Sandsynlighedregning

Størrelse: px
Starte visningen fra side:

Download "Sandsynlighedregning"

Transkript

1 MOGENS ODDERSHEDE LARSEN Sandsynlighedregning + = - P(A B) = P(A) + P(B) P(A B). 1. udgave 2007

2 FORORD Dette notat giver en kort gennemgang af de grundlæggende begreber i sandsynlighedsregning. Det forudsættes, at man har rådighed over en matematiklommeregner som eksempelvis Ti 89. En række noter indenfor matematik og statistik kan findes på adressen Nogle af noterne er beregnet for det gymnasiale niveau, andre er beregnet på et mere videregående niveau. Noterne er i pdf - format. Maj 2007 Mogens Oddershede Larsen ii

3 INDHOLD Indhold 1 Definitioner og regneregler 1.1 Indledning Sandsynlighed Grundlæggende begreber Additionssætningen Betinget sandsynlighed Uafhængighed Opgaver Kombinatorik 2.1 Indledning Multiplikationsprincippet Ordnet stikprøveudtagelse Uden tilbagelægning Med tilbagelægning Uordnet stikprøveudtagelse Hypergeometrisk fordeling Opgaver Stokastisk variabel 3.1 Definition af stokastisk variabel Sandsynlighedsfunktion for diskret stokastisk variabel Middelværdi Varians og spredning Opgaver Binomialfordeling 4.1 Indledning Definition og beregning Konfidensinterval for p Opgaver Deskriptiv statistik 5.1 Indledning Grafisk beskrivelse af data Karakteristiske værdier iii

4 Indhold 5 Opgaver Normalfordeling 6.1 Indledning Tæthedsfunktion Tætheds- og fordelingsfunktion for normalfordeling Beregning af sandsynligheder Den normerede normalfordeling Konfidensinterval for normalfordeling Opgaver Stikord 61 iv

5 1.2 Sandsynlighed 1. Definitioner og regneregler 1.1 Indledning Tilfældigt eksperiment (engelsk : random experiment) Ved et tilfældigt eksperiment forstås et eksperiment, som kan resultere i forskellige udfald, selv om eksperimentet gentages på samme måde hver gang. Man kan ikke på forhånd forudsige, hvilket udfald der vil indtræffe. Eksempler på tilfældige eksperimenter 1) Består eksperimentet i kast med en terning ved vi, at vi vil få et af udfaldene 1,2,3,4,5,6 (Udfaldsrummet U = {1, 2, 3, 4,5, 6}), men man kan ikke forudsige udfaldet 2) Består eksperimentet i, at vi som i eksempel 1.4 tilfældigt udtager en patient og måler ph værdien i hans knæ, ved vi måske at værdien vil ligge mellem 5 og 10 ( Udfaldsrummet U = [; 510] ), men vi kan ikke forudsige resultatet. 3) Består eksperimentet i, at vi tilfældigt udtrækker en vælger, og spørger hvilket parti vedkommende vil stemme på hvis der var valg i morgen, så er udfaldsrummet de forskellige opstillingsberettigede partier. En delmængde af udfaldsrummet kaldes en hændelse. Eksempel: A: at få et lige øjental ved kast med en terning 1.2. Sandsynlighed Det er en erfaring, at øges antallet af gentagelser af et eksperiment, vil den relative hyppighed af en hændelse A stabilisere sig mod en bestemt værdi.("de store tals lov"), som så kaldes sandsynligheden for A og benævnes P(A) (P = probability). Eksempel 1.1. De relative hyppigheders stabilitet Et eksperiment består i at kaste en terning, og hændelsen A består i at få et lige øjental. Terningen kastes nu 100 gange, og man får et lige øjental 55 gange. Eksperimentet udføres igen 100 gange, og man får A 47 gange. Igen kastes 100 gange, og man får nu A 57 gange. Til sidst kastes 100 gange, og man får A 40 gange. Eksperimentet foretages nu i serier på 1000 gange, hvor man hver gang optæller antal gange A forekommer. Resultaterne vises i følgende tabel: Serier på 100 gentagelser Serier med 1000 gentagelser Antal gange A: et lige øjental Relativ hyppighed Det ses, at med 1000 gentagelser er de relative hyppigheder tættere samlet (ligger mellem 48,6% og 50,9%) end hvis man kun kastede 100 gange (mellem 40% og 55%). Hvis terningen var en 1

6 1. Definitioner og regneregler ægte terning(fuldstændig homogen og symmetrisk), måtte man på forhånd forvente, at det tal, som de relative hyppigheder grupperede sig omkring, var tallet 0.5. Man vil derfor sige, at sandsynligheden for at få et lige øjental er 0.5, eller kort P(A) = Grundlæggende begreber I det følgende vil eksempel 1.2 blive benyttet til illustration af definitioner og begreber. Eksempel 1.2. Gennemgående eksempel. En fabrik har erfaring for, at den daglige produktion af glasfigurer indeholder 10 % misfarvede, 20% har ridser, og 1 % af produktionen er både ridsede og misfarvede. Et eksperiment består i tilfældigt at udtage en glasfigur af produktionen. Lad A være hændelsen at få en misfarvet og lad B være hændelsen at få en ridset. Komplemtærmængden til A benævnes e l l e r A o g e r mængden af alle udfald i udfaldsrummet U, der ikke er i A (den skraverede mængde på figur 1.1). Eksempelvis er A i eksempel 1.2 mængden af alle glasfigurer, der ikke er misfarvet. Idet P ( A ) = 0.1 ses umiddelbart, at P( A) = 1 - P(A) = 0.9. Fig Komplementærmængde Vi har derfor klart følgende sætning: P( A) = 1 - P ( A ) Fællesmængden til A og B benævnes A B og er mængden af alle udfald i udfaldsrummet U, der tilhører både A og B (Den skraverede mængde i figur 1.2 ). Eksempelvis er A B i eksempel 1.2 mængden af alle glasfigurer, der både er misfarvede og ridsede. Af eksemplet følger, at P( A B) =001.. Fig 1.2. Fællesmængde 2

7 1.4 Additionssætningen Foreningsmængden af A og B benævnes A B og er mængden af alle udfald i udfaldsrummet U, der enten tilhører A eller B eventuelt dem begge (den skraverede mængde på figur 1.3 ) Eksempelvis er A B i eksempel 2.1 mængden af alle glasfigurer, der enten er misfarvede eller ridsede eventuelt begge dele. Fig. 1.3 Foreningsmængde U kaldes for den sikre hændelse, dens komplementære hændelse for den umulige hændelse Ø. P (Ø ) = 0 En hændelse, som kun indeholder ét udfald, kaldes en elementarhændelse. To mængder hvis fællesmængde er tom kaldes disjunkte Additionssætning Ved betragtning af fig.1.4 ses umiddelbart ved at betragte de skraverede arealer, at der gælder Additionssætning: P( A B) = P( A) + P( B) P( A B). P( AU B) P( A) PB ( ) P( AI B) Fig.1.4 Additionssætning I eksempel 1.2 er P( A B) = =

8 1. Definitioner og regneregler 1.5. Betinget sandsynlighed For nogle hændelser A og B gælder, at P( A B) = P( A) P( B), men denne formel gælder ikke generelt. Eksempelvis er i eksempel 1.2 P( A) P( B) = = 002. P( A B). For at få en mere generel regel indføres PBA ( ) som kaldes sandsynligheden for, at B indtræffer, når A er indtruffet (den af A betingede sandsynlighed for B). For at forklare den følgende definition, vil vi simplificere eksempel 1.2, idet vi antager, at den daglige produktion er 100 glasfigurer. I så fald er der 10 misfarvede figurer, 20 ridsede figurer, og 1 figur der er både misfarvet og ridset. Hvis vi begrænser vort udfaldsrum til A, så er 1 1 P( A B) PBA ( ) = = 100 = P( A) 100 Denne beregning begrunder rimeligheden i følgende definition: Fig. 1.5 Taleksempel Den af A betingede sandsynlighed for B PBA ( ) (eller sandsynligheden for, at B indtræffer, P( A B) når A er indtruffet ) defineres ved PBA ( ) =. P( A) Ved multiplikation fås Produktsætningen: P( A B) = P( A) P( B A). Benyttes produktsætningen på eksempel 1.2 fås P( A B) = P( A) P( B A) = = Eksempel 1.3: Betinget sandsynlighed. En beholder indeholder 3 røde og 3 hvide kugler. Vi udtrækker successivt 2 kugler fra urnen. Vi betragter følgende 2 hændelser: A: Den først udtrukne kugle er rød. B: Den anden udtrukne kugle er rød. Beregn P( A B) hvis 1) kugleudtrækningen foregår, ved at den først udtrukne kugle lægges tilbage før den anden udtrækkes. 2) kugleudtrækningen foregår, ved at den først udtrukne kugle ikke lægges tilbage før den anden udtrækkes. Løsning 1) Her er PBA ( )= 3 og derfor ifølge produktsætningen P( A B) P( A) P( B A) 6 2) Her er PBA ( )= 2 5 og derfor 3 2 P( A B) = = = = 1 4 4

