh/(år*m 2 )] Solfangervæsketemperatur, [ C] Figur 9. Beregnet årsydelse for ny HT solfanger med og uden teflonfolie som funktion af solfangervæsketemperaturen. 1,5 1,4 Uden Teflon Med Teflon 1,3 26 Relativ ydelse 1,2 1,1 1,9, Solfangervæsketemperatur, [ C] Figur 1. Beregnet ekstra årsydelse for ny HT solfanger med teflonfolie i forhold til solfanger uden teflonfolie. 14

15 4. Effektivitetsmåling for ny solfanger På basis af undersøgelserne beskrevet i afsnit 3 blev det som nævnt i afsnit 3.2 besluttet at ændre solfangerens varmeisoleringsmateriale fra Rockwool 4 til Rockwool 8 og at forbedre kantisoleringen. Effektiviteten af den forbedrede solfanger blev målt i BYG.DTU s prøvestand for solfangere. Figur 11 viser et foto af solfangeren i prøvestanden. Figur 11. Foto af ny HT solfanger. Solfangeren har en hældning på 4, og som solfangervæske benyttes en 4% propylenglykol/vand blanding. Solfangerens effektivitet og indfaldsvinkelkorrektionsfaktor blev målt i 26 som beskrevet i [2] med en volumenstrøm på 25 l/min. Figur 12 viser den målte solfangereffektivitet som funktion af forskellen mellem middelsolfangevæsketemperaturen og udelufttemperaturen ved en solbestrålingsstyrke på 87 W/m² og en indfaldsvinkel på. 15

16 9 8 T m -T a, K η =,81-2,89*(T m -T a )/G Effektivitet [%] Målinger G = 87 W/m Effektivitetsudtryk,5,1,15,2,25 (T m -T a )/G, [Km 2 /W] Figur 12. Målt effektivitet for ny HT solfanger. Figur 13 viser effektiviteten for den nye HT solfanger og den solfanger som blev afprøvet i 25 ved en solbestrålingsstyrke på 8 W/m² og en indfaldsvinkel på. Som forventet er varmetabskoefficienten for den nye HT solfanger en smule lavere end varmetabskoefficienten for den gamle solfanger. Forskellen er lille, og kun for høje x-axe værdier er der en lille effektivitetsmæssig fordel ved at benytte den nye solfanger. Figur 14 viser målte indfaldsvinkelkorrektionsfaktorer for solfangeren. Indfaldsvinkelkorrektionsfaktorerne er ens for den nye og den gamle solfanger. Effektivitet og indfaldsvinkelkorrektionsfaktor for den nye HT solfanger blev bestemt til: Tm Ta η = K,81 2,89 * θ, hvor G 4,4 K = 1 tan ( θ / 2) θ Til sammenligning er effektivitet og indfaldsvinkelkorrektionsfaktor for den gamle solfanger bestemt til:: Tm Ta η = Kθ,81 2,91*, hvor G K = 1 tan θ 4,4 ( θ / 2) 16

17 9 T m -T a, K HT - 25 HT- 26 η =,81-2,91*(T m -T a )/G η =,81-2,89*(T m -T a )/G Effektivitet [%] G = 8 W/m 2 1,5,1,15,2,25 (T m -T a )/G, [Km 2 /W] Figur 13. Effektivitet for HT solfanger afprøvet i 25 og den nye HT solfanger afprøvet i Indfaldsvinkelkorrektionsfaktor Målinger Tilnærmet kurve K θ = 1 - tan 4,4 (θ/2) Indfaldsvinkel, [ ] Figur 14. Indfaldsvinkelkorrektionsfaktor for HT solfanger afprøvet i 26. Samme udtryk som for HT solfanger afprøvet i

18 Figur 15 viser beregnede årsydelser for den nye og gamle HT solfanger som funktion af solfangervæsketemperaturen. Solfangerne er sydvendte og hælder 4 fra vandret. Vejrparametre for det danske referenceår er forudsat. Figur 16 viser den beregnede ekstra årsydelse for den nye HT solfanger i forhold til den gamle HT solfanger. Figurerne viser at der kun opnås en beskeden forøgelse af ydelsen med den nye solfanger. Ved en driftstemperatur på 4 C opnås en ydelsesmæssig forøgelse på,2%, ved 6 C en forøgelse på,3%, ved 8 C en forøgelse på,4% og ved 1 C en forøgelse på,6% Med Teflon 25 Med Teflon 26 Årlig ydelse, [kwh/(år*m 2 )] Solfangervæsketemperatur, [ C] Figur 15. Beregnet årsydelse for HT solfangere afprøvet i 25 og Med Teflon Med Teflon 26 Relativ ydelse Solfangervæsketemperatur, [ C] Figur 16. Beregnet ekstra årsydelse for HT solfanger afprøvet i 26 i forhold til HT solfanger afprøvet i

19 5 Effektivitet og ydelse med en 3% propylenglykol/vand blanding som solfangervælske Solfangerkredsen og solfangerne frostbeskyttes af en propylenglykol/vand blanding, som benyttes som solfangervæske. Forskellige propylenglykol/vand blandingers frysepunkter og temperaturer for frostsprængningsrisiko for solfangerkreds/solfanger fremgår af tabel 1. Solfangervæske Frysepunkt Temperatur for frostsprængningsrisiko 4% propyleglykol/vand blanding -21,1 C -24 C 35% propyleglykol/vand blanding -16,5 C -19 C 3% propyleglykol/vand blanding -12,7 C -15 C 25% propyleglykol/vand blanding -9,6 C -11 C 2% propyleglykol/vand blanding -7,2 C -8 C Tabel 1. Frysepunkt og temperatur for frostsprængningsrisiko for en række propylenglykol/vand blandinger, [6]. På basis af tabellen vurderes det at det er muligt at benytte en 3% propylenglykol/vand blanding i stedet for den normalt anvendte 4% propylenglykol/vand blanding. Der er derfor gennemført teoretiske undersøgelser af hvor meget solfangerens effektivitet og ydelse forøges ved at benytte en 3% propylenglykol/vand blanding som solfangervæske i stedet for en 4% propylenglykol/vand blanding. Figur 17 viser den målte og den med beregningsprogrammet Soleff [3] beregnede effektivitet for HT solfangeren med en 4% propylenglykol/vand blanding som solfangervæske for en solbestrålingsstyrke på 8 W/m² og en indfaldsvinkel på. Det ses at den målte og beregnede effektivitet næsten er ens så længe temperaturniveauet ikke er meget højt. Figur 18 viser teoretisk beregnede årsydelser for solfangeren som funktion af solfangervæsketemperaturen når der benyttes en 4% propylenglykol/vand blanding som solfangervæske. Beregningerne, som er foretaget med beregningsprogrammet udviklet i [4], er gennemført både med det målte og beregnede effektivitetsudtryk. Det forudsættes at solfangeren er sydvendt og at solfangerhældningen er 4 fra vandret. Figur 19 viser den relative ydelse for HT solfangeren med det teoretisk beregnede effektivitetsudstryk, det vil sige forholdet mellem ydelsen af solfangeren med det teoretisk beregnede effektivitetsudstryk og ydelsen af solfangeren med det målte effektivitetsudtryk. Det ses, at i temperaturintervallet fra 4 C til 9 C er der højst 3% forskel mellem årsydelserne for solfangeren med det målte og teoretisk bestemte effektivitetsudtryk. 19

20 9 8 7 G = 8 W/m 2 Effektivitet [%] HT 26 Soleff,5,1,15,2 (T m -T a )/G, [Km 2 /W] Figur 17. Målt og beregnet solfangereffektivitet med en 4% propylenglykol/vand blanding som solfangervæske HT 26 Soleff Årlig ydelse, [KWh/(år*m 2 )] Solfangervæsketemperatur, [ C] Figur 18. Beregnede årsydelser for HT solfangeren med det målte og beregnede effektivitetsudtryk med en 4% propylenglykol/vand blanding som solfangervæske. 2

21 Det vurderes at nøjagtigheden af det teoretisk bestemte effektivitetsudtryk med en 4% propylenglykol/vand blanding som solfangervæske er god nok til at gennemføre en beregning af effektivitet og ydelse for solfangeren med en 3% propylenglykol/vand blanding som solfangervæske. 1,3 1,2 1,1 1 Relativ ydelse,99,98,97,96 HT 26 Soleff,95,94, Solfangervæsketemperatur, [ C] Figur 19. Relativ ydelse for HT solfangeren med en 4% propylenglykol/vand blanding som solfangervæske. Figur 2 viser beregnede effektiviteter for HT solfangeren ved en solbestrålingsstyrke på 8 W/m² og en indfaldsvinkel på med en 4% propylenglykol/vand blanding og en 3% propylenglykol/vand blanding som solfangervæske. Det ses, at effektiviteten for lave temperaturer er en smule højere når 3% propylenglykol/vand blandingen benyttes i stedet for 4% propylenglykol/vand blandingen. Figure 21 viser beregnede årsydelser for HT solfangeren som funktion af solfangervæsketemperaturen med en 3% propylenglykol/vand blanding og en 4% propylenglykol/vand blanding som solfangervæske. Solfangeren er sydvendt og solfangerhældningen er 4 fra vandret. Årsydelsen forøges ved at benytte en 3% propylenglykol/vand blanding i stedet for en 4% propylenglykol/vand blanding. Figur 22 viser merydelsen for HT solfangeren når der benyttes en 3% propylenglykol/vand blanding i stedet for en 4% propylenglykol/vand blanding som solfangervæske. Merydelsen er størst ved lave temperaturer. Forøgelsen er ca. 1,2% ved en solfangervæsketemperatur på 4 C og,5% ved en solfangervæsketemperatur på 9 C. 21

