9. Binomialfordelingen

Størrelse: px
Starte visningen fra side:

Download "9. Binomialfordelingen"

Transkript

1 9. Biomialfordelige 9.. Gekedelse Hvert forsøg ka ku resultere i to mulige udfald; succes og fiasko. I modsætig til poissofordelige er atallet af forsøg edeligt. 9.. Model X : Stokastisk variabel, der agiver atal elemeter i stikprøve, der besidder de øskede egeskab A. X ~ b(, p), hvor: : Stikprøves størrelse / atal forsøg. p: Sadsylighede for at observere egeskabe A ved et ekelforsøg. Forudsætiger:. Et forsøg udføres gage.. Hver gag forsøget udføres, registreres om e hædelse A idtræffer eller ej. 3. Udfaldee af de ekelte forsøg er uafhægige. 4. Sadsylighede for hædelse A er p i alle forsøg, dvs. kostat Forvetig og varias Forvetig: E( X) p Varias : var( X) σ p ( p) Stadardafvigelse: σ p ( p) Aderse m. fl. s. 5, Overø m.fl. s. 73, Newbold s. 6, Løborg s. 34 Eksempel: I 999 blev e udersøgelse af HA-studeredes beståelsesprocet på. år. Fra studieævets side er ma iteresseret i, at ca. 75% af e årgag består til eksame på. år. Udersøgelse omfattede 55 elever meldte sig til eksame, hvoraf 47 bestod. COMPLET A/S - Side 39 - KOMPENDIUM I STATISTIK

2 Spørgsmål:. Opstil e model til beskrivelse af det foreliggede materiale og diskutér kort modelles forudsætiger. Uder forudsætig af, at studieævets dumpeprocet er gældede, øskes de æste to spørgsmål besvaret.. Hvor mage studerede bør ma forvete vil bestå til eksame, år der er 6 HAstuderede på årgage? 3. Fid stadardafvigelse på atal beståede. Svar:. Ma er iteresseret i hvor mage, der består til eksame. Da ma tæller atallet ud af e stikprøve, og da ma ete består eller dumper eksame, må der her være tale om e biomialfordelig. Lad X betege atal beståede til eksame. Da må der gælde: X ~ b(,p ) Der ka være problemer med forudsætigere 3 (p kostat) og 4 (de studerede er uafhægige). p er ku kostat, hvis de har haft samme uderviser, lærebøger osv., og de er ku uafhægige, hvis de ikke syder til eksame. Hvis stikprøve er tilfældigt udtaget, ka ma atage forudsætigere for opfyldte.. E (X) p 6,75 45 dvs. ma bør forvete, at der er 45 ud af 6, der består, hvis beståelsesprocete sættes til 75%. 3. Var (X) p ( p) 6,75 (,75), 5 og dermed s (X) Var(X),5, Sadsylighedsberegig Sadsylighede for et givet atal observatioer med egeskabe A bestemmes vha. følgede formel: ( ) p ( p) P X Formle ka bereges i Ecel vha. fuktioe BINOMDIST(; ; p; FALSE) Aderse m. fl. s. 3, Overø m.fl. s. 73, Newbold s. 58, Løborg s. 3 COMPLET A/S - Side 4 - KOMPENDIUM I STATISTIK

3 9.5. Regeregler for sadsyligheder ( X a) P( X a) P( X a ) ( X < a) P( X a ) ( X a) P( X a ) ( X > a) P( X a) ( a < X < b) P( X b ) P( X a) ( a < X b) P( X b) P( X a) ( a X < b) P( X b ) P( X a ) ( a X b) P( X b) P( X a ) P P P P P P P P (a, b hele tal, hvor a < b ) 9.6. Tabelopslag af biomialfordelige i Erlag S Oveståede formel i afsit 9.4 er som regel ikke ødvedig at avede til at bestemme sadsylighede for e give hædelse, da ma ka slå dee op i Erlag S. Biomialfordelige er tabelført for - på side 8-3. Tabeller fides også i Overø m.fl. s og Newbold s Det skal dog bemærkes, at ma ikke direkte ka bestemme puktsadsyligheder, me ku itervalhædelser som X 5 eller X 3. Tabelopslag af biomialfordelige foretages emmest ved at geemføre følgede tri:. Fid tabelle for det rigtige atal observatioer ().. Tabelle skal aflæses ud fra øverste vestre hjøre eller ederste højre hjøre, jvf. edeståede tabel. 3. Fid p. 4. Fid j (j atal observatioer med egeskabe A ). COMPLET A/S - Side 4 - KOMPENDIUM I STATISTIK

4 j / p,5,,5 /6,,5,3 /3,35,4,45,5 j/p 3 4,3585,6,388,7358,397,756,945,6769,449,984,867,6477,9974,9568,898,6,34,387,5665,7687,5,3,8,69,43,76,6,93,355,44,5,7,696,448,375,3,33,76,64,55,,,,,5,,,36,9,444,6,49,8,5,89,,,,3, ,9997,9887,937,,9976,978,,9996,994,,9999,9987,,,9998,898,969,9887,997,9994,84,67,464,933,7858,68,9679,898,773,99,959,8867,9974,986,95,97,4793,665,895,98,454,56,553,466,5,99,6,459,5,764,5956,443,878,7553,7,577, ,,,,,,,,,,,,,,,,9999,,,,,9994,996,989,9999,999,9949,,9998,9987,,,9997,,964,987, ,,,,,,,,,,,,,, Eksempler: Ud fra et samlebåd udvælges produkter, som skal udersøges for defekter. Erfarigsmæssigt ved ma, at % af produktere har defekter. Spørgsmål:. Opstil sadsylighedsfordelig.. Bereg sadsylighede for følgede hædelser: højst defekte, midst 5 defekte og etop 4 defekte. Svar: X ~ b(, p) b(,,) P(X ),6 BINOMDIST(; ;,; TRUE) P(X 5) - P(X 4) -,696,374 - BINOMDIST(4; ;,; TRUE) P(X 4) P(X 4) - P(X 3),696 -,44,8 BINOMDIST(4; ;,; FALSE) COMPLET A/S - Side 4 - KOMPENDIUM I STATISTIK

5 9.7. Estimatio Estimatet på adele / sadsylighed: pˆ pˆ ( pˆ) Estimatet på stadardafvigelse til estimatet på adele: s(pˆ) pˆ ( pˆ) Estimatet på variase til estimatet på adele: Vâr (pˆ) Aderse m. fl. s , Overø m.fl. s. 65, Newbold s Eksempel: I 999 blev e udersøgelse af HA-studeredes beståelsesprocet på. år. Fra studieævets side er ma iteresseret i, at ca. 75% af e årgag består til eksame på. år. Udersøgelse omfattede 55 elever meldte sig til eksame, hvoraf 47 bestod. Spørgsmål: Puktestimér modelles parameter og bestem stadardafvigelse herpå. Svar: Puktestimat (eller bare estimat) for p: pˆ Ved idsættelse får ma: 47 pˆ, pˆ ( pˆ),7554 (,7554) s (pˆ),83 55 (Aderse m.fl. s , Overø m.fl. s. 65, Newbold s. 35) 9.8. Kofidesiterval i biomialfordelige Et kofidesiterval for parametere p ka opfattes som et itervalestimat, idet itervallet består af alle parameterværdier, der udviser e rimelig grad af overesstemmelse med data. Ma siger, at itervallet med e sikkerhed på - omslutter de sade parameterværdi. COMPLET A/S - Side 43 - KOMPENDIUM I STATISTIK

6 (-)-kofidesiterval for p: pˆ ± u / s (p) p ± u / eller p ± u / Vâr (p) hvor u / er e Dee kaldes i Newbold for z. p( p) -fraktil i de stadardiserede ormalfordelig. Fraktile ka bereges i Ecel vha. fuktioe NORMSINV( ). Aderse m.fl. s. 6, Overø m.fl. s. 98, Newbold s. 747, Løborg s. 6 Et kofidesiterval for p med kofideskoefficiet - betyder, at p vil være i dette iterval med - sadsylighed eller i (-) af gagee. Eksempel: I e rudspørge bladt 43 studerede på hadelshøjskole i Købehav har ma spurgt respodetere, om de er tilfredse med made i katie. 7 svarede ja, mes reste svarede ej. Spørgsmål: Opstil e model for data, og opstil et 95%-kofidesiterval for adele af tilfredse elever: Svar: X{atal persoer der svarer ja til at made er tilfredsstillede, i e stikprøve på 43 persoer} X ~ b 43,p, obs: 7. ( ) 7 pˆ, Et 95%-kofidesiterval: pˆ ( pˆ ),395(,395) pˆ ± u /,395 ±,96 [,488 ;,54] 43 dvs. med 95% sikkerhed ligger tilfredshedsadele mellem 4,88% og 54,%. COMPLET A/S - Side 44 - KOMPENDIUM I STATISTIK