9 1.5 Betinget sandsynlighed Bayes sætning For to hændelser A og B for hvilken P(A) > 0 gælder Bayes sætning: PBA ( ) = PB ( ) PAB ( ) P( A) Bevis: P( A B) PB ( A) PB ( ) PAB ( ) Af definitionen på betinget sandsynlighed og produktsætningen fås PBA ( ) = = = P( A) P( A) P( A) Bayes sætning gør, at det er let at omskrive fra den ene betingende sandsynlighed til den anden. Dette er tilfældet, hvis den ene af de to betingede sandsynligheder PBA ( ) og PAB ( ) er meget lettere at beregne end den anden. Eksempel 1.4 (Bayes sætning) I en officeruddannelse kan man vælge mellem en teknisk linie og en operativ linie. På en bestemt årgang har 60 % valgt den operative linie og af disse er 20% kvinder. På den tekniske linie er 10% kvinder. Ved lodtrækning vælges en elev. a) Find sandsynligheden for, at denne er en kvinde. Ved ovenstående lodtrækning viste det sig at eleven var en kvinde. b) Hvad er sandsynligheden for, at hun kommer fra den tekniske linie. Løsning: Vi definerer følgende hændelser: T: Den udtrukne er tekniker K: Den udtrukne er en kvinde. a) PK ( ) = PT ( K) + PO ( K) = PKT ( ) PT ( ) + PKO ( ) PO ( ) = = 016. = 16% PKT ( ) PT ( ) b) Af Bayes sætning fås: PTK ( ) = = = = 25% PK ( ) En anden metode ville det være, at antage, at der bliver optaget 100 elever. Vi har så følgende skema Kvinder I alt Operativ Teknisk 4 40 Heraf fås umiddelbart 16 4 PK ( ) = = 16% og PTK ( ) = = 25%

10 1. Definitioner og regneregler 1.6. Statistisk uafhængighed. To hændelser A og B siges at være statistisk uafhængige, såfremt P( A B) = P( A) P( B). Navnet skyldes, at vi i dette tilfælde har PBA ( ) = PB ( ) og P( A B) = P( A), således at sandsynligheden for, at den ene hændelse indtræffer, ikke afhænger af, om den anden hændelse indtræffer. Eksempelvis ved kast med en terning, så vil sandsynligheden for at få en sekser i andet kast være uafhængigt af udfaldet i første kast, således at sandsynligheden for at få 2 seksere i de første kast er. 6 6 Definitionen af statistisk uafhængighed generaliseres til flere hændelser end 2, således at der i tilfælde af 3 uafhængige hændelser A1, A2 og A 3 også gælder: P( A A A ) = P( A ) P( A ) P( A )

11 Opgaver til kapitel 1 Opgaver Opgave 1.1 I en mindre by viser en undersøgelse, at 60% af alle husstande holder en lokal avis, mens 30% holder en landsdækkende avis. Endvidere holder 10% af husstandene begge aviser. Lad en husstand være tilfældig udvalgt, og lad A være den hændelse, at husstanden holder en lokal avis, og B den hændelse, at husstanden holder en landsdækkende avis. Beregn sandsynlighederne for ovennævnte hændelser. Beregn sandsynlighederne for nedenstående hændelser. C: Husstanden holder begge aviser. D: Husstanden holder kun den lokale avis. E: Husstanden holder mindst én af aviserne. F: Husstanden holder ingen avis G: Husstanden holder netop én avis. Det vides nu, at den tilfældigt valgte husstand holder den landsdækkende avis. H: Husstanden holder den lokale avis. Opgave 1.2 1) I figur 1 er vist et elektrisk apparat, som kun fungerer, hvis enten alle komponenter 1a, 1b og 1c i den øverste ledning eller alle komponenter 2a, 2b og 2c i den nederste ledning fungerer. Sandsynligheden for at hver komponent fungerer er vist på tegningen, og det antages, at sandsynligheden for at en komponent fungerer er uafhængig af om de øvrige komponenter fungerer. 1) Hvad er sandsynligheden for at apparatet i figur 1 fungerer. 2) I figur 2 er vist et andet elektrisk apparat, som tilsvarende kun fungerer, hvis alle de tre kredsløb I, II og III fungerer, og det er kun tilfældet hvis enten den øverste eller den nederste komponent fungerer. Hvad er sandsynligheden for at apparatet i figur 2 fungerer. 7

12 1. Definitioner og regneregler Opgave 1.3 Tre skytter skyder hver ét skud mod en skydeskive. De har træffesandsynligheder 0.75, 0.50 og Beregn sandsynligheden for 1) ingen træffere, 2) én træffer, 3) to træffere, 4) tre træffere. Opgave 1.4 En terning har form som et regulært polyeder med 20 sideflader. På 4 sideflader er der skrevet 1, på 8 sideflader er der skrevet 6 mens der er skrevet 2, 3, 4 og 5 på hver 2 sideflader. Find sandsynligheden for i tre kast med denne terning at få 1) tre seksere 2) mindst én sekser 3) enten tre seksere eller tre enere Opgave 1.5 En virksomhed fremstiller en bestemt slags apparater. Hvert apparat er sammensat af 5 komponenter. Heraf er 3 tilfældigt udvalgt blandt komponenter af typen a og 2 blandt komponenter af typen b. Det vides, at 10% af a-komponenterne er defekte og 20% af b- komponenterne er defekte. Et apparat fungerer hvis og kun hvis det ikke indeholder nogen defekt komponent. Der udtages på tilfældig måde et apparat fra produktionen. Lad os betragte hændelserne: A: Det udtagne apparat indeholder mindst 1 defekt a-komponent. B: Det udtagne apparat indeholder mindst 1 defekt b-komponent. 1) Find P( A), P( B) og P( A B). 2) Find sandsynligheden for, at et apparat, der på tilfældig måde udtages af produktionen ikke fungerer. 3) Et apparat udtages på tilfældig måde fra produktionen og det konstateres ved afprøvning at det ikke fungerer. Find sandsynligheden for, at apparatet ikke indeholder nogen defekt a- komponent. Opgave 1.6 To skytter konkurrerer ved en turnering. De har hver én patron og skyder mod en skive som giver 10 point, hvis et centralt område af skiven rammes og ellers 5 point. Rammes skiven ikke noteres 0 point. Skytte A s dygtighed kan beskrives ved, at han i et skud har samme sandsynlighed for at få 10 points, 5 points eller 0 points. Skytte B er dygtigere, idet hans sandsynligheder for at ramme er givet ved Points y P ( y ) B har imidlertid fået en defekt patron med, der har sandsynligheden 50% for at fungere. 1) Beregn sandsynligheden for, at A vinder. 2) Det oplyses, at A vandt konkurrencen. Beregn sandsynligheden for, at B opnåede 5 points. 8

13 2. Kombinatorik 2.2 Multiplikationsprincippet 2.1. Indledning: Såfremt et udfaldsrum U indeholder n udfald som alle er lige sandsynlige, vil sandsynligheden for hvert udfald være Pu ( ) = 1. n En hændelse A som indeholder a udfald vil da have sandsynligheden P( A) =. n Dette udtrykkes ofte kort ved at sige, at sandsynligheden for A er antal gunstige udfald i A divideret med det totale antal udfald i udfaldsrummet. I sådanne tilfælde, bliver problemet derfor, hvorledes man let kan optælle antal udfald. Dette kan ofte gøres ved benyttelse af kombinatorik Multiplikationsprincippet Multiplikationsprincippet: Lad et valg bestå af n delvalg, hvoraf det første valg har valgmuligheder, det næste valg har valgmuligheder,... og det n te valg har r 1 r 2 r n valgmuligheder. Det samlede antal valgmuligheder er da r 1 r 2... r n a Multiplikationsprincippet illustreres ved følgende eksempel. Eksempel 2.1 En mand ejer 2 forskellige jakker, 3 slips og 4 forskellige fabrikater skjorter. På hvor mange forskellige måder kan han sammensætte sin påklædning af jakke, slips og skjorte. Løsning: 1) Valg af jakke giver 2 valgmuligheder 2) Valg af slips giver 3 valgmuligheder 3) Valg af skjorte giver 4 valgmuligheder Ifølge multiplikationsprincippet giver det i alt 234 = 24muligheder Man kunne illustrere løsningen ved følgende forgreningsgraf 9

