UNDERGRUNDEN SOM TERMISK RESSOURCE 1-14 Specialkonsulent Thomas Vangkilde-Pedersen, GEUS

Størrelse: px
Starte visningen fra side:

Download "UNDERGRUNDEN SOM TERMISK RESSOURCE 1-14 Specialkonsulent Thomas Vangkilde-Pedersen, GEUS"

Transkript

1 Indholdsfortegnelse Side UNDERGRUNDEN SOM TERMISK RESSOURCE 1-14 Specialkonsulent Thomas Vangkilde-Pedersen, GEUS INTRODUKTION TIL JORDVARME OG VARMEPUMPENS VELSIGNELSER Geolog Inga Sørensen, VIA University College Horsens MILJØPÅVIRKNINGER OG ADMINISTRATION AF OMRÅDET Seniorprojektleder Bente Villumsen, COWI A/S VISIONER OG ØNSKER FOR DEN FREMTIDIGE FORVALTNING AF ANLÆG FOR GRUNDVANDSBASERET KØLING, OPVARMNING OG ATES Civilingeniør, ph.d. Stig Niemi Sørensen, Enopsol ApS

2

3 UNDERGRUNDEN SOM GEOTERMISK RESSOURCE Specialkonsulent Thomas Vangkilde-Pedersen Seniorrådgiver, geolog Anders Mathiesen Statsgeolog Lars Henrik Nielsen De Nationale Geologiske Undersøgelser for Danmark og Grønland (GEUS) Undergrunden som termisk ressource Møde 25. maj 2011

4

5 RESUME Danmarks undergrund indeholder meget store geotermiske ressourcer i form af både dyb geotermi og overfladenær geotermi eller jordvarme. Ved dyb geotermi udnyttes meget varmt vand fra store dybder, mens jordvarmeanlæg benytter slanger i jorden eller grundvand til at optage varmen fra de øverste jordlag i kombination med varmepumpeteknologi. Den aktuelle udnyttelse af de geotermiske ressourcer er relativt begrænset, og det er vigtigt med kortlægning af mulighederne samt identifikation af mulige barrierer som skal overvindes, hvis det fulde potentiale for geotermi som vedvarende energikilde skal udnyttes. INDLEDNING Danmarks undergrund indeholder meget store geotermiske ressourcer, som kan udnyttes i det meste af landet, hvor der findes et varme- eller kølebehov. Den geotermiske ressource kan deles op i dyb geotermi og overfladenær geotermi: Dyb geotermi udnytter høje temperaturer på stor dybde (f.eks C svarende til 1-3 kilometers dybde) og varmen hidrører fra radioaktivt henfald af grundstofferne uran, thorium og kalium i jordens indre. Overfladenær geotermi, eller jordvarme, udnytter lavere, mere normale, temperaturer (f.eks C svarende til meters dybde) og varmen hidrører primært fra solindstråling og kun i meget lille grad fra varmefluxen fra jordens indre. Vi har de sidste mere end 30 år gjort brug af begge geotermiske ressourcer. For den dybe ressource i meget begrænset omfang målt i antal anlæg, og for den overfladenære i større men stadig begrænset omfang i form af jordvarmeanlæg i kombination med varmepumper. Det øgede fokus på CO 2 udledning og klimaforandringer samt afhængigheden af en (måske) begrænset ressource af fossile brændsler har imidlertid styrket interessen for geotermi som en vedvarende energikilde, der kan bidrage til opnåelse af Danmarks energipolitiske målsætninger om reduktion af CO 2 udslip og øget forsyningssikkerhed. DYB GEOTERMI Varme fra jordens indre i form af geotermisk energi udnyttes mange steder i Europa. I Danmark stiger temperaturen ca. 30 grader pr. kilometer ned gennem vores undergrund, og den geotermiske energi kan udnyttes ved at pumpe varmt vand fra undergrunden op til overfladen gennem en produktionsboring og ekstrahere varmen ved varmeveksling. Varmen kan derefter ledes via det almindelige fjernvarmenet til forbrugerne. Det afkølede vand returneres derefter til reservoiret gennem en injektionsboring, se Figur 1. De to væsentligste forhold, som har betydning for muligheden for at udnytte den geotermiske energi, er temperaturen og de vandledende egenskaber. Undergrunden skal således indeholde sandstensreservoirer af god kvalitet, dvs. med en tilstrækkelig tykkelse, temperatur og porøsitet til at der er en ressource af varmt vand til stede samt med tilstrækkelig god permeabilitet (væskegennemtrængelighed) til, at det er muligt at producere og injicere vand i henholdsvis produktionsboringen og injektionsboringen. Hvor temperaturen stiger med dybden, falder både porøsiteten og permeabiliteten generelt med dybden på grund af trykket fra de overliggende aflejringer og kemiske udfældningsprocesser, der delvist udfylder porerne. Det betyder, at det primært er dybdeintervallet m, som har den største interesse.

6 Figur 1. For at udnytte den geotermiske varme, skal man bore to dybe huller på et sted, hvor de geologiske forhold er optimale i form af porøse sandstenslag. Fra det ene hul pumpes varmt vand fra sandstenslaget op til overfladen, hvor man trækker varmen ud af vandet. Varmen overføres herefter ved hjælp af en varmeveksler til forbrugerne via fjernvarmenettet. For at sikre at trykket i sandstenslaget bevares uændret, pumpes det afkølede vand tilbage i sandstenslagene, ofte fra samme lokalitet på overfladen, men via en afbøjet injektionsboring som ender et par km fra produktionsområdet. Et geotermisk anlæg i forbindelse med et kraftvarmeværk er typisk ikke i drift om sommeren, da overskudsvarmen i denne periode er stor nok til at opfylde fjernvarmebehovet. Overskudsvarme kan derfor evt. lagres i det porøse sandstenslag som vist i figuren til venstre. Rentabel geotermisk varmeproduktion kræver desuden, at det er muligt at afsætte den producerede varme, f.eks. til et nærliggende fjernvarmenet. Endvidere forudsættes det, at det geotermiske vand holdes i et lukket kredsløb fra produktionsboringen, gennem varmeveksler, og tilbage igen gennem injektionsboringen til reservoiret. Kredsløbet skal være lukket, da vandet fra undergrunden ofte er saltholdigt, og kan - hvis salt udfældes - begrænse mulighederne for at producere vandet fra reservoiret, idet permeabiliteten reduceres. Kortlægning af ressourcen De Nationale Geologiske Undersøgelser for Danmark og Grønland (GEUS) har igennem mange år drevet forskning og rådgivning i forbindelse med vurderingen af de dybe geotermiske ressourcer i Danmark i tæt samarbejde med private firmaer og offentlige institutioner. Den første landsdækkende analyse af den dybe geotermiske ressource blev igangsat af GEUS i slutningen af halvfjerdserne /1/. Siden da har GEUS i 1998 opdateret vurderingen af ressourcen i samarbejde med DONG Energy og Energistyrelsen /2/, og senest i 2009 bistået Energistyrelsen i udarbejdelsen af en redegørelse vedrørende det geotermiske potentiale i Danmark /3/. Endvidere har GEUS bidraget til udarbejdelsen af et geotermisk atlas, der præsenterer de geotermiske ressourcer i en række EU-lande /4/ og senere bidraget til en opdatering af dette /5/.

7 GEUS' forskning og rådgivning består i dag hovedsageligt i at udvikle geologiske modeller af undergrunden, der beskriver og forudsiger, hvor der findes geologiske lag i undergrunden med varmt vand i tilstrækkelige mængder, som kan pumpes fra de underjordiske lag og op til overfladen. Kortlægningen af undergrunden er baseret på dybe boringer og seismiske undersøgelser. Ved seismiske undersøgelser sender man trykbølger ned igennem jorden. De kastes tilbage fra de geologiske lag, og ved at opsamle de reflekterede signaler kan man kortlægge dybden til undergrundens lag og tykkelsen af lagene. Tidligere brugte man dynamit til at skabe trykbølgerne, men nu bruger man på land hovedsagelig tunge køretøjer, som kan sende vibrationer ned i undergrunden, mens man til søs bruger luftkanoner som affyres under højt tryk. På baggrund af den geologiske viden er en række reservoirer med sandstenslag identificeret. Det er alle sandstenslag som tilhører formationer fra de geologiske perioder Trias, Jura og Kridt: Frederikshavn Formationen: Jura/Kridt alder, siltsten og finkornet sandsten med lag af lersten. Haldager Sand Formationen: Jura alder, fin til grovkornet sandsten med lag af silt- og lersten. Gassum Formationen: Trias/Jura alder, fin til mellemkornet sandsten og lokal grovkornet sandsten. Skagerrak Formationen: Trias alder, grov og dårlig sorteret sandsten med lag af lersten. Bunter Sandsten Formation: Trias alder, fin til mellemkornet og lokal grovkornet sandsten. I Figur 2 er vist et kort over det regionale geotermiske potentiale i Danmark baseret på GEUS' mangeårige arbejde. Kortet viser, at det er sandsynligt, at der findes potentielle sandstensreservoirer i hovedparten af landet og nærkystområderne. Desuden findes der flere områder, hvor to eller flere af de potentielle reservoirer kan have et geotermisk potentiale. Simple overslagsberegninger viser, at Danmarks undergrund har meget store geotermiske ressourcer, og at geotermisk energi vil kunne bidrage til varmeforsyningen i adskillige hundrede år. Hovedstadsområdets Geotermiske Samarbejde (HGS) offentliggjorde i begyndelsen af 2009 en ny vurdering, som viser, at de geotermiske reserver i det østlige Sjælland kan dække % af fjernvarmeproduktionen i hovedstadsområdet i flere tusind år. Eksisterende og planlagte anlæg og mulige barrierer Der er hidtil etableret 2 dybe geotermiske anlæg i Danmark. I 1984 blev der etableret et anlæg ved Thisted som har været i drift siden. En borekampagne i forbindelse med projektet viste imidlertid, at reservoirkvaliteten aftager markant med dybden, og interessen for projekter, hvor det varme vand var planlagt til at skulle hentes fra store dybder, kølnedes noget. Siden har ny teknologi betydet, at varmen fra relativt lave temperaturer kan udnyttes mere effektivt, så man ikke længere er så afhængig af meget varmt vand fra dybe, lav-porøse og lav-permeable reservoirer. I 2005 blev der således etableret endnu et anlæg ved Amagerværket i København, og senest er der udført undersøgelser for planlagte anlæg ved Sønderborg og Viborg.