7 Nødvedig stikprøvestørrelse,, for at få e kofidesiterval med bredde L (L er øvre græse mius edre græse) 4 p ( p) L ( u ) -/ Aderse m.fl. s., Newbold s. 36, Løborg s. 389 Eksempel: Med udgagspukt i førævte stikprøve bladt katiekudere, hvor stor skal stikprøve være, hvis oveævte iterval højst må have lægde,? Svar: Ved idsættelse får ma: u 4 L,96 pˆ ( pˆ) 4,,395 (,395) 367, Da stikprøvestørrelse skal være heltallig, rudes der altid op, dvs. ma får, at stikprøve skal være på midst 368 kuder. De beyttede formel har et idbygget problem. Ma øsker at fide e passede stikprøvestørrelse, før ma går ud og foretager stikprøveudtagelse. For at berege de passede stikprøvestørrelse, skal ma kede estimatet på adele, me det keder ma først efter, ma har foretaget stikprøveudtagelse. Da ma ka vise, at formle atager sit maksimum for pˆ,5, beytter ma i praksis ofte dee værdi. I oveævte tilfælde ville det give e stikprøvestørrelse på 384,6 dvs (-)-kofidesiterval for forskelle mellem to populatiosadele p og p y p p y ± u / s (p p y ) p p y ± u / Newbold s. 3 p p p y p y + y COMPLET A/S - Side 45 - KOMPENDIUM I STATISTIK

8 Eksempel: I forbidelse med udersøgelse i forrige opgave mht. katiekvalite registreredes samtidigt respodeteres kø. Bladt de 43 adspurgte var de 9 kvider og 4 mæd. af kvidere var tilfredse med kvalitete, mes ku 7 mæd sytes kvalitete var god ok. Spørgsmål:. Opstil e model til beskrivelse af det udvidede materiale.. Opstil et 95%-kofidesiterval for forskelle i kvalitetsbedømmelse mellem de to kø. Svar:. Da ma stadig tæller atallet ud af e stikprøve, og da ma ete er tilfreds eller ej, må der her være tale om to biomialfordeliger. Lad X i betege atal persoer som svarede ja til spørgsmålet om de var tilfredse med katies kvalitet, hvor i ka atage værdiere og. Da må der gælde: Xi ~ b( i,pi ) Idekset i idikerer, at der ka være forskel på værdiere, dvs. hverke stikprøvestørrelsere eller tilfredshedsprocetere behøver at være es. Ma må atage, at de to stikprøver er uafhægige af hiade.. Puktestimatet (eller bare estimatet) for p og p : (dvs tilfredshedsprocetere for hhv. kvider og mæd) pˆ pˆ 9 7 4,563,97 (-)-kofidesiterval for forskelle i adelee: Ved idsættelse får ma:,5363 ( 5363),97 (,97) (,563,97) ± u, ,346 ±,96,473,346 ±,887 [,54;,533] dvs. med 95% sikkerhed ligger de sade forskel i tilfredshedsadelee for de to kø mellem ca. -5% og ca. 5%. Bemærk specielt at itervallet ideholder værdie, hvilket betyder, at der ikke er oge sigifikat forskel i tilfredshedsadelee. COMPLET A/S - Side 46 - KOMPENDIUM I STATISTIK

9 9.9. Test i e biomialfordelig Ved test i e biomialfordelig ka ma ete berege sigifikassadsylighede direkte eller berege e teststørrelse, som derefter ete ka beyttes til at berege sigifikassadsylighede eller sammeliges med e kritisk værdi. Test vedr. p s størrelse ved beregig af sigifikassadsylighede : p p tal H ( ) H : p ( ) ( p 5 og p ( p) 5) eksakt p > P( X ) p p < P( X ) p Aderse m.fl. s., Overø m.fl. s. 84, Løborg s. approksimativt,5 p Φ p p +,5 p Φ p ( ) p mi, p mi(, ) ( ) ( ) I oveståede kasse ka det eksakte ku beyttes, hvis de pågældede biomialfordelig ka bereges ete ved at fide de i Erlag S (og det ka ma ku, hvis ) eller beytte Ecel eller lommereger. Ellers må ma øjes med de approksimative teststørrelse, som ku bør avedes, hvis p 5 og (- p) 5. I praksis vil det oftest være de approksimative test, ma aveder. Ved H : p po skal ma berege både og, og deræst tage det midste af de tal, og gage med to. Der gælder følgede: er midst,år > p er midst,år < p COMPLET A/S - Side 47 - KOMPENDIUM I STATISTIK

10 Test vedr. p s størrelse ved beregig af teststørrelse U : p p tal H ( ) pˆ p teststørrelse: U N(, ) p ( p ) H : teststørrelse: sigifikassadsylighed : kritisk værdi: Φ u p > p u ( ) p < p u Φ( u ) p u Φ( u ) p Overø m.fl. s. 84, Newbold s. 348 u u u / Eksempel: I e rudspørge bladt 43 studerede på Hadelshøjskole i Købehav har ma spurgt respodetere, om de er tilfredse med made i katie. 7 svarede ja, mes reste svarede ej. Spørgsmål: Persoalet i katie påstår, at midst halvdele af de studerede er tilfredse med katie. Ka ma på baggrud af udersøgelse afvise påstade? Svar: H : p,5 ( ikke afvise) ( afvise) H : p <,5 Da e biomalfordelig med 43 ikke fides i Erlag S (se selv efter!), må vi ete berege sigifikassadsylighede i Ecel eller beytte et approksimativt test. Da pˆ 7 5 og ( pˆ ) 43(,395) 6 5, er det OK at beytte de approksimative test: Sigifikassadsylighede: ( X 7) P BINOMDIST(7; 43;,5; TRUE), eller approksimativt +,5 p Φ p 7,5 43,5 + Φ Φ ( p ) 43,5(,5 ) (,), COMPLET A/S - Side 48 - KOMPENDIUM I STATISTIK

11 Formle ka bereges i Ecel vha. fuktioe NORMSDIST(-,). Da sigifikassadsylighede er større ed, 5 ka H accepteres, dvs. at katiepersoalets påstad ikke ka afvises. Eller ved beregig af teststørrelse: Teststørrelse: Ved idsættelse får ma: u p pˆ p ( p ),3953,5,5 (,5) 43,373 De observerede værdi beyttes ete til at berege sigifikassadsylighede eller til at sammelige med de kritiske værdi. Sigifikassadsylighed: ( u ) Φ da H : p < p ( u ) Φ(,373) Φ(,373), 849 Φ. Formle ka bereges i Ecel vha. fuktioe NORMSDIST(-,373) Alterativt ka ma sammelige med de kritiske værdi: Kritisk værdi: u 95 u,,645 da H er ekeltsidet, og,5 Fraktile ka bereges i Ecel vha. fuktioe NORMSINV(,95). Koklusio: Da de umeriske værdi af de observerede værdi af teststørrelse er midre ed de kritiske værdi, eller da sigifikassadsylighede er større ed iveauet, ka H accepteres, dvs. katiepersoalet ka have ret i deres påstad. COMPLET A/S - Side 49 - KOMPENDIUM I STATISTIK

12 9.. Bestemmelse af de kritiske værdi i biomialfordelige De kritiske værdi i biomialfordelige er de ekstreme observatiosværdier for de stokastiske variable X i, for hvilke H etop forkastes. Kritiske værdier C / og C -/ i e tosidet test (H : p p ) Det største C /, hvor P( X C / p p ) / C / CRITBINOM(; p; /) i Ecel Det midste C /, hvor P( X C / p p ) / C -/ CRITBINOM(; p; - /) + i Ecel Aderse m.fl. s. Kritiske værdi C - i e ekeltsidet test (H : p > p ) Det midste C - hvor P( X C p ) p C - CRITBINOM(; p; - ) + i Ecel Aderse m.fl. s. Kritiske værdi C i e ekeltsidet test (H : p < p ) Det største C hvor P ( X C p p ) C CRITBINOM(; p; ) i Ecel Aderse m.fl. s. 9.. Testes styrke i biomialfordelige Styrkefuktioe Styrkefuktioe η ( p ) for teste agiver sadsylighede for at observere e værdi af teststørrelse i forkastelsesområdet, dvs. sadsylighede for at forkaste H -hypotese. Dee sadsylighed afhæger af hvilke værdi af p, der avedes ved beregige, dvs. styrkefuktioe er e fuktio af p. Styrkefuktioe for e test af H : p p mod alterativet H : p > p ( ) C p η p P(X C ) Φ p ( ), hvor p C - fides i oveståede kasser eller approksimativt vha. formle: C p + u p ( ) p Aderse m.fl. s. -4, Overø m.fl. s. 79 COMPLET A/S - Side 5 - KOMPENDIUM I STATISTIK