14 2. Kombinatorik 2.3 Ordnet stikprøveudtagelse Lad os tænke os vi har en beholder indeholdende 9 kugler med numrene 1, 2, 3,..., 9. Vi udtager nu en stikprøve på 4 kugler. Det kan ske 1) uden tilbagelægning: En kugle er taget op, nummeret noteres, men den lægges ikke tilbage inden man tager en ny kugle op. 2) med tilbagelægning: En kugle tages op, nummeret noteres, og derefter lægges kuglen tilbage inden man tager en ny kugle op. Man kan følgelig få den samme kugle op flere gange. Ved en ordnet stikprøveudtagelse lægges vægt på den rækkefølge hvori kuglerne udtages,. dvs. der er forskel på 2,1,3,5 og 3,1,2, Uden tilbagelægning Eksempel 2.2. Ordnet uden tilbagelægning I en forening skal der blandt 10 kandidater vælges en bestyrelse På hvor mange forskellige måder kan man sammensætte denne bestyrelse, hvis 1) Bestyrelsen består af en formand og en kasserer 2 Bestyrelsen består af en formand, en næstformand, en kasserer og en sekretær. Løsning: 1) En formand vælges blandt 10 kandidater 10 valgmuligheder En Kasserer vælges blandt de resterende 9 kandidater 9 valgmuligheder Da der for hvert valg af formand er 9 muligheder for kasserer, følger af multiplikationsprincippet, at det totale antal forskellige bestyrelser er 10 9 = 90. 2) Analogt fås ifølge multiplikationsprincippet at antal forskellige bestyrelser = 5040 Ti 89: MATH \ Probability\ npr \ ENTER. Resultat: npr(10,4) = 5040 Eksempel 2.2 begrunder følgende definition Permutationer. Antal måder (rækkefølger eller permutationer ) som m elementer kan udtages (ordnet og uden tilbagelægning) ud af n elementer er Pnm (, ) = n ( n 1) ( n 2)...( n m+ 1) n fakultet (n udråbstegn) n! = n ( n 1) ( n 2) Endvidere defineres 0! = 1. Eksempel 2.3. n fakultet En pentapeptide består af en kæde af følgende 5 aminosyrer: alanine, valine, glycine, cysteine, trypophan. Den har forskellige egenskaber afhængig af den rækkefølge de 5 aminosyrer sidder i kæden. Hvor mange forskellige typer pentapeptider er der mulig at danne? Løsning: Da rækkefølgen spiller en rolle er antallet af pentapeptider = 5! = TI 89: 5 MATH \ Probability\! \ ENTER. Resultat: 5! =

15 2.4 Uordnet stikprøveudtagelse Med tilbagelægning Eksempel 2.4. Ordnet, med tilbagelægning I en forening skal 4 tillidshverv fordeles mellem 10 personer. En person kan godt have flere tillidshverv. På hvor mange forskellige måder kan disse hverv fordeles.? Løsning: Tillidshverv 1 placeres. 10 valgmuligheder Tillidshverv 2 placeres 10 valgmuligheder Tillidshverv 3 placeres 10 valgmuligheder Tillidshverv 4 placeres 10 valgmuligheder I alt (ifølge multiplicationsprincippet) = Uordnet stikprøveudtagelse Eksempel 2.5 Uordnet uden tilbagelægning En beholder indeholdende 5 kugler med numrene k1, k2, k3, k4, k5 Vi udtager nu en stikprøve på 3 kugler uden tilbagelægning. Rækkefølgen kuglen tages op er uden betydning, dvs. der er ikke forskel på eksempelvis k1, k4, k2og k4, k1, k2 Hvor mange forskellige stikprøver kan forekomme? Løsning: Antallet er ikke flere end man kan foretage en simpel optælling: k, k, k, k, k, k k, k, k k, k, k k, k, k k, k, k k, k, k k, k, k k3, k, k { } { }{ }{ }{ }{ }{ }{ }{ } Antal stikprøver = 10 Det er klart, at ren optælling er uoverkommeligt, hvis mængden er stor. Definition af kombination Lad M være en mængde med n elementer. En delmængde af M med r elementer kaldes en kombination af med r elementer fra M. n Antallet af kombinationer med r elementer betegnes K(n,r) eller (n over r). r Sætning 2.1 (Antal kombinationer). Antal kombinationer med r elementer fra en mængde på n elementer er Knr n! (, ) = r!( n r)! Bevis: Beviset knyttes for enkelheds skyld til et taleksempel, som let kan generaliseres. Lad os antage, vi på tilfældig måde udtager 3 kugler af en kasse, der indeholder 5 kugler med numrene k, k, k, k, k

16 2. Kombinatorik 5! Vi skal nu vise, at k( 53,) = 3! 2! Lad os først gå ud fra, at rækkefølgen hvori kuglerne trækkes er af betydning, Der er altså eksempelvis forskel på k1, k3, k4 og k3, k1, k4. Dette kan gøres på P(5,3) = måder. Hvis de 3 kugler udtages, så rækkefølgen ikke spiller en rolle, har vi vedtaget, det kan gøres på K(5,3) måder. Lad en af disse måder være k1, k3, k4. Disse 3 elementer kan ordnes i rækkefølge på 3! = 3 2 1måder. P(,) ! Vi har følgelig, at P(,) 53 = K(,) 53 3! K(,) 53 = K(,) 53 = = = 3! 3! 3! 2! 3! 2! Eksempel 2.6. Antal kombinationer I en forening skal der blandt 10 kandidater vælges 4 personer til en bestyrelse På hvor mange forskellige måder kan man sammensætte denne bestyrelse? Løsning: Antal måder man kan sammensætte bestyrelsen er 10! K(10,4) = = = = 210 måder 4! 6! 4! TI 89: 5 MATH \ Probability\ ncr \ ENTER. Resultat: ncr(10,4) = 120 Som tidligere nævnt finder man ofte sandsynligheden for en hændelse A ved at beregne antallet af gunstige udfald i A og dividere det med det totale antal udfald i udfaldsrummet. Det følgende eksempel illustrerer dette. Eksempel 2.7. Beregning af sandsynlighed Fra et almindeligt spil kort (52 kort) trækkes 5 kort. Find sandsynligheden for, at få pokermeldingen Full-house dvs. tre kort har samme talværdi og de to andre har samme talværdi ( f.eks. tre femmere og to knægte). Løsning: Vælge 3 esser ud af 4 esser K(4,3) = 4 valgmuligheder Da der er 13 kort i en farve, så kan man vælge 3 med samme talværdi på 13 4 = 52 måder. Vælge 2 konger ud af 4 konger K(4,2) = 6 valgmuligheder Da man ikke må vælge den talværdi, hvor man har udtrukket 3 kort fra, så kan man vælge 2 med samme talværdi på 12 6 = 72 måder Antal gunstige er derfor ifølge multiplikationsprincippet = 3744 Det totale antal måder man kan udtage 5 kort ud af 52 kort er K(52,5) = P(Full House) = 3744 = = 0144%

17 2.5 Hypergeometrisk fordeling 2.5 Hypergeometrisk fordeling Af særlig interesse er den såkaldte hypergeometriske fordeling, som bl.a. finder anvendelse ved kvalitetskontrol af varepartier (jævnfør eksempel 2.9),ved markedsundersøgelser, hvor man uden tilbagelægning udtager en repræsentativ stikprøve på eksempelvis 500 personer I det følgende eksempel udledes formlen for den hypergeometriske fordeling. Eksempel 2.8. Hypergeometrisk fordeling I en forening skal der blandt 5 kvindelige og 8 mandlige kandidater vælges en bestyrelse på 4 personer. Find sandsynligheden for, at der er netop 1 kvinde i bestyrelsen.. Løsning: X = antal kvinder i bestyrelsen At der skal være netop 1 kvinde i bestyrelsen forudsætter, at vi udtager 1 kvinde ud af de 5 kvinder og 3 mænd ud af de 8 mænd. At udtage 1 kvinde ud af 5 kvinder kan gøres på K(5,1) måder At udtage 3 mænd ud af 8 mænd kan gøres på K(8,3) måder. Antal gunstige udfald er ifølge multiplikationsprincippet K(5,1) K(8,3) Det totale antal udfald fås ved at udtage 4 personer ud af de 13 kandidater Dette kan gøres på K(13,4) måder. K(,) 51 K(,) 83 P( X = 1) = = K( 13, 4) Definition af hypergeometrisk fordeling. Lad der i en beholder befinde sig N kugler, hvoraf M er defekte. En kugle udtrækkes og undersøges. Dette gentages n gange uden mellemliggende tilbagelægning Lad X være antallet af defekte kugler, som udtrækkes. Der gælder da K( M, x) K( N M, n x) PX ( = x) =, x 0123,,,,..., M 0123,,,,..., n K( N, n) { } { } Eksempel 2.8 (fortsat) I eksempel 2.8 benyttede vi den hypergeometriske fordeling i det tilfælde, hvor N = 13, n =4, M = 5 og x = 1. 13

18 2. Kombinatorik Eksempel 2.9. Kvalitetskontrol En producent fabrikerer komponenter, som sælges i æsker med 600 komponenter i hver. Som led i en kvalitetskontrol udtages hvert kvarter tilfældigt en æske produceret indenfor de sidste 15 minutter, og 25 tilfældigt udvalgte komponenter i denne undersøges, hvorefter det foregående kvarters produktion godkendes, såfremt der højst er én defekt komponent i stikprøven. Hvor stor er acceptsandsynligheden p, hvis æsken indeholder i alt 10 defekte komponenter, og udtrækningen sker uden mellemliggende tilbagelægning? Løsning: Lad X være antallet af defekte blandt de 25 komponenter Vi har: p = P (X = 0) + P (X = 1). K( 10, 0) K( 590, 25) K( 10, 1) K( 590, 24) P( X = 0) = = og P( X = 1) = = K( 600, 25) K( 600, 25) Vi har altså p = = = 93.88%. 14

