Formel- og tabelsamling

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Starte visningen fra side:

Download "Formel- og tabelsamling"

Transkript

1 Formel- og tabelsamling Folkeskolens afsluttende prøver i matematik Uddannelsesstyrelsens håndbogsserie 2005 Grundskolen

2 Formel- og tabelsamling Folkeskolens afsluttende prøver i matematik Uddannelsesstyrelsens håndbogsserie nr Undervisningsministeriet

3 Publikationen indgår i Uddannelsesstyrelsens håndbogsserie som nr Copyright: Undervisningsministeriet Serieredaktion: Werner Hedegaard Grafisk tilrettelægger: Schwander Kommunikation Tegninger: Ole Schwander Omslag: Schwander Kommunikation. udgave,. oplag, marts 2005 ISBN (WWW) Uddannelsesstyrelsens håndbogsserie (Online) Internetadresse: pub.uvm.dk/2005/formelsamling Udgivet af Undervisningsministeriet, Uddannelsesstyrelsen, Kontor for eksamen og tilsyn, Sektionen for folkeskolens afsluttende prøver Printed in Denmark 2005 Publikationen er udelukkende udgivet i elektronisk form

4 Indhold 5 Tal og algebra 8 Økonomi 0 Geometri Begreber Geometri Areal 3 Geometri Rumfang og overflade 6 Geometri Flytninger 8 Geometri Tegning 20 Funktioner 22 Statistik 24 Sandsynlighed 25 Masse og måleenheder 26 Måleenheder 28 Væksttabeller 4

5 Tal og algebra Tal Hele tal brøker π irrationale tal Uligheder intervaller Eksempler på intervaller [ 2;3] eller 2 x 3 [a;b] eller a x b lukket interval fra a til b ] 2;3[ eller 2 < x < 3 ]a;b[ eller a < x < b åbent interval fra a til b ] 2;3] eller 2 < x 3 ]a;b] eller a < x b halvåbent interval fra a til b Brøker a : b = a b 4 : 3 = 4 3 a + b = a + b c c c = a b = a b c c c = 2 a b = c a b c 3 4 = 3 4 = a b c = d a c b d 4 2 = 4 2 = a b : a c = b c = a : c b 2 : 5 = 2 =

6 Kvadratrødder a b = a b 9 0 = 9 0 = 3 0 a b = a b = = Tal skrevet som potens n faktorer a n = a a a... a 2 4 = = 6 a n = a 0 = 0 3 = = = 0,00 a n = 5, 0 6 = 5, mio. = a n a p = a n+p a n : a p = a n p (a n ) p = a n p 2 x 2 = 2 x x (2 x) 2 = (2x) (2x) = 4x = = = = 4 2 (2 5 ) 2 = = 2 0 Parentesregler a + (b c + d) = a + b c + d a ( b + c d) = a + b c + d a (b c + d) = a b a c + a d (a + b) 2 = (a + b) (a + b) = a 2 + b 2 + 2ab Kvadratet på en toleddet størrelse (a b) 2 = (a b) (a b) = a 2 + b 2 2ab (a + b) (a b) = a 2 b 2 To tals sum gange de samme to tals differens 6

7 Primtal 2, 3,5,7,,3,7,9, 23, 29, 3, 37, 4, 43, 47, 53, 59, 6, 67, 7, 73, 79, 83, 89, 9, 97, 0, 03,... kaldes for primtal. Et primtal er et tal, som kun og tallet selv går op i. Sammensatte tal Et naturligt tal, der ikke er et primtal, kan på netop én måde skrives som et gangestykke af primtal: 2 = er et sammensat tal 827 = er et sammensat tal 7

8 Økonomi Procent 5 5% = 5 ud af 00 = 00 = 0,05 0 kr. 06 kr. 325 kr. 0% 8% 00% 8% af 325 kr. er 0, kr. = 06 kr. 0 kr. 60 kr. 300 kr. 0% 20% 00% Hvor mange procent er 60 kr. af 300 kr.? 60 kr.: 300 kr. = 0,20 = 20 = 20% 00 0 kr. 200 kr. 250 kr. 0% 00% 25% Hvor mange procent er 250 kr. større end 200 kr.? (250 kr. 200 kr.) : 200 kr. = 0,25 = 25% 0 kr. 200 kr. 250 kr. 0% 80% 00% Hvor mange procent er 200 kr. mindre end 250 kr.? (250 kr. 200 kr.) : 250 kr. = 0,20 = 20% 0 kr. 640 kr. 800 kr. 0% 00% 25% 25% af et beløb er 800 kr. Beløbet er 800 kr.:,25 = 640 kr. 60 kr.: 300 kr. = 0,20 8