22 9 8 7 G = 8 W/m 2 Effektivitet [%] Soleff 4% propylenglykol/vand Soleff 3% propylenglykol/vand,5,1,15,2 (T m -T a )/G, [Km 2 /W] Figur 2. Beregnet effektivitet for HT solfangeren med en 4% propylenglykol/vand blanding og en 3% propylenglykol/vand blanding % propylenglykol/vand 3% propylenglykol/vand Årlig ydelse, [KWh/(år*m 2 )] Solfangervæsketemperatur, [ C] Figur 21. Beregnede årsydelser for HT solfangeren med en 4% propylenglykol/vand blanding og en 3% propylenglykol/vand blanding som solfangervæske. 22

23 1,2 4% propylenglykol/vand 1,15 3% propylenglykol/vand Relativ ydelse 1,1 1,5 1, Solfangervæsketemperatur, [ C] Figur 22. Beregnet merydelse for HT solfangeren når der benyttes en 3% propylenglykol/vand blanding i stedet for en 4% propylenglykol/vand blanding. 6. Flowfordelings-/kogningsproblemer Der er gennemført eksperimentelle og teoretiske undersøgelser for at klarlægge under hvilke driftsforhold flowfordelingen gennem absorberen bliver meget ujævn, og hvilke driftsforhold der resulterer i at der optræder kogning i dele af solfangeren, [7]. Undersøgelserne er gennemført for solfangeren uden teflonfolie. Undersøgelserne viste at hvis volumenstrømmen igennem solfangeren er lav og/eller hvis fremløbstemperaturen til solfangeren er høj kan flowfordelingen gennem absorberen blive så ujævn, at der opstår kogning i dele af solfangeren. Flowfordelingen kan faktisk blive så ujævn at flowretningen igennem de øverste sunstrips er modsatrettet solfangevæskens hovedstrømningsretning gennem solfangeren og at væskehastigheden i en eller flere sunstrips er meget tæt på m/s. Det vil bevirke at solfangervæsken vil koge i disse sunstrips. Figur 23 viser et foto af solfangeren med teflonfolie i en periode med kogning i næstøverste og sjetteøverste sunstrip. De to sunstrips er på grund af den termiske udvidelse bøjet ud, så de presser mod dæklaget. 23

24 Figur 23. Foto af solfanger med teflonfolie med kogning i to sunstrips. Der kan ved kogning opstå skade på solfangeren og på solfangervæsken, som så senere kan beskadige solfangeren. Det er derfor vigtigt at forhindre at der opstår kogning i solfangeren. Ved hjælp af CFD beregninger er det for en varm solskinsperiode med en solbestrålingsstyrke på solfangeren på 1 W/m² og en udelufttemperatur på 3 C beregnet hvor høj den maksimale solfangervæsketemperatur bliver i solfangeren uden teflonfolie for forskellige volumenstrømme og fremløbstemperaturer til solfangeren. De maksimale temperaturer fremgår af figur 24. Det ses at der kan opstå kritisk høje temperaturer hvis volumenstrømmen er lavere end 5 l/min. Det ses også at jo højere fremløbstemperaturen er des højere bliver den maksimale solfangervæsketemperatur. 24

25 18 16 Solfangerhældning 4, solfangervæske 4% glykol/vand blanding Solbestrålingsstyrke 1 W/m 2, udelufttemperatur 3 C Maksimal solfangervæsketemperatur, C Fremløbstemperatur 2 C Fremløbstemperatur 4 C Fremløbstemperatur 6 C Fremløbstemperatur 8 C Fremløbstemperatur 1 C Kogepunkt ved,35 MPa Kogepunkt ved,2 MPa Kogepunkt ved,1 MPa Volumenstrøm, l/min Figur 24. Beregnede maksimale solfangervæsketemperaturer i solfangeren uden teflonfolie for forskellige volumenstrømme og fremløbstemperaturer. Solfangeren med teflonfolie vil opnå højere temperaturer end solfangeren uden teflonfolie. For at undersøge om der opstår flowfordelings-/kogningsproblemer for solfangeren med teflonfolie for en volumenstrøm på 25 l/min for høje fremløbstemperaturer blev der gennemført ekstra målinger af effektiviteten samtidig med at temperaturerne på bagsiden af absorberen registres. Figur 25 viser de ekstra målepunkter for effektiviteten med middelsolfangervæsketemperaturer mellem 94 C og 97 C. Det ses at de ekstra målepunkter ligger en smule lavere end effektivitetskurven bestemt ved hjælp af målinger ved lavere solfangervæsketemperaturer. Figur 26 viser de målte temperaturer på bagsiden af absorberens 16 sunstrips tæt på de to manifoldrør. Fremløbstemperaturen er 95,5 C og returtemperaturen er 99,1 C. På basis af disse temperaturer vurderes det at flowfordelingen igennem absorberen er forholdsvis jævn og at der ikke er kogningsproblemer, selv om middelsolfangervæsketemperaturen er 97,3 C. På basis af undersøgelserne vurderes det at der ikke opstår flowfordelings- /kogningsproblemer for solfangeren med teflonfolie når blot volumenstrømmen er højere end 6 l/min og fremløbstemperaturen ikke er højere end 9 C. 25

26 9 T m -T a, K Effektivitet [%] C 43 C η =,81-2,89*(T m -T a )/G 62 C 81 C G = 87 W/m C Målinger 2 Effektivitetsudtryk 1,5,1,15,2,25 (T m -T a )/G, [Km 2 /W] Figur 25. Ekstra målte effektiviteter for HT solfangeren med teflonfolie afprøvet i 26 ved høje middelsolfangervæsketemperaturer Temperatur, [ C] :45-13:, 1.oktober, 26 T frem 95,5 C T retur 99,1 C T middel 97,3 C Solbestrålingsstyrke 872 W/m 2 T luft 19,5 C Frem Retur Top strip nummer, [-] Bund Figur 26. Målte temperaturer på bagsiden af absorberen ved en fremløbstemperatur på 95,5 C, en solbestrålingsstyrke på 872 W/m² og en udelufttemperatur på 19,5 C. 26

27 7. Varmetabsmålinger Der er gennemført målinger af varmetabet for den ny HT solfanger med teflonfolie om natten således at kølekapaciteten for solfangerfeltet kan bestemmes. Solfangervæsken, som er en 4% propylenglykol/vand blanding, cirkuleres gennem solfangeren med en konstant fremløbstemperatur og en konstant volumenstrøm. Figur 27 viser den målte fremløbstemperatur, returtemperatur, udelufttemperatur og volumenstrømmen gennem solfangeren natten mellem den 26. og 27. oktober 26. Baseret på målingerne beregnes solfangerens varmetabskoefficient. Der er også her regnet med det transparente areal for solfangeren på 12,53 m². Figur 28 viser de målte varmetabskoefficienter om natten for perioden oktober 26. I hele perioden er der benyttet en volumenstrøm på 24,5 l/min og en fremløbstemperatur på 9, C. Det ses at varmetabskoefficienten varierer igennem måleperioden. De højeste varmetabskoefficienter forekommer i nætter med regn og blæst, mens varmetabskoefficienten er mindst i nætter med oveskyet og vindstille vejr. Den gennemsnitlige varmetabskoefficient i hele måleperioden er 3, W/Km². Figur 29 viser tilsvarende målte varmetabskoefficienter for en volumenstrøm på 11,7 l/min og en fremløbstemperatur på 89,8 C. Den gennemsnitlige varmetabskoefficient er for måleperioden 3,1 W/Km². Figur 3 viser tilsvarende målte varmetabskoefficienter for en volumenstrøm på 5,1 l/min og en fremløbstemperatur på 91, C. Den gennemsnitlige varmetabskoefficient er for måleperioden 3,1 W/Km² Temperatur [ C] T frem T retur Udeluft Volumenstrøm 18: Oktober 26-7: Oktober 27, Flow [l/min.] : 18:3 19: 19:3 2: 2:3 21: 21:3 22: 22:3 23: 23:3 : :3 1: 1:3 2: 2:3 3: 3:3 4: 4:3 5: 5:3 6: 6:3 Klokken 15 Figur 27. Målte temperaturer og flow under køleforsøg om natten med HT solfangeren den oktober

28 Varmetab om natten 4 3,5 Series1 Varmetabskoefficient, W/K m2 3 2,5 2 1,5 1 Volumenstrøm: 24,5 l/min Fremløbstemperatur: 9, C Gennemsnitlig varmetabskoefficient: 3, W/K m 2 Gennemsnitlig udelufttemperatur: 12,5 C,5 18/1 19/1 2/1 21/1 22/1 23/1 24/1 25/1 26/1 27/1 28/1 29/1 Dato Figur 28. Målte varmetabskoefficienter for HT solfangeren om natten med en volumenstrøm på 24,5 l/min og en fremløbstemperatur på 9, C. Varmetab om natten 4 3,5 Series1 Varmetabskoefficient, W/K m2 3 2,5 2 1,5 1 Volumenstrøm: 11,7 l/min Fremløbstemperatur: 89,8 C Gennemsnitlig udelufttemperatur: 8,3 C Gennemsnitlig varmetabskoefficient: 3,1 W/K m 2,5 6/11 7/11 8/11 9/11 1/11 11/11 12/11 13/11 14/11 15/11 16/11 Dato Figur 29. Målte varmetabskoefficienter for HT solfangeren om natten med en volumenstrøm på 11,7 l/min og en fremløbstemperatur på 89,8 C. 28