19 Opgaver til kapitel 2 Opgaver Opgave 2.1. a) Bestem det antal måder, hvorpå bogstaverne A, B og C kan stilles rækkefølge. b) Samme opgave for A, B, C og D. Opgave 2.2. På et spisekort er opført 6 forretter, 10 hovedretter og 4 desserter. 1) Hvor mange forskellige middage bestående enten af forret og hovedret eller af hovedret og dessert kan man sammensætte. 2) Hvor mange forskellige middage bestående af en forret, en hovedret og en dessert kan man sammensætte. Opgave 2.3. En test består af 40 spørgsmål, der alle skal besvares med,'ja'. 'nej' og 'ved ikke'. På hvor mange forskellige måder kan prøven besvares? Opgave 2.4. I en virksomhed skal der installeres et kaldesystem. I hvert lokale opsættes et batteri af n lamper, og hver af de ansatte har sin bestemte lampekombination. 1) Hvis n = 5, hvor mange ansatte kan da have deres eget kaldesystem (se figuren) 2) Hvis virksomheden har 500 ansatte, hvor stor skal n så være. Opgave 2.5 Normale personbilers indregistreringsnumre består af to bogstaver og et nummer mellem og Lad os antage, at man er nået til numre der begynder med UV. Hvad er sandsynligheden for, at en nyindregistreret bil får et registreringsnummer med lutter forskellige cifre, når vi antager, at alle cifre har samme sandsynlighed? Opgave 2.6 Til en julemiddag er der dækket til familiens 12 medlemmer ved et langt bord. 1) På hvor mange måder kan de placere sig ved bordet? Efter middagen danner hele familien kæde og danser omkring juletræet. 2) På hvor mange måder kunne de danne kæde? Opgave 2.7 En klasse med 21 elever skal under en øvelse fordeles på 5 grupper. 4 af grupperne skal være på 4 elever, og 1 gruppe skal være på 5 elever. På hvor mange måder kan fordelingen af eleverne på de 5 grupper foregå? 15

20 2. Kombinatorik Opgave 2.8 Af en forsamling på 8 kvinder og 12 mænd skal udtages et udvalg på 5 medlemmer. På hvor mange måder kan dette ske, når udvalget skal indeholde 1) Mindst et medlem af hvert sit køn 2) Mindst 2 kvinder og mindst 2 mænd. Opgave 2.9. Bestem antallet af 5-cifrede tal, der kan skrives med to l-taller, et 2- tal og to 3-taller. Opgave 2.10 En beholder indeholder 3 hvide, 6 røde og 3 sorte kugler 3 kugler udtrækkes tilfældigt uden tilbagelægning. Find sandsynligheden for at de er af samme farve. Opgave 1.11 Fra et sædvanligt spil kort udtrækkes på tilfældig måde 3 kort uden tilbagelægning. Bestem sandsynlighederne for hver af hændelserne A: Der udtrækkes kun 8'ere. B: Der udtrækkes lutter hjerter. C: Der udtrækkes 2 sorte og 1 rødt kort. Opgave 2.12 Ved en lodtrækning fordeles 3 gevinster blandt 25 lodsedler. En spiller har købt 5 lodsedler. Beregn sandsynligheden for hver af følgende hændelser: 1) Spilleren vinder alle tre gevinster. 2) Spilleren vinder ingen gevinster. 3) Spilleren vinder netop én gevinst. Opgave 2.13 I en urne findes 2 blå, 3 røde og 5 hvide kugler. 3 gange efter hinanden optages tilfældigt en kugle fra urnen uden mellemliggende tilbagelægning. 1) Find sandsynligheden for hændelsen A, at der højst optages 2 hvide kugler, 2) Find sandsynligheden for hændelsen B, at de optagne kugler har hver sin farve. 3) Find sandsynligheden for, at de tre kugler har samme farve, Opgave 2.14 En fabrikant fremstiller en bestemt type radiokomponenter. Disse leveres i æsker med 30 komponenter i hver æske. En køber har den aftale med fabrikanten, at hvis en æske indeholder 4 defekte komponenter eller derover, kan køberen returnere æsken, i modsat fald skal den godkendes. Køberen kontrollere hver æske ved en stikprøve, idet han af æsken udtager 10 komponenter tilfældigt. Lad X være antal defekte i stikprøven. Der overvejes nu to planer: 1) Hvis X = 0, så godkendes æsken, ellers undersøges æsken nærmere. 2) Hvis X 1, så godkendes æsken, ellers undersøges æsken nærmere. Hvad er sandsynligheden for, at en æske, der indeholder netop 4 defekte komponenter, bliver godkendt af køberen ved metode 1 og ved metode 2. 16

21 Opgaver til kapitel 2 Opgave 2.15 En sædvanlig benyttet undervisningsmetode A ønskedes sammenlignet med en ny undervisningsmetode B, som formodes at være mere effektiv. En klasse indeholdende 20 studerende deltes tilfældigt i 2 lige store grupper. Gruppe I undervistes efter metode A og gruppe II efter metode B. Ved en fællesprøve for de 20 studerende bestod 12, mens 8 ikke bestod. I gruppe I bestod kun 3 af de 10 studerende, mens der var 9 personer, der bestod i gruppe II. Lad p være sandsynligheden for, at højst 3 af de 10 studerende bestod i gruppe I, såfremt det forudsættes, at de to undervisningsmetoder er lige effektive. Hvis p er under 1%, vil man påstå, at de to undervisningsmetoder ikke er lige effektive, dvs. at metode B er mere effektiv end metode A. Er metode B mere effektiv end metode A? 17

22 3 Stokastisk variabel 3 Stokastisk variabel 3.1. Definition af stokastisk variabel Skal man behandle et problem statistisk må det på en eller anden måde være muligt at behandle det talmæssigt. Betragtes således et eksempel med kast med en mønt, kunne man til udfaldet plat tilordne tallet 0 og til udfaldet krone tilordne tallet 1 og på den måde få problemet overført til noget, hvor man kan foretage beregninger. Man siger, man har indført en stokastisk (eller statistisk) variabel X, som er 0, når udfaldet er plat, og 1 når udfaldet er krone. Generelt gælder følgende definition: DEFINITION af stokastisk variabel (engelsk: random variable). En stokastisk variabel X er en funktion, som til hvert udfald i udfaldsrummet lader svare et reelt tal. En stokastisk variabel betegnes med et stort bogstav såsom X, mens det tilsvarende lille bogstav x betegner en mulig værdi af X. Udtager man således en stikprøve på 10 møtrikker ud af en kasse på 100 møtrikker, kunne X eksempelvis være defineret som antal defekte møtrikker blandt de 10. Eksperimenterer man med at anvende en ny metode til fremstilling af et produkt, kunne X være det målte procentiske udbytte ved forsøget. Ved en diskret variabel forstås en variabel, hvis mulige værdier udgør en endelig eller tællelig mængde. I eksemplet hvor X er antal defekte møtrikker, er X en diskret variabel, da den kun kan antage heltallige værdier fra 0 til 10. Diskrete variable kaldes ofte for tællevariable, da de ofte optræder ved optællinger, for eksempel som ovenfor i forbindelse med kvalitetskontrol. Ved en kontinuert variabel forstås en variabel, hvis mulige værdier er alle reelle tal i et vist interval. I eksemplet, hvor Y er det målte procentiske udbytte, er Y en kontinuert variabel, da den kan antage alle værdier fra 0% til 100%. 3.2 Sandsynlighedsfordeling for diskret stokastisk variabel Vi vil i dette afsnit benytte følgende eksempel 3.1 til illustration af definitioner og begreber. Eksempel 3.1. Diskret variabel. Ved et roulettespil vil resultatet rød give en gevinst på 40 kr. Tilsvarende vil grøn og blå give gevinster på henholdsvis 20 og 10 kr, mens gul og sort giver tab på henholdsvis 10 kr og 40 kr. Lad X være gevinsten ved et spil. X får da værdierne 40, 20, 10, -10 og -40. Ejeren af spillet ved, at P(X = 40) = 0.1, P(X = 20) = 0.1, P(X = 10) = 0.2, P(X = -10)= 0.5 og P(X = - 40) =

Kombinatorik og Sandsynlighedsregning

Kombinatorik og Sandsynlighedsregning Kombinatorik Teori del 1 Kombinatorik er en metode til at tælle muligheder på. Man kan f.eks. inden for valg til en bestyrelse eller et fodboldhold, kodning af en lås, valg af pinkode eller telefonnummer,

Læs mere

2. Ved et roulettespil kan man vinde 0,10,100, 500 og 1000 kr. Sandsynligheden for gevinsterne ses af følgende skema:

2. Ved et roulettespil kan man vinde 0,10,100, 500 og 1000 kr. Sandsynligheden for gevinsterne ses af følgende skema: Der er hjælp til opgaver med # og facit på side 6 1. Et eksperiment kan beskrives med følgende skema: u 1 2 3 4 5 P(u) 0,3 0,2 0,1 0,2 x Bestem x og sandsynligheden for at udfaldet er et lige tal.. 2.

Læs mere

Kursusindhold: X i : tilfældig værdi af ite eksperiment. Antag X i kun antager værdierne 1, 2,..., M.