8 Figur 2 Kort over Danmark som viser det regionale geotermiske potentiale for mulige sandstensrige reservoirer. Kortet er baseret på en begravelsesdybde for reservoirerne på m og på at reservoirtykkelsen er større end 25 m. De hvide områder indikerer at reservoiret ikke er til stede (Ringkøbing-Fyn Højeryggen), ligger for grundt (< 1000 m; nordligste Jylland) eller er begravet for dybt (> 3000 m; centrale del af Det Danske Bassin). Bemærk fordelingen af de dybe boringer, samt placeringen af de to geotermiske anlæg ved Thisted og på Margretheholm nær København.

9 En væsentlig barriere for udnyttelse af den store danske geotermiske ressource er de geologiske risici. Det er derfor et mål for GEUS løbende forskningsaktiviteter at reducere risiciene ved at øge vores viden om undergrundens opbygning og beskaffenhed, og derved muliggøre etablering af mere pålidelige og detaljerede geologiske prognoser. Usikkerheden i prognoserne er dels relateret til de komplicerede geologiske forhold i undergrunden, og dels til utilstrækkelige og ujævnt fordelt data, hvilket medfører, at de regionale geologiske modeller for de potentielle geotermiske reservoirer ofte er usikre, når det kommer til konkrete vurderinger af lokale geotermiske prospekter. Eksempelvis er der mange områder, hvor det nuværende datagrundlag er for mangelfuldt til, at de lokale variationer i reservoirernes udbredelse, kontinuitet, tykkelse, kvalitet og temperatur kan kortlægges og forudsiges med en stor sikkerhed og detaljeringsgrad. En præcis vurdering af det geotermiske potentiale af lokale prospekter eller byer forudsætter blandt andet, at det lokale aflejringsmiljø for reservoiret vurderes i tilstrækkelig detaljegrad og sættes i relation til den lokale indsynkningshistorie, samt at den diagenetiske udvikling af reservoiret vurderes og eventuelt undersøges på basis af tilgængelige lokale data og prøvemateriale. Seismiske data bør tolkes med henblik på vurdering af reservoirets dybde og kontinuitet samt identifikation af eventuelle forkastninger. Data fra nærliggende boringer vurderes ved hjælp af kvantitativ computer-baseret logtolkning og eventuel bassin- og reservoirmodellering. Data fra prøvepumpetest i forbindelse med den første prøveboring vil derfor give værdifulde informationer om reservoirets ydeevne. Herunder opremses kort en række barrierer for udnyttelsen af geotermisk energi i Danmark: Fossile brændstoffer er billige, effektive og meget fleksible. Generelt har vi varme nok, idet varme er et biprodukt ved el-produktionen fra olie, gas, kul eller andre brændsler, og denne varme bruges via fjernvarmenettet. Geotermisk efterforskning inklusiv nye seismiske data, 2 boringer og rådgivning koster minimum 50 mio. kr. Skitse til modning af beslutningsprocessen vedr. et områdes geotermiske potentiale Alle geotermiske prospekter er forbundet med en vis risiko; GEUS vurderer generelt, at chancen for succes ligger mellem 0 og 90 % afhængig af områdets undergrund. De indledende undersøgelser tjener formålet at indskrænke dette udfaldsrum; GEUS anbefaler derfor følgende mulige arbejdsgang for at minimere efterforskningsrisikoen og trinvis øge beslutningsgrundlaget for fortsættelse eller opgivelse: Opstilling af en foreløbig geologisk model baseret på lokale data (i den udstrækning sådanne findes) kombineret med GEUS regionale geologiske modeller. Hvis der findes ikke-frigivne seismiske eller boringsdata i eller nær lokalområdet, kan licensansøgeren overveje at søge adgang til disse data da de kan styrke sikkerheden af den geologiske model. Hvis den foreløbige geologiske model forudsiger, at der findes reservoirer med et begrænset potentiale i lokalområdet, bør en foreløbig simulering af reservoirets mulige vandproduktion foretages for at få et så præcist udtryk for den mængde af varmt vand, der kan udnyttes, som muligt.

10 Hvis det beregnede potentiale er tilstrækkeligt til geotermisk udnyttelse, vil næste trin være at indsamle en tilstrækkelig mængde nye seismiske data, så en detaljeret seismisk kortlægning af lokalområdet kan foretages, bl.a. for at sikre at prospektet ikke gennemskæres af større forkastninger. Efter tolkning og kortlægning af de nye data opstilles en ny revideret geologisk model baseret på integration af de nye og tidligere data; på denne baggrund opstilles en ny og mere sikker prognose. Hvis prognosen for den valgte lokalitet er tilfredsstillende med hensyn til tilstedeværelse af et eller flere reservoirer med gode sandstenslag med geotermisk potentiale og tilstrækkelig afstand til forkastninger m.m., vil næste trin være at opstille en egentlig boreprognose for en efterforskningsboring. I forbindelse med udførelsen af efterforskningsboringen gennemføres der grundige pumpetests i de potentielle sandstenslag for at få afklaret, om undergrunden er velegnet til geotermisk varmeproduktion. Herefter vurderes resultaterne af boringen med fokus på beskaffenheden og dybdeforholdene af undergrundens lag; resultaterne evalueres, og forventningerne til det geotermiske potentiale justeres. Hvis prøvepumpningen af boringen i de potentielle sandstenslag er positiv, kan det være med til at afklare, hvor store mængder varmt vand der kan produceres, og om et geotermisk anlæg kan etableres. De nye data integreres med de eksisterende data, og den regionale geologiske model for undergrundens opbygning opdateres baseret på de nye boringsinformationer, hvorved modellen styrkes, og sikkerheden i fremtidige vurderinger af efterforskningsrisici øges. OVERFLADENÆR GEOTERMI (JORDVARME) Hvor den dybe geotermi udnytter varmen fra jordens indre gennem oppumpning af varmt vand fra kilometer-dybe boringer, udnytter den overfladenære geotermi den oplagrede varme i de øverste jordlag baseret på en kombination af varmepumper og slanger i jorden til at optage varmen, eller varmepumper som optager varmen direkte fra oppumpet grundvand. Det hele foregår ved relativt lave temperaturer, typisk 8-11 C, og jordvarmeanlæg kan, hvis de er designet rigtigt, benyttes til både varme og køling. Ved udnyttelse af jordvarme produceres typisk 3-5 gange så meget energi som der tilføres i form af elektricitet til varmepumpen og en britisk undersøgelse /6/ viser således at CO 2 - udledningen ved opvarmning baseret på jordvarme typisk er det halve i forhold til opvarmning med f.eks. naturgasfyr. Varmepotentialet i de øverste få hundrede meter af jorden stammer primært fra solindstråling og i mindre grad fra den geotermiske varmeflux fra jordens indre, se også Figur 3. En anden essentiel forskel er at anlæg til udnyttelse af den dybe geotermiske energi typisk er af

11 en størrelse, hvor flere tusinde husstande forsynes med varme, og mest hensigtsmæssigt udnyttes i kombination med eksisterende fjernvarme-infrastruktur. I modsætning hertil er jordvarmeanlæg typisk designet til forsyning af alt fra en enkelt husstand til større enkeltbygninger/bygningskomplekser. Hvor enfamiliehusstande kun har behov for opvarmning, er det med varmepumpeteknologi muligt at dække behovet for både opvarmning og afkøling i f.eks. større kontorbygninger. Jordvarme har således et stort potentiale både i forbindelse med f.eks. skrotning af gamle oliefyr i private centralvarmeanlæg, og i forbindelse med opvarmning/afkøling af større bygninger. Figur 3. Figuren illustrer fordelingen af solindstråling og varmeflux fra jordens indre, årstidsvariationer i temperaturen i de øverste m af jorden og den generelle temperaturgradient (fra David Banks, 2008 /6/).