29 Varmetab om natten 3,5 Series1 3 Varmetabskoefficient, W/K m2 2,5 2 1,5 1 Volumenstrøm: 5,1 l/min Fremløbstemperatur: 91, C Gennemsnitlig udelufttemperatur: 8,2 C Gennemsnitlig varmetabskoefficient: 3,1 W/K m 2,5 17/11 18/11 19/11 21/11 22/11 23/11 24/11 25/11 26/11 Dato Figur 3. Målte varmetabskoefficienter for HT solfangeren om natten med en volumenstrøm på 5,1 l/min og en fremløbstemperatur på 91, C. Varmetabsforsøgene blev desuden gennemført ved et lavere temperaturniveau, således at solfangerens varmetabskoefficient om natten kan bestemmes med god nøjagtighed, når blot volumenstrømmen gennem solfangeren og driftstemperaturen kendes. Figur 31 viser målte varmetabskoefficienter for en volumenstrøm på 24,7 l/min og en fremløbstemperatur på 41, C. Den gennemsnitlige varmetabskoefficient er for måleperioden 2,6 W/Km². Figur 32 viser tilsvarende målte varmetabskoefficienter for en volumenstrøm på 11,7 l/min og en fremløbstemperatur på 42,4 C. Den gennemsnitlige varmetabskoefficient er for måleperioden 2,7 W/Km². Figur 33 viser tilsvarende målte varmetabskoefficienter for en volumenstrøm på 4,9 l/min og en fremløbstemperatur på 42,1 C. Den gennemsnitlige varmetabskoefficient er for måleperioden 2,8 W/Km². Varmetabsmålingerne er sammenfattet i figur 34, der viser varmetabskoefficienten for solfangeren om natten for forskellige volumenstrømme og middelsolfangervæsketemperaturer. Det ses, at varmetabskoefficienten først og fremmest afhænger af temperaturniveauet. Jo højere temperaturen er des højere er varmetabskoefficienten. 29

30 Varmetab om natten 3 2,5 Varmetabskoefficient, W/K m2 2 1,5 1 Series1 Volumenstrøm: 24,7 l/min Fremløbstemperatur: 41, C Gennemsnitlig udelufttemperatur: 7,9 C Gennemsnitlig varmetabskoefficient: 2,6 W/K m 2,5 27/11 28/11 29/11 3/11 1/12 2/12 3/12 4/12 5/12 6/12 7/12 8/12 Dato Figur 31. Målte varmetabskoefficienter for HT solfangeren om natten med en volumenstrøm på 24,7 l/min og en fremløbstemperatur på 41, C. Varmetab om natten 3,5 3 Series1 Varmetabskoefficient, W/K m2 2,5 2 1,5 1 Volumenstrøm: 11,7 l/min Fremløbstemperatur: 42,4 C Gennemsnitlig udelufttemperatur: 6,1 C Gennemsnitlig varmetabskoefficient: 2,7 W/K m 2,5 8/12 18/12 19/12 2/12 21/12 22/12 23/12 24/12 25/12 Dato Figur 32. Målte varmetabskoefficienter for HT solfangeren om natten med en volumenstrøm på 11,7 l/min og en fremløbstemperatur på 42,4 C. 3

31 Varmetab om natten 3.5 Series1 3 Varmetabskoefficient, W/K m Volumenstrøm: 4,9 l/min Fremløbstemperatur: 42,1 C Gennemsnitlig udelufttemperatur: 6,7 C Gennemsnitlig varmetabskoefficient: 2,8 W/K m 2.5 8/1 9/1 1/1 11/1 12/1 13/1 14/1 15/1 16/1 17/1 18/1 Dato Figur 33. Målte varmetabskoefficienter for HT solfangeren om natten med en volumenstrøm på 4,9 l/min og en fremløbstemperatur på 42,1 C. 3.5 Varmetab om natten Varmetabskoefficient, W/K m Volumenstrøm 24,7 l/min Volumenstrøm 11,7 l/min Volumenstrøm 5, l/min Solfangervæsketemperatur, [ C] Figur 34. Målte varmetabskoefficienter for HT solfangeren om natten for forskellige volumenstrømme og middelsolfangervæsketemperaturer. 31

32 Flowfordelingen gennem absorberen er undersøgt ved hjælp af temperaturmålinger for bagsiden af absorberen for varmetabsforsøgene med høje driftstemperaturer. Figur 35 viser målte temperaturer på bagsiden af absorberens 16 strips tæt ved de to manifoldrør. Volumenstrømmen gennem absorberen er 24,4 l/min og fremløbstemperaturen er 89,8 C. Der er ikke store temperaturvariationer fra solfangerens top til solfangerens bund. Det vurderes derfor at flowfordelingen gennem solfangeren om natten er forholdsvis jævn når volumenstrømmen er 24,4 l/min. Figur 36 viser målte temperaturer på bagsiden af absorberens 16 strips tæt ved de to manifoldrør når volumenstrømmen gennem absorberen er 11,8 l/min og fremløbstemperaturen er 86,2 C. Kun temperaturerne i den nederste strip er noget lavere end temperaturerne i de øvrige strips. Det vurderes derfor at flowfordelingen gennem solfangeren om natten også er forholdsvis jævn når volumenstrømmen er 11,8 l/min. Figur 37 viser målte temperaturer på bagsiden af absorberens 16 strips tæt ved de to manifoldrør når volumenstrømmen gennem absorberen er 5,1 l/min og fremløbstemperaturen er 91,5 C. Temperaturerne er lavere i bunden af solfangeren end i den øverste del af solfangeren. Det vurderes derfor at flowfordelingen er ujævn med små flow igennem de nederste sunstrips og høje flow gennem de øverste sunstrips. Forklaringen er at tryktabet igennem de nederste strips er større end tryktabet gennem de øverste strips og at de naturlige kræfter om natten på grund af temperaturforskellen mellem de to manifoldrør vil forhindre et højt flow gennem de nederste strips Temperatur, [ C] Indløb Udløb Volumenstrøm: 24,4 l/min Fremløbstemperatur: 89,8 C Gennemsnitlig udelufttemperatur: 12,9 C Gennemsnitlig varmetabskoefficient: 3, W/K m bund top Stripnummer, [-] Figur 35. Målte temperaturer på bagsiden af absorberens 16 strips tæt ved indløb og udløb om natten med en volumenstrøm på 24,4 l/min og en fremløbstemperatur på 89,8 C. 32

33 Temperatur, [ C] bund Volumenstrøm: 11,8 l/min Fremløbstemperatur: 86,2 C Gennemsnitlig udelufttemperatur: 1,3 C Gennemsnitlig varmetabskoefficient: 3, W/K m 2 Indløb Udløb Stripnummer, [-] Figur 36. Målte temperaturer på bagsiden af absorberens 16 strips tæt ved indløb og udløb om natten med en volumenstrøm på 11,8 l/min og en fremløbstemperatur på 86,2 C top Temperatur, [ C] Indløb Udløb Volumenstrøm: 5,1 l/min Fremløbstemperatur: 91,5 C Gennemsnitlig udelufttemperatur: 8,5 C Gennemsnitlig varmetabskoefficient: 3,1 W/K m 2 55 bund top Stripnummer, [-] Figur 37. Målte temperaturer på bagsiden af absorberens 16 strips tæt ved indløb og udløb om natten med en volumenstrøm på 5,1 l/min og en fremløbstemperatur på 91,5 C. 33

34 8. Konklusion HT solfangeren er undersøgt teoretisk og eksperimentelt med hensyn til effektivitet, ydelse, flowfordelingsproblemer og kogningsproblemer. På basis af de teoretiske undersøgelser og prisvurderinger blev en ny solfanger med forbedret isolering opbygget og afprøvet. Effektivitet og indfaldsvinkelkorrektionsfaktor for den nye HT solfanger er bestemt til: Tm Ta η = K,81 2,89 * θ G, hvor 4,4 K = 1 tan ( θ / 2) θ Effektiviteten og ydelsen for den nye solfanger er en smule bedre end effektivitet og ydelse for den gamle solfanger, specielt for høje driftstemperaturer. På basis af undersøgelserne vurderes det at der ikke opstår flowfordelings- /kogningsproblemer for den nye HT solfanger når blot volumenstrømmen er højere end 6 l/min og fremløbstemperaturen ikke er højere end 9 C. Solfangerens varmetabskoefficient om natten er bestemt til ca. 2,7 W/Km² ved et temperaturniveau på 4 C og ca. 3,1 W/Km² ved et temperaturniveau på 9 C. Referencer [1] Undersøgelse af HT solfangere med og uden teflonfolie. J. Fan, J. M. Schultz, S. Furbo. Rapport SR BYG.DTU, DTU. [2] Effektivitet og flowfordeling for HT solfangere. J. Fan, S. Furbo. Rapport SR BYG.DTU, DTU. [3] SolEff Program til beregning af solfangeres effektivitet. Brugervejledning og generel programdokumentation. P. B. Rasmussen, S. Svendsen Laboratoriet for Varmeisolering, DTU. [4] Solfangerydelser i solvarmecentraler ved forskellige temperaturniveauer. K.L. Jensen, T. Nielsen, K.R. Andersen. Fagpakkeprojekt. 21. BYG.DTU, DTU. [5] The effect of volume flow rate on the efficiency of a solar collector. J. Fan, S. Furbo. EuroSun 26 Congress Proceedings, Glasgow, Scotland. 26. [6] Information fra Tyforop Chemie GmbH, Hamborg, Tyskland [7] Buoyancy effects on thermal behaviour of a flat plate solar collector. J. Fan, S. Furbo. Artikel fremsendt til Solar Energy Engineering,