Kursusindhold: X i : tilfældig værdi af ite eksperiment. Antag X i kun antager værdierne 1, 2,..., M. Kursusindhold: Produkt og marked - matematiske og statistiske metoder Rasmus Waagepetersen Institut for Matematiske Fag Aalborg Universitet February 9, 2015 Sandsynlighedsregning og lagerstyring Normalfordelingen

Læs mere

Sandsynlighedsregning og statistik

Sandsynlighedsregning og statistik og statistik Jakob G. Rasmussen, Institut for Matematiske Fag jgr@math.aau.dk Litteratur: Walpole, Myers, Myers & Ye: Probability and Statistics for Engineers and Scientists, Prentice Hall, 8th ed. Slides

Læs mere

Temaopgave i statistik for

Temaopgave i statistik for Temaopgave i statistik for matematik B og A Indhold Opgave 1. Kast med 12 terninger 20 gange i praksis... 3 Opgave 2. Kast med 12 terninger teoretisk... 4 Opgave 3. Kast med 12 terninger 20 gange simulering...

Læs mere

Tip til 1. runde af Georg Mohr-Konkurrencen Kombinatorik

Tip til 1. runde af Georg Mohr-Konkurrencen Kombinatorik Tip til 1. runde af - Kombinatorik, Kirsten Rosenkilde. Tip til 1. runde af Kombinatorik Her er nogle centrale principper om og strategier for hvordan man tæller et antal kombinationer på en smart måde,

Læs mere

Hvad er meningen? Et forløb om opinionsundersøgelser

Hvad er meningen? Et forløb om opinionsundersøgelser Hvad er meningen? Et forløb om opinionsundersøgelser Jette Rygaard Poulsen, Frederikshavn Gymnasium og HF-kursus Hans Vestergaard, Frederikshavn Gymnasium og HF-kursus Søren Lundbye-Christensen, AAU 17-10-2004

Læs mere

Personlig stemmeafgivning

Personlig stemmeafgivning Ib Michelsen X 2 -test 1 Personlig stemmeafgivning Efter valget i 2005 1 har man udspurgt en mindre del af de deltagende, om de har stemt personligt. Man har svar fra 1131 mænd (hvoraf 54 % har stemt personligt

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Termin hvori undervisningen afsluttes: Juni 2013 Roskilde

Læs mere

Sandsynligheder. Mængder Hændelser Sandsynligheder Regler for sandsynligheder

Sandsynligheder. Mængder Hændelser Sandsynligheder Regler for sandsynligheder Sandsynligheder Mængder Hændelser Sandsynligheder Regler for sandsynligheder Sandsynligheder En sandsynlighed er et kvantitativt mål for usikkerhed et mål der udtrykker styrken af vores tro på forekomsten

Læs mere

Simulering af stokastiske fænomener med Excel

Simulering af stokastiske fænomener med Excel Simulering af stokastiske fænomener med Excel John Andersen, Læreruddannelsen i Aarhus, VIA Det kan være en ret krævende læreproces at udvikle fornemmelse for mange begreber fra sandsynlighedsregningen

Læs mere

Dagens program. Afsnit 1.1-1.3 Eksperimenter med usikkerhed Sandsynlighedsmodel - Udfaldsrum - Hændelser - Sandsynligheder Eksempler

Dagens program. Afsnit 1.1-1.3 Eksperimenter med usikkerhed Sandsynlighedsmodel - Udfaldsrum - Hændelser - Sandsynligheder Eksempler Dagens program Afsnit 1.1-1.3 Eksperimenter med usikkerhed Sandsynlighedsmodel - Udfaldsrum - Hændelser - Sandsynligheder Eksempler 1 Sandsynlighedsmodel Kvantitative Metoder 1 - Efterår 2006 Eksperiment

Læs mere

F I N N H. K R I S T I A N S E N KUGLE SIMULATIONER MÅLSCORE I HÅNDBOLD G Y L D E N D A L

F I N N H. K R I S T I A N S E N KUGLE SIMULATIONER MÅLSCORE I HÅNDBOLD G Y L D E N D A L RÆSONNEMENT & 1BE V I S F I N N H. K R I S T I A N S E N GNING 2 EGNEARK KUGLE 5 MÅLING SIMULATIONER 3 G Y L D E N D A L MÅLSCORE I HÅNDBOLD Faglige mål: Håndtere simple modeller til beskrivelse af sammenhænge

Læs mere

Gennemsnit og normalfordeling illustreret med terningkast, simulering og SLUMP()

Gennemsnit og normalfordeling illustreret med terningkast, simulering og SLUMP() Gennemsnit og normalfordeling illustreret med terningkast, simulering og SLUMP() John Andersen, Læreruddannelsen i Aarhus, VIA Et kast med 10 terninger gav følgende udfald Fig. 1 Result of rolling 10 dices

Læs mere

ANVENDT STATISTIK (med anvendelse af Excel)

ANVENDT STATISTIK (med anvendelse af Excel) MOGENS ODDERSHEDE LARSEN ANVENDT STATISTIK (med anvendelse af Excel) Hyppighed 0 18 16 14 1 10 8 6 4 0 6,94 7,0 7,1 7,18 7,6 7,34 7,4 7,5 7,58 7,66 Mere Hyppighed. udgave 008 FORORD Notatet er bygget op

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj/Juni 2014 Institution Vejen Business College Uddannelse Fag og niveau Lærer(e) Hold HHX Matematik niveau

Læs mere

Statistik noter - Efterår 2009 Keller - Statistics for management and economics

Statistik noter - Efterår 2009 Keller - Statistics for management and economics Statistik noter - Efterår 2009 Keller - Statistics for management and economics Jonas Sveistrup Hansen - stud.merc.it 22. september 2009 1 Indhold 1 Begrebsliste 3 2 Forelæsning 1 - kap. 1-3 3 2.1 Kelvin

Læs mere

{ } { } {( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )}

{ } { } {( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )} Stokastisk eksperiment Et stokastisk eksperiment er et eksperiment, hvor vi fornuftigvis ikke på forhånd kan have en formodning om resultatet af eksperimentet. Til gengæld kan vi prøve at sige noget om,

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj / juni 2015 Institution Vejen Business College Uddannelse Fag og niveau HHX Matematik niveau B Lærer(e)

Læs mere

Schweynoch, 2003. Se eventuelt http://www.mathematik.uni-kassel.de/~fathom/projekt.htm.

Schweynoch, 2003. Se eventuelt http://www.mathematik.uni-kassel.de/~fathom/projekt.htm. Projekt 8.5 Hypotesetest med anvendelse af t-test (Dette materiale har været anvendt som forberedelsesmateriale til den skriftlige prøve 01 for netforsøget) Indhold Indledning... 1 χ -test... Numeriske

Læs mere

Projekt 8.3 Hvordan undersøges om et talmateriale normalfordelt?

Projekt 8.3 Hvordan undersøges om et talmateriale normalfordelt? Projekt 8.3 Hvordan undersøges om et talmateriale normalfordelt? Projektet drejer sig om at udvikle en metode, til at undersøge om et givet talmateriale med rimelighed kan siges at være normalfordelt.

Læs mere

Regneregler for middelværdier M(X+Y) = M X +M Y. Spredning varians og standardafvigelse. 1 n VAR(X) Y = a + bx VAR(Y) = VAR(a+bX) = b²var(x)

Regneregler for middelværdier M(X+Y) = M X +M Y. Spredning varians og standardafvigelse. 1 n VAR(X) Y = a + bx VAR(Y) = VAR(a+bX) = b²var(x) Formelsamlingen 1 Regneregler for middelværdier M(a + bx) a + bm X M(X+Y) M X +M Y Spredning varians og standardafvigelse VAR(X) 1 n n i1 ( X i - M x ) 2 Y a + bx VAR(Y) VAR(a+bX) b²var(x) 2 Kovariansen

Læs mere

Hypotesetest. Altså vores formodning eller påstand om tingens tilstand. Alternativ hypotese (hvis vores påstand er forkert) H a : 0

Hypotesetest. Altså vores formodning eller påstand om tingens tilstand. Alternativ hypotese (hvis vores påstand er forkert) H a : 0 Hypotesetest Hypotesetest generelt Ingredienserne i en hypotesetest: Statistisk model, f.eks. X 1,,X n uafhængige fra bestemt fordeling. Parameter med estimat. Nulhypotese, f.eks. at antager en bestemt

Læs mere

Normalfordelingen. Erik Vestergaard

Normalfordelingen. Erik Vestergaard Normalfordelingen Erik Vestergaard Erik Vestergaard www.matematiksider.dk Erik Vestergaard, 008. Billeder: Forside: jakobkramer.dk/jakob Kramer Side 7: istock.com/elenathewise Side 8: istock.com/jaroon

Læs mere

Kapitel 2 Tal og variable

Kapitel 2 Tal og variable Tal og variable Uden tal ingen matematik - matematik handler om tal og anvendelse af tal. Matematik beskæftiger sig ikke udelukkende med konkrete problemer fra andre fag, og de konkrete tal fra andre fagområder