12 Det er relevant at skelne mellem 3 forskellige typer jordvarmeanlæg, se Figur 4: A) Lukkede systemer med horisontale slanger ca. 1 m under terræn. B) Lukkede systemer med vertikale slanger monteret i jordvarmeboringer. C) Åbne systemer med en produktionsboring og en injektionsboring. I de lukkede systemer cirkuleres en frostsikret væske i slanger. Væsken optager varme fra jorden som afgives i en varmepumpe, og den afkølede væske ledes atter gennem slangerne og optager på ny varme fra jorden. A) B) C) Figur 4...llustration af forskellige typer jordvarmeanlæg. A) Lukket system med horisontale slanger ca. 1 m under terræn. B) Lukket system med vertikale slanger i jordvarmeboringer. C) Åbent system med boringer til produktion og injektion (fra Burkhard Sanner, 2011 /7/). Anlæg med horisontale slanger kræver relativt meget areal og genetablering efter installation. De horisontale anlæg er desuden påvirket af årstidsvariationer med lave temperaturer i jorden i vinterhalvåret og høje temperaturer om sommeren, se Figur 3. De lave temperaturer om vinteren giver selvfølgelig en dårligere driftsøkonomi, men til gengæld opvarmes jordvolumet relativt hurtigt i løbet af sommeren. Anlæg med vertikale slanger installeret i jordvarmeboringer kræver stort set ingen plads og meget lidt genetablering, men kan være lidt dyrere i anlægsomkostninger. Til gengæld har de typisk en bedre udnyttelsesgrad i kraft af højere og ikke mindst konstant temperatur i jorden året igennem, Figur 4. Man skal dog være opmærksom på energibalancen i systemet,da gen-opvarmningen af jordvolumet foregår væsentligt langsommere, når man er under den dybde, som er påvirket af årstidsvariationerne (typisk m). Systemet kan optimeres ved tilførsel af varme i sommerperioden, enten i forbindelse med køling i bygninger eller f.eks. via solfangerpaneler. I større målestok har jordvarmeboringer imidlertid også et stort potentiale for lagring af energi, som produceres på tidspunkter, hvor behovet er lille, eller hvor der er overproduktion, som det typisk er tilfældet med f.eks. kraftvarmeværker i sommerperioden, vindmøller og solvarmepaneler.

13 I de åbne systemer afkøles oppumpet grundvand i varmepumpen og ledes tilbage i jorden i en injektionsboring. Der er relativt strenge krav om minimal påvirkning af de lokale hydrogeologiske forhold og temperaturer i grundvandssystemet, og der kan forekomme interessekonflikter med drikkevandsindvinding og mellem naboanlæg. Eksisterende anlæg, vigtige parametre og mulige barrierer Udnyttelse af jordvarme i Danmark har indtil nu hovedsageligt været baseret på lukkede anlæg med horisontale slanger, men lukkede anlæg med vertikale slanger i jordvarme-boringer begynder at blive mere udbredt og i f.eks. Tyskland og især Sverige er antallet af denne type anlæg meget højt. Antallet af jordvarmeanlæg baseret på åbne systemer i Danmark er relativt begrænset, og de fleste har været designet til køling. Der eksisterer ikke nogen formel registrering af jordvarmeanlæg i Danmark, men det samlede antal blev i 2008 skønnet til at være omkring /8/. Tilsvarende var der jordvarmeanlæg i Sverige i 2004, og 80 % af disse skønnedes at være lukkede systemer med vertikale slanger i boringer /9/. Jordens termiske egenskaber har betydning for, hvor meget energi der kan indvindes i et lukket vertikalt jordvarmesystem. Det drejer sig om parametre som varmeledningsevne, termisk diffusivitet, specifik varmekapacitet, varmestrøm, temperaturgradient og overfladetemperatur m.m. Desuden har det betydning, hvilke materialer der er brugt til slanger og forsegling. Udover jordlag og materialers termiske egenskaber, betyder flowhastigheden og viskositeten af væsken i jordkredsløbet også noget for, hvor megen varme der optages i slangerne. Varmeledningsevnen i de øvre jordlag er generelt bedre under grundvandsspejlet end over, fordi vandet i jorden forbedrer kontakten mellem de enkelte korn (luft har en meget ringe varmeledningsevne). Herudover kan interaktion med det omgivende grundvandssystem være både en fordel og en ulempe i forbindelse med lukkede systemer i jordvarmeboringer. Generelt vil grundvandsstrømning i et område have en positiv effekt, hvis jordvarmeboringer anvendes udelukkende til enten opvarmning eller afkøling, fordi der tilføres energi fra andre områder til det aktuelle jordvolumen. Tilsvarende vil grundvandsstrømning generelt have en negativ effekt ved alternerende drift (opvarmning om vinteren og afkøling om sommeren) eller ved lagring af overskudsvarme, fordi grundvandsstrømningen i et vist omfang vil fjerne den tilførte energi fra jordvolumet. Selvom vore nabolande har stor erfaring i etablering af vertikale lukkede systemer, mangler vi i høj grad viden om og erfaring med denne type anlæg under danske geologiske forhold. I Sverige etableres næsten alle jordvarmeboringer i krystallint grundfjeld, som er nemmere at bore i og har markant bedre varmeledningsegenskaber end bløde sedimenter. I den tyske VDI norm for termisk udnyttelse af undergrunden findes der eksempler på forskellige jord- og bjergarters varmeledningsevne og varmekapacitet, men det er kun i Nordtyskland, at de overfladenære geologiske forhold er sammenlignelige med vores, og vi mangler både undersøgelser og viden om danske jordarters termiske egenskaber. Samtidig er der behov for mere viden om design af anlæg i forhold til energibehov og en effektiv og stabil drift med balance i energiudnyttelsen. Energistyrelsen har i en undersøgelse i 2010 /10/ identificeret en række barrierer for udbredelsen af jordvarmeanlæg i Danmark:

14 Tilbagebetalingstiden på etablering af anlæg Manglende gennemsigtighed i markedet Generel mangel på viden og erfaring Manglende uddannelse af designere og installatører Nyt forsknings- og udviklingsprojekt Et nyt forsknings- og udviklingsprojekt sætter fra 1. marts 2011 og 3 år frem fokus på jordvarmeboringer. Projektets titel er GeoEnergi, Energianlæg baseret på jordvarmeboringer - udvikling af markedsfremmende værktøjer og best practice. Formålet med projektet er at bane vejen for større udbredelse af varmepumpesystemer baseret på jordvarmeboringer gennem tilvejebringelse af viden, værktøjer og best practice for planlægning og design af installationer. Projektets aktiviteter er struktureret i 8 work packages og omfatter: Indsamling og analyse af eksisterende information og erfaring samt identifikation af nøgleparametre for planlægning, design og installation af varmepumpesystemer baseret på jordvarmeboringer. Et omfattende kortlægnings- og måleprogram af overfladetemperaturer, temperaturgradienter og termiske egenskaber af forskellige jordarter og materialer. Optimering af systemdesign i forhold til miljø og økonomi, baseret på eksisterende installationer og test sites, inklusiv borearbejde og udstøbning af boringer, automatisering af systemer, analyser af energibalance, energilagring (opvarmning og afkøling) samt modellering af varme- og grundvandsstrømning. Opbygning af en database med resultater fra indsamling af eksisterende informationer, måleprogrammer og kortlægningsarbejde. Oplysnings- og informationsaktiviteter, inklusiv brugerflade til database, kursusmateriale til uddannelse og efteruddannelse, workshops og seminarer, tekniske vejledninger og forslag til udbygning af administrationsgrundlag. Projektet støttes af Energistyrelsens Energiteknologisk Udviklings- og Demonstrationsprogram (EUDP), ledes af GEUS og udføres sammen med 8 partnere: VIA University College, Horsens; Geologisk Institut, Aarhus Universitet; Den Jydske Håndværkerskole; Dansk Miljøog Energistyring A/S; Geodrilling A/S; Brædstrup Fjernvarme AMBA; DONG Energy Power A/S; Robert Bosch A/S, IVT Naturvarme. KONKLUSION Den danske undergrund har et stort potentiale som geotermisk ressource til såvel opvarmning som køleformål. For både dyb geotermi og jordvarme er der tale om vedvarende energikilder, som kan bidrage væsentligt til den globale klimaudfordring. For den dybe geotermi er det helt essentielt at minimere den geologiske og økonomiske risiko gennem grundige forundersøgelser. For jordvarme mangler vi stadig viden og praktisk erfaring for at kunne udnytte ressourcen optimalt, ligesom der kan være områder, hvor en vedtagen varmeplan eller lokalplan spænder ben for etablering af f.eks. jordvarmeboringer.

15 En øget elproduktion fra vindkraft vil give plads til både mere dyb geotermi og jordvarme i forhold til den eksisterende overskudsproduktion af varme på kraftvarmeværkerne, ligesom jordvarmeboringer kan benyttes som energilager i kombination med både solfangeranlæg og overskudsvarmen fra kraftværkerne i sommerperioden. Med den stærkt øgede fokus på klima- og energiområdet tyder meget på, at vi i Danmark vil kunne nå op på, at en væsentlig del af vores energi til opvarmning (og afkøling) kommer fra jorden, og aktiviteten bliver næppe mindre nu, hvor Regeringen har vedtaget, at private oliefyr skal udfases allerede fra næste år. REFERENCER /1/ Kortlægning af potentielle geotermiske reservoirer i Danmark. Michelsen, O., Danmarks Geologiske Undersøgelse Serie B Nr. 5. /2/ Geotermi i Danmark: Geologi og ressourcer. Sørensen, K., Nielsen, L.H., Mathiesen, A. & Springer, N., 1998: GEUS Rapport 1998/123. /3/ Vurdering af det geotermiske potentiale i Danmark. Mathiesen, A., Kristensen, L., Bidstrup, T. & Nielsen, L.H., GEUS Rapport 2009/59. /4/ Atlas of Geothermal Resources in the European Community, Austria and Switzerland. Haenel, R. & Staroste, E. (eds), Verlag Th Schäfer, Hannover Germany. /5/ Atlas of Geothermal Resources in Europe. Publication No. EUR Hurter, S. & Haenel, R. (eds), Office for Oficial Publications of the European Communities, Luxemburg. /6/ An Introduction to Thermogeology: Ground Source Heating and Cooling. Banks, D., Blackwell, Oxford. /7/ Overview of shallow geothermal systems. In: Geotrainet training manual for designers of shallow geothermal systems. ISBN No Sanner, B., Geotrainet Project IEE/07/581/SI /8/ Jordvarmeanlæg Teknologier og risiko for jord- og grundvandsforurening. Miljøprojekt Nr.1238 udarbejdet af COWI, Willumsen, B., Miljøstyrelsen. /9/ Geothermal (Ground-Source) Heat Pumps. A world overview. Lund, J., Sanner, B., Rybach, L., Curtis, R. & Hellström, G., GHC Bulletin. /10/ Varmepumper i helårshuse. Barrierer og erfaringer blandt danske husejere. Analyse udarbejdet for Energistyrelsen af Publikum Kommunikation og invirke. ISBN www: , Energistyrelsen.