9 Rente Renten R af K kroner til p% p.a. i d dage er R = K p d 00 D R: rente K: beløb, kapital p: procent pr. år d: antal rentedage D: antal dage i et renteår Vækst Startværdi Værdi efter n perioder K p% pr. periode K n K n = K( + x) n K: startværdi p: vækst i procent pr. periode x = p : 00, væksten i procent angivet som decimaltal n: antal vækstperioder K n: værdi efter n perioder Væksttabel enhed er efter 5 perioder på,50% pr. periode vokset til,0773 ( + x) n n er antallet af perioder x er vækst i procent 0,25% x 2,50% n\x 0,25% 0,50% 0,75%,00%,25%,50%,75% 2,00% 2,25% 2,50%,0025,0050,0075,000,025,050,075,0200,0225,0250 2,0050,000,05,020,0252,0302,0353,0404,0455,0506 3,0075,05,0227,0303,0380,0457,0534,062,0690,0769 4,000,0202,0303,0406,0509,064,079,0824,093,038 5,026,0253,038,050,064,0773,0906,04,77,34 6,05,0304,0459,065,0774,0934,097,262,428,597 7,076,0355,0537,072,0909,098,29,487,685,887 8,0202,0407,066,0829,045,265,489,77,948,284 9,0227,0459,0696,0937,83,434,690,95,227,2489 0,0253,05,0776,046,323,605,894,290,2492,280,0278,0564,0857,57,464,779,203,2434,2773,32 2,0304,067,0938,268,608,956,234,2682,3060,3449 3,0330,0670,020,38,753,236,2530,2936,3354,3785 9

10 Fremmed valuta 350 til kurs 744 koster 350 7,44 kr. = 3, kr. = 2.604,00 kr. Kurs: Prisen for 00 af den fremmede valuta i danske kroner For 500 DKK kan man købe 500 : 0,74 46,55 til kurs 074. Kursen kan også angives som prisen for af den fremmede valuta i danske kroner Geometri Begreber Trekant h: højde M v: vinkelhalveringslinje m: midtnormal x o x o v m h Vinkelsummen i en trekant er 80 O Retvinklet trekant C b a Pythagoras sætning: a 2 + b 2 = c 2 A c B c 2 = a 2 + b 2, b 2 = c 2 a 2 og a 2 = c 2 b 2 0

11 Geometri Areal Trekant C C b h a = g h A c B A g B h: højde g: grundlinje A: areal A = 2 h g s er den halve omkreds: s = Herons formel: A = a + b + c 2 s (s a) (s b) (s c) Rektangel b l : længde b : bredde A : areal O: omkreds l A = l b O = 2 (l + b)

12 Trapez h b a h: højde a og b: parallelle sider A: areal A = 2 h (a + b) Parallelogram h h: højde g: grundlinje A: areal g A = h g Cirkel d r r: radius d: diameter O: omkreds A = π r 2 O = 2 π r eller O = π d 2

13 Kasse Geometri Rumfang og overflade flade / side h: højde l: længde h kant b: bredde V: rumfang l b hjørne V = l b h Prismer h: højde h h G: areal af grundfladen V: rumfang G G A = h G Cylinder h h: højde r: radius V: rumfang O: den krumme overflade r V = π r 2 h O = 2 π r h 3

14 Kegler h h h: højde G: areal af grundfladen V: rumfang r r V = 3 h G Pyramide h h h: højde G: areal af grundfladen V: rumfang G G V = 3 h G Kugle d r r: radius d: diameter V: rumfang O: omkreds 4 V = π r 3 3 O = 4 π r 2 4