Ydelse og effektivitet for HT solfanger

Ydelse og effektivitet for HT solfanger Niels Kristian Vejen Ydelse og effektivitet for HT solfanger DANMARKS TEKNISKE UNIVERSITET Sagsrapport BY DTU SR--8 ISSN 161-954 Ydelse og effektivitet for HT solfanger Niels Kristian Vejen Department

Læs mere

OPTIMERET SOLVARMEPRODUKTION I ET LIBERALISERET ELMARKED DEMONSTRATION AF FULDSKALAANLÆG I BRÆDSTRUP

OPTIMERET SOLVARMEPRODUKTION I ET LIBERALISERET ELMARKED DEMONSTRATION AF FULDSKALAANLÆG I BRÆDSTRUP OPTIMERET SOLVARMEPRODUKTION I ET LIBERALISERET ELMARKED DEMONSTRATION AF FULDSKALAANLÆG I BRÆDSTRUP Projektet er støttet af Energinet.dk Marts 2009 Projektdeltagere: PlanEnergi (projektansvarlig) Jyllandsgade

Læs mere

Simon Furbo DTU Byg Danmarks tekniske Universitet Brovej bygning 118 2800 Kgs. Lyngby Email: sf@byg.dtu.dk

Simon Furbo DTU Byg Danmarks tekniske Universitet Brovej bygning 118 2800 Kgs. Lyngby Email: sf@byg.dtu.dk Simon Furbo DTU Byg Danmarks tekniske Universitet Brovej bygning 118 2800 Kgs. Lyngby Email: sf@byg.dtu.dk Indfaldsvinkel Indfaldsvinklen ændrer sig igennem hele dagen Indfaldsvinklen ændrer sig fra dag

Læs mere

Levetid for solfangere i solvarmecentraler

Levetid for solfangere i solvarmecentraler Levetid for solfangere i solvarmecentraler Institut for Byggeri og Anlæg Rapport 2009 Ziqian Chen, Jianhua Fan, Bengt Perers og Simon Furbo DTU Byg-Rapport R-210 (DK) ISBN= 9788778772886 ISSN=1601-2917

Læs mere

Forbedret varmtvandsbeholder til små solvarmeanlæg til brugsvandsopvarmning

Forbedret varmtvandsbeholder til små solvarmeanlæg til brugsvandsopvarmning Forbedret varmtvandsbeholder til små solvarmeanlæg til brugsvandsopvarmning DANMARKS TEKNISKE UNIVERSITET Sagsrapport BYG DTU SR-07-05 2007 ISSN 1601-8605 Forbedret varmtvandsbeholder til små solvarmeanlæg

Læs mere

Greenlab solvarmeprøvefaciliteter ved DTU Byg Åbningskonference 2012. Elsa Andersen DTU Byg Brovej bygning 118 2800 Kgs. Lyngby Email: ean@byg.dtu.

Greenlab solvarmeprøvefaciliteter ved DTU Byg Åbningskonference 2012. Elsa Andersen DTU Byg Brovej bygning 118 2800 Kgs. Lyngby Email: ean@byg.dtu. Greenlab solvarmeprøvefaciliteter ved DU Byg Åbningskonference 01 Elsa Andersen DU Byg Brovej bygning 118 800 Kgs. Lyngby Email: ean@byg.dtu.dk Greenlab prøvestande på DU Solvarmeanlæg til brugsvandsopvarmning

Læs mere

HÅNDBOG FOR ENERGI KONSULENTER ENFAMILIEHUSE. Version 2012. Beregnet forbrug 2012. Gyldig fra den 1. juli 2012

HÅNDBOG FOR ENERGI KONSULENTER ENFAMILIEHUSE. Version 2012. Beregnet forbrug 2012. Gyldig fra den 1. juli 2012 HÅNDBOG FOR ENERGI KONSULENTER Version 2012 ENFAMILIEHUSE Beregnet forbrug 2012 Gyldig fra den 1. juli 2012 INDHOLDSFORTEGNELSE VARMEPRODUCERENDE ANLÆG 02 Solvarme 02 VARMT OG KOLDT VAND 06 Koldt vand

Læs mere

Bæredygtigt arktisk byggeri i det 21. århundrede

Bæredygtigt arktisk byggeri i det 21. århundrede Center for ARKTISK TEKNOLOGI Bæredygtigt arktisk byggeri i det 21. århundrede Vakuumrørsolfangere Statusrapport 3 til VILLUM KANN RASMUSSEN FONDEN DANMARKS TEKNISKE UNIVERSITET Sagsrapport BYG DTU SR-06-02

Læs mere

Bachelorprojekt ved Gråsten Varme A/S

Bachelorprojekt ved Gråsten Varme A/S Bachelorprojekt ved Gråsten Varme A/S Energioptimering af solvarmeanlæg BILAGSHÆFTE Fredericia Maskinmesterskole 27.05.2015 Indholdsfortegnelse Bilag 1: Interview med Dan C. Appel... 2 Bilag 2: Datablad

Læs mere

Forbedret varmtvandsbeholder til små solvarmeanlæg til brugsvandsopvarmning

Forbedret varmtvandsbeholder til små solvarmeanlæg til brugsvandsopvarmning Downloaded from orbit.dtu.dk on: Jan 05, 2016 Forbedret varmtvandsbeholder til små solvarmeanlæg til brugsvandsopvarmning Fan, Jianhua; Furbo, Simon Publication date: 2007 Document Version Forlagets endelige

Læs mere

Bæredygtigt arktisk byggeri i det 21. århundrede

Bæredygtigt arktisk byggeri i det 21. århundrede Center for ARKTISK TEKNOLOGI Bæredygtigt arktisk byggeri i det 21. århundrede Vakuumrørsolfangere Statusrapport 2 til VILLUM KANN RASMUSSEN FONDEN DANMARKS TEKNISKE UNIVERSITET Sagsrapport BYG DTU SR-05-05

Læs mere

Vurdering af forslag til nye energibestemmelser i bygningsreglementerne i relation til småhuse.

Vurdering af forslag til nye energibestemmelser i bygningsreglementerne i relation til småhuse. Henrik Tommerup Vurdering af forslag til nye energibestemmelser i bygningsreglementerne i relation til småhuse. DANMARKS TEKNISKE UNIVERSITET Sagsrapport BYG DTU SR-04-06 2004 ISSN 1601-8605 Forord Denne

Læs mere

Højtemperatursolfanger Til solvarmecentraler

Højtemperatursolfanger Til solvarmecentraler Alfred Heller Niels Kristian Vejen Højtemperatursolfanger Til solvarmecentraler Indledende sammenligninger DANMARKS TEKNISKE UNIVERSITET Rapport BYG DTU R-13 21 ISSN 161-2917 ISBN 87-7877-78-5 Højtemperatursolfanger

Læs mere

Hvem er EnergiTjenesten?

Hvem er EnergiTjenesten? Hvem er EnergiTjenesten? Processen for BR15 6. februar 2015 Bygningsreglementet sendes i høring 20. marts 2015 Høringsfristen udløber Sommer 2015 Forventes vedtaget i folketinget med ca. 6 måneder overlap

Læs mere

Bæredygtigt arktisk byggeri i det 21. århundrede

Bæredygtigt arktisk byggeri i det 21. århundrede Center for ARKTISK TEKNOLOGI Bæredygtigt arktisk byggeri i det 21. århundrede Vakuumrørsolfangere Slutrapport til VILLUM KANN RASMUSSEN FONDEN DANMARKS TEKNISKE UNIVERSITET Sagsrapport BYG DTU SR-06-10

Læs mere

Procedure for check af ydelsesgaranti for solfangerfelter

Procedure for check af ydelsesgaranti for solfangerfelter Procedure for check af ydelsesgaranti for solfangerfelter Indhold 1. Garantistillelse... 2 1.1 Garanti for solfangerfeltets ydelse... 2 1.2 Garanti for ΔT over varmeveksler i solkredsen... 2 2. Målinger...