16

17 INTRODUKTION TIL JORDVARME OG VARMEPUMPENS VELSIGNELSER Geolog Inga Sørensen, VIA University College Horsens Undergrunden som termisk ressource Møde 25. maj 2011

18

19 RESUMÉ Artiklen beskriver de tre lukkede kredsløb, der indgår i et jordvarmeanlæg. Det er huskredsløbet, varmepumpens kredsløb samt kredsløbet fra jord til varmepumpe. Fokus er varmepumpen og design af systemet og i den forbindelse de forskellige typer energi, der kan bruges som input til varmepumpen. Den historiske udvikling af jordvarmeanlæg i Danmark beskrives kort, og der vises et eksempel på et ældre anlæg hvor lagring af solvarme er en integreret del af systemet. Til slut beskrives nogle af de udfordringer og muligheder, vi står overfor, når - ikke hvis varmepumper og jordvarme for alvor skal med i feltet af vedvarende energikilder. INGEN JORDVARME UDEN VARMEPUMPE Varmepumpen er en forudsætning for at udnytte jordvarmen. Derfor er der grund til at se nærmere på de elementer, der indgår i varmepumpen og hvordan de virker sammen om at producere energi til opvarmning og varmt brugsvand. Grundlæggende består varmepumpen af et lukket kredsløb med to varmevekslere, hvoraf den ene sørger for at hente varme ud af et materiale, der afkøles, og den anden varmeveksler sørger for at aflevere varmen til den bolig, der skal varmes op. Udover de to varmevekslere består varmepumpen også af en kompressor og en ekspansionsventil, der er forbundet med de to varmevekslere i et kredsløb vist i forenklet form på skitsen figur 1. Her er også vist det huskredsløb, hvor varmen afleveres. Relativ varme fra jord. luft eller vand. Iskold brine retur fra varmepumpen til j d l ft ll d Figur 1. Varmepumpens kredsløb med de to varmevekslere til huskredsløb og jordkredsløb.

20 Væsken, der cirkulerer i varmepumpens lukkede kredsløb, har et meget lavt kogepunkt, således at den bliver til en iskold luft, når den passerer ekspansionsventilen (her vist i bunden af varmepumpen). Via varmeveksleren er den iskolde luft i stand til at trække varme ud af det medium, der passerer varmeveksleren. Herved bliver den iskolde luft til opvarmet luft. Når den opvarmede luft dernæst passerer kompressoren bliver den presset så hårdt sammen, at den fortættes til en varm væske, der så kan afgive varme til huskredsløbet via varmeveksler nr. 2. Huskredsløbet kan bestå af gulvarme eller radiatorer eller en kombination af de to. Udover varmepumpens kredsløb og kredsløbet i husets varmerør hører der ved jordvarme også et tredje kredsløb med til systemet, nemlig det lukkede kredsløb, der finder sted i nedgravede slanger (i de horisontale anlæg) eller i rør nedstøbt i et borehul (ved de lodrette anlæg), se figur 2. Her består den cirkulerede væske af vand tilsat et kølemiddel, så den kan tåle at møde den iskolde varmeveksler i varmepumpen uden at størkne til is. Figur 2. Jordkredsløbet vist sammen med varmepumpe og huskredsløb. Om sommeren kan der f.eks tilføres varme til jorden fra solfangere eller kølepaneler opsat i huset. Væsken (brinen) i jordkredsløbet har til opgave at transportere jordens stabile varme ind til varmepumpen. Her spiller brinens varmefylde en rolle jo højere varmefylde jo mere varme kan den transportere per liter flow. Normalt består jordkredsens væske af vand blandet med sprit, for at gøre den frostsikker typisk 1 del IPA-sprit og to dele vand. Varmefylden af denne blanding kan udregnes til ca kj/m 3 K (kilo Joule per 1000 liter for hver grad temperaturen ændres). Til sammenligning er varmefylden af ren vand ca kj/m 3 K, så egentlig kunne det være fornuftigt at bruge ren vand i jordkredsløbet. I så tilfælde skulle varmepumpens kredsløb imidlertid programmeres til ikke at komme under nul grader i varmeveksleren ud mod jordkredsløbet for at forhindre brinen i at fryse til is. Ved at bruge frostvæske i jordkredsløbet kan man således til stadighed oprette et flow selv ved minusgrader men til gengæld vil jorden omkring jordslanger og rør i boringer fryse til is.

INTRODUKTION TIL JORDVARME OG VARMEPUMPENS VELSIGNELSER

INTRODUKTION TIL JORDVARME OG VARMEPUMPENS VELSIGNELSER INTRODUKTION TIL JORDVARME OG VARMEPUMPENS VELSIGNELSER Geolog Inga Sørensen, VIA University College Horsens Undergrunden som termisk ressource Møde 25. maj 2011 RESUMÉ Artiklen beskriver de tre lukkede

Læs mere

UNDERGRUNDEN SOM GEOTERMISK RESSOURCE

UNDERGRUNDEN SOM GEOTERMISK RESSOURCE UNDERGRUNDEN SOM GEOTERMISK RESSOURCE Specialkonsulent Thomas Vangkilde-Pedersen Seniorrådgiver, geolog Anders Mathiesen Statsgeolog Lars Henrik Nielsen De Nationale Geologiske Undersøgelser for Danmark

Læs mere

JORDEN SOM VARMEKILDE D

JORDEN SOM VARMEKILDE D JORDEN SOM VARMEKILDE D anmarks undergrund indeholder meget store geotermiske ressourcer i form af både dyb geotermi og overfladenær geotermi eller jordvarme. Ved dyb geotermi udnyttes meget varmt vand

Læs mere

Miljøpåvirkninger og administration af varme- og køleanlæg med jord og grundvand som energikilde

Miljøpåvirkninger og administration af varme- og køleanlæg med jord og grundvand som energikilde Miljøpåvirkninger og administration af varme- og køleanlæg med jord og grundvand som energikilde Bente Villumsen 1 Tre anlægstyper A. Lukket system med horisontale slanger, 0,6-1 m under terræn B. Lukket

Læs mere

Design af jordvarmeanlæg med og uden lagring

Design af jordvarmeanlæg med og uden lagring Gør tanke til handling VIA University College Design af jordvarmeanlæg med og uden lagring Inga Sørensen, Senior lektor, geolog VIA Byggeri, Energi & Miljø Center for forskning & udvikling Udnyttelse af

Læs mere

Energianlæg baseret på jordvarmeboringer - udvikling af markedsfremmende værktøjer og best practice

Energianlæg baseret på jordvarmeboringer - udvikling af markedsfremmende værktøjer og best practice Energianlæg baseret på jordvarmeboringer - udvikling af markedsfremmende værktøjer og best practice Resume Projektets formål er at tilvejebringe og formidle viden og værktøjer som kan bane vejen for en

Læs mere

Jordvarmeboringer - fremtidens energikilde? Lotte Thøgersen VIA University College

Jordvarmeboringer - fremtidens energikilde? Lotte Thøgersen VIA University College Jordvarmeboringer - fremtidens energikilde? Lotte Thøgersen VIA University College 1 De fossile brændsler forsvinder De fossile brændstoffer kul, olie og naturgas er en trussel mod klimaet men mængden

Læs mere

Fremtidens fjernvarme

Fremtidens fjernvarme Klima-, Energi- og Bygningsudvalget 2014-15 KEB Alm.del Bilag 89 Offentligt Fremtidens fjernvarme Et koncept for et skalérbart fjernvarmenet, der ved hjælp af lodrette jordvarmeboringer og varmepumper,

Læs mere

Jordvarmeboringer - problemstillinger og perspektiver

Jordvarmeboringer - problemstillinger og perspektiver Artikel i Jordvarmeboringer - problemstillinger og perspektiver I mange år er behovet for opvarmning af huse i Danmark blevet klaret ved hjælp af jordens ressourcer af kul, olie og naturgas. Efterhånden

Læs mere

Husejerens overvejelser ved valg af. jordvarmeboringer

Husejerens overvejelser ved valg af. jordvarmeboringer Gør tanke til handling VIA University College Husejerens overvejelser ved valg af lukkede jordvarmeboringer Inga Sørensen, Senior lekt or, geolog VIA Byggeri, Energi & Miljø Center for forskning & udvikling

Læs mere

Energianlæg baseret på jordvarmeboringer - udvikling af markedsfremmende værktøjer og best practice

Energianlæg baseret på jordvarmeboringer - udvikling af markedsfremmende værktøjer og best practice Energianlæg baseret på jordvarmeboringer - udvikling af markedsfremmende værktøjer og best practice Følgegruppemøde 19-03-2012, GEUS, Århus De Nationale Geologiske Undersøgelser for Danmark og Grønland

Læs mere

LAVE VARMEUDGIFTER MED BEHOVSSTYREDE JORD VARMEPUMPER

LAVE VARMEUDGIFTER MED BEHOVSSTYREDE JORD VARMEPUMPER LAVE VARMEUDGIFTER MED BEHOVSSTYREDE JORD VARMEPUMPER JORDEN GEMMER SOLENS VARME OG VARMEN UDNYTTES MED JORDVARME Når solen skinner om sommeren optages der varme i jorden. Jorden optager ca. halvdelen