15 m Linjen m er vinkelret på linjestykket AB og A M B linjen m går gennem midtpunktet af AB. m er midtnormal til AB. 30 o 30 o Den linje, der halverer en vinkel kaldes vinkelhalveringslinjen. Midtnormalerne i en trekant skærer hinanden i centrum for den omskrevne cirkel. Vinkelhalveringslinjerne i en trekant skærer hinanden i centrum for den indskrevne cirkel 5

16 k d O r p t O: centrum for cirklen p: cirkelperiferien d: cirklens diameter r: cirklens radius (r = d) 2 t: vinkelret på radius er en tangent til cirklen k: korde til cirklen den længste korde er d.. Cirkeludsnit Cirkelafsnit Geometri Flytninger C s er spejlingsakse B ABC er spejlet om s i A B C A s A B C 6

17 Parallelforskydning C C A B A B C 2 A 2 B 2 Drejning B C C ABC drejes om A A = A B Drejning, spejling og parallelforskydning kaldes for flytninger. En flytning danner en figur, der er kongruent med den flyttede figur. 7

18 Geometri Tegning Målestoksforhold gade ej H jen ejen Traneholmen Tranehol Adelgade Ringvejen Vibeengen Vibee Sportsvej Ahornvej Rypevej N ddevej ÿstergade R rmosevej R Lang gade StorkevÊnget Stor Stadion Hanevej Hanekammen Hanesporet Falck Gr nnegade Cir kelvej Strandvejen B 409 Hyldevej B gevej A Egevej Allegade Fredens Alle Classensgade Baggersvej Enghavevej Målestoksforholdet: : Afstanden mellem A og B er på kortet 4 cm Afstanden er i virkeligheden: cm = cm = 2000 m b inken Isometrisk tegning 8

19 Perspektivisk tegning Med forsvindingspunkt: horisontlinje forsvindingspunkt vandret frontlinje Med 2 forsvindingspunkter: forsvindingspunkt horisontlinje under figuren forsvindingspunkt forsvindingspunkt horisontlinje over figuren forsvindingspunkt A B midtpunkt af AB 9

20 Funktioner Ligning: Graf: y y = f(x) Eksempel: f: x 3 x x + Tabel: x y (,) (0,) (3,) (, ) -2 (2, 2) -3-4 ( 2, 4) x Lineær funktion Eksempel: y y = x Ligningen for en linje: y = ax + b a er et udtryk for linjens hældning og kaldes stigningstallet eller hældningskoefficienten (0,b): skæringspunkt med y-aksen (0,2) } = a 2 x Ligefrem proportionalitet Eksempel: y y = ax y = 2x x Omvendt proportionalitet Eksempel: y y = 2 x y = a : x eller x a y = x x 0 20

21 Vækstfunktion Vækstkurve: K n K n = K( + x) n K: startværdi p: vækstprocent pr periode x: = p : 00 n: antal vækstperioder K n Grafisk ligningsløsning y 3 2 y = x 2 y = x 2 y = x y = x x Løsning: x = 3 y = y y = x + 5 y = 4 x y = x + 5 Løsninger: (x,y) = (,4) eller (x,y) = (4,) y = 2 x 4 x 2

22 Statistik Nogle forskellige diagramtyper Diagrammer til angivelse af hyppigheder, frekvenser og procent Pindediagram Søjlediagram hyppighed år 5 år 6 år Gennemsnit: (7 4 år år år) : 25 = 5,04 år 0 Gennemsnit: Summen af alle observationer divideret med antallet af observationer Diagrammer for procent-fordeling Cirkeldiagram Procentdiagram Opsparing 8% 00% 65 o 97 o 98 o Privat forbrug 55% Fælles forbrug 27% 0% 22