Læs mere

Solvarmeanlæg til store bygninger

Solvarmeanlæg til store bygninger Gregersensvej 1 Bygning 2 2630 Taastrup Telefon 7220 2255 info@byggeriogenergi.dk www.byggeriogenergi.dk Solvarmeanlæg til store bygninger 31. marts 2011 Indhold 1. Introduktion 2. Lovmæssige krav til

Læs mere

Solfangerkreds med stor ekspansionsbeholder og fordampning i solfanger ved faretruende høje temperaturer til sikring af solfangervæske og anlæg

Solfangerkreds med stor ekspansionsbeholder og fordampning i solfanger ved faretruende høje temperaturer til sikring af solfangervæske og anlæg Solfangerkreds med stor ekspansionsbeholder og fordampning i solfanger ved faretruende høje temperaturer til sikring af solfangervæske og anlæg Janne Dragsted Simon Furbo Bengt Perers Ziqian Chen Sagsrapport

Læs mere

Intelligente solvarmeanlæg med oliefyr eller gaskedel som backupenergi

Intelligente solvarmeanlæg med oliefyr eller gaskedel som backupenergi Downloaded from orbit.dtu.dk on: Nov 24, 215 Intelligente solvarmeanlæg med oliefyr eller gaskedel som backupenergi Andersen, Elsa Publication date: 21 Document Version Forlagets endelige version (ofte

Læs mere

SOLVARMEANLÆG TIL SVØMMEBADE

SOLVARMEANLÆG TIL SVØMMEBADE KANDIDATSPECIALE BYGGETEKNOLOGI DTU, LYNGBY SOLVARMEANLÆG TIL SVØMMEBADE SOLAR HEATING FOR SWIMMING POOL FACILITIES AF: CHRISTIAN JØNS NIELSEN S042455 JESPER JØNS NIELSEN S042454 Indholdsfortegnelse Forord...

Læs mere

Lavenergihuse målt og beregnet Off-print af artikel til Danvak Magasinet

Lavenergihuse målt og beregnet Off-print af artikel til Danvak Magasinet Jørgen M. Schultz, BYG DTU Kirsten Engelund Thomsen, By og Byg Lavenergihuse målt og beregnet Off-print af artikel til Danvak Magasinet DANMARKS TEKNISKE UNIVERSITET Sagsrapport BYG DTU SR-02-13 2002 ISSN

Læs mere

INDHOLDSFORTEGNELSE VARMEPRODUCERENDE ANLÆG 0 1. Solvarme 0 1

INDHOLDSFORTEGNELSE VARMEPRODUCERENDE ANLÆG 0 1. Solvarme 0 1 INDHOLDSFORTEGNELSE VARMEPRODUCERENDE ANLÆG 0 1 Solvarme 0 1 VARMEPRODUCERENDE ANLÆG SOLVARME Registrering Registreringen af solvarme omfatter alene anlæg, der leverer varme til opvarmning og/eller produktion

Læs mere

Simuleringsresultater

Simuleringsresultater Alfred Heller Solvarmeanlæg ved biomassefyrede fjernvarmecentraler m.m. Simuleringsresultater DANMARKS TEKNISKE UNIVERSITET Sagsrapport BYG DTU SR-01-16 001 ISSN 1396-40x Solvarmeanlæg ved biomassefyrede

Læs mere

Vejledning til LKdaekW.exe 1. Vejledning til programmet LKdaekW.exe Kristian Hertz

Vejledning til LKdaekW.exe 1. Vejledning til programmet LKdaekW.exe Kristian Hertz Vejledning til LKdaekW.exe 1 Vejledning til programmet LKdaekW.exe Kristian Hertz Vejledning til LKdaekW.exe 2 Ansvar Programmet anvendes helt på eget ansvar, og hverken programmør eller distributør kan

Læs mere

Koncepter til overvindelse af barrierer for køb og installation af VE-anlæg task 2. Skitsering af VE-løsninger og kombinationer

Koncepter til overvindelse af barrierer for køb og installation af VE-anlæg task 2. Skitsering af VE-løsninger og kombinationer Koncepter til overvindelse af barrierer for køb og installation af VE-anlæg task 2 Skitsering af VE-løsninger og kombinationer Titel: Skitsering af VE-løsninger og kombinationer Udarbejdet for: Energistyrelsen

Læs mere

Beregning af linjetab ved CRC altanplader

Beregning af linjetab ved CRC altanplader CRC Technology ApS Beregning af linjetab ved CRC altanplader Maj 2006 CRC Technology ApS Beregning af linjetab ved CRC altanplader Maj 2006 Dokument nr Revision nr Udgivelsesdato 18 maj 2006 Udarbejdet

Læs mere

Foreløbig årsrapport for 2001 for DTU s aktiviteter indenfor Solenergicentret

Foreløbig årsrapport for 2001 for DTU s aktiviteter indenfor Solenergicentret Simon Furbo Foreløbig årsrapport for for DTU s aktiviteter indenfor Solenergicentret DANMARKS TEKNISKE UNIVERSITET Sagsrapport BYG DTU SR-01-26 ISSN 1396-402x Foreløbig årsrapport for for DTU s aktiviteter

Læs mere

Årsrapport for 2001 for DTUs aktiviteter inden for solenergicentret

Årsrapport for 2001 for DTUs aktiviteter inden for solenergicentret Downloaded from orbit.dtu.dk on: Feb 10, 2016 Årsrapport for for DTUs aktiviteter inden for solenergicentret Furbo, Simon Publication date: Document Version Også kaldet Forlagets PDF Link to publication

Læs mere

Den gode energirådgivning Varme M3 Anlægget. Kristian Kærsgaard Hansen

Den gode energirådgivning Varme M3 Anlægget. Kristian Kærsgaard Hansen Den gode energirådgivning Varme M3 Anlægget Kristian Kærsgaard Hansen Generelt - Kapitlerne 24-32 og bilagene 20-26 om: - Varmt brugsvand - Varmefordeling - Varmerør - Kedler - Fjernvarme - Fremgangsmåde:

Læs mere

Forskning inden for området på DTU Byg - Indvendig efterisolering - Renovering af parcelhuse - Fossilfri varmeforsyning

Forskning inden for området på DTU Byg - Indvendig efterisolering - Renovering af parcelhuse - Fossilfri varmeforsyning Forskning inden for området på DTU Byg - Indvendig efterisolering - Renovering af parcelhuse - Fossilfri varmeforsyning Svend Svendsen Danmarks Tekniske Universitet ss@byg.dtu.dk 5 Marts 2014 1 Indvendig

Læs mere

Kom godt i gang med Eforsyning.

Kom godt i gang med Eforsyning. Kom godt i gang med Eforsyning. December 2015 Indhold Indhold Kom godt i gang med Eforsyning.... 1 Indhold... 2 Kom godt i gang med Eforsyning.... 3 Kom godt i gang... 3 Mit forbrug... 3 Mine dokumenter...

Læs mere

Solfangeranlægget. Simon Furbo DTU Byg Danmarks Tekniske Universitet Brovej, bygning Kgs. Lyngby Tlf.

Solfangeranlægget. Simon Furbo DTU Byg Danmarks Tekniske Universitet Brovej, bygning Kgs. Lyngby   Tlf. Solfangeranlægget Simon Furbo DTU Byg Danmarks Tekniske Universitet Brovej, bygning 119 2800 Kgs. Lyngby E-mail: sf@byg.dtu.dk Tlf.: 45 25 18 57 2 1 3 Gennemsnitlig solstråling på Jordens overflade, W/m²

Læs mere

Bidrag til idékonkurrence Fjernvarmens Udviklingscenter Sommer 2011

Bidrag til idékonkurrence Fjernvarmens Udviklingscenter Sommer 2011 Bidrag til idékonkurrence Sommer 2011 Udarbejdet af: 08500 Mette Thordahl Nørgaard mettethordahl@gmail.com petersen_mads@hotmail.com Resumé Dette bidrag til idékonkurrencen har udgangspunkt i et afgangsprojekt.

Læs mere

Solvarmeanlæg fra Batec Solvarme A/S, Velux Danmark A/S og Sonnenkraft Scandinavia A/S målinger og beregninger

Solvarmeanlæg fra Batec Solvarme A/S, Velux Danmark A/S og Sonnenkraft Scandinavia A/S målinger og beregninger Solvarmeanlæg fra Batec Solvarme A/S, Velux Danmark A/S og Sonnenkraft Scandinavia A/S målinger og beregninger Institut for Byggeri og Anlæg Rapport 2008 Elsa Andersen og Simon Furbo DTU Byg-Rapport SR-09-01

Læs mere

C Model til konsekvensberegninger

C Model til konsekvensberegninger C Model til konsekvensberegninger C MODEL TIL KONSEKVENSBEREGNINGER FORMÅL C. INPUT C.. Væskeudslip 2 C..2 Gasudslip 3 C..3 Vurdering af omgivelsen 4 C.2 BEREGNINGSMETODEN 6 C.3 VÆSKEUDSLIP 6 C.3. Effektiv

Læs mere

Højtemperatursolfanger til solvarmecentraler Introduktion til kaskadefelter

Højtemperatursolfanger til solvarmecentraler Introduktion til kaskadefelter Downloaded from orbit.dtu.dk on: Feb 13, 2016 Højtemperatursolfanger til solvarmecentraler Introduktion til kaskadefelter Heller, Alfred Publication date: 2001 Document Version Også kaldet Forlagets PDF

Læs mere

PHPP og Be06 forskelle, ligheder og faldgruber

PHPP og Be06 forskelle, ligheder og faldgruber PHPP og Be06 forskelle, ligheder og faldgruber Klaus Ellehauge Hvad er et dansk passivhus? Passivhaus eller på dansk passivhus betegnelsen er ikke beskyttet, alle har lov til at kalde en bygning for et

Læs mere

Spm. 1.: Hvis den totale koncentration af monomer betegnes med CT hvad er så sammenhængen mellem CT, [D] og [M]?