Læs mere

Skal vi satse på geotermisk varme? Med udsigt til at skaffe varme til den halve pris og en mere bæredygtig varmeproduktion

Skal vi satse på geotermisk varme? Med udsigt til at skaffe varme til den halve pris og en mere bæredygtig varmeproduktion Skal vi satse på geotermisk varme? Med udsigt til at skaffe varme til den halve pris og en mere bæredygtig varmeproduktion Giv din mening til kende på Tønder Fjernvarmes generalforsamling den 7. september

Læs mere

Eksempler og anbefalinger vedr. design

Eksempler og anbefalinger vedr. design Gør tanke til handling VIA University College Eksempler og anbefalinger vedr. design Inga Sørensen, Senior lekt or, geolog VIA Byggeri, Energi & Miljø Center for forskning & udvikling Lukkede jordvarmeboringer

Læs mere

GeoEnergi projektet opgaver der berører sagsbehandlingen

GeoEnergi projektet opgaver der berører sagsbehandlingen GeoEnergi projektet opgaver der berører sagsbehandlingen Disposition Introduktion til projektet Status for etablering af jordvarmeboringer i Danmark Geologi og jordvarmeboringer Hvordan kan en jordvarmeboring

Læs mere

LAVE VARMEUDGIFTER MED BEHOVSSTYREDE LUFT/VAND VARMEPUMPER

LAVE VARMEUDGIFTER MED BEHOVSSTYREDE LUFT/VAND VARMEPUMPER LAVE VARMEUDGIFTER MED BEHOVSSTYREDE LUFT/VAND VARMEPUMPER UDE LUFTEN INDE- HOLDER ALTID VARME OG VARMEN KAN UDNYTTES MED VARMEPUMPE Luften omkring os indeholder energi fra solen dette er også tilfældet

Læs mere

LAVE VARMEUDGIFTER MED WELLMORE LUFT/VAND VARMEPUMPER

LAVE VARMEUDGIFTER MED WELLMORE LUFT/VAND VARMEPUMPER LAVE VARMEUDGIFTER MED WELLMORE LUFT/VAND VARMEPUMPER UDE LUFTEN INDE- HOLDER ALTID VARME OG VARMEN KAN UDNYTTES MED VARMEPUMPE Luften omkring os indeholder energi fra solen dette er også tilfældet selv

Læs mere

REGEOCITIES Workshop Rapport om status for overfladenær geotermi i Danmark. Thomas Vangkilde-Pedersen Aarhus 09-04-2013

REGEOCITIES Workshop Rapport om status for overfladenær geotermi i Danmark. Thomas Vangkilde-Pedersen Aarhus 09-04-2013 REGEOCITIES Workshop Rapport om status for overfladenær geotermi i Danmark Thomas Vangkilde-Pedersen GEUS Aarhus 09-04-2013 Definition af overfladenær geotermi Geotermi forbindes normalt med dybe anlæg:

Læs mere

Geotermi på Sjælland: muligheder og barrierer

Geotermi på Sjælland: muligheder og barrierer Geotermi på Sjælland: muligheder og barrierer Paul Thorn Niels Schrøder Ole Stecher Institut for Miljø, Samfund og Rumlig Forandring Roskilde Universitet Boks 260 4000 Roskilde pthorn@ruc.dk Introduktion:

Læs mere

Introduktion til lukkede jordvarmeboringer

Introduktion til lukkede jordvarmeboringer Introduktion til lukkede jordvarmeboringer Virkemåde Udbredelse Geologi Risiko Krav Tilsyn Claus Ditlefsen Temadag om jordvarmeboringer 25-06-2015 Udfordring For at imødegå global opvarmning og stigende

Læs mere

Geotermisk energi Energien under vores fødder NOAHs Forlag

Geotermisk energi Energien under vores fødder NOAHs Forlag Geotermisk energi Energien under vores fødder Vores undergrund rummer energi nok til at dække en stor del af vores opvarmningsbehov. Men hidtil har denne energikilde ligget næsten ubenyttet hen. På trods

Læs mere

4000 C magma. Fjernvarme fra geotermianlæg

4000 C magma. Fjernvarme fra geotermianlæg Fjernvarme fra geotermianlæg Geotermianlæg producerer varme fra jordens indre ved at pumpe varmt vand op fra undergrunden og overføre varmen til fjernvarmenet med varmevekslere og varmepumper. Vind og

Læs mere

Jordvarme VV DC. - endnu lavere energiforbrug

Jordvarme VV DC. - endnu lavere energiforbrug Jordvarme VV DC - endnu lavere energiforbrug Vælg en unik varmepumpe Mulighed for tilslutning af solfanger Mulighed for tilslutning af energifanger Varmt vand Gulvvarme / radiator Jordslanger eller Energibrønd

Læs mere

Arbejder med energi, funderet I jordvarmeboringer. Eksterne partnere I form af virksomheder og myndigheder Andre VIA afdelinger Studerende

Arbejder med energi, funderet I jordvarmeboringer. Eksterne partnere I form af virksomheder og myndigheder Andre VIA afdelinger Studerende Breakfast Club lyn-introduktion til Energi-gruppen Hvem er vi? 1 chef 3 undervisere (og endnu en undervejs) 1 projektmedarbejder 1 Erhvervs-PhD studerende Lidt løs hjælp I form af tidligere og nuværende

Læs mere

Garneriet Hjortebjerg på vej mod at blive energiproducent.

Garneriet Hjortebjerg på vej mod at blive energiproducent. Garneriet Hjortebjerg på vej mod at blive energiproducent. Stig Niemi Sørensen Enopsol ApS Tuborg Boulevard 12, 3 2900 Hellerup INDLEDNING Gartneriet Hjortebjerg tager som det første gartneri i Danmark

Læs mere

Notat vedr. etablering af jordvarme på Ferren i Blokhus

Notat vedr. etablering af jordvarme på Ferren i Blokhus Notat vedr. etablering af jordvarme på Ferren i Blokhus Typer af jordvarme: Der findes helt overordnet to forskellige typer af anlæg til indvinding af jordvarme horisontale og vertikale anlæg. Betegnelserne

Læs mere

Temadag 1. februar 2012

Temadag 1. februar 2012 Temadag 1. februar 2012 Energianlæg - en trussel for grundvandet? 05-02-2012 1 Karsten Juul Geolog Siden 1991: Vandforsyning Siden 1997: Grundvandskortlægning Siden 2008: Energianlæg baseret på grundvand

Læs mere

Landsbyvarme med ATES.

Landsbyvarme med ATES. Landsbyvarme med ATES. Civilingeniør Stig Niemi Sørensen www.enopsol.dk Indledning Det er i dag muligt at producere helt fossil- og CO 2-fri varme til de danske landsbyer og vel at mærke til konkurrencedygtige

Læs mere

Udnyttelse af lavtemperatur varmekilder i fjernvarmem

Udnyttelse af lavtemperatur varmekilder i fjernvarmem Fjernvarmeindustriens Årsmøde 2014 11.09.2014 Udnyttelse af lavtemperatur varmekilder i fjernvarmem Stig Niemi Sørensen Enopsol ApS Indhold Udfordringerne Konklusioner ATES funktionsprincip Varmepumpe

Læs mere

Grundvandskøling og ATES state of the art i Danmark.

Grundvandskøling og ATES state of the art i Danmark. Grundvandskøling og ATES state of the art i Danmark. Stig Niemi Sørensen Enopsol ApS Tuborg Boulevard 12, 3 2900 Hellerup INDLEDNING Med ibrugtagningen af Widex A/S nye domicilbygning i Vassingerød skrives

Læs mere

HGS. Geotermisk Demonstrationsanlæg. Varmepumpebygning. Geotermivandskreds med boringer. Varmepumpe bygning. Kastrup Luftfoto

HGS. Geotermisk Demonstrationsanlæg. Varmepumpebygning. Geotermivandskreds med boringer. Varmepumpe bygning. Kastrup Luftfoto HGS Geotermisk Demonstrationsanlæg Geotermivandskreds med boringer Geotermivandskreds med boringer Varmepumpebygning Varmepumpe bygning Kastrup Luftfoto HGS - Princip for geotermisk indvinding Drivvarme

Læs mere

Varmepumper i fjernvarmen

Varmepumper i fjernvarmen Varmepumper i fjernvarmen Niels From, PlanEnergi Varmepumper i fjernvarmen Energipolitisk Konference København, den 4. september 2014 Niels From 1 Hvorfor skal vi omstille til VE? Forsyningssikkerhed /

Læs mere

Jordvarmeprojektet. ATV Jord og grundvand Gå-hjem-møde 27. maj 2008. Bente Villumsen. Civilingeniør, seniorprojektleder BEVI@COWI.