23 Ugrupperede observationer Alle mål i millimeter Måle længder og ordne 26, 55, 70, 7, 79, 88, 88, 90, 00, 02, 6, 25, 38, 38, 38, 47, 48, 89, 206, 207, 225, 24, 24, 250 Fordelingstabel typetal: 38 største værdi: 250 mindste værdi: 26 variationsbredde: = 2 Interval ]0; 50] ]50;00] ]00;50] ]50;200] ]200;250] hyppighed frekvens 4,2% 33,3% 33,3% 4,2% 25,0% Summeret hyppighed Summeret frekvens 4,2% 37,5% 70,8% 75,0% 00,0% længde 00% Typeintervaller 80% 60% 40% 20%. kvartil : 25% af klodserne er ifølge modellen højst 88 mm lange Median : 50% af klodserne er ifølge modellen højst 32 mm lange 3. kvartil : 75% af klodserne er ifølge modellen højst 93 mm lange. 0, Kvartilsæt 88. kvartil 32 Median kvartil Fordelingstabel Interval Midt mellem a og b hyppighed Samlet længde Samlet længde er 25 mm mm mm + 75 mm mm = 350 mm som fordeles mellem 24 klodser: 350 mm : 24 = 3,25 mm Middeltallet er 3 mm. 23

24 Sandsynlighed Fordelingstabel for 250 kast med en tændstikæske Billedsiden Bagsiden Endeflade Strygeflade og 2 og 2 h(x) Hyppigheden f(x) Frekvensen ,392 0,42 0,036 0,60 39,2% 4,2% 3,6% 6,0% Den statistiske sandsynlighed er = 0,392 = 39,2% for at billedsiden kommer opad. Udfaldsrummet for de 250 kast er: Endeflade Strygeflade Bagsiden Billedsiden Strygeflade 2 Endeflade 2 Sandsynligheden for snurretoppens 8 mulige udfald 2, 3, 4, 5, 6, 7, 8, 9 betragtes som lige store. Sandsynlighederne er jævnt fordelt, så de bliver fx P(2) = = 0,25 = 2,5% Sandsynligheden for hændelsen, at snurretoppen lander på et lige tal, er antal gunstige 4 P(lige tal) = = = 0,50 = 50% antal mulige 8 Antallet af tal 2, 4, 6 og 8 kaldes her for hændelsens gunstige udfald. Antallet af kanter på snurretoppen kaldes her for de mulige udfald. 24

25 Masse og måleenheder Vægt Masse = massefylde rumfang Et lod vejer 05 g og har et rumfang på 5 cm 3 Massefylden er: 05 g : 5 cm 3 = 7,0 g / cm 3 Et lod vejer 70 kg og har et rumfang på 7 dm 3 Massefylden er: 70 kg : 7dm 3 = 0 kg / dm 3 Et lod vejer 5 tons og har et rumfang på 0 m 3 Massefylden er: 5 tons : 0 m 3 = 5 tons / m 3 Et lod vejer 3 kg og har et rumfang på 0, m 3 Massefylden er: 3 kg : 0, m 3 = 30 kg / m 3 SI-enhederne benytter kg / m 3 25

26 Måleenheder Længde km hm dam m dm cm mm 000 m 00 m 0 m m 0, m 0,0 m 0,00 m 0 3 m 0 2 m 0 m 0 0 m 0 m 0 2 m 0 3 m Areal km 2 hm 2 dam 2 m 2 dm 2 cm 2 mm m m 2 00 m 2 m 2 0,0 m 2 0,000 m 2 0,00000m m m m m m m m 2 ha Rumfang km 3 0 hm 3 0 dam 3 m 3 0 dm 3 cm 3 mm m m 3 m 3 0,00 m 3 0,00000 m 3 0, m 3 m m m m m m m m 3 kl l ml m 3 dm 3 cm 3 kl hl dal l dl cl ml 000 l 00 l 0 l l 0, l 0,0 l 0,00 l 0 dl 00 cl 000 ml Sjældent anvendte måleenheder 26

27 Vægt t kg hg dag g dg cg mg g 000 kg 000 g 00 g 0 g g 0, g 0,0 g 0,00 g 000 mg 00 mg 0 mg Sjældent anvendte måleenheder Præfiks Titals potens T, tera 0 2 G, giga 0 9 M, mega 0 6 k, kilo 0 3 h, hekto 0 2 da, deka 0 d, deci 0 c, centi 0 2 m, milli 0 3 µ, mikro 0 6 n, nano 0 9 p, pico