Spm. 1.: Hvis den totale koncentration af monomer betegnes med CT hvad er så sammenhængen mellem CT, [D] og [M]? DNA-smeltetemperaturbestemmelse KemiF2-2008 DNA-smeltetemperaturbestemmelse Introduktion Oligonucleotider er ofte benyttet til at holde nanopartikler sammen med hinanden. Den ene enkeltstreng er kovalent

Læs mere

Denne montagevejledning er gældende for 12 volt anlæg med MPPT regulator.

Denne montagevejledning er gældende for 12 volt anlæg med MPPT regulator. Denne montagevejledning er gældende for 12 volt anlæg med MPPT regulator. Tilykke med din nye vedvarende energikilde. Før montage af anlægget bør denne vejledning grundig læses igennem. For optimal ydelse

Læs mere

UPONOR VVS GULVVARME SYSTEM 17. Håndbog for Uponor Gulvvarmesystem 17

UPONOR VVS GULVVARME SYSTEM 17. Håndbog for Uponor Gulvvarmesystem 17 UPONOR VVS GULVVARME SYSTEM 17 Håndbog for Uponor Gulvvarmesystem 17 06 2010 5013 Uponor Gulvvarmesystem 17 Det ideelle gulvvarmesystem til nye trægulve Installation af vandbåren gulvvarme er den moderne

Læs mere

Evaluering af Soltimer

Evaluering af Soltimer DANMARKS METEOROLOGISKE INSTITUT TEKNISK RAPPORT 01-16 Evaluering af Soltimer Maja Kjørup Nielsen Juni 2001 København 2001 ISSN 0906-897X (Online 1399-1388) Indholdsfortegnelse Indledning... 1 Beregning

Læs mere

Spar penge på køling - uden kølemidler

Spar penge på køling - uden kølemidler Spar penge på køling - uden kølemidler En artikel om et beregningseksempel, hvor et sorptivt køleanlæg, DesiCool fra Munters A/S, sammenlignes med et traditionelt kompressorkølet ventilationssystem. Af

Læs mere

HÅNDBOG FOR ENERGI KONSULENTER ENFAMILIEHUSE. Version 2012. Beregnet forbrug 2012. Gyldig fra den 1. juli 2012

HÅNDBOG FOR ENERGI KONSULENTER ENFAMILIEHUSE. Version 2012. Beregnet forbrug 2012. Gyldig fra den 1. juli 2012 HÅNDBOG FOR ENERGI KONSULENTER Version 2012 ENFAMILIEHUSE Beregnet forbrug 2012 Gyldig fra den 1. juli 2012 INDHOLDSFORTEGNELSE BYGNINGSDELE 02 Temperaturfaktor "b faktor" 02 VARMEFORDELINGSANLÆG 06 Varmerør

Læs mere

Forslag 2 - Projektering af solfangeranlæg

Forslag 2 - Projektering af solfangeranlæg 4. maj 2004 Gr.A-104 1. Forslag 2 - Projektering af solfangeranlæg Kapitel 1 Forslag 2 - Projektering af solfangeranlæg I foregående afsnit er forslag 1 bearbejdet, hvor der kun er benyttet fjernevarme

Læs mere

Effektivitet af luft/væskesolfanger

Effektivitet af luft/væskesolfanger Effektivitet af luft/væskesolfanger DANMARKS TEKNISKE UNIVERSITET Sagsrapport BYG DTU SR-07-07 2007 ISSN 1601-8605 Effektivitet af luft/væskesolfanger Jørgen M. Schultz og Simon Furbo Indholdsfortegnelse

Læs mere

Solvarme i forbindelse med bygninger

Solvarme i forbindelse med bygninger Solvarme i forbindelse med bygninger Registrering og beregning Ivan Katic, SolenergiCentret Ivan.Katic@Teknologisk.dk tel. 7220 2482 1 Ivan Katic Januar 2007 Hvad kan solenergi-anlæg? Brugsvand Ventilation

Læs mere

Energibesparelse for Ventilationsvinduet

Energibesparelse for Ventilationsvinduet Henrik Tommerup Energibesparelse for Ventilationsvinduet DANMARKS TEKNISKE UNIVERSITET Sagsrapport BYG DTU SR-05-01 2005 ISSN 1601-8605 Forord Denne sagsrapport er udarbejdet af BYG-DTU i januar 2005 for

Læs mere

Snittegning og foto Side 2 af 7

Snittegning og foto Side 2 af 7 Notat Fugt i træfacader II Facadeelement 14 Kompakt element med asfaltimprægneret træfiberplade som vindspærre Tabel 1. Beskrivelse af element 14 udefra og ind. Facadebeklædning Type Lodret panel 22 mm

Læs mere

Kombinerede sol/varmepumpeanlæg i praksis analyse af måledata

Kombinerede sol/varmepumpeanlæg i praksis analyse af måledata Kombinerede sol/varmepumpeanlæg i praksis analyse af måledata Elsa Andersen Simon Furbo Sagsrapport Institut for Byggeri og Anlæg 2010 DTU Byg-Sagsrapport SR-10-09 (DK) December 2010 1 Forord I nærværende

Læs mere

Roth SnowFlex Rørsystem

Roth SnowFlex Rørsystem Roth SnowFlex Rørsystem Planlægning og projektering... living full of energy! 204 Roth SnowFlex Rørsystem Et komplet system som holder arealer fri for sne og is Roth Snowflex anlæg anvendes til at holde

Læs mere

Beslutning 5. Træpillekedler - dokumentation for standardværdier. Udskiftning af kedel fra 1978 eller nyere til automatisk fyret træpillekedel

Beslutning 5. Træpillekedler - dokumentation for standardværdier. Udskiftning af kedel fra 1978 eller nyere til automatisk fyret træpillekedel Beslutning 5 Træpillekedler - dokumentation for er Ref.: Bio 1 Træpillekedler / Konvertering fra olie til træpillekedel olieopvarmede huse ved konvertering fra olie til træpillekedel oliekedler og træpillekedler

Læs mere

Af Erik Busch, Dansk Beton - Blokgruppen

Af Erik Busch, Dansk Beton - Blokgruppen 12.4.1 Letklinkerblokke Af Erik Busch, Dansk Beton - Blokgruppen Letklinkerblokke er lette byggeblokke, der på samme måde som Lego klodser - dog i større format - ud fra standardstørrelser opbygges til

Læs mere

Gør både dig og dit hus glad

Gør både dig og dit hus glad Vejledning i placering og montage af SolarMagic Juni 2011 www.solarmagic.dk Denne vejledning viser, hvordan SolarMagic kan placeres og monteres på huset, så der opnås størst mulig effekt af anlægget. Det

Læs mere

BR10 og solvarme. Leon Buhl Teknologisk Imnstitut, Energi & Klima

BR10 og solvarme. Leon Buhl Teknologisk Imnstitut, Energi & Klima Leon Buhl Teknologisk institut Energi & Klima Bygningsreglementet indeholde krav og anbefalinger omkring anvendelsen af solvarme i forbindelse med nye byggerier samt krav og anbefalinger i forbindelse

Læs mere

ENERGY EFFICIENCY ECONOMY ENVIRONMENT

ENERGY EFFICIENCY ECONOMY ENVIRONMENT Energieffektivitet i Fjernvarmeledninger Inspiration til design af ledningsnet ENERGY EFFICIENCY ECONOMY ENVIRONMENT 3E Side 1 Energieffektivitet på Fjernvarmeledninger Optimal design af fremtidens ledningsnet.

Læs mere

Vandbårne varmeanlæg til lavenergibyggeri: - gulvvarme, radiatorer og fjernvarme. Christian.Holm.Christiansen@teknologisk.dk

Vandbårne varmeanlæg til lavenergibyggeri: - gulvvarme, radiatorer og fjernvarme. Christian.Holm.Christiansen@teknologisk.dk Vandbårne varmeanlæg til lavenergibyggeri: - gulvvarme, radiatorer og fjernvarme Christian.Holm.Christiansen@teknologisk.dk Indhold Lav temperatur høj effektivitet Varmebehov i lavenergibyggeri Gulvvarme

Læs mere

Technote. CirCon + /TemCon + - Termostatiske brugsvandsventiler. Anvendelse. Fordele. www.frese.eu

Technote. CirCon + /TemCon + - Termostatiske brugsvandsventiler. Anvendelse. Fordele. www.frese.eu Technote Side 1 af 8 Anvendelse CirCon + og TemCon + er reguleringsventiler til varmt brugsvandsanlæg med cirkulation. Ventilerne regulerer automatisk temperaturen på det cirkulationsvand, som gennemstrømmer

Læs mere

Vedr.: Beregninger af betydningen af luftspalter mellem gulvisoleringsplader.

Vedr.: Beregninger af betydningen af luftspalter mellem gulvisoleringsplader. DANMARKS TEKNISKE UNIVERSITET BYG DTU Sundolitt as Industrivej 8 355 Slangerup Att.: Claus Jørgensen Vedr.: Beregninger af betydningen af luftspalter mellem gulvisoleringsplader. I det følgende gennemgås

Læs mere

Rambøll har i 2009 udarbejdet en støjkortlægning og tilhørende støjhandlingsplan for Furesø Kommune.