Læs mere

Statistik. Deskriptiv statistik, normalfordeling og test. Karsten Juul

Statistik. Deskriptiv statistik, normalfordeling og test. Karsten Juul Statistik Deskriptiv statistik, normalfordeling og test Karsten Juul Intervalhyppigheder En elevgruppe på et gymnasium har spurgt 100 tilfældigt valgte elever på gymnasiet om hvor lang tid det tager dem

Læs mere

Kapitel 4 Sandsynlighed og statistiske modeller

Kapitel 4 Sandsynlighed og statistiske modeller Kapitel 4 Sandsynlighed og statistiske modeller Peter Tibert Stoltze stat@peterstoltze.dk Elementær statistik F2011 1 Indledning 2 Sandsynlighed i binomialfordelingen 3 Normalfordelingen 4 Modelkontrol

Læs mere

Nanostatistik: sandsynligheder Kursushjemmeside: http://www.imf.au.dk/ kurser/nanostatistik/

Nanostatistik: sandsynligheder Kursushjemmeside: http://www.imf.au.dk/ kurser/nanostatistik/ Nanostatistik: sandsynligheder Kursushjemmeside: http://www.imf.au.dk/ kurser/nanostatistik/ JLJ Nanostatistik: sandsynlighederkursushjemmeside:http://www.imf.au.dk/kurser/nanostatistik/ p. 1/16 Højder

Læs mere

Skriftlig Eksamen Diskret Matematik (DM528)

Skriftlig Eksamen Diskret Matematik (DM528) Skriftlig Eksamen Diskret Matematik (DM528) Institut for Matematik & Datalogi Syddansk Universitet Tirsdag den 20 Januar 2009, kl. 9 13 Alle sædvanlige hjælpemidler (lærebøger, notater etc.) samt brug

Læs mere

Taldata 1. Chancer gennem eksperimenter

Taldata 1. Chancer gennem eksperimenter Taldata 1. Chancer gennem eksperimenter Indhold 1. Kast med to terninger 2. Et pindediagram 3. Sumtabel 4. Median og kvartiler 5. Et trappediagram 6. Gennemsnit 7. En statistik 8. Anvendelse af edb 9.

Læs mere

Statistisk beskrivelse og test

Statistisk beskrivelse og test Statistisk beskrivelse og test 005 Karsten Juul Kapitel 1. Intervalhyppigheder Afsnit 1.1: Histogram En elevgruppe på et gymnasium har spurgt 100 tilfældigt valgte elever på gymnasiet om hvor lang tid

Læs mere

Bilag til Statistik i løb : Statistik og Microsoft Excel tastevejledning / af Lars Bo Kristensen

Bilag til Statistik i løb : Statistik og Microsoft Excel tastevejledning / af Lars Bo Kristensen Bilag til Statistik i løb : Statistik og Microsoft Excel tastevejledning / af Lars Bo Kristensen Microsoft Excel har en del standard anvendelsesmuligheder i forhold til den beskrivende statistik og statistisk

Læs mere

Spørgeskemaundersøgelser og databehandling

Spørgeskemaundersøgelser og databehandling DASG. Nye veje i statistik og sandsynlighedsregning. side 1 af 12 Spørgeskemaundersøgelser og databehandling Disse noter er udarbejdet i forbindelse med et tværfagligt samarbejde mellem matematik og samfundsfag

Læs mere

EMMA*-Tema: Chancetræer

EMMA*-Tema: Chancetræer EMMA*-Tema: Chancetræer Indhold 1. Vi tegner et chancetræ 2. Lidt om programmet TRÆ 3. Udtagelse med tilbagelægning 4. Programmet ÆSKE 5. Opgaver 6. Reducerede chancetræer 7. Hvor sikker er diagnosen?

Læs mere

Spil. Chancer gennem tællemetoder. Chancelære: MI 82 INF. INFA-Chancelæreserien:

Spil. Chancer gennem tællemetoder. Chancelære: MI 82 INF. INFA-Chancelæreserien: INFA-Chancelæreserien: Chancer gennem eksperimenter Chancer gennem optællinger CHANCETRÆ - Chancer gennem beregninger SPIL - Chancer gennem tællemetoder LOD - Chancer gennem simuleringer KUGLE - Chancer

Læs mere

Kapitel 7 Matematiske vækstmodeller

Kapitel 7 Matematiske vækstmodeller Matematiske vækstmodeller I matematik undersøger man ofte variables afhængighed af hinanden. Her ser man, at samme type af sammenhænge tit forekommer inden for en lang række forskellige områder. I kapitel

Læs mere

Indblik i statistik - for samfundsvidenskab

Indblik i statistik - for samfundsvidenskab Indblik i statistik - for samfundsvidenskab Læs mere om nye titler fra Academica på www.academica.dk Nikolaj Malchow-Møller og Allan H. Würtz Indblik i statistik for samfundsvidenskab Academica Indblik

Læs mere

Kønsproportion og familiemønstre.

Kønsproportion og familiemønstre. Københavns Universitet Afdeling for Anvendt Matematik og Statistik Projektopgave forår 2005 Kønsproportion og familiemønstre. Matematik 2SS Inge Henningsen februar 2005 Indledning I denne opgave undersøges,

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Termin hvori undervisningen afsluttes: maj-juni, 2014 IBC-Kolding

Læs mere

Allan C. Malmberg LÆR OM CHANCER! Sanne og Malene går på opdagelse med computeren

Allan C. Malmberg LÆR OM CHANCER! Sanne og Malene går på opdagelse med computeren Allan C. Malmberg LÆR OM CHANCER! Sanne og Malene går på opdagelse med computeren INFA 2005 Forord Denne INFA-publikation giver en indføring i arbejdet med begreber fra sandsynlighedernes verden. Den henvender

Læs mere

STATISTIKNOTER Simple binomialfordelingsmodeller

STATISTIKNOTER Simple binomialfordelingsmodeller STATISTIKNOTER Simple binomialfordelingsmodeller Jørgen Larsen IMFUFA Roskilde Universitetscenter Februar 1999 IMFUFA, Roskilde Universitetscenter, Postboks 260, DK-4000 Roskilde. Jørgen Larsen: STATISTIKNOTER:

Læs mere

MATEMATIK ( 5 h ) DATO: 8. juni 2009

MATEMATIK ( 5 h ) DATO: 8. juni 2009 EUROPÆISK STUDENTEREKSAMEN 2009 MATEMATIK ( 5 h ) DATO: 8. juni 2009 PRØVENS VARIGHED: 4 timer (240 minutter) TILLADTE HJÆLPEMIDLER Europaskolernes formelsamling Ikke-grafisk, ikke-programmerbar lommeregner

Læs mere

CIVILINGENIØREKSAMEN. Side 1 af 19 sider. Skriftlig prøve, den: 20. december 2006 Kursus nr : 02405. Kursus navn: Sandsynlighedsregning

CIVILINGENIØREKSAMEN. Side 1 af 19 sider. Skriftlig prøve, den: 20. december 2006 Kursus nr : 02405. Kursus navn: Sandsynlighedsregning CIVILINGENIØREKSAMEN Side af 9 sider Skriftlig prøve, den: 0. december 006 Kursus nr : 0405 Kursus navn: Sandsynlighedsregning Tilladte hjælpemidler: Alle Dette sæt er besvaret af: navn underskrift bord

Læs mere

Simpsons Paradoks. Et emnearbejde om årsag og sammenhæng i kvantitative undersøgelser. Inge Henningsen

Simpsons Paradoks. Et emnearbejde om årsag og sammenhæng i kvantitative undersøgelser. Inge Henningsen Simpsons Paradoks Et emnearbejde om årsag og sammenhæng i kvantitative undersøgelser Afdeling for Anvendt Matematik og Statistik Københavns Universitet 1 Simpsons Paradoks -Et emnearbejde om årsag og sammenhæng

Læs mere

CIVILINGENIØREKSAMEN. Side 1 af 18 sider. Skriftlig prøve, den: 2. juni 2009 Kursus nr : 02405. Kursus navn: Sandsynlighedsregning

CIVILINGENIØREKSAMEN. Side 1 af 18 sider. Skriftlig prøve, den: 2. juni 2009 Kursus nr : 02405. Kursus navn: Sandsynlighedsregning CIVILINGENIØREKSAMEN Side 1 af 18 sider Skriftlig prøve, den: 2. juni 2009 Kursus nr : 02405 Kursus navn: Sandsynlighedsregning Tilladte hjælpemidler: Alle Dette sæt er besvaret af: (navn) (underskrift)

Læs mere

Differential- regning

Differential- regning Differential- regning del () f () m l () 6 Karsten Juul Indhold Tretrinsreglen 59 Formler for differentialkvotienter64 Regneregler for differentialkvotienter67 Differentialkvotient af sammensat funktion7

Læs mere

Teoretisk Statistik, 2. december 2003. Sammenligning af poissonfordelinger

Teoretisk Statistik, 2. december 2003. Sammenligning af poissonfordelinger Uge 49 I Teoretisk Statistik, 2. december 2003 Sammenligning af poissonfordelinger o Generel teori o Sammenligning af to poissonfordelinger o Eksempel Opsummering om multinomialfordelinger Fishers eksakte