13 Styrkefuktioe for e test af H : p p mod alterativet H : p < p ( ) C p η p P(X C ) Φ p ( ), hvor p C fides i oveståede kasser eller approksimativt vha. formle: C p u p ( ) p Aderse m.fl. s. -4, Overø m.fl. s. 79 Styrkefuktioe for e test af H : p p mod alterativet H : p p ( ) C / p C / p η p P(X C / ) + P(X C / ) Φ + Φ ( ) ( ), hvor p p p p C / og C -/ fides i oveståede kasser eller approksimativt vha. formlere: C p u p ( ) ( ) / / p C / p + u / p p Aderse m.fl. s. -4, Overø m.fl. s. 79 Eksempel: I e rudspørge bladt 43 studerede på Hadelshøjskole i Købehav har ma spurgt respodetere, om de er tilfredse med made i katie. 7 svarede ja, mes reste svarede ej. Det atages u, at de ægte p p, 4, dvs. at i virkelighede er ku 4% af de studerede tilfredse med katie. Spørgsmål: Hvad er testes styrke, givet, 5? Svar: Da alterativet i oveståede test er <, skal de midterste formel beyttes: C CRITBINOM(; p; ) CRITBINOM(43;,5;,5) 5 eller approksimativt C C,5 p u,95 p ( p ) 43,5,645 43,5(,5 ) 6, Styrke bereges til: p η,4 P(X C ) P(X 5) BINOMDIST(5;43;,4;TRUE), ( ) ( ) 33 η eller approksimativt C p 6, 43,4 (p ) (,4) η η Φ Φ Φ p( p) 43,4(.4) (,34), 3669 COMPLET A/S - Side 5 - KOMPENDIUM I STATISTIK

14 Formle ka bereges i Ecel vha. fuktioe NORMSDIST(-,34). Dvs. at sadsylighede for at forkaste de forkerte H -hypotese (de er forkert: hypotese siger, at p, 5, me ifølge opgavetekste er de i virkelighede ku p, 4 ) er 3,3% eller approksimativt 36,69%. COMPLET A/S - Side 5 - KOMPENDIUM I STATISTIK

15 9.. Sammeligig af to biomialfordeliger H : p p pˆ pˆ teststørrelse: u pˆ ( pˆ ) + + pˆ pˆ pˆ +, hvor Hvis stikprøvestørrelse er stor, dvs. over 3, ka ma ligeledes avede: u pˆ ( pˆ pˆ pˆ ) pˆ + ( pˆ ) H : teststørrelse: sigifikassadsylighed : kritisk værdi: Φ u u p > p u ( ) p < p u Φ( u ) p u Φ( u ) p Aderse m.fl. s. 3, Newbold s. 36 u u / Eksempel: I forbidelse med udersøgelse omkrig katiekvalite registreredes samtidigt respodeteres kø. Bladt de 43 adspurgte var de 9 kvider og 4 mæd. af kvidere var tilfredse med kvalitete, mes ku 7 mæd sytes kvalitete var god ok. Spørgsmål: Udersøg om tilfredshedsadele er forskellig for kvider og mæd. Svar: Det er ige et spørgsmål, ma har lyst til at besvare med ja eller ej, og det vil sige, at ma skal teste: Hypotese: H : p p H : p p tilfredshedsadele er es tilfredshedsadele er forskellig. COMPLET A/S - Side 53 - KOMPENDIUM I STATISTIK

16 Teststørrelse: Ved idsættelse får ma:,563,97,346 u,563 hvor,5,3953 (,3953) ( + ) pˆ, Kritisk værdi: u u, 975,96 da hypotese er dobbeltsidet, og,5 Fraktile ka bereges i Ecel vha. fuktioe NORMSINV(,975). Dee skal forstås både som,96 og +,96. De observerede værdi må ikke ligge ude for dette iterval, hvis hypotese ikke skal forkastes. Koklusio: Da de umeriske værdi af de observerede værdi af teststørrelse er midre ed de kritiske værdi, ka hypotese ikke forkastes, dvs. tilfredshedsadele for de to kø er ikke sigifikat forskellige. Sigifikassadsylighed: Ma ka fide sigifikassadsylighede vha. de observerede værdi. Da hypotese er dobbeltsidet, får ma: Φ(,563 ) Φ(,563),5938,87 Formle ka bereges i Ecel vha. fuktioe NORMSDIST(-,563). Koklusio: Da sigifikassadsylighede er større ed sigifikasiveauet,5, ka hypotese ikke forkastes, og ma får (heldigvis) samme koklusio som før. COMPLET A/S - Side 54 - KOMPENDIUM I STATISTIK

17 9.3. Sammeligig af to eller flere biomialfordeliger Disse tests løses som homogeitetstests i e kotigestabel vha. teststørrelse Q (se side 6). H : p p... pi teststørrelse: q i j ij I J i j forv i j i ij j I J ( obsij forv ij ) ij er observatioe i de ij te celle, og J I i ij, j ij, j i I J i j ij, hvor H : teststørrelse: sigifikassadsylighed : kritisk værdi: i, j : p i p j P( Q q Q ~ χ ( I J )) χ I J q ( )( ) (( )( )) Aderse m.fl. s. 338, Overø m.fl. s., Newbold s. 47, Løborg s. 38. Eksempel: De før ævte udersøgelse omkrig katiekvalite fadt sted i 994. I de følgede år registreredes på ligede måde tilfredshedsgrade. Udersøgelse strak sig over fire år, og de observerede data ser således ud: Tilfredse Utilfredse SUM Spørgsmål: Fra katies side er ma meget iteresserede i, om tilfredshedsgrade har udvist e stigede tedes. Udersøg om det er rimeligt at atage, at tilfredshedsgrade har foradret sig over åree. Svar: Det er et spørgsmål, ma har lyst til at besvare med ja eller ej, og det vil sige, at ma skal teste: COMPLET A/S - Side 55 - KOMPENDIUM I STATISTIK

18 Hypotese: H : p p p 3 p 4 dvs. tilfredshedsgrade er kostat H : tilfredshedsgrade har foradret sig. Teststørrelse: I virkelighede er det u bare at bruge formle i oveståede kasse til at berege e teststørrelse (kaldet q), me for at holde styr på de mage mellemregiger, laver ma typisk tre hjælpetabeller, kaldet Observeret, Forvetet og q-led. Observeret tabelle: Her idsættes blot de observerede værdier fra opgave, og der summeres vadret og lodret: SUM Tilfredse Utilfredse SUM Forvetet tabelle: Her overføres summere fra de oveståede tabel, og idmade i tabelle bereges som Søjlesum Rækkesum / Totalsum. Eksempelvis i første celle (tilfredse/994): 88 43, SUM Tilfredse, 3,75 7,69 6,54 88 Utilfredse,98 7,5,3 3,46 SUM q-led tabelle Her beytter vi formle: q - led ( obs - forv). forv Eksempelvis i første celle (tilfredse/994): ( 7, ),, SUM Tilfredse,46,7,6,9,4 Utilfredse,4,6,54,8,8 SUM,86,3,6,7,3 COMPLET A/S - Side 56 - KOMPENDIUM I STATISTIK

19 Teststørrelse Teststørrelse q er u blot summe af elemetere i q-led tabelle (deraf avet), dvs. q,3 Kritiske værdi: De kritiske værdi bliver χ (( I )( J ) ) χ (( )( 4 ) ) χ ( 3) 7, 8,5,95. Dee ka også fides i Ecel vha. fuktioe CHIINV(; (I-)(J-)) CHIINV(,5; (-)(4-)) 7,847. Koklusio: Da de observerede værdi af teststørrelse er midre ed de kritiske værdi, bliver H ikke forkastet på et, 5 iveau. Dvs., at ma ka atage, at tilfredshedsgrade har været kostat, og at udsvigee skyldtes tilfældigheder. Sigifikassadsylighed: P Q q Q ~ χ I ( (( )( J ) )) P Q q Q ~ χ (( I )( J ) ) ( ) I tabelle på side 38 uder 3 frihedsgrader ka ma aflæse, at de observerede værdi,3 ligger mellem 5%-fraktile (,) og 5%-fraktile (,37). Dette må betyde, at sigifikassadsylighede ligger mellem - 5% 5% og - 5% 75%. Sigifikassadsylighede ka fides i Ecel vha. fuktioe CHIDIST(q; (I-)(J-)) CHIDIST(,3; (-)(4-)),587. COMPLET A/S - Side 57 - KOMPENDIUM I STATISTIK