Rambøll har i 2009 udarbejdet en støjkortlægning og tilhørende støjhandlingsplan for Furesø Kommune. NOTAT Projekt Støjskærm ved Birkedalshusene Kunde Furesø Kommune Dato 2007-04-07 1. Støjskærm ved Birkedalshusene Rambøll har i 2009 udarbejdet en støjkortlægning og tilhørende støjhandlingsplan for Furesø

Læs mere

CFD-modellering af tank i tank Solvarmebeholder fra Batec A/S

CFD-modellering af tank i tank Solvarmebeholder fra Batec A/S Søren Knudsen CFD-modellering af tank i tank Solvarmebeholder fra Batec A/S DANMARKS TEKNISKE UNIVERSITET Rapport BYG DTU R-010 2001 ISSN 1601-2917 ISBN 87-7877-066-1 Indholdsfortegnelse Indholdsfortegnelse...

Læs mere

H E N R Y J E N S E N A/S - R Å D G I V E N D E I N G E N I Ø R E R F R I

H E N R Y J E N S E N A/S - R Å D G I V E N D E I N G E N I Ø R E R F R I NOTAT Sag: Danmarks Keramikmuseum - Grimmerhus - 12-265 Emne: Dispensation for overholdelse af energiklasse 2015 Dato: 04-12-2012 Vedr.: Dispensation for overholdelse af energiklasse 2015 Tilbygningen

Læs mere

Indledning 2. 1 Lysets energi undersøgt med lysdioder (LED) 2 1.1 Udstyr... 3 1.2 Udførelse... 3

Indledning 2. 1 Lysets energi undersøgt med lysdioder (LED) 2 1.1 Udstyr... 3 1.2 Udførelse... 3 Solceller og Spektre Øvelsesvejledning til brug i Nanoteket Udarbejdet i Nanoteket, Institut for Fysik, DTU Rettelser sendes til Ole.Trinhammer@fysik.dtu.dk August 2012 Indhold Formål 2 Indledning 2 1

Læs mere

ELFORSK PSO-F&U 2007

ELFORSK PSO-F&U 2007 ELFORSK PSO-F&U 2007 Grundvandsvarmepumper og køling med grundvandsmagasiner som sæsonlager BILAG 4 Lavtemperatur solvarme og ATES Cenergia ApS Marts 2009 Lavtemperatur solfangere Akkumulering af solvarme

Læs mere

SOLVARMESYSTEM MED VARMEPUMPE HENRIK LAWAETZ. LABORATOR I ET FOR VARME I SOLER I NG DANMARKS TEKNISKE HgJSKOLE OKTOBER 1978 MEDDELELSE NR, 78

SOLVARMESYSTEM MED VARMEPUMPE HENRIK LAWAETZ. LABORATOR I ET FOR VARME I SOLER I NG DANMARKS TEKNISKE HgJSKOLE OKTOBER 1978 MEDDELELSE NR, 78 SOLVARMESYSTEM MED VARMEPUMPE HENRIK LAWAETZ LABORATOR I ET FOR VARME I SOLER I NG DANMARKS TEKNISKE HgJSKOLE OKTOBER 1978 MEDDELELSE NR, 78 ARTIKEL I VVS IJR, 10 OKTOBER 1978 1. Indledning Den st0rste

Læs mere

Styrkeforholdet for rene kalkmørtler hvad kan tyndslibet sige?

Styrkeforholdet for rene kalkmørtler hvad kan tyndslibet sige? Styrkeforholdet for rene kalkmørtler hvad kan tyndslibet sige? Fremlagt på Nordisk Forum for Bygningskalks medlemsmøde i Raadvad d. 15. februar 2012 Torben Seir SEIR-materialeanalyse A/S H.P. Christensensvej

Læs mere

Løgumkloster målinger

Løgumkloster målinger Løgumkloster målinger Jan Erik Nielsen 1) Savosolar solfanger med Strip absorber 2) Savosolar solfanger med Direct Flow MPE absorber - 1. generation 3) Savosolar solfanger med Direct Flow MPE absorber

Læs mere

Store solvarmeanlæg med høje dækningsgrader

Store solvarmeanlæg med høje dækningsgrader Store solvarmeanlæg med høje dækningsgrader SolEnergiCentret Teknologisk Institut Rambøll Store solvarmeanlæg med høje dækningsgrader Søren Østergaard Jensen SolEnergiCentret Teknologisk Institut Flemming

Læs mere

Lavtemperatur fjernvarme i forhold til varmepumper. Bjarke Paaske Rejseholdet for store varmepumper Center for forsyning blp@ens.dk Tlf.

Lavtemperatur fjernvarme i forhold til varmepumper. Bjarke Paaske Rejseholdet for store varmepumper Center for forsyning blp@ens.dk Tlf. Lavtemperatur fjernvarme i forhold til varmepumper Bjarke Paaske Rejseholdet for store varmepumper Center for forsyning blp@ens.dk Tlf.: 2572 7295 København Kolding Rejsehold for store varmepumper Jørgen

Læs mere

Effektiv varmeisolering. Komplet facadeisoleringssystem!

Effektiv varmeisolering. Komplet facadeisoleringssystem! Effektiv varmeisolering. Komplet facadeisoleringssystem! Med alle komponenter til facadeløsninger, der efterfølgende fremtræder med murstensoverflade. For både nybyggeri og renoveringsprojekter. Isolering

Læs mere

TAGISOLERING BRUGERVEJLEDNING (VERSION 0.9.2)

TAGISOLERING BRUGERVEJLEDNING (VERSION 0.9.2) TAGISOLERING BRUGERVEJLEDNING (VERSION 0.9.2) Denne brugervejledning beskriver kort hvorledes Tagisolering -programmet benyttes. Indledningsvis gennemgås de forskellige menuer, knap panelet, input, beregningsvinduer

Læs mere

Rapport Arkil A/S Arkil Asfalt Støjkortlægning

Rapport Arkil A/S Arkil Asfalt Støjkortlægning Rapport Arkil A/S Arkil Asfalt Støjkortlægning Miljømåling - ekstern støj Maj '14 Rekvirent Arkil A/S Fiskerhusvej 24 4700 Næstved Dato 19. maj '14 Udført af Eurofins Miljø A/S Ørnebjergvej 1 2600 Glostrup

Læs mere

Notat BILAG 2. Fremtidens Parcelhuse - Energiberegningerne Jesper Kragh. 27. aug. 2010 Journal nr. 731-051. Side 1 af 13

Notat BILAG 2. Fremtidens Parcelhuse - Energiberegningerne Jesper Kragh. 27. aug. 2010 Journal nr. 731-051. Side 1 af 13 Notat BILAG 2 Fremtidens Parcelhuse - Energierne Jesper Kragh 27. aug. Journal nr. 731-51 Side 1 af 13 Side 2 af 13 Energierne Energimærkning af bygninger sker ved en af energiet til varme og varmt brugsvand

Læs mere

Termografi af ydervægge

Termografi af ydervægge Firma Kontrolpers on Kuben Manegement A/S Gammel Køge Landevej 22 DK2500 Valby Ordregiver Albertslund Ungdomsboliger Morbærhaven 1741 2620 Albertslund Enhed testo 8752 Serienr. : 2282495 Objektiv: Vidvinkel

Læs mere

Indledende besøg. Poul Ib Pedersen

Indledende besøg. Poul Ib Pedersen Kolding Kommune 1 Indledende besøg Besøg d. 6/3-03 af: Repræsentanter for Kolding Kommune: Søren Østergaard Jensen og Nadeem Niwaz Energiansvarlig Torben Chr. Andersen og it-chef Poul Ib Pedersen Kolding

Læs mere

Lavenergifjernvarme til lavenergibyggeri

Lavenergifjernvarme til lavenergibyggeri Dansk Fjernvarmes landsmøde 27. Okt. 2006 Lavenergifjernvarme til lavenergibyggeri Svend Svendsen Professor v. BYG.DTU Danmarks Tekniske Universitet 45 25 18 54, ss@byg.dtu.dk, www.byg.dtu.dk 1 Udviklingsbehov

Læs mere

Ny vejledning om måling af støj fra vejtrafik

Ny vejledning om måling af støj fra vejtrafik Ny vejledning om måling af støj fra vejtrafik Lene Nøhr Michelsen Trafiksikkerhed og Miljø Niels Juels Gade 13 1059 København K lmi@vd.dk Hugo Lyse Nielsen Transportkontoret Strandgade 29 1410 København

Læs mere

Gipspladers lydisolerende egenskaber

Gipspladers lydisolerende egenskaber Gipspladers lydisolerende egenskaber Materialeegenskaber Gipsplader er specielt velegnede til lydadskillende bygningsdele. Dette beror på et optimalt forhold mellem vægt og stivhed, som gør, at pladen

Læs mere

Lavenergifjernvarme i Boligforeningen Ringgårdens byggeri, Lærkehaven II, Lystrup

Lavenergifjernvarme i Boligforeningen Ringgårdens byggeri, Lærkehaven II, Lystrup Lavenergifjernvarme i Boligforeningen Ringgårdens byggeri, Lærkehaven II, Lystrup Og andre forhold I fjernvarmeforsynede lavenergiboliger Christian Holm Christiansen cnc@teknologisk.dk Teknologisk Institut

Læs mere

Langtidsvarmelagring baseret på salthydrater. Simon Furbo DTU Byg Danmarks Tekniske Universitet Bygning 118, Brovej 2800 Kgs. Lyngby

Langtidsvarmelagring baseret på salthydrater. Simon Furbo DTU Byg Danmarks Tekniske Universitet Bygning 118, Brovej 2800 Kgs. Lyngby Langtidsvarmelagring baseret på salthydrater Simon Furbo DTU Byg Danmarks Tekniske Universitet Bygning 118, Brovej 2800 Kgs. Lyngby sf@byg.dtu.dk Heat pack håndvarmer Kog i 10 minutter Put i tasken - gå