Jordvarmeprojektet. ATV Jord og grundvand Gå-hjem-møde 27. maj 2008. Bente Villumsen. Civilingeniør, seniorprojektleder BEVI@COWI. Jordvarmeprojektet ATV Jord og grundvand Gå-hjem-møde 27. maj 2008 Bente Villumsen Civilingeniør, seniorprojektleder BEVI@COWI.DK 1 Resultater Vi ved ikke, hvor mange jordvarmeanlæg der er. Vi tror der

Læs mere

Jordvarmeanlæg og forureningsrisiko A & B boringer, lodrette & vandrette anlæg. Civilingeniør Bente Villumsen, COWI

Jordvarmeanlæg og forureningsrisiko A & B boringer, lodrette & vandrette anlæg. Civilingeniør Bente Villumsen, COWI Jordvarmeanlæg og forureningsrisiko A & B boringer, lodrette & vandrette anlæg Civilingeniør Bente Villumsen, COWI FVD Tema lørdag den 6. september 2008 Rådhuset, Roskilde 1 Jordvarme - emner Teknik: Hvad

Læs mere

Opvarmning med naturlig varme

Opvarmning med naturlig varme VARMEPUMPER Opvarmning med naturlig varme www.hstarm.dk Kom i kredsløb med jorden Jorden omkring din bolig gemmer på masser af energi. Faktisk skal du ikke længere end 1 til 1,5 meter ned under overfladen

Læs mere

Ta hånd om varmeforbruget - spar 55%

Ta hånd om varmeforbruget - spar 55% MAKING MODERN LIVING POSSIBLE Ta hånd om varmeforbruget - spar 55% Investeringen i en Danfoss varmepumpe er typisk tilbagebetalt på kun 4-8 år Fordele ved at købe en jordvarmepumpe: Dækker dit totale varmebehov

Læs mere

God Energirådgivning Modul M5 : Varmepumper

God Energirådgivning Modul M5 : Varmepumper God Energirådgivning Modul M5 : Varmepumper Svend Pedersen Center for Køle- og Varmepumpeteknik God energirådgivning - Varmepumper 1 Indhold Hvilke typer varmepumper findes der I hvilke situationer er

Læs mere

Energianlæg baseret på jordvarmeboringer - udvikling af markedsfremmende værktøjer og best practice

Energianlæg baseret på jordvarmeboringer - udvikling af markedsfremmende værktøjer og best practice Energianlæg baseret på jordvarmeboringer - udvikling af markedsfremmende værktøjer og best practice Energiteknologisk Udviklings- og Demonstrations Program (EUDP) Område: Energieffektivisering Program:

Læs mere

25% energi tilføres og 75% energi tilvejebringes - en god opskrift for miljø og samfund! Men den kan blive endnu bedre!

25% energi tilføres og 75% energi tilvejebringes - en god opskrift for miljø og samfund! Men den kan blive endnu bedre! Varmepumper Danfoss Heat Pumps VP Claus Bo Jacobsen Vind til Varme og Transport København, 22. oktober 2009 25% energi tilføres og 75% energi tilvejebringes - en god opskrift for miljø og samfund! Men

Læs mere

2 VIDENSDELING AKTIVITETER I 2012/2013. Møder, seminarer, kurser og konferencer

2 VIDENSDELING AKTIVITETER I 2012/2013. Møder, seminarer, kurser og konferencer 2 VIDENSDELING AKTIVITETER I 2012/2013 2.1 Møder, seminarer, kurser og konferencer I det andet år af GeoEnergi projektet blev der afholdt en række møder og seminarer om jordvarmeboringer i regi af projektet,

Læs mere

Jordvarme DANSK VARMEPUMPE INDUSTRI A/S. vedvarende energi - fra naturen. Billede udlånt af KFS-boligbyg

Jordvarme DANSK VARMEPUMPE INDUSTRI A/S. vedvarende energi - fra naturen. Billede udlånt af KFS-boligbyg Billede udlånt af KFS-boligbyg Jordvarme vedvarende energi - fra naturen DANSK VARMEPUMPE INDUSTRI A/S Derfor bør du vælge en DVI energi varmepumpe DVI energi er blandt de få som har fremstillet varmepumper

Læs mere

Tilladelse til jordvarmeanlæg på Halfdansvej 29, 5700 Svendborg

Tilladelse til jordvarmeanlæg på Halfdansvej 29, 5700 Svendborg Erik Jensen Rosengårdsvej 29 5230 Odense M Kultur, Erhverv og Udvikling Natur og Klima Svendborgvej 135 5762 Vester Skerninge Tlf. 6223 3000 Fax 6222 8810 keu@svendborg.dk www.svendborg.dk Tilladelse til

Læs mere

Grontmij Grundvandskøling

Grontmij Grundvandskøling Copyright 2012 2014 Grontmij A/S CVR 48233511 Grontmij Grundvandskøling Fordele, udfordringer og økonomi 1 Pia Rasmussen Energiingeniør og projektleder Københavns Lufthavn Ajour / CoolEnergy 27. november

Læs mere

Idékatalog for vedvarende energi

Idékatalog for vedvarende energi Idékatalog for vedvarende energi Et samlet overblik Vi skal alle sammen være med til at opnå regeringens mål om at al rumopvarmning skal være fossilfri i 2035. For større etageboligområder findes der

Læs mere

luft/vand varmepumpe vedvarende energi - fra naturen dansk varmepumpe InduStrI a/s

luft/vand varmepumpe vedvarende energi - fra naturen dansk varmepumpe InduStrI a/s luft/vand varmepumpe vedvarende energi - fra naturen dansk varmepumpe InduStrI a/s Derfor bør du vælge en DVI energi varmepumpe DVI energi er blandt de få som har fremstillet Alle komponenter er fabriksmonteret

Læs mere

VVM-screening af jordvarmeanlæg med dyb boring på Garderhøjvej 3, 2820 Gentofte

VVM-screening af jordvarmeanlæg med dyb boring på Garderhøjvej 3, 2820 Gentofte VVM-screening af jordvarmeanlæg med dyb boring på Garderhøjvej 3, 2820 Gentofte VVM Myndighed Basis oplysninger Projekt beskrivelse jf. anmeldelsen: Gentofte Kommune Tekst Ansøgning om udførelse af vertikal

Læs mere

Varmepumper. Varmepumper. fremtidens miljøvenlige varmekilde

Varmepumper. Varmepumper. fremtidens miljøvenlige varmekilde Varmepumper Varmepumper fremtidens miljøvenlige varmekilde 2 Udnyt den gratis energi i naturen Moderne, højeffektive varmepumper er fremtidens miljøvenlige varmekilde i boligen. Med et minimalt forbrug

Læs mere

Notat om den fremtidige el-, gas- og fjernvarmeforsyning

Notat om den fremtidige el-, gas- og fjernvarmeforsyning Notat om den fremtidige el-, gas- og fjernvarmeforsyning Anders Michael Odgaard Nordjylland Tel. +45 9682 0407 Mobil +45 2094 3525 amo@planenergi.dk Vedrørende Til brug for udarbejdelse af Energiperspektivplan

Læs mere

Solvarme. Solvarme. Miljøvenlig, vedvarende energi til din bolig

Solvarme. Solvarme. Miljøvenlig, vedvarende energi til din bolig Solvarme Solvarme Miljøvenlig, vedvarende energi til din bolig 2 Solvarme Naturens egen varmekilde Et godt supplement til en bæredygtig energiløsning Hvis ikke der skal ske uoprettelige skader på verdens

Læs mere

Grundvandskøling. Fordele, udfordringer og økonomi. Pia Rasmussen Energiingeniør og projektleder. Ajour / CoolEnergy 27. november 2014 CVR 48233511

Grundvandskøling. Fordele, udfordringer og økonomi. Pia Rasmussen Energiingeniør og projektleder. Ajour / CoolEnergy 27. november 2014 CVR 48233511 Copyright Copyright 2012 Grontmij Grontmij A/S A/S CVR 48233511 Grundvandskøling Fordele, udfordringer og økonomi 1 Pia Rasmussen Energiingeniør og projektleder Ajour / CoolEnergy 27. november 2014 Agenda

Læs mere

God Energirådgivning Modul M5 : Varmepumper

God Energirådgivning Modul M5 : Varmepumper God Energirådgivning Modul M5 : Varmepumper Svend Pedersen Center for Køle- og Varmepumpeteknik God energirådgivning - Varmepumper 1 Splitunits udedel Installation af udedel Står den rigtigt Er der god

Læs mere

Energiproduktion og energiforbrug

Energiproduktion og energiforbrug OPGAVEEKSEMPEL Energiproduktion og energiforbrug Indledning I denne opgave vil du komme til at lære noget om Danmarks energiproduktion samt beregne hvordan brændslerne der anvendes på de store kraftværker

Læs mere

Hvorfor lagre varme der er varme i undergrunden

Hvorfor lagre varme der er varme i undergrunden Allan Mahler am@geotermi.dk Specialist og tekniksansvarlig Præsentation ved kursus i Ingeniørforeningen: Varmeproduktion og varmelagring ved geotermi, 30-31 januar 2012 Gengivelse er tilladt med kildeangivelse:

Læs mere

Geotermi - varme fra jordens indre. Status og muligheder i Danmark

Geotermi - varme fra jordens indre. Status og muligheder i Danmark Geotermi - varme fra jordens indre Status og muligheder i Danmark Oktober 2009 Geotermi varme fra jordens indre Status og muligheder i Danmark Oktober 2009 Denne redegørelse om status og muligheder for

Læs mere

FLYDENDE VAND- OG WELLNESSHUS I BAGENKOP

FLYDENDE VAND- OG WELLNESSHUS I BAGENKOP FLYDENDE VAND- OG WELLNESSHUS I BAGENKOP WELLNESSHUSET Placering og design med unikke muligheder og udfordringer. Vind- og bølgeenergi Erfaringer. Solceller og solvarme Nye regler og muligheder Solafskærmning

Læs mere

Hvordan skaffes relevante hydrogeologiske data til sagsbehandling

Hvordan skaffes relevante hydrogeologiske data til sagsbehandling Hvordan virker jordvarmeboringer og hvordan kan de påvirke hydrologi og grundvandskvalitet Hvordan skaffes relevante hydrogeologiske data til sagsbehandling Disposition Lidt om GEUS Introduktion til projekt

Læs mere

Til privatforbruger / villaejer. Bosch varmepumper Miljørigtig varmeenergi til enfamilieshuse og dobbelthuse

Til privatforbruger / villaejer. Bosch varmepumper Miljørigtig varmeenergi til enfamilieshuse og dobbelthuse Til privatforbruger / villaejer Bosch varmepumper Miljørigtig varmeenergi til enfamilieshuse og dobbelthuse Varme fra luften og jorden 365 dage om året I mere end 100 år har Bosch navnet stået for førsteklasses

Læs mere

Energy Services. Grøn varme til fast pris

Energy Services. Grøn varme til fast pris Energy Services Grøn varme til fast pris Indhold Indhold 2 Introduktion 3 Energy Services 4 Varmepumpens teknologi 8 Kunde hos Energy Services 10 Økonomi 12 Klargøring til installation 14 Bliv kunde 16

Læs mere

NYVURDERING AF GEOTERMISK ENERGI Har geotermien en fremtid i Danmark?