Læs mere

Dig og din puls Lærervejleding

Dig og din puls Lærervejleding Dig og din puls Lærervejleding Indledning I det efterfølgende materiale beskrives et forløb til matematik C, hvori eleverne skal måle hvilepuls og arbejdspuls og beskrive observationerne matematisk. Materialet

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Termin Efterår 2014 Institution Niels Brock Uddannelse Fag og niveau Lærer Hold HHX Matematik - Niveau A Peter Harremoës GSK hold t14gymaau1o2 Oversigt over gennemførte undervisningsforløb

Læs mere

LÆRINGSMÅL PÅ NIF MATEMATIK 2014-15

LÆRINGSMÅL PÅ NIF MATEMATIK 2014-15 LÆRINGSMÅL PÅ NIF MATEMATIK 2014-15 Mål for undervisningen i Matematik på NIF Følgende er baseret på de grønlandske læringsmål, tilføjelser fra de danske læringsmål står med rød skrift. Læringsmål Yngstetrin

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Sommer 2015 Institution Campus vejle Uddannelse Fag og niveau Lærer(e) Hold HHX Matematik B (Valghold) PEJE

Læs mere

I. Deskriptiv analyse af kroppens proportioner

I. Deskriptiv analyse af kroppens proportioner Projektet er delt i to, og man kan vælge kun at gennemføre den ene del. Man kan vælge selv at frembringe data, fx gennem et samarbejde med idræt eller biologi, eller man kan anvende de foreliggende data,

Læs mere

Forelæsning 9: Inferens for andele (kapitel 10)

Forelæsning 9: Inferens for andele (kapitel 10) Kursus 02402 Introduktion til Statistik Forelæsning 9: Inferens for andele (kapitel 10) Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800

Læs mere

Løsningsforslag til Stokastik 1.-10. klasse

Løsningsforslag til Stokastik 1.-10. klasse 1 Løsningsforslag til Stokastik 1.-10. klasse Bemærk, at vi benytter betegnelsen øvelser som en meget bred betegnelse. Derfor er der også nogle af vores øvelser, der nærmer sig kategorien undersøgelser,

Læs mere

statistik og sandsynlighed F+E+D bernitt-matematik.dk Demo

statistik og sandsynlighed F+E+D bernitt-matematik.dk Demo F+E+D 1 brikkerne statistik og sandsynlighed F+E+D 1. udgave som E-bog ISBN: 978-87-92488-20-6 2010 by bernitt-matematik.dk Kopiering af denne bog er kun tilladt efter aftale med bernitt-matematik.dk Læs

Læs mere

Statistik i GeoGebra

Statistik i GeoGebra Statistik i GeoGebra Peter Harremoës 13. maj 2015 Jeg vil her beskrive hvordan man kan lave forskellige statistiske analyser ved hjælp af GeoGebra 4.2.60.0. De statistiske analyser svarer til pensum Matematik

Læs mere

t a l e n t c a m p d k Matematiske Metoder Anders Friis Anne Ryelund 25. oktober 2014 Slide 1/42

t a l e n t c a m p d k Matematiske Metoder Anders Friis Anne Ryelund 25. oktober 2014 Slide 1/42 Slide 1/42 Hvad er matematik? 1) Den matematiske metode 2) Hvad vil det sige at bevise noget? 3) Hvor begynder det hele? 4) Hvordan vælger man et sæt aksiomer? Slide 2/42 Indhold 1 2 3 4 Slide 3/42 Mængder

Læs mere

Matricer og lineære ligningssystemer

Matricer og lineære ligningssystemer Matricer og lineære ligningssystemer Grete Ridder Ebbesen Virum Gymnasium Indhold 1 Matricer 11 Grundlæggende begreber 1 Regning med matricer 3 13 Kvadratiske matricer og determinant 9 14 Invers matrix

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Sommer 2014 Institution Campus Vejle Uddannelse HHX Fag og niveau Matematik B ( Valghold ) Lærer(e) LSP (

Læs mere

statistik statistik viden fra data statistik viden fra data Jens Ledet Jensen Aarhus Universitetsforlag Aarhus Universitetsforlag

statistik statistik viden fra data statistik viden fra data Jens Ledet Jensen Aarhus Universitetsforlag Aarhus Universitetsforlag Jens Ledet Jensen på data, og statistik er derfor et nødvendigt værktøj i disse sammenhænge. Gennem konkrete datasæt og problemstillinger giver Statistik viden fra data en grundig indføring i de basale

Læs mere

At træffe sine valg i en usikker verden - eller den statistiske modellerings rolle.

At træffe sine valg i en usikker verden - eller den statistiske modellerings rolle. At træffe sine valg i en usikker verden - eller den statistiske modellerings rolle. Af E. Susanne Christensen. Lektor i statistik. Institut for Matematiske Fag. Aalborg Universitet. I mange tilfælde og

Læs mere

3. klasse 6. klasse 9. klasse

3. klasse 6. klasse 9. klasse Børne- og Undervisningsudvalget 2012-13 BUU Alm.del Bilag 326 Offentligt Elevplan 3. klasse 6. klasse 9. klasse Matematiske kompetencer Status tal og algebra sikker i, er usikker i de naturlige tals opbygning

Læs mere

KOMBINATORIK. Øvelse 1. Kan du finde en forklaring på Leibniz problem?

KOMBINATORIK. Øvelse 1. Kan du finde en forklaring på Leibniz problem? KOMBINATORIK Dette er et supplerende kapitel til lærebogen stokastik 1.-10. klasse. Bogen kan læses uden reference til indholdet i dette kapitel, men da man sommetider baserer arbejdet med sandsynlighedsregning

Læs mere

Fagårsplan 10/11 Fag: Matematik Klasse: 7.ABC Lærer: Henrik Stillits. Fagområde/ emne

Fagårsplan 10/11 Fag: Matematik Klasse: 7.ABC Lærer: Henrik Stillits. Fagområde/ emne Fagårsplan 10/11 Fag: Matematik Klasse: 7.ABC Lærer: Henrik Stillits. Fagområde/ emne Matematiske færdigheder Grundlæggende færdigheder - plus, minus, gange, division (hele tal, decimaltal og brøker) Identificer

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Termin hvori undervisningen afsluttes: maj-juni 2014 IBC-Kolding

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj/juni 2012 (denne beskrivelse dækker efterår 2011 og forår 2012) Institution Roskilde Handelsskole Uddannelse

Læs mere

matx.dk Undersøgelsesdesign Statistik Dennis Pipenbring

matx.dk Undersøgelsesdesign Statistik Dennis Pipenbring matx.dk Undersøgelsesdesign Statistik Dennis Pipenbring 7. april 2011 Indhold 1 Undersøgelsesdesign 5 1.1 Kausalitet............................. 5 1.2 Validitet og bias......................... 6 1.3

Læs mere

Side 1 af 8. Undervisningsbeskrivelse. Stamoplysninger til brug ved prøver til gymnasiale uddannelser. Termin Maj-juni 2010/11.

Side 1 af 8. Undervisningsbeskrivelse. Stamoplysninger til brug ved prøver til gymnasiale uddannelser. Termin Maj-juni 2010/11. Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 2010/11 Institution Uddannelse Fag og niveau Lærer(e) Hold Zealand Business College Hhx Matematik

Læs mere

9 Statistik og sandsynlighed

9 Statistik og sandsynlighed Side til side-vejledning 9 Statistik og sandsynlighed Faglige mål Kapitlet Statistik og sandsynlighed tager udgangspunkt i følgende faglige mål: Deskriptorer: kunne gennemføre og beskrive en statistisk

Læs mere

2 Erik Vestergaard www.matematikfysik.dk

2 Erik Vestergaard www.matematikfysik.dk Erik Vestergaard www.matematikfysik.dk Erik Vestergaard www.matematikfysik.dk 3 Lineære funktioner En vigtig type funktioner at studere er de såkaldte lineære funktioner. Vi skal udlede en række egenskaber

Læs mere

Selam Friskole Fagplan for Matematik

Selam Friskole Fagplan for Matematik Selam Friskole Fagplan for Matematik Formål Formålet med undervisningen er, at eleverne udvikler matematiske kompetencer og opnår viden og kunnen således, at de bliver i stand til at begå sig hensigtsmæssigt

Læs mere

Matematik. Matematikundervisningen tager udgangspunkt i Folkeskolens Fælles Mål

Matematik. Matematikundervisningen tager udgangspunkt i Folkeskolens Fælles Mål Matematik Matematikundervisningen tager udgangspunkt i Folkeskolens Fælles Mål Formålet med undervisningen i matematik er, at eleverne bliver i stand til at forstå og anvende matematik i sammenhænge, der

Læs mere

Mini AT-forløb om kommunalvalg: Mandatfordeling og Retfærdighed 1.x og 1.y 2009 ved Ringsted Gymnasium MANDATFORDELING

Mini AT-forløb om kommunalvalg: Mandatfordeling og Retfærdighed 1.x og 1.y 2009 ved Ringsted Gymnasium MANDATFORDELING MANDATFORDELING Dette materiale er lavet som supplement til Erik Vestergaards hjemmeside om samme emne. 1 http://www.matematiksider.dk/mandatfordelinger.html I dette materiale er en række øvelser der knytter