Læs mere

VVM anmeldelse om etablering af 5.000 m 2 solfangeranlæg i relation til

VVM anmeldelse om etablering af 5.000 m 2 solfangeranlæg i relation til Jerslev Kraftvarmeværk a.m.b.a. VVM anmeldelse om etablering af 5.000 m 2 solfangeranlæg i relation til Jerslev Kraftvarmeværk a.m.b.a. NORDJYLLAND Jyllandsgade 1 DK 9520 Skørping Tel. +45 9682 0400 Fax

Læs mere

Test af vandmængde ved sprøjtning af tæt gulerodstop

Test af vandmængde ved sprøjtning af tæt gulerodstop Test af vandmængde ved sprøjtning af tæt gulerodstop Projekt: udvikling af nye teknikker i behandling af havebrugskulturer Konklusion: Traditionel marksprøjte: stigende vandmængde gav bedre nedtrængning

Læs mere

Technote. CirCon/TemCon - termostatiske brugsvandsventiler. Anvendelse. Fordele. Funktioner. www.frese.eu

Technote. CirCon/TemCon - termostatiske brugsvandsventiler. Anvendelse. Fordele. Funktioner. www.frese.eu Side 1 af 8 Anvendelse CirCon og TemCon er reguleringsventiler til varmt brugsvandsanlæg med cirkulation. Ventilerne regulerer automatisk temperaturen på det cirkulationsvand, som gennemstrømmer dem. Derved

Læs mere

Be06 model: finsensvej16-isobyg Dato 4.02.2008 14.57. Finsensvej 16. Bygningen. Beregningsbetingelser

Be06 model: finsensvej16-isobyg Dato 4.02.2008 14.57. Finsensvej 16. Bygningen. Beregningsbetingelser 1 af 10 04-02-2008 14:58 Be06 model: finsensvej16-isobyg Dato 4.02.2008 14.57 Finsensvej 16 BBR-nr Ejer Adresse Annie og Steen Jensen Mølletoften 32, 8700 Horsens Bygningen Bygningstype Rotation Opvarmet

Læs mere

Forbedring af efterføderteknologier til energibesparelse i jernstøberier

Forbedring af efterføderteknologier til energibesparelse i jernstøberier Slutrapport for projekt: Forbedring af efterføderteknologier til energibesparelse i jernstøberier Niels Skat Tiedje DTU Mekanik 29. august 2014 Indhold Indhold... 2 Introduktion og mål... 3 Del 1: anvendelse

Læs mere

Ifølge EU s Bygningsdirektiv skal medlemslandene inden år 2020 have implementeret principper for performance verifikation i byggeriet.

Ifølge EU s Bygningsdirektiv skal medlemslandene inden år 2020 have implementeret principper for performance verifikation i byggeriet. Ifølge EU s Bygningsdirektiv skal medlemslandene inden år 2020 have implementeret principper for performance verifikation i byggeriet. Her almene boliger i Stenløse, som også opfylder lavenergiklasse 2015

Læs mere

Bitumenstabiliserede bærelag

Bitumenstabiliserede bærelag Bitumenstabiliserede bærelag Bjarne Bo Jensen Produktchef NCC Roads A/S bbj@ncc.dk Der findes i dag flere alternative anvendelser for genbrugsasfalt. Bitumenbundet genbrugsasfalt kan produceres efter flere

Læs mere

Renere produkter. HFC-frie mælkekøleanlæg

Renere produkter. HFC-frie mælkekøleanlæg Renere produkter J.nr. M126-0375 Bilag til hovedrapport HFC-frie mælkekøleanlæg 2 demonstrationsanlæg hos: - Mælkeproducent Poul Sørensen - Danmarks Jordbrugsforskning Forfatter(e) Lasse Søe, eknologisk

Læs mere

Stop cylinderen rigtigt i endestillingen Af Peter Windfeld Rasmussen

Stop cylinderen rigtigt i endestillingen Af Peter Windfeld Rasmussen Stop cylinderen rigtigt i endestillingen Af Peter Windfeld Rasmussen I nogle applikationer skal en cylinder køres helt i bund ved høj hastighed. For at afbøde det mekaniske chok kan alle cylinderleverandører

Læs mere

(Farve)Genetik hos katte

(Farve)Genetik hos katte Genetikserie del 4 (Farve)Genetik hos katte Kattegenetik baseret på farver og mønstre [Wb ] / [ wb ] Wide band Indledningsvis må jeg sige, at dette gen endnu ikke er bekræftet eller fundet, men alle forhold

Læs mere

Måling på solvægge til rumopvarmning Naturcenter Vestamager

Måling på solvægge til rumopvarmning Naturcenter Vestamager Måling på solvægge til rumopvarmning Søren Østergaard Jensen SolEnergiCenter Danmark Teknologisk Institut Måling på solvægge til rumopvarmning Søren Østergaard Jensen SolEnergiCenter Danmark Teknologisk

Læs mere

Trykluft. Optimering og projektering af anlæg

Trykluft. Optimering og projektering af anlæg Trykluft Optimering og projektering af anlæg Indholdsfortegnelse Trykluft...2 Trykluftanlæg...2 Energiforbrug i trykluftanlæg...2 Optimering af eksisterende anlæg...3 Trykforhold...3 Lækager...3 Lækagemåling...4

Læs mere

01.09.2015/TS Vers.: 1.0/Rev.: Drift og vedligehold. af Gaia Solar-solcelleanlæg

01.09.2015/TS Vers.: 1.0/Rev.: Drift og vedligehold. af Gaia Solar-solcelleanlæg 01.09.2015/TS Vers.: 1.0/Rev.: Drift og vedligehold af Gaia Solar-solcelleanlæg Drift- og vedligeholdelsesmanual for solcelleanlæg Funktionsbeskrivelse... 3 Driftsvejledning... 3 Sikkerhed... 4 Start og

Læs mere

Athena DIMENSION Varmeanlæg 4, Eksempel

Athena DIMENSION Varmeanlæg 4, Eksempel Athena DIMENSION Varmeanlæg 4, Eksempel Marts 2002 Indhold 1 Introduktion.................................. 2 2 Oprettelse af ny sag............................. 3 3 Tilretning af kataloger............................

Læs mere

FUGT OG KONDENSATION

FUGT OG KONDENSATION St3 FUG'f 3 UDK 697.147 697.137.5 699.82 FUGT OG KONDENSATION STATENS BYGGEFORSKNINGSINSTITUT København 1973 I kommission hos Teknisk Forlag Fugt forårsaget af kondensation Ved kondensation forstås i denne

Læs mere

NBE SOLVARME INDHOLD: 2 Valg af størrelse. 3 Information. 4 Installations tips. 5 Anlægs typer / el tilslutning. 11-13 Styringen. 14 Garanti.

NBE SOLVARME INDHOLD: 2 Valg af størrelse. 3 Information. 4 Installations tips. 5 Anlægs typer / el tilslutning. 11-13 Styringen. 14 Garanti. SOLVARME INDHOLD: 2 Valg af størrelse. 3 Information. 4 Installations tips. 5 Anlægs typer / el tilslutning 11-13 Styringen. 14 Garanti. SOLVARME Solfanger størrelse og tank valg. Som tommel-finger regel

Læs mere

Termisk energilagring i metaller

Termisk energilagring i metaller Termisk energilagring i metaller Lars Reinholdt 1. december 2015 Lagerteknologier (el til el) pris og effektivitet Pris per kwh* Pris per kw h carnot Virkningsgrad af termiske lagre Teoretisk maksimum

Læs mere

Lavenergihuset i Sisimiut Årsrapport for Lavenergihusets ydeevne juli 2006 til juni 2007

Lavenergihuset i Sisimiut Årsrapport for Lavenergihusets ydeevne juli 2006 til juni 2007 Downloaded from orbit.dtu.dk on: May 29, 216 Lavenergihuset i Sisimiut Årsrapport for Lavenergihusets ydeevne juli 26 til juni 27 Rode, Carsten; Borchersen, Egil; Fan, Jianhua; Furbo, Simon; Kragh, Jesper

Læs mere

Solvarme Perspektiver og udfordringer - og lidt om baggrunden

Solvarme Perspektiver og udfordringer - og lidt om baggrunden Solvarme Perspektiver og udfordringer - og lidt om baggrunden Morten Hofmeister, Daniel Trier og Per Alex Sørensen PlanEnergi Regionalmøder 2016 Dansk Fjernvarme 1 Regionalmøder 2016 Dansk Fjernvarme 2

Læs mere

Årlig. Tilbage- Forslag til forbedring. energienheder

Årlig. Tilbage- Forslag til forbedring. energienheder SIDE 1 AF 8 Adresse: Multebærvænget 12 Postnr./by: 2650 Hvidovre BBR-nr.: 167-104347-001 Energikonsulent: Bjarne Jensen Energimærkning oplyser om ejendommens energiforbrug og om muligheder for at reducere

Læs mere

Energitekniske grundfag 5 ECTS

Energitekniske grundfag 5 ECTS Energitekniske grundfag 5 ECTS Kursusplan 1. Jeg har valgt energistudiet. Hvad er det for noget? 2. Elektro-magnetiske grundbegreber 3. The Engineering Practice 4. Elektro-magnetiske grundbegreber 5. Termodynamiske

Læs mere