NYVURDERING AF GEOTERMISK ENERGI Har geotermien en fremtid i Danmark? NYVURDERING AF GEOTERMISK ENERGI Har geotermien en fremtid i Danmark? Kai Sørensen, Anders Mathiesen, Ole V. Vejbæk og Niels Springer Temperaturen stiger med ca 30º C pr. km ned gennem den danske undergrund.

Læs mere

Varmepumper til industri og fjernvarme

Varmepumper til industri og fjernvarme compheat Varmepumper til industri og fjernvarme Grøn strøm giver lavere varmepriser Generel information compheat compheat dækker over en stor platform med varmepumper til mange forskellige formål og Advansor

Læs mere

Varmepumpe - med tilskud

Varmepumpe - med tilskud Varmepumpe - med tilskud Foto: Istock-Photo For rigtig mange boligejere kan det godt betale sig at skifte opvarmningsform. Med en varmepumpe kan du barbare op mod 20.000 kr. af din varmeregning om året.

Læs mere

TEKNOLOGISKE UDFORDRINGER FOR MINDRE OPERATØRER. Kate Wieck-Hansen

TEKNOLOGISKE UDFORDRINGER FOR MINDRE OPERATØRER. Kate Wieck-Hansen TEKNOLOGISKE UDFORDRINGER FOR MINDRE OPERATØRER Kate Wieck-Hansen OVERSIGT Politiske udfordringer Afgifter og tilskud Anlægstyper med biomasse Tekniske udfordringer Miljøkrav VE teknologier Samaarbejde

Læs mere

Luft/vand. Varmepumpe LV DC. - endnu lavere energiforbrug

Luft/vand. Varmepumpe LV DC. - endnu lavere energiforbrug Luft/vand Varmepumpe LV DC - endnu lavere energiforbrug Vælg en unik varmepumpe INDEDEL VARMEPUMPE Solfanger UDEDEL 2 3 80 C 6 7 Varmt vand 1 4 8 45 C VARMT VAND Udedel Gulvvarme / radiator 5 Varmepumpe

Læs mere

Energy Services. Demonstrationsprojekt: VE-baseret varme i en hel by

Energy Services. Demonstrationsprojekt: VE-baseret varme i en hel by Energy Services Demonstrationsprojekt: VE-baseret varme i en hel by Et samarbejde mellem Insero Energy, Brædstrup Fjernvarme, Exergi Partners, Energy Services og Niras, med støtte fra Energistyrelsen.

Læs mere

inspirerende undervisning

inspirerende undervisning laver inspirerende undervisning om energi og miljø TEMA: Solenergi Elevvejledning BAGGRUND Klodens klima påvirkes når man afbrænder fossile brændsler. Hele verden er derfor optaget af at finde nye muligheder

Læs mere

FSTA Årskonference 2014 Lagring af overskudsvarme og kulde i undergrunden

FSTA Årskonference 2014 Lagring af overskudsvarme og kulde i undergrunden FSTA Årskonference 2014 Lagring af overskudsvarme og kulde i undergrunden 1. Imødekommer det politiske energimål 2. Energioptimerende Sparer 90% af kulde og op til 75% på varme 3. Bæredygtigt, miljøvenligt

Læs mere

Udnyt solens naturlige varme. Det er sund fornuft!

Udnyt solens naturlige varme. Det er sund fornuft! Udnyt solens naturlige varme. Det er sund fornuft! www.sonnenkraft.dk Derfor er solvarme genialt forever clever Der er masser af god energi i solen Solenergi og energireserver sat i forhold til jordens

Læs mere

Varmepumper. Claus S. Poulsen Centerchef Center for Køle- og Varmepumpeteknik. Tlf.: +45 7220 2514 E-mail: claus.s.poulsen@teknologisk.

Varmepumper. Claus S. Poulsen Centerchef Center for Køle- og Varmepumpeteknik. Tlf.: +45 7220 2514 E-mail: claus.s.poulsen@teknologisk. Varmepumper Claus S. Poulsen Centerchef Center for Køle- og Varmepumpeteknik Tlf.: +45 7220 2514 E-mail: claus.s.poulsen@teknologisk.dk Varmepumper på en tre kvarter? 1. Historie 2. Anlægstyper 3. Miljø

Læs mere

Grundvandskøling. Svend Erik Mikkelsen. Seniorspecialist COWI A/S. sem@cowi.dk

Grundvandskøling. Svend Erik Mikkelsen. Seniorspecialist COWI A/S. sem@cowi.dk Grundvandskøling Svend Erik Mikkelsen Seniorspecialist COWI A/S sem@cowi.dk 1 Princip 2 Udvidelse af begrebet grundvandskøling Fakta Kildetemperatur på konstant ca. 10 grader C året rundt Kan bruges direkte

Læs mere

Stoholm Fjernvarme a.m.b.a. Ekstraordinær generalforsamling den 29. januar 2014

Stoholm Fjernvarme a.m.b.a. Ekstraordinær generalforsamling den 29. januar 2014 Stoholm Fjernvarme a.m.b.a. Ekstraordinær generalforsamling den 29. januar 2014 Solvarme og varmepumpe 1 Oversigt 1. Baggrund for projektet 2. Solvarme 3. Varmepumpe 4. Nye produktionsenheder 5. Stabile

Læs mere

Octopus for en holdbar fremtid

Octopus for en holdbar fremtid EN MILJØRIGTIG VARMEPUMP FOR I DAG OG I MORGEN Octopus har udviklet og fabrikeret varmepumper siden 1981 og har gennem flere års udvikling nået frem til det bedste for miljøet og kunden. Det seneste produkt

Læs mere

Installationer - besparelsesmuligheder

Installationer - besparelsesmuligheder Installationer - besparelsesmuligheder Nuværende energiløsninger Udskiftning af oliekedel Udskiftning af gaskedel Konvertering til fjernvarme Konvertering til jordvarmeanlæg Konvertering til luft-vandvarmepumpe

Læs mere

SOLVARMEANLÆG FORÅR 2010

SOLVARMEANLÆG FORÅR 2010 SOLVARMEANLÆG FORÅR 2010 The Smarthome Company, Lergravsvej 53, DK-2300 København S. www.greenpowerdeal.com Til dig der står og tænker på at købe et solvarmeanlæg I Danmark skinner solen ca. 1.800 timer

Læs mere

JORDVARME DANSK VARMEPUMPE INDUSTRI A/S. vedvarende energi - fra naturen. Billede udlånt af KFS-boligbyg

JORDVARME DANSK VARMEPUMPE INDUSTRI A/S. vedvarende energi - fra naturen. Billede udlånt af KFS-boligbyg Billede udlånt af KFS-boligbyg JORDVARME vedvarende energi - fra naturen DANSK VARMEPUMPE INDUSTRI A/S Derfor bør du vælge en DVI energi VARMEPUMPE DVI energi er blandt de få som har fremstillet varmepumper

Læs mere

Oplæg til udbygning og effektivisering af Uggelhuse-Langkastrup Kraftvarmeværk Amba.

Oplæg til udbygning og effektivisering af Uggelhuse-Langkastrup Kraftvarmeværk Amba. Oplæg til udbygning og effektivisering af Uggelhuse-Langkastrup Kraftvarmeværk Amba. Indhold Fremtidens central forsynede varmesystem må og skal vægte:... 3 Systemer for energitransport... 3 Dampfjernvarme...

Læs mere

FJERNVARME. Hvad er det?

FJERNVARME. Hvad er det? 1 FJERNVARME Hvad er det? 2 Fjernvarmens tre led Fjernvarmekunde Ledningsnet Produktionsanlæg 3 Fjernvarme er nem varme derhjemme Radiator Varmvandsbeholder Varmeveksler Vand fra vandværket FJERNVARME

Læs mere

NOTAT 25. juni 2007 J.nr. Ref. mis Energianvendelse & - økonomi

NOTAT 25. juni 2007 J.nr. Ref. mis Energianvendelse & - økonomi NOTAT 25. juni 2007 J.nr. Ref. mis Energianvendelse & - økonomi Side 1/5 Eldrevne varmepumper til individuel opvarmning Varmepumper er i dag i mange tilfælde en privatøkonomisk rentabel investering. Ikke

Læs mere

Bekendtgørelsen har fortsat til formål at beskytte jord og grundvand, og bekendtgørelsens tekniske krav er målrettet dette formål.