20 X {atal gage hædelse?? idtræffer ud af mulige}, dvs. X, og X er et helt tal. X~ b (,p ) p er kedt p er ukedt, (tal) opgives Biomialford ssh. regig: (side 4) a la: P(X ) tal Ubekedt: - tal (de typiske) - - Hvis vi skal fide tal > (side 6) ormalfordelig, hvor: µ p σ p ( p ) p ( p ) σ (+ korrektio på,5) Estimatio (side 45) pˆ ( ) s pˆ pˆ ( pˆ ) 95% KI (side 46) pˆ ±,96 ( ) s pˆ biomialford p påstået Test i bio (side 49) H: p tal H: p?? tal sigi. ssh: Test i bio (side 53) H: p p H: p?? p sigi. ssh: Altid via ormalford. Biomialford > Normalfordelig, COMPLET A/S - Side 58 - KOMPENDIUM I STATISTIK

hvor i er observationsnummeret, som løber fra 1 til stikprøvestørrelsen n, X i

hvor i er observationsnummeret, som løber fra 1 til stikprøvestørrelsen n, X i Normalfordeliger For at e stokastisk variabel X ka være ormalfordelt, skal X agive værdie af e eller ade målig, f.eks. tid, lægde, vægt, beløb osv. Notatioe er: Xi ~ N( μ, σ hvor i er observatiosummeret,

Læs mere

Løsninger til kapitel 7

Løsninger til kapitel 7 Løsiger til kapitel 7 Opgave 7.1 a) HpoStat giver resultatet: Pop. varias er ukedt, me 30, så Normalf. bruges approksimativt = 54,400 s 1.069,90 = 00,000 0,95 49,868 58,93 Dette betder, at med 95% sikkerhed

Læs mere

Statistik Lektion 8. Parrede test Test for forskel i andele Test for ens varians Gensyn med flyskræk!

Statistik Lektion 8. Parrede test Test for forskel i andele Test for ens varians Gensyn med flyskræk! Statistik Lektio 8 Parrede test Test for forskel i adele Test for es varias Gesy med flyskræk! Afhægige og uafhægige stikprøver Ved e uafhægig stikprøve udtages e stikprøve fra hver gruppe.. Mæd og kviders

Læs mere

Test i to populationer. Hypotesetest for parrede observationer Test for ens varians Gensyn med flyskræk!

Test i to populationer. Hypotesetest for parrede observationer Test for ens varians Gensyn med flyskræk! Test i to populatioer Hypotesetest for parrede observatioer Test for es varias Gesy med flyskræk! Afhægige og uafhægige stikprøver Ved e uafhægig stikprøve udtages e stikprøve fra hver gruppe.. Mæd og

Læs mere

29. januar Epidemiologi og biostatistik Forelæsning 2 Uge 1, torsdag 2. februar 2006 Michael Væth, Afdeling for Biostatistik.

29. januar Epidemiologi og biostatistik Forelæsning 2 Uge 1, torsdag 2. februar 2006 Michael Væth, Afdeling for Biostatistik. Epidemiologi og biostatistik Forelæsig Uge 1, torsdag. februar 006 ichael Væth, Afdelig for Biostatistik. Sammeligig af to middelværdier sikkerhedsitervaller statistisk test Sammeligig af to proportioer

Læs mere

Definition: Normalfordelingen. siges at være normalfordelt med middelværdi µ og varians σ 2, hvor µ og σ er reelle tal og σ > 0.

Definition: Normalfordelingen. siges at være normalfordelt med middelværdi µ og varians σ 2, hvor µ og σ er reelle tal og σ > 0. Repetitio: Normalfordelige Ladmåliges fejlteori Lektio Trasformatio af stokastiske variable - kkb@math.aau.dk http://people.math.aau.dk/ kkb/udervisig/lf13 Istitut for Matematiske Fag Aalborg Uiversitet

Læs mere

Spørgsmål 3 (5 %) Bestem sandsynligheden for at et tilfældigt valgt vindue har en fejl ved listerne, når man ved at der er fejl i glasset.

Spørgsmål 3 (5 %) Bestem sandsynligheden for at et tilfældigt valgt vindue har en fejl ved listerne, når man ved at der er fejl i glasset. STATISTIK Skriftlig evaluerig, 3. semester, madag de 30. auar 006 kl. 9.00-3.00. Alle hælpemidler er tilladt. Opgaveløsige forsyes med av og CPR-r. OPGAVE Ved e produktio af viduer er der mulighed for,

Læs mere

Dagens program. Estimation: Kapitel Eksempler på middelrette og/eller konsistente estimator (de sidste fra sidste forelæsning)

Dagens program. Estimation: Kapitel Eksempler på middelrette og/eller konsistente estimator (de sidste fra sidste forelæsning) Dages program Estimatio: Kapitel 9.4-9.7 Eksempler på middelrette og/eller kosistete estimator (de sidste fra sidste forelæsig) Ko desiterval for store datasæt kap. 9.4 Ko desiterval for små datasæt kap.

Læs mere

13. februar Resumé: En statistisk analyse resulterer ofte i : Et estimat ˆ θ med en tilhørende se( ˆ θ )

13. februar Resumé: En statistisk analyse resulterer ofte i : Et estimat ˆ θ med en tilhørende se( ˆ θ ) 3. februar 003 Epidemiologi og biostatistik. Uge, torag d. 3. februar 003 Morte Frydeberg, Istitut for Biostatistik. Type og type fejl Nogle specielle metoder: Test i RxC tabeller Test i x tabeller Fishers

Læs mere

antal gange krone sker i første n kast = n

antal gange krone sker i første n kast = n 1 Uge 15 Teoretisk Statistik, 5. april 004 1. Store tals lov Eksempel: møtkast Koverges i sadsylighed Tchebychevs ulighed Sætig: Store tals lov. De cetrale græseværdisætig 3. Approksimatio af sadsyligheder

Læs mere

Statistik 8. gang 1 KONFIDENSINTERVALLER. Konfidensintervaller: kapitel 11. Valg og test af fordelingsfunktion

Statistik 8. gang 1 KONFIDENSINTERVALLER. Konfidensintervaller: kapitel 11. Valg og test af fordelingsfunktion Statistik 8. gag 1 KONIDENSINTERVALLER Kofidesitervaller: kapitel 11 Valg og test af fordeligsfuktio Statistik 8. gag 11. KONIDENS INTERVALLER Et kofides iterval udtrykker itervallet hvori de rigtige værdi

Læs mere

Sammenligning af to grupper

Sammenligning af to grupper Sammeligig af to gruer Reetitio, heruder om kritiske værdier Sammeligig af to gruer Sammeligig af to middelværdier Sammeligig af to adele Sammeligig af to variaser yoteser og hyotesetest. E hyotese er

Læs mere

24. januar Epidemiologi og biostatistik. Forelæsning 1 Uge 1, tirsdag. Niels Trolle Andersen, Afdelingen for Biostatistik.

24. januar Epidemiologi og biostatistik. Forelæsning 1 Uge 1, tirsdag. Niels Trolle Andersen, Afdelingen for Biostatistik. Epidemiologi og biostatistik. Forelæsig Uge, tirsdag. Niels Trolle Aderse, Afdelige for Biostatistik. Geerelt om kurset: - Formål - Forelæsiger - Øvelser - Forelæsigsoter - Bøger - EpiBasic: http://www.biostat.au.dk/teachig/software

Læs mere

Oversigt. Kursus 02402/02323 Introducerende Statistik. Forelæsning 12: Inferens for andele. Klaus K. Andersen og Per Bruun Brockhoff

Oversigt. Kursus 02402/02323 Introducerende Statistik. Forelæsning 12: Inferens for andele. Klaus K. Andersen og Per Bruun Brockhoff Kursus 02402/02323 Itroducerede Statistik Forelæsig 12: Iferes for adele Klaus K. Aderse og Per Bruu Brockhoff DTU Compute, Statistik og Dataaalyse Damarks Tekiske Uiversitet 2800 Lygby Damark e-mail:

Læs mere

Stikprøvefordelinger og konfidensintervaller

Stikprøvefordelinger og konfidensintervaller Stikprøvefordeliger og kofidesitervaller Stikprøvefordelige for middelværdi De Cetrale Græseværdi Sætig Egeskaber Ved Estimatore Kofidesitervaller t-fordelige Estimator og estimat E stikprøve statistik

Læs mere

Estimation ved momentmetoden. Estimation af middelværdiparameter

Estimation ved momentmetoden. Estimation af middelværdiparameter Statistik og Sadsylighedsregig 1 STAT kapitel 4.2 4.3 Susae Ditlevse Istitut for Matematiske Fag Email: susae@math.ku.dk http://math.ku.dk/ susae Estimatio ved mometmetode Idimellem ka det være svært (eller

Læs mere

30. august Epidemiologi og biostatistik. Forelæsning 3 Uge 2, torsdag d. 8. september 2005 Michael Væth, Afdeling for Biostatistik.