28 ( + x) n n er antallet af perioder x er vækst i procent 0,25% x 2,50% n\x 0,25% 0,50% 0,75%,00%,25%,50%,75% 2,00% 2,25% 2,50%,0025,0050,0075,000,025,050,075,0200,0225,0250 2,0050,000,05,020,0252,0302,0353,0404,0455,0506 3,0075,05,0227,0303,0380,0457,0534,062,0690,0769 4,000,0202,0303,0406,0509,064,079,0824,093,038 5,026,0253,038,050,064,0773,0906,04,77,34 6,05,0304,0459,065,0774,0934,097,262,428,597 7,076,0355,0537,072,0909,098,29,487,685,887 8,0202,0407,066,0829,045,265,489,77,948,284 9,0227,0459,0696,0937,83,434,690,95,227,2489 0,0253,05,0776,046,323,605,894,290,2492,280,0278,0564,0857,57,464,779,203,2434,2773,32 2,0304,067,0938,268,608,956,234,2682,3060,3449 3,0330,0670,020,38,753,236,2530,2936,3354,3785 4,0356,0723,03,495,900,238,2749,395,3655,430 5,0382,0777,86,60,2048,2502,2972,3459,3962,4483 6,0408,083,270,726,299,2690,399,3728,4276,4845 7,0434,0885,354,843,235,2880,3430,4002,4597,526 8,0460,0939,440,96,2506,3073,3665,4282,4926,5597 9,0486,0994,525,208,2662,3270,3904,4568,5262, ,052,049,62,2202,2820,3469,448,4859,5605,6386 2,0538,04,699,2324,298,367,4395,557,5956, ,0565,60,787,2447,343,3876,4647,5460,635,726 23,059,26,875,2572,3307,4084,4904,5769,6682, ,068,272,964,2697,3474,4295,564,6084,7058, ,0644,328,2054,2824,3642,4509,5430,6406,744, ,067,385,244,2953,382,4727,5700,6734,7834, ,0697,442,2235,3082,3985,4948,5975,7069,8235, ,0724,499,2327,323,460,572,6254,740,8645, ,075,556,2420,3345,4337,5400,6539,7758,9065 2, ,0778,64,253,3478,456,563,6828,84,9494 2,0976 3,0805,672,2607,363,4698,5865,722,8476,9933 2,500 32,0832,730,270,3749,488,603,7422,8845 2,038 2, ,0859,789,2796,3887,5067,6345,7727,9222 2,0840 2, ,0886,848,2892,4026,5256,6590,8037,9607 2,308 2,353 35,093,907,2989,466,5446,6839,8353,9999 2,788 2, ,094,967,3086,4308,5639,709,8674 2,0399 2,2278 2, ,0968,2027,385,445,5835,7348,900 2,0807 2,2779 2, ,0995,2087,3283,4595,6033,7608,9333 2,223 2,3292 2, ,023,247,3383,474,6233,7872,9672 2,647 2,386 2,696 40,050,2208,3483,4889,6436,840 2,006 2,2080 2,4352 2,685 4,078,2269,3585,5038,6642,842 2,0366 2,2522 2,4900 2, ,06,2330,3686,588,6850,8688 2,0723 2,2972 2,5460 2,820 43,33,2392,3789,5340,7060,8969 2,085 2,3432 2,6033 2,895 44,6,2454,3893,5493,7274,9253 2,454 2,390 2,669 2, ,89,256,3997,5648,7489,9542 2,830 2,4379 2,728 3, ,27,2579,402,5805,7708,9835 2,222 2,4866 2,7830 3,39 47,245,2642,4207,5963,7929 2,033 2,2600 2,5363 2,8456 3,97 48,273,2705,434,622,854 2,0435 2,2996 2,587 2,9096 3,275 49,30,2768,442,6283,8380 2,074 2,3398 2,6388 2,975 3, ,330,2832,4530,6446,860 2,052 2,3808 2,696 3,0420 3,437 28