Bekendtgørelsen har fortsat til formål at beskytte jord og grundvand, og bekendtgørelsens tekniske krav er målrettet dette formål. Miljøudvalget 2013-14 MIU Alm.del Bilag 37 Offentligt Dato: 21. oktober 2013 J. nr.: MST-1210-00041 Høringssvar vedr. udkast til bekendtgørelse om jordvarmeanlæg Idet vi takker for at have modtaget udkastet

Læs mere

Energivejleder-forløb

Energivejleder-forløb Energivejleder-forløb Energivejleder Inden forløbet skal du udlevere hjemmeopgaven. Du kan understrege over for dem at det er vigtigt at de sørger for at udfylde skemaet, fordi de to næste moduler bygger

Læs mere

Udredning vedrørende store varmelagre og varmepumper

Udredning vedrørende store varmelagre og varmepumper : Afdelingsleder PlanEnergi pas@planenergi.dk PlanEnergi: 30 års erfaring med vedvarende energi biomasse biogas solvarme sæsonvarmelagring varmepumper fjernvarme energiplanlægning Formålet med opgaven

Læs mere

Potentiale for el-drevne varmepumper til parcelhuset

Potentiale for el-drevne varmepumper til parcelhuset Potentiale for el-drevne varmepumper til parcelhuset af: Claus S. Poulsen Teknologisk Institut, Center for Køle- og Varmepumpeteknik Lidt historie Oliekrise i starten af 70 erne satte gang i udviklingen

Læs mere

Modul 5: Varmepumper

Modul 5: Varmepumper Modul 5: Hvilke typer varmepumper findes der, hvornår er de oplagte og samspil med andre energikilder...2 Samspil med varmefordelingsanlæg...5 Samspil med det omgivende energisystem...6 Hvad kræver varmepumpen

Læs mere

Thisted Varmeforsyning

Thisted Varmeforsyning - Termisk komfort til enhver tid Kort & godt om a.m.b.a. Ringvej 26 7700 Thisted Tlf. 97 92 66 66 Fax 96 17 71 66 www.thisted-varmeforsyning.dk post@thisted-varmeforsyning.dk CVR nr. 30 99 25 12 Stiftet:

Læs mere

Anvendelse af grundvand til varmefremstilling

Anvendelse af grundvand til varmefremstilling Anvendelse af grundvand til varmefremstilling Morten Vang Jensen, PlanEnergi 1 PlanEnergi PlanEnergi blev etableret i 1983 og arbejder som uafhængigt rådgivende firma. PlanEnergi har specialiseret sig

Læs mere

Spar op til 70% om året på varmekontoen... - og få samtidig et perfekt indeklima! Inverter R-410A Luft til Vand Varmepumpe Energiklasse A

Spar op til 70% om året på varmekontoen... - og få samtidig et perfekt indeklima! Inverter R-410A Luft til Vand Varmepumpe Energiklasse A Spar op til 70% om året på varmekontoen... - og få samtidig et perfekt indeklima! Inverter R-410A Luft til Vand Varmepumpe Energiklasse A Høj effekt, høj kvalitet og lavt energiforbrug - det bedste valg

Læs mere

VEDVARENDE VARMEFORSYNING - UAFHÆNGIG - UDEN MILJØBELASTNING. ...høj ydelse til den private bolig. Nilan JVP Jordvarme.

VEDVARENDE VARMEFORSYNING - UAFHÆNGIG - UDEN MILJØBELASTNING. ...høj ydelse til den private bolig. Nilan JVP Jordvarme. VEDVARENDE VARMEFORSYNING - UAFHÆNGIG - UDEN MILJØBELASTNING...høj ydelse til den private bolig Nilan JVP Jordvarme (jord/vand) Nilan JVP Jordvarme Skru op for jordvarmen og ned for varmeregningen (jordvarme)

Læs mere

Sæsonlagret solvarme tabsfri, til opvarmning 100 % i stedet for olie, gas og kul.

Sæsonlagret solvarme tabsfri, til opvarmning 100 % i stedet for olie, gas og kul. N.K. Knudsen M. IDA RÅDGIVENDE MASKININGENIØRFIRMA Rolighedsvej 13, 8722 Hedensted SE-nr. 95 38 15 53 Giro 9 43 39 53 Tlf. 75 89 14 17 Mobil 21 66 07 55 E-mail: n.k.knudsen@profibermail.dk Eller: n.k.knudsen@mail.dk

Læs mere

Baggrundsnotat om justering af visse energiafgifter med henblik på at opnå en bedre energiudnyttelse og mindre forurening

Baggrundsnotat om justering af visse energiafgifter med henblik på at opnå en bedre energiudnyttelse og mindre forurening Dato: 7. november 2005 Baggrundsnotat om justering af visse energiafgifter med henblik på at opnå en bedre energiudnyttelse og mindre forurening Baggrund Det er ønsket at forbedre energiudnyttelsen mindske

Læs mere

Lagring af vedvarende energi

Lagring af vedvarende energi Lagring af vedvarende energi Lagring af vedvarende energi Et skridt på vejen mod en CO2-neutral Øresundsregion er at undersøge, hvilke løsninger til lagring af vedvarende energi, der kan tilpasses fremtidens

Læs mere

Energianlæg baseret på jordvarmeboringer - udvikling af markedsfremmende værktøjer og best practice

Energianlæg baseret på jordvarmeboringer - udvikling af markedsfremmende værktøjer og best practice Energianlæg baseret på jordvarmeboringer - udvikling af markedsfremmende værktøjer og best practice Energiteknologisk Udviklings- og Demonstrations Program (EUDP) Område: Energieffektivisering Program:

Læs mere

JESPER KOCH, ANALYSECHEF I GRØN ENERGI KIG I KRYSTALKUGLEN DREJEBOG OG INSPIRATION FOR STORE VARMEPUMPER I FJERNVARMEN

JESPER KOCH, ANALYSECHEF I GRØN ENERGI KIG I KRYSTALKUGLEN DREJEBOG OG INSPIRATION FOR STORE VARMEPUMPER I FJERNVARMEN JESPER KOCH, ANALYSECHEF I GRØN ENERGI KIG I KRYSTALKUGLEN DREJEBOG OG INSPIRATION FOR STORE VARMEPUMPER I FJERNVARMEN 1 VINDKRAFT OMKRING DANMARK 128 Norge Det nordiske prisområde Samlet for det Det nordiske

Læs mere

når god energi er inde i varmen

når god energi er inde i varmen når god energi er inde i varmen DANMARKS STØRSTE MILJØBEVÆGELSE Fjern varme? Miljøet står højt på dagsordenen i disse år. I Danmark er der flere vindmøller på markerne og solfangere på ta- For miljøets

Læs mere

Dronninglund Fjernvarme

Dronninglund Fjernvarme Dronninglund Solfanger anlæg Solfanger anlæg ved Lunderbjerg, vest for Dronninglund Dronninglund Fjernvarme PlanEnergi og Niras Forhistorien Dronninglund Fjernvarme var i 1989 det første danske fjernvarmeværk,

Læs mere

Fjernvarme til lavenergihuse

Fjernvarme til lavenergihuse Fjernvarme til lavenergihuse Denne pjece er udgivet af: Dansk Fjernvarme Merkurvej 7 6000 Kolding Tlf. 76 30 80 00 mail@danskfjernvarme.dk www.danskfjernvarme.dk Dansk Fjernvarme er en interesseorganisation,

Læs mere

Historik for grundvandsbaserede energianlæg

Historik for grundvandsbaserede energianlæg Side 2 Side 3 Historik for grundvandsbaserede energianlæg Første anlæg blev etableret i 80 erne ved Hørholm (Høj temperaturlager) Etableret i gennemsnit to anlæg årligt fra medio 90 erne til dato Enkelt

Læs mere

D3 Oversigt over geologiske forhold af betydning ved etablering af jordvarmeboringer i Danmark

D3 Oversigt over geologiske forhold af betydning ved etablering af jordvarmeboringer i Danmark Work Package 1 The work will include an overview of the shallow geology in Denmark (0-300 m) Database and geology GEUS D3 Oversigt over geologiske forhold af betydning ved etablering af jordvarmeboringer

Læs mere

Rørholt se. Anlægget 5 6 km syd for Dronninglund se

Rørholt se. Anlægget 5 6 km syd for Dronninglund se Rørholt se Biogasanlæg yder 8-900 kw gas som løbende omsættes i en gasmotor til 320-360 kw strøm og varme fra motor bortventileres. 5 møller som samlet kan yde 4 mw el ved maks produktion. Anlægget 5 6

Læs mere

Energieffektivitet produktion 2010 TJ

Energieffektivitet produktion 2010 TJ Energieffektivitet produktion 2010 TJ Brændselsforbrug Energiproduktion Kilde: Energistyrelsens statistik 2010 Kilde: Energistyrelsens statistik 2010 Kilde: Energistyrelsens statistik 2010 Kilde: Energistyrelsens

Læs mere

Klimavarmeplan 2010. Klimavarmeplan 2010 er den strategiske plan for udviklingen af fjernvarmen i Aarhus frem mod 2030:

Klimavarmeplan 2010. Klimavarmeplan 2010 er den strategiske plan for udviklingen af fjernvarmen i Aarhus frem mod 2030: Klimavarmeplan 2010 Klimavarmeplan 2010 er den strategiske plan for udviklingen af fjernvarmen i Aarhus frem mod 2030: Byrådet i Aarhus ønsker at tilgodese: Forsyningssikkerhed Mindre CO 2 Energieffektivitet

Læs mere

Udvinding af skifergas i Danmark

Udvinding af skifergas i Danmark Maj 2013 Udvinding af skifergas i Danmark Indledning: Vi vil i Danmark i de kommende år skulle tage stilling til, om vi vil udvinde den skifergasressource, der i et eller andet omfang findes i den danske

Læs mere