30. august Epidemiologi og biostatistik. Forelæsning 3 Uge 2, torsdag d. 8. september 2005 Michael Væth, Afdeling for Biostatistik. 30. august 005 Epidemiologi og biostatistik. Forelæsig 3 Uge, torag d. 8. september 005 Michael Væth, Afdelig for Biostatistik. Mere om kategoriske data Test for uafhægighed I RxC tabeller Test for uafhægighed

Læs mere

Indholdsfortegnelse Generelt Diskrete stokastiske variable: Kontinuerte stokastiske variable: Regneregler for stokastiske variable

Indholdsfortegnelse Generelt Diskrete stokastiske variable: Kontinuerte stokastiske variable: Regneregler for stokastiske variable Idholdsfortegelse Geerelt:...3 Stokastisk variabel:...3 Tæthedsfuktio/sadsylighedsfuktio for stokastisk variabel:...3 Fordeligsfuktio/sumfuktio for stokastisk variabel:...3 Middelværdi:...4 Geemsit:...4

Læs mere

Vejledende besvarelser til opgaver i kapitel 15

Vejledende besvarelser til opgaver i kapitel 15 Vejledede besvarelser til opgaver i apitel 5 Opgave a) De teststatistier, ma aveder til at teste om to middelværdier er es, består af et estimat på forselle mellem middelværdiere,, divideret med et udtry

Læs mere

Sætning: Middelværdi og varians for linearkombinationer. Lad X 1,X 2,...,X n være stokastiske variable. Da gælder. Var ( a 0 + a 1 X a n X n

Sætning: Middelværdi og varians for linearkombinationer. Lad X 1,X 2,...,X n være stokastiske variable. Da gælder. Var ( a 0 + a 1 X a n X n Ladmåliges fejlteori Lektio 3 Estimatio af σ Dobbeltmåliger Geometrisk ivellemet Lieariserig - rw@math.aau.dk Istitut for Matematiske Fag Aalborg Uiversitet Repetitio: Middelværdi og Varias Sætig: Middelværdi

Læs mere

Konfidens intervaller

Konfidens intervaller Kofides itervaller Kofides itervaller for: Kofides iterval for middelværdi, varias kedt Kofides iterval for middelværdi, varias ukedt Kofides iterval for adel Kofides iterval for varias Bestemmelse af

Læs mere

Motivation. En tegning

Motivation. En tegning Motivatio Scatter-plot at det mådelige salg mod det måedlige reklamebudget. R: plot(salg ~ budget, data = salg) Økoometri Lektio Simpel Lieær Regressio salg 400 450 500 550 20 25 30 35 40 45 50 budget

Læs mere

Diskrete og kontinuerte stokastiske variable

Diskrete og kontinuerte stokastiske variable Diskrete og kotiuerte stokastiske variable Beroulli Biomial fordelig Negativ biomial fordelig Hypergeometrisk fordelig Poisso fordelig Kotiuerte stokastiske variable Uiform fordelig Ekspoetial fordelig

Læs mere

Statistiske test. Efteråret 2010 Jens Friis, AAU. Hjemmeside :

Statistiske test. Efteråret 2010 Jens Friis, AAU. Hjemmeside : Statistiske test Efteråret 00 Jes Friis, AAU Hjemmeside : http://akaaudk/jfj Kotiuerte fordeliger Defiitio: Tæthedsfuktio E sadsylighedstæthedsfuktio på R er e itegrabel fuktio f : R [0; [ hvor f d = Defiitio:

Læs mere

vejer (med fortegn). Det vil vi illustrere visuelt og geometrisk for (2 2)-matricer og (3 3)-matricer i enote 6.

vejer (med fortegn). Det vil vi illustrere visuelt og geometrisk for (2 2)-matricer og (3 3)-matricer i enote 6. enote 5 enote 5 Determiater I dee enote ser vi på kvadratiske matricer. Deres type er altså for 2, se enote 4. Det er e fordel, me ikke absolut ødvedigt, at kede determiatbegrebet for (2 2)-matricer på

Læs mere

Noter om kombinatorik, Kirsten Rosenkilde, februar 2008 1. Kombinatorik

Noter om kombinatorik, Kirsten Rosenkilde, februar 2008 1. Kombinatorik Noter om ombiatori, Kirste Roseilde, februar 008 Kombiatori Disse oter er e itrodutio til ombiatori og starter helt fra bude, så e del af det idledede er siert edt for dig allerede, me der ommer også hurtigt

Læs mere

Simpel Lineær Regression. Opsplitning af variationen Determinations koefficient Variansanalyse F-test Model-kontrol

Simpel Lineær Regression. Opsplitning af variationen Determinations koefficient Variansanalyse F-test Model-kontrol Simpel Lieær Regressio Opsplitig af variatioe Determiatios koefficiet Variasaalse F-test Model-kotrol Opbgig af statistisk model Specificer model Ligiger og atagelser Estimer parametre Modelkotrol Er modelle

Læs mere

Formelskrivning i Word 2. Sådan kommer du i gang 4. Eksempel med skrivning af brøker 5. Brøker skrevet med småt 6. Hævet og sænket skrift 6

Formelskrivning i Word 2. Sådan kommer du i gang 4. Eksempel med skrivning af brøker 5. Brøker skrevet med småt 6. Hævet og sænket skrift 6 Dee udgave er til geemkig på ettet. Boge ka købes for kr. 5 hos EH-Mat. E y og udvidet udgave med title»symbol- og formelskrivig«er udkommet september 00. Se mere om de her. Idholdsfortegelse Formelskrivig

Læs mere

Vejledende opgavebesvarelser

Vejledende opgavebesvarelser Vejledede opgavebesvarelser 1. Atal hæder er lig med K(52,5), altså 2598960. Ved brug af multiplikatiospricippet ka atal hæder med 3 ruder og 2 spar udreges som K(13, 3) K(13, 2), hvilket giver 22308.

Læs mere

Mikroøkonomi, matematik og statistik Eksamenshjemmeopgave 14. 20. december 2007

Mikroøkonomi, matematik og statistik Eksamenshjemmeopgave 14. 20. december 2007 Mikroøkoomi, matematik og statistik Eksameshjemmeopgave 14. 20. december 2007 Helle Buzel, Tom Egsted og Michael H.J. Stæhr 14. december 2007 R E T N I N G S L I N I E R F O R E K S A M E N S H J E M M

Læs mere

Modul 14: Goodness-of-fit test og krydstabelanalyse

Modul 14: Goodness-of-fit test og krydstabelanalyse Forskigsehede for Statistik ST01: Elemetær Statistik Bet Jørgese Modul 14: Goodess-of-fit test og krydstabelaalyse 14.1 Idledig....................................... 1 14.2 χ 2 -test i e r c krydstabel.............................

Læs mere

Undersøgelse af numeriske modeller

Undersøgelse af numeriske modeller Udersøgelse af umeriske modeller Formål E del af målsætige med dette delprojekt er at give kedskab til de begræsiger, fejl og usikkerheder, som optræder ved modellerig. I de forbidelse er følgede udersøgelse

Læs mere

Gamle eksamensopgaver. Diskret Matematik med Anvendelser (DM72) & Diskrete Strukturer(DM504)

Gamle eksamensopgaver. Diskret Matematik med Anvendelser (DM72) & Diskrete Strukturer(DM504) Gamle eksamesopgaver Diskret Matematik med Avedelser (DM72) & Diskrete Strukturer(DM504) Istitut for Matematik& Datalogi Syddask Uiversitet, Odese Alle sædvalige hjælpemidler(lærebøger, otater etc.), samt

Læs mere

Bent Willum Hansen. Vejledende løsninger S2 S1

Bent Willum Hansen. Vejledende løsninger S2 S1 Bet Willum Hase Vejledede løsiger 6 5 4 3 3 4 5 6 S S Sæt U Sæt U Opgave. a) A = Turist tilhører de primære kudegruppe P(A) =,9 b) B = Turist bor i et sommerhus med havudsigt P(B) =,8 c) A = Turist tilhører

Læs mere

Lys og gitterligningen

Lys og gitterligningen Fysik rapport: Lys og gitterligige Forfatter: Bastia Emil Jørgese.z Øvelse blev udført osdag de 25. jauar 202 samme med Lise Kjærgaard Paulse 2 - Bastia Emil Jørgese Fysik rapport (4 elevtimer), februar

Læs mere

Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab

Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab Statistik ved Bachelor-uddaelse i folkesudhedsvideskab Græseværdisætiger Det hadler om geemsit Statistikere elsker geemsit Det er oplagt e god ide at tage geemsit. Hvis jeg f.eks skal gætte på vægte af

Læs mere

Matematik A. Studentereksamen. Forberedelsesmateriale. Forsøg med digitale eksamensopgaver med adgang til internettet.