Læs mere

Evaluering af matematik undervisning

Evaluering af matematik undervisning Evaluering af matematik undervisning Udarbejdet af Khaled Zaher, matematiklærer 6-9 klasse og Boushra Chami, matematiklærer 2-5 klasse Matematiske kompetencer. Fællesmål efter 3.klasse indgå i dialog om

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj juni 2011 Institution Handelsskolen Silkeborg Uddannelse Fag og niveau Lærer(e) Hold hhx Matematik B Frede

Læs mere

Eksponentielle sammenhænge

Eksponentielle sammenhænge Eksponentielle sammenhænge 0 1 2 3 4 5 6 7 8 9 10 11 12 13 Indholdsfortegnelse Variabel-sammenhænge... 1 1. Hvad er en eksponentiel sammenhæng?... 2 2. Forklaring med ord af eksponentiel vækst... 2, 6

Læs mere

brikkerne til regning & matematik statistik preben bernitt

brikkerne til regning & matematik statistik preben bernitt brikkerne til regning & matematik statistik 2+ preben bernitt brikkerne til regning & matematik statistik 2+ 1. udgave som E-bog ISBN: 978-87-92488-33-6 2009 by bernitt-matematik.dk Kopiering af denne

Læs mere

Oprids over grundforløbet i matematik

Oprids over grundforløbet i matematik Oprids over grundforløbet i matematik Dette oprids er tænkt som en meget kort gennemgang af de vigtigste hovedpointer vi har gennemgået i grundforløbet i matematik. Det er en kombination af at repetere

Læs mere

Elevmateriale. Forløb Statistik

Elevmateriale. Forløb Statistik Elevmateriale Forløb Statistik Første lektion: I første lektion skal eleverne reflektere over, hvordan man sammenligner datasæt. Hvordan afgør man, hvor høj man er i 5. klasse? I andre dele af matematikken

Læs mere

Eleven kan handle med overblik i sammensatte situationer med matematik. Eleven kan anvende rationale tal og variable i beskrivelser og beregninger

Eleven kan handle med overblik i sammensatte situationer med matematik. Eleven kan anvende rationale tal og variable i beskrivelser og beregninger Kompetenceområde Efter klassetrin Efter 6. klassetrin Efter 9. klassetrin Matematiske kompetencer handle hensigtsmæssigt i situationer med handle med overblik i sammensatte situationer med handle med dømmekraft

Læs mere

Matematiske emner SPIL. Sandsynligheder og Strategier

Matematiske emner SPIL. Sandsynligheder og Strategier Matematiske emner SPIL Sandsynligheder og Strategier Ole Witt-Hansen Køge Gymnasium 2006 INDHOLD Kap. Sandsynligheder ved spil.... Lotto... øvelser...2 2. Poker...3 3. Ruinsandsynligheder ved Roulette

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj juni 2012 Institution Campus Vejle Uddannelse Fag og niveau Lærer(e) Hold HHX Matematik B Ejner Husum

Læs mere

Spilstrategier. 1 Vindermængde og tabermængde

Spilstrategier. 1 Vindermængde og tabermængde Spilstrategier De spiltyper vi skal se på her, er primært spil af følgende type: Spil der spilles af to spillere A og B som skiftes til at trække, A starter, og hvis man ikke kan trække har man tabt. Der

Læs mere

Epidemiologi og Biostatistik

Epidemiologi og Biostatistik Kapitel 1, Kliniske målinger Epidemiologi og Biostatistik Introduktion til skilder (varianskomponenter) måleusikkerhed sammenligning af målemetoder Mogens Erlandsen, Institut for Biostatistik Uge, torsdag

Læs mere

Statistik er at behandle en stor mængde af tal, så de bliver lettere at overskue og forstå.

Statistik er at behandle en stor mængde af tal, så de bliver lettere at overskue og forstå. Statistik er at behandle en stor mængde af tal, så de bliver lettere at overskue og forstå. Hvis man fx samler de karakterer, der er givet til en eksamen i én stor bunke (se herunder), kan det være svært

Læs mere

Introduktion til EXCEL med øvelser

Introduktion til EXCEL med øvelser Side 1 af 10 Introduktion til EXCEL med øvelser Du kender en almindelig regnemaskine, som kan være til stort hjælp, når man skal beregne resultater med store tal. Et regneark er en anden form for regnemaskine,

Læs mere

Spil & Sandsynlighed. Preben Blæsild

Spil & Sandsynlighed. Preben Blæsild Spil & Sandsynlighed Preben Blæsild (1,1) (1,2) (1,3) (1,4) (1,5) (1,6) (2,1) (2,2) (2,3) (2,4) (2,5) (2,6) (3,1) (3,2) (3,3) (3,4) (3,5) (3,6) (4,1) (4,2) (4,3) (4,4) (4,5) (4,6) (5,1) (5,2) (5,3) (5,4)

Læs mere

Regnetest B: Praktisk regning. Træn og Test. Niveau: 9. klasse. Med brug af lommeregner

Regnetest B: Praktisk regning. Træn og Test. Niveau: 9. klasse. Med brug af lommeregner Regnetest B: Praktisk regning Træn og Test Niveau: 9. klasse Med brug af lommeregner 1 INFA-Matematik: Informatik i matematikundervisningen Et delprojekt under INFA: Informatik i skolens fag Et forskningsprogram

Læs mere

Variabel- sammenhænge

Variabel- sammenhænge Variabel- sammenhænge 2008 Karsten Juul Dette hæfte kan bruges som start på undervisningen i variabelsammenhænge for st og hf. Indhold 1. Hvordan viser en tabel sammenhængen mellem to variable?... 1 2.

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Termin hvori undervisningen afsluttes: Maj-juni, 2013/14

Læs mere

1. Opbygning af et regneark

1. Opbygning af et regneark 1. Opbygning af et regneark Et regneark er et skema. Vandrette rækker og lodrette kolonner danner celler, hvori man kan indtaste tal, tekst, datoer og formler. De indtastede tal og data kan bearbejdes

Læs mere

statistik og sandsynlighed E+D

statistik og sandsynlighed E+D brikkerne til regning & matematik statistik og sandsynlighed F+E+D preben bernitt brikkerne til regning & matematik statistik og sandsynlighed E+D ISBN: 978-87-92488-20-6 1. udgave som E-bog til tablets

Læs mere

Kapitel 3 Lineære sammenhænge

Kapitel 3 Lineære sammenhænge Matematik C (må anvendes på Ørestad Gymnasium) Lineære sammenhænge Det sker tit, at man har flere variable, der beskriver en situation, og at der en sammenhæng mellem de variable. Enhver formel er faktisk

Læs mere

Årsplan matematik 7.klasse 2014/2015

Årsplan matematik 7.klasse 2014/2015 Årsplan matematik 7.klasse 2014/2015 Emne Indhold Mål Tal og størrelser Arbejde med brøktal som repræsentationsform på omverdenssituationer. Fx i undersøgelser. Arbejde med forskellige typer af diagrammer.

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin maj-juni 11/12 Institution VUC Holstebro-Lemvig-Struer Uddannelse Fag og niveau Lærer(e) Hold Hf/hfe Matematik

Læs mere

Matematik. Trinmål 2. Nordvestskolen 2006 Forord. Trinmål 2 (4. 6. klasse)

Matematik. Trinmål 2. Nordvestskolen 2006 Forord. Trinmål 2 (4. 6. klasse) Matematik Trinmål 2 Nordvestskolen 2006 Forord Forord For at sikre kvaliteten og fagligheden i folkeskolen har Undervisningsministeriet udarbejdet faghæfter til samtlige fag i folkeskolen med bindende

Læs mere

Når vi forbereder et nyt emne eller område vælger vi de metoder, materialer og evalueringsformer, der egner sig bedst til forløbet.

Når vi forbereder et nyt emne eller område vælger vi de metoder, materialer og evalueringsformer, der egner sig bedst til forløbet. MATEMATIK Delmål for fagene generelt. Al vores undervisning hviler på de i Principper for skole & undervisning beskrevne områder (- metoder, materialevalg, evaluering og elevens personlige alsidige udvikling),

Læs mere

Projektarbejde. Kombinatorik

Projektarbejde. Kombinatorik Projektarbejde Matematik A Teknisk Gymnasium Århus Side 1 Indledning: Besvarelsen bør indeholde følgende hovedafsnit: Opgaveanalyse: En kort beskrivelse af, hvad opgaven går ud på, samt hvilke oplysninger,

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Mundtlig eksamen Maj-Juni 2014 Institution VUF Uddannelse Fag og niveau stx (Studenterkursus) Matematik C

Læs mere

Bemærkninger til den mundtlige årsprøve i matematik

Bemærkninger til den mundtlige årsprøve i matematik Spørgsmål til årsprøve 1v Ma 2008 side 1/5 Steen Toft Jørgensen Bemærkninger til den mundtlige årsprøve i matematik IT-værktøjer Jeg forventer, at I er fortrolige med lommeregner TI-89 og programmerne

Læs mere