29 ( + x) n n er antallet af perioder x er vækst i procent 2,75% x 5,00% n\x 2,75% 3,00% 3,25% 3,50% 3,75% 4,00% 4,25% 4,50% 4,75% 5,00%,0275,0300,0325,0350,0375,0400,0425,0450,0475,0500 2,0558,0609,066,072,0764,086,0868,0920,0973,025 3,0848,0927,007,087,68,249,330,42,494,576 4,46,255,365,475,587,699,8,925,2040,255 5,453,593,734,877,202,267,233,2462,262,2763 6,768,94,25,2293,2472,2653,2837,3023,32,340 7,209,2299,2509,2723,2939,359,3382,3609,3838,407 8,2424,2668,296,368,3425,3686,395,422,4495,4775 9,2765,3048,3336,3629,3928,4233,4544,486,584,553 0,37,3439,3769,406,4450,4802,562,5530,5905,6289,3477,3842,426,4600,4992,5395,5807,6229,666,703 2,3848,4258,4678,5,5555,600,6478,6959,7452,7959 3,4229,4685,556,5640,638,665,779,7722,828,8856 4,4620,526,5648,687,6743,737,7909,859,949,9799 5,5022,5580,657,6753,737,8009,8670,9353 2,0059 2,0789 6,5435,6047,6682,7340,8022,8730,9463 2,0224 2,02 2,829 7,5860,6528,7224,7947,8698,9479 2,029 2,34 2,200 2,2920 8,6296,7024,7784,8575,9399 2,0258 2,53 2,2085 2,3055 2,4066 9,6744,7535,8362,9225 2,027 2,068 2,2052 2,3079 2,45 2, ,7204,806,8958,9898 2,0882 2,9 2,2989 2,47 2,5298 2,6533 2,7677,8603,9575 2,0594 2,665 2,2788 2,3966 2,5202 2,6499 2, ,864,96 2,02 2,35 2,2477 2,3699 2,4985 2,6337 2,7758 2, ,8663,9736 2,0868 2,206 2,3320 2,4647 2,6047 2,7522 2,9077 3,075 24,976 2,0328 2,546 2,2833 2,494 2,5633 2,753 2,8760 3,0458 3,225 25,9704 2,0938 2,2246 2,3632 2,502 2,6658 2,8308 3,0054 3,904 3, ,0245 2,566 2,2969 2,4460 2,6043 2,7725 2,95 3,407 3,3420 3, ,0802 2,223 2,375 2,536 2,7020 2,8834 3,0765 3,2820 3,5007 3, ,374 2,2879 2,4486 2,6202 2,8033 2,9987 3,2072 3,4297 3,6670 3, ,962 2,3566 2,5282 2,79 2,9084 3,87 3,3435 3,5840 3,842 4,6 30 2,2566 2,4273 2,604 2,8068 3,075 3,2434 3,4856 3,7453 4,0237 4, ,387 2,500 2,6952 2,9050 3,306 3,373 3,6338 3,939 4,248 4, ,3824 2,575 2,7828 3,0067 3,2480 3,508 3,7882 4,0900 4,450 4, ,4479 2,6523 2,8732 3,9 3,3698 3,6484 3,9492 4,2740 4,6247 5, ,553 2,739 2,9666 3,2209 3,4962 3,7943 4,7 4,4664 4,8444 5, ,5844 2,839 3,0630 3,3336 3,6273 3,946 4,2920 4,6673 5,0745 5, ,6555 2,8983 3,626 3,4503 3,7633 4,039 4,4744 4,8774 5,355 5, ,7285 2,9852 3,2654 3,570 3,9045 4,268 4,6646 5,0969 5,5680 6, ,8036 3,0748 3,375 3,6960 4,0509 4,4388 4,8628 5,3262 5,8325 6, ,8807 3,670 3,48 3,8254 4,2028 4,664 5,0695 5,5659 6,095 6, ,9599 3,2620 3,5942 3,9593 4,3604 4,800 5,2850 5,864 6,3997 7, ,043 3,3599 3,70 4,0978 4,5239 4,993 5,5096 6,078 6,7037 7, ,249 3,4607 3,836 4,243 4,6935 5,928 5,7437 6,356 7,022 7, ,208 3,5645 3,956 4,3897 4,8695 5,4005 5,9878 6,6374 7,3557 8, ,299 3,675 4,0847 4,5433 5,0522 5,665 6,2423 6,936 7,705 8, ,3899 3,786 4,275 4,7024 5,246 5,842 6,5076 7,2482 8,07 8, ,483 3,8950 4,3545 4,8669 5,4382 6,0748 6,7842 7,5744 8,4545 9, ,5789 4,09 4,496 5,0373 5,642 6,378 7,0725 7,953 8,8560 9, ,6773 4,323 4,6422 5,236 5,8537 6,5705 7,373 8,275 9,2767 0, ,7784 4,2562 4,793 5,396 6,0732 6,8333 7,6865 8,6437 9,773 0, ,8823 4,3839 4,9488 5,5849 6,3009 7,067 8,03 9,0326 0,789,