Matematik A. Studentereksamen. Forberedelsesmateriale. Forsøg med digitale eksamensopgaver med adgang til internettet. Matematik A Studetereksame Forsøg med digitale eksamesopgaver med adgag til iterettet Forberedelsesmateriale Vejledede opgave Forår 0 til stx-a-net MATEMATIK Der skal afsættes 6 timer af holdets sædvalige

Læs mere

Teoretisk Statistik, 9. februar Beskrivende statistik

Teoretisk Statistik, 9. februar Beskrivende statistik Uge 7 I Teoretisk Statistik, 9 februar 004 Beskrivede statistik Kategoriserede variable 3 Kvatitative variable 4 Fraktiler for ugrupperede observatioer 5 Fraktiler for grupperede observatioer 6 Beliggeheds-

Læs mere

Claus Munk. kap. 1-3

Claus Munk. kap. 1-3 Claus Muk kap. 1-3 1 Dages forelæsig Grudlæggede itroduktio til obligatioer Betaligsrækker og låeformer Det daske obligatiosmarked Pris og kurs Effektive reter 2 1 Obligatioer Grudlæggede Itro Debitor

Læs mere

Dagens forelæsning. Claus Munk. kap. 1-3. Obligationer Grundlæggende Intro. Obligationer Grundlæggende Intro. Obligationer Grundlæggende Intro

Dagens forelæsning. Claus Munk. kap. 1-3. Obligationer Grundlæggende Intro. Obligationer Grundlæggende Intro. Obligationer Grundlæggende Intro Dages forelæsig Grudlæggede itroduktio til obligatioer Claus Muk kap. - 3 Betaligsrækker og låeformer Det daske obligatiosmarked Effektive reter 2 Obligatioer Grudlæggede Itro Obligatioer Grudlæggede Itro

Læs mere

Matematisk Modellering 1 Hjælpeark

Matematisk Modellering 1 Hjælpeark Matematisk Modellerig Hjælpeark Kaare B. Mikkelse 2005090 3. september 2007 Idhold Formler 2 2 Aalyse af k ormalfordelte prøver 2 2. Modelcheck............................................ 2 2.2 Test af

Læs mere

Renteformlen. Erik Vestergaard

Renteformlen. Erik Vestergaard Reteformle Erik Vestergaard 2 Erik Vestergaard www.matematikfysik.dk Erik Vestergaard, 2010. Billeder: Forside: istock.com/ilbusca Side 4: istock.com/adresrimagig Desude ege illustratioer. Erik Vestergaard

Læs mere

Yngre Lægers medlemsundersøgelse om det lægelige arbejdsmarked, 2016

Yngre Lægers medlemsundersøgelse om det lægelige arbejdsmarked, 2016 Ygre Læger, 23. maj 216 Ygre Lægers medlemsudersøgelse om det lægelige arbejdsmarked, 216 - svarfordeliger på ladspla Idholdsfortegelse 1. Idledig... 2 2. Baggrudsvariable... 2 3. Vide om arbejdspladse

Læs mere

STATISTISKE GRUNDBEGREBER

STATISTISKE GRUNDBEGREBER MOGENS ODDERSHEDE LARSEN STATISTISKE GRUNDBEGREBER med avedelse af TI 89 og Excel 8 5 9 6 3 0 Histogram for ph 6,9 7, 7,3 7,5 7,7 7,9 ph. udgave 0 FORORD Der er i dee bog søgt at give letlæst og askuelig

Læs mere

Den flerdimensionale normalfordeling

Den flerdimensionale normalfordeling De flerdimesioale ormalfordelig Stokastiske vektorer Ved e stokastisk vektor skal vi forstå e vektor, hvor de ekelte kompoeter er sædvalige stokastiske variable. For de stokastiske vektor Y = Y,..., Y

Læs mere

Estimation og test i normalfordelingen

Estimation og test i normalfordelingen af Birger Stjerholm Made Samfudlitteratur 07 Etimatio og tet i ormalfordelige Dee tekt ideholder et overblik over ogle grudlæggede pricipper for etimatio og tet i ormalfordelige i hyppigt forekommede ituatioer:

Læs mere

Noter om kombinatorik, Kirsten Rosenkilde, februar Kombinatorik

Noter om kombinatorik, Kirsten Rosenkilde, februar Kombinatorik Noter om ombiatori, Kirste Roseilde, februar 008 Kombiatori Disse oter er e itrodutio til ombiatori og starter helt fra bude, så e del af det idledede er siert edt for dig allerede, me der ommer også hurtigt

Læs mere

Sandsynlighedsregning i biologi

Sandsynlighedsregning i biologi Om begrebet sadsylighed Sadsylighedsregig i biologi Hvis vi kaster e almidelig, symmetrisk terig, er det klart for de fleste af os, hvad vi meer, år vi siger, at sadsylighede for at få e femmer er 1/6.

Læs mere

DATV: Introduktion til optimering og operationsanalyse, 2007. Bin Packing Problemet

DATV: Introduktion til optimering og operationsanalyse, 2007. Bin Packing Problemet DATV: Itroduktio til optimerig og operatiosaalyse, 2007 Bi Packig Problemet David Pisiger, Projektopgave 2 Dette er de ade obligatoriske projektopgave på kurset DATV: Itroduktio til optimerig og operatiosaalyse.

Læs mere

Matematikkens mysterier - på et obligatorisk niveau. 7. Ligninger, polynomier og asymptoter

Matematikkens mysterier - på et obligatorisk niveau. 7. Ligninger, polynomier og asymptoter Matematikkes mysterier - på et obligatorisk iveau af Keeth Hase 7. Ligiger, polyomier og asymptoter Hvad er e asymotote? Og hvorda fides de? 7. Ligiger, polyomier og asymptoter Idhold 7.0 Idledig 7.1 Udsag

Læs mere

Projekt 4.8 De reelle tal og 1. hovedsætning om kontinuerte funktioner

Projekt 4.8 De reelle tal og 1. hovedsætning om kontinuerte funktioner Projekter: Kapitel 4 Projekt 48 De reelle tal og hovedsætig om kotiuerte fuktioer Projekt 48 De reelle tal og hovedsætig om kotiuerte fuktioer Kotiuitet og kotiuerte fuktioer Ord som kotiuert og kotiuerlig

Læs mere

STATISTISKE GRUNDBEGREBER

STATISTISKE GRUNDBEGREBER MOGENS ODDERSHEDE LARSEN STATISTISKE GRUNDBEGREBER 18 15 1 9 6 3 0 Histogram for ph 6,9 7,1 7,3 7,5 7,7 7,9 ph 13 udgave 013 FORORD Der er i dee bog søgt at give letlæst og askuelig fremstillig af de statistiske

Læs mere

Branchevejledning. ulykker indenfor. lager. området. Branchearbejdsmiljørådet for transport og engros

Branchevejledning. ulykker indenfor. lager. området. Branchearbejdsmiljørådet for transport og engros Brachevejledig ulykker idefor lager området Brachearbejdsmiljørådet for trasport og egros Baggrud Udersøgelser på lager- og trasportområdet har vist, at beskrivelse af hædelsesforløbet ved udfyldelse

Læs mere

Noter om polynomier, Kirsten Rosenkilde, Marts Polynomier

Noter om polynomier, Kirsten Rosenkilde, Marts Polynomier Noter om polyomier, Kirste Rosekilde, Marts 2006 1 Polyomier Disse oter giver e kort itroduktio til polyomier, og de fleste sætiger æves ude bevis. Udervejs er der forholdsvis emme opgaver, mes der til

Læs mere

STATISTIKNOTER Simple normalfordelingsmodeller

STATISTIKNOTER Simple normalfordelingsmodeller STATISTIKNOTER Simple ormalfordeligsmodeller Jørge Larse IMFUFA Roskilde Uiversitetsceter Februar 1999 IMFUFA, Roskilde Uiversitetsceter, Postboks 260, DK-4000 Roskilde. Jørge Larse: STATISTIKNOTER: Simple

Læs mere

Projekt 1.3 Brydningsloven

Projekt 1.3 Brydningsloven Projekt 1.3 Brydigslove Når e bølge, fx e lysbølge, rammer e græseflade mellem to stoffer, vil bølge ormalt blive spaltet i to: Noget af bølge kastes tilbage (spejlig), hvor udfaldsvikle u er de samme

Læs mere

Bent Willum Hansen. Vejledende løsninger S2 S1

Bent Willum Hansen. Vejledende løsninger S2 S1 Bet Willum Hase Vejledede løsiger 6 5 4 3 1 1 3 4 5 6 S S1 Opgavesæt Vejledede løsiger Sæt 1 Vejledede løsiger Sæt 1 Opgave 1 1.1 Det oplses at de tre hædelser A = A-bakterie i e pakke B = B-bakterie i

Læs mere

Økonometri 1. Inferens i den lineære regressionsmodel 29. september Økonometri 1: F7 1

Økonometri 1. Inferens i den lineære regressionsmodel 29. september Økonometri 1: F7 1 Økoometri 1 Iferes i de lieære regressiosmodel 9. september 006 Økoometri 1: F7 1 Dages program Opsamlig af hemmeopgave om Mote Carlo eksperimeter Mere om hypotesetest: Ekelt lieær restriktio på koefficieter

Læs mere

Sprednings problemer. David Pisinger

Sprednings problemer. David Pisinger Spredigs problemer David Pisiger 2001 Idledig Jukfood A/S er e amerikask kæde af familierestaurater der etop er ved at etablere sig i Damark. E massiv reklamekampage med de to slogas vores fritter er de

Læs mere

Branchevejledning. ulykker indenfor. godschauffør. området. Branchearbejdsmiljørådet for transport og engros

Branchevejledning. ulykker indenfor. godschauffør. området. Branchearbejdsmiljørådet for transport og engros Brachevejledig ulykker idefor godschauffør området Brachearbejdsmiljørådet for trasport og egros Baggrud Udersøgelser på lager- og trasportområdet har vist, at beskrivelse af hædelsesforløbet ved udfyldelse

Læs mere

Kvadratisk 0-1 programmering. David Pisinger

Kvadratisk 0-1 programmering. David Pisinger Kvadratisk - programmerig David Pisiger 27-8 MAX-CUT problemet Givet e ikke-orieteret graf G = (V, E) er MAX-CUT problemet defieret som MAX-CUT = {< G > : fid et sit S, T i grafe G som maksimerer atal

Læs mere

og Fermats lille sætning

og Fermats lille sætning Projekter: Kaitel 0. Projekt 0. Modulo-regig, restklassegruer og Fermats lille sætig Projekt 0. Modulo-regig, restklassegruere ( { 0 }, ) og Fermats lille sætig Vi aveder moduloregig og restklasser mage

Læs mere

x-klasserne Gammel Hellerup Gymnasium

x-klasserne Gammel Hellerup Gymnasium SANDSYNLIGHEDSREGNING OG KOMBINATORIK x-klassere Gammel Hellerup Gymasium Idholdsfortegelse SANDSYNLIGHEDSREGNING... 3 SANDSYNLIGHEDSFELT... 3 DE STORE TALS LOV... 4 Sadsyligheder og frekveser:... 4 STOKASTISK

Læs mere

StudyGuide til Matematik B.

StudyGuide til Matematik B. StudyGuide til Matematik B. OVERSIGT. Dee study guide ideholder følgede afsit Geerel itroduktio. Emeliste. Eksame. Bilag 1: Udervisigsmiisteriets bekedtgørelse for matematik B. Bilag 2: Bilag 3: Uddrag

Læs mere

Velkommen. Program. Statistik og Sandsynlighedsregning 2 Sandsynlighedstætheder og kontinuerte fordelinger på R. Praktiske ting og sager

Velkommen. Program. Statistik og Sandsynlighedsregning 2 Sandsynlighedstætheder og kontinuerte fordelinger på R. Praktiske ting og sager Program Statistik og Sadsylighedsregig 2 Sadsylighedstætheder og kotiuerte fordeliger på R Helle Sørese Uge 6, madag Velkomme I dag: Praktiske bemærkiger Hvad skal vi lave på SaSt2? Sadsylighedstætheder

Læs mere

Uge 40 I Teoretisk Statistik, 30. september 2003

Uge 40 I Teoretisk Statistik, 30. september 2003 Uge 40 Teoretis tatisti, 30. september 003 Esidet variasaalyse Model, otatio, hypotese og hælpehypotese Test af hælpehypotese Opdaterig af variasestimat Test af hypotese om es middelværdier Variasaalysesema

Læs mere

6 Populære fordelinger

6 Populære fordelinger 6 Populære fordeliger I apitel 4 itroducerede vi stoastise variabler so e åde at repræsetere udfald af et esperiet på. De stoastise variabler ue være både disrete (fx terigslag) og otiuerte (fx vareægder).

Læs mere

Økonometri 1. Definition og motivation. Definition og motivation. Dagens program. Den multiple regressionsmodel 15. februar 2006

Økonometri 1. Definition og motivation. Definition og motivation. Dagens program. Den multiple regressionsmodel 15. februar 2006 Dages program Økoometri De multiple regressiosmodel 5. februar 006 Emet for dee forelæsig er de multiple regressiosmodel (Wooldridge kap 3.-3.3+appedix E.-E.) Defiitio og motivatio Fortolkig af parametree

Læs mere

Kapitel 8 Chi-i-anden (χ 2 ) prøven

Kapitel 8 Chi-i-anden (χ 2 ) prøven Kapitel 8 Chi-i-anden (χ 2 ) prøven Peter Tibert Stoltze stat@peterstoltze.dk Elementær statistik F2011 1 / 19 Indledning Forskelle mellem stikprøver undersøges med z-test eller t-test for data målt på

Læs mere

GENEREL INTRODUKTION.

GENEREL INTRODUKTION. Study Guide til Matematik C. OVERSIGT. Dee study guide ideholder følgede afsit - Geerel itroduktio. - Emeliste. - Eksame. - Bilag. Udervisigsmiisteriets bekedtgørelse for matematik C. GENEREL INTRODUKTION.

Læs mere

TEKST NR 435 2004. TEKSTER fra IMFUFA

TEKST NR 435 2004. TEKSTER fra IMFUFA TEKST NR 435 2004 Basisstatisti 2. udgave Jørge Larse August 2006 TEKSTER fra IMFUFA INSTITUT ROSKILDE UNIVERSITETSCENTER FOR STUDIET AF MATEMATIK OG FYSIK SAMT DERES FUNKTIONER I UNDERVISNING, FORSKNING

Læs mere

Analyse 1, Prøve maj 2009

Analyse 1, Prøve maj 2009 Aalyse, Prøve 5. maj 009 Alle hevisiger til TL er hevisiger til Kalkulus (006, Tom Lidstrøm). Direkte opgavehevisiger til Kalkulus er agivet med TLO, ellers er alle hevisiger til steder i de overordede

Læs mere

DATV: Introduktion til optimering og operationsanalyse, 2007. Følsomhed af Knapsack Problemet

DATV: Introduktion til optimering og operationsanalyse, 2007. Følsomhed af Knapsack Problemet DATV: Itroduktio til optimerig og operatiosaalyse, 2007 Følsomhed af Kapsack Problemet David Pisiger, Projektopgave 1 Dette er de første obligatoriske projektopgave på kurset DATV: Itroduktio til optimerig

Læs mere

Hypotesetest. Hypotesetest og kritiske værdier Type 1 og Type 2 fejl Styrken af en test Sammenligning af to populationer

Hypotesetest. Hypotesetest og kritiske værdier Type 1 og Type 2 fejl Styrken af en test Sammenligning af to populationer Hypoteetet Hypoteetet og kritike værdier Type og Type fejl Styrke af e tet Sammeligig af to populatioer Kofideiterval for σ tore tikprøver. Hvi X følger e χ -fordelig med frihedgrader, dv. X~χ (), gælder

Læs mere

Kapitel 10 KALIBRERING AF STRØMNINGSMODEL

Kapitel 10 KALIBRERING AF STRØMNINGSMODEL Kapitel 0 KALIBRERING AF STRØMNINGSMODEL Torbe Obel Soeborg Hydrologisk afdelig, GEUS Nøglebegreber: Kalibrerigsprotokol, observatiosdata, kalibrerigskriterier, idetificerbarhed, etydighed, parameterestimatio,

Læs mere

Opsamling. Lidt om det hele..!

Opsamling. Lidt om det hele..! Opsamlig Lidt om det hele..! Kursus oversigt Hvad har vi været igeem: Deskriptiv statistik Sadsyligheder Stokastiske variable diskrete og kotiuerte Fordeliger Estimatio Test Iferes Sammeligig af middelværdier

Læs mere

BEVISER TIL KAPITEL 7

BEVISER TIL KAPITEL 7 BEVISER TIL KAPITEL 7 A. Komplemetærhædelse Det er klart, at e hædelse A og de komplemetære hædelse A udgør hele udfaldsrummet U, dvs. A A = Da fås P(U = U P(A A = P (A + P(A = da de to hædelser er dsjukte

Læs mere

Program. Ensidet variansanalyse Normalfordelingen. Antibiotika og nedbrydning af organisk materiale. Tegninger

Program. Ensidet variansanalyse Normalfordelingen. Antibiotika og nedbrydning af organisk materiale. Tegninger Faculty of Life Scieces Program Esidet variasaalyse Normalfordelige Claus Ekstrøm E-mail: ekstrom@life.ku.dk Esidet variasaalyse (oe-way ANOVA) Hvilke type data? Hvad er problemstillige? Variatio mellem

Læs mere

Bjørn Grøn. Analysens grundlag

Bjørn Grøn. Analysens grundlag Bjør Grø Aalyses grudlag Aalyses grudlag Side af 4 Idholdsfortegelse Kotiuerte og differetiable fuktioer 3 Differetial- og itegralregiges udviklig 5 3 Hovedsætiger om differetiable fuktioer 8 Opgaver til

Læs mere

Georg Mohr Konkurrencen Noter om uligheder. Søren Galatius Smith

Georg Mohr Konkurrencen Noter om uligheder. Søren Galatius Smith Georg Mohr Kokurrece Noter om uligheder Søre Galatius Smith. juli 2000 Resumé Kapitel geemgår visse metoder fra gymasiepesum, som ka bruges til at løse ulighedsopgaver, og ideholder ikke egetligt yt stof.

Læs mere

Kvantitative metoder 2

Kvantitative metoder 2 Dages program Kvatitative metoder De multiple regressiosmodel 6. februar 007 Emet for dee forelæsig er de multiple regressiosmodel (Wooldridge kap 3.- 3.+appedix E.) Defiitio og motivatio Fortolkig af

Læs mere

Med disse betegnelser gælder følgende formel for en annuitetsopsparing:

Med disse betegnelser gælder følgende formel for en annuitetsopsparing: Matema10k C-iveau, Fydelud Side 1 af 10 Auitetsopspaig De fides mage måde at spae op på. Vi vil he se på de såkaldte auitetsopspaig. Emet ka buges som e del af det suppleede stof, og det ka avedes som

Læs mere

Introduktion til uligheder

Introduktion til uligheder Itroduktio til uligheder, marts 0, Kirste Rosekilde Itroduktio til uligheder Dette er e itroduktio til ogle basale uligheder om det aritmetiske geemsit, det geometriske geemsit, det harmoiske geemsit og

Læs mere

Introduktion til Statistik

Introduktion til Statistik Itroduktio til Statistik 4. udgave Susae Ditlevse og Helle Sørese Susae Ditlevse, susae@math.ku.dk Helle Sørese, helle@math.ku.dk Istitut for Matematiske Fag Købehavs Uiversitet Uiversitetsparke 5 2100

Læs mere

Statistik Lektion 8. Test for ens varians

Statistik Lektion 8. Test for ens varians Statitik Lektio 8 Tet for e varia ra tidligere Hvi populatioe er ormalfordelt med varia, å gælder ( ) S ~ χ hvor er tikprøve tørrele og S er tikprøvevariae. χ -fordelig med - frihedgrader χ Tet af Variae

Læs mere

Matematisk trafikmodellering

Matematisk trafikmodellering - Mathematical traffic modelig Grupper.: 8 Gruppemedlemmer: Jacob Hallberg Hasema Kim Alla Hase Ria Roja Kari Vejleder: Morte Blomhøj Semester: 4. Semester, forår 2007, hus 13.1 Studieretig: Det aturvideskabelige

Læs mere

Scorer FCK "for mange" mål i det sidste kvarter?

Scorer FCK for mange mål i det sidste kvarter? Uge 7 I Teoretsk Statstk, 9. aprl 2004. Hvor er v? Hvor var v: opstllg af statstske modeller Hvor skal v he: tro om estmato og test 2. Eksempel: FCK Estmato (tutvt) Test Maksmum lkelhood estmato Scorer

Læs mere

HASTIGHEDSKORT FOR DANMARK VHA. GPS

HASTIGHEDSKORT FOR DANMARK VHA. GPS HASTIGHEDSKORT FOR DANMARK VHA. GPS Ove Aderse xcalibur@cs.aau.dk Istitut for Datalogi Aalborg Uiversitet Harry Lahrma lahrma@pla.aau.dk Trafikforskigsgruppe Aalborg Uiversitet Kristia Torp torp@cs.aau.dk

Læs mere

RESEARCH PAPER. Nr. 2, En model for lagerstørrelsen som determinant for købs- og brugsadfærden for et kortvarigt forbrugsgode.

RESEARCH PAPER. Nr. 2, En model for lagerstørrelsen som determinant for købs- og brugsadfærden for et kortvarigt forbrugsgode. RESEARCH PAPER Nr., 005 E model for lagerstørrelse som determiat for købs- og brugsadfærde for et kortvarigt forbrugsgode af Jørge Kai Olse INSTITUT FOR AFSÆTNINGSØKONOMI COPENHAGEN BUSINESS SCHOOL SOLBJERG

Læs mere

STATISTISKE GRUNDBEGREBER

STATISTISKE GRUNDBEGREBER MOGENS ODDERSHEDE LARSEN STATISTISKE GRUNDBEGREBER 18 15 1 9 6 3 0 Histogram for ph 6,9 7,1 7,3 7,5 7,7 7,9 ph 17. udgave 016 FORORD Der er i dee bog søgt at give letlæst og askuelig fremstillig af de

Læs mere

Morten Frydenberg version dato:

Morten Frydenberg version dato: Morte Frdeberg versio dato: 4--4 Itroduktio til kurset Statistik Forelæsig Morte Frdeberg, Sektio for Biostatistik af Biostatistik dele af. semester kurset. Statistiske modeller Biomialfordelige Normalfordelige

Læs mere

Bekendtgørelse om takstændringer i offentlig servicetrafik i trafikselskaber og hos jernbanevirksomheder m.v. (takststigningsloftet)

Bekendtgørelse om takstændringer i offentlig servicetrafik i trafikselskaber og hos jernbanevirksomheder m.v. (takststigningsloftet) Oversigt (idholdsfortegelse) Bilag 1 Bilag 2 Bilag 3 De fulde tekst Bekedtgørelse om takstædriger i offetlig servicetrafik i trafikselskaber og hos jerbaevirksomheder m.v. (takststigigsloftet) I medfør

Læs mere

Teoretisk Statistik, 18. november Stikprøveteori: hvor er vi, og hvor skal vi hen? Proportional allokering Optimal allokering

Teoretisk Statistik, 18. november Stikprøveteori: hvor er vi, og hvor skal vi hen? Proportional allokering Optimal allokering Uge 47 I Teoretisk Statistik, 8. oveber 003 Stikprøveteori: hvor er vi, og hvor skal vi he? Proportioal allokerig Optial allokerig Heruder: Saeligig af variaser og ødvedige stikprøvestørrelser for de forskellige

Læs mere

Forslag til besvarelser af opgaver m.m. i ε-bogen, Matematik for lærerstuderende

Forslag til besvarelser af opgaver m.m. i ε-bogen, Matematik for lærerstuderende Forslag til besvarelser af opgaver m.m. i ε-boge, Matematik for lærerstuderede Dette er førsteudgave af opgavebesvarelser udarbejdet i sommere 008. Dokumetet ideholder forslag til besvarelser af de fleste

Læs mere

Begreber og definitioner

Begreber og definitioner Begreber og defiitioer Daske husstades forbrug på de medierelaterede udgiftsposter stiger og udgør i 2012*) 11,3 % af husstadees samlede forbrug mod 5,5 % i 1994. For husstade med de laveste idkomster

Læs mere

Konfidensintervaller og Hypotesetest

Konfidensintervaller og Hypotesetest Konfidensintervaller og Hypotesetest Konfidensinterval for andele χ -fordelingen og konfidensinterval for variansen Hypoteseteori Hypotesetest af middelværdi, varians og andele Repetition fra sidst: Konfidensintervaller

Læs mere

Projekt 2.3 Det gyldne snit og Fibonaccitallene

Projekt 2.3 Det gyldne snit og Fibonaccitallene Projekter: Kapitel Projekt.3 Det glde sit og Fiboaccitallee Forslag til hvorda klasses arbejde med projektet ka tilrettelægges: Forløbet:. Præsetatio af emet med vægt på det glde sit.. Grppere arbejder

Læs mere

IMFUFA TEKST NR TEKSTER fra ROSKILDE UNIVERSITETSCENTER. Jørgen Larsen

IMFUFA TEKST NR TEKSTER fra ROSKILDE UNIVERSITETSCENTER. Jørgen Larsen TEKST NR 435 2004 Basisstatistik 2. udgave Jørge Larse August 2006 TEKSTER fra IMFUFA INSTITUT ROSKILDE UNIVERSITETSCENTER FOR STUDIET AF MATEMATIK OG FYSIK SAMT DERES FUNKTIONER I UNDERVISNING, FORSKNING

Læs mere

Prisfastsættelse af digitale goder - Microsoft

Prisfastsættelse af digitale goder - Microsoft Iteretøkoomi: risfastsættelse af digitale goder Afleveret d. 9 maj 003 Af Julie ech og Malee Aja org risfastsættelse af digitale goder - Microsoft Af Julie ech og Malee Aja org.0.0 DIGITALE GODER....0.0

Læs mere

MOGENS ODDERSHEDE LARSEN. Fourieranalyse

MOGENS ODDERSHEDE LARSEN. Fourieranalyse MOGENS ODDERSHEDE LARSEN Fourieraalyse. udgave 7 FORORD Dette otat giver e kort idførig i teorie for fourierrækker og fouriertrasformatio. Det forudsættes i dette otat, at ma har rådighed over matematiklommeregere

Læs mere