30 ( + x) n n er antallet af perioder x er vækst i procent 5,25% x 7,50% n\x 5,25% 5,50% 5,75% 6,00% 6,25% 6,50% 6,75% 7,00% 7,25% 7,50%,0525,0550,0575,0600,0625,0650,0675,0700,0725,0750 2,078,30,83,236,289,342,396,449,503,556 3,659,742,826,90,995,2079,265,2250,2336,2423 4,227,2388,2506,2625,2744,2865,2986,308,323,3355 5,295,3070,3225,3382,354,370,3862,4026,490,4356 6,3594,3788,3986,485,4387,459,4798,5007,529,5433 7,4307,4547,4790,5036,5286,5540,5797,6058,6322,6590 8,5058,5347,5640,5938,6242,6550,6863,782,7506,7835 9,5849,69,6540,6895,7257,7626,8002,8385,8775,972 0,668,708,749,7908,8335,877,927,9672 2,036 2,060,7557,802,8496,8983,948,9992 2,054 2,049 2,596 2,256 2,8478,902,9560 2,022 2,0699 2,29 2,899 2,2522 2,362 2,388 3,9449 2,0058 2,0684 2,329 2,993 2,2675 2,3377 2,4098 2,484 2, ,0470 2,6 2,874 2,2609 2,3367 2,449 2,4955 2,5785 2,6642 2, ,544 2,2325 2,332 2,3966 2,4828 2,578 2,6639 2,7590 2,8573 2, ,2675 2,3553 2,4462 2,5404 2,6379 2,7390 2,8437 2,9522 3,0645 3, ,3866 2,4848 2,5868 2,6928 2,8028 2,970 3,0357 3,588 3,2867 3, ,59 2,625 2,7356 2,8543 2,9780 3,067 3,2406 3,3799 3,5249 3, ,6437 2,7656 2,8929 3,0256 3,64 3,3086 3,4593 3,665 3,7805 3, ,7825 2,978 3,0592 3,207 3,369 3,5236 3,6928 3,8697 4,0546 4, ,9286 3,0782 3,235 3,3996 3,5720 3,7527 3,942 4,406 4,3485 4, ,0824 3,2475 3,42 3,6035 3,7952 3,9966 4,2082 4,4304 4,6638 4, ,2442 3,4262 3,678 3,897 4,0324 4,2564 4,4922 4,7405 5,009 5, ,445 3,646 3,8259 4,0489 4,2844 4,533 4,7954 5,0724 5,3646 5, ,5938 3,834 4,0458 4,299 4,5522 4,8277 5,9 5,4274 5,7535 6, ,7825 4,023 4,2785 4,5494 4,8367 5,45 5,4647 5,8074 6,706 6, ,980 4,2444 4,5245 4,8223 5,390 5,4757 5,8335 6,239 6,680 7, ,900 4,4778 4,7847 5,7 5,4602 5,836 6,2273 6,6488 7,0978 7, ,400 4,724 5,0598 5,484 5,805 6,207 6,6477 7,43 7,624 8, ,646 4,9840 5,3507 5,7435 6,64 6,644 7,0964 7,623 8,643 8, ,8852 5,258 5,6584 6,088 6,5493 7,0443 7,5754 8,45 8,7562 9, ,47 5,5473 5,9837 6,4534 6,9587 7,5022 8,0867 8,753 9,390 0, ,46 5,8524 6,3278 6,8406 7,3936 7,9898 8,6326 9,3253 0,079 0, ,6958 6,742 6,696 7,250 7,8557 8,5092 9,253 9,978 0,802, ,9948 6,538 7,0764 7,686 8,3467 9,0623 9,8373 0,6766,5853 2, ,3095 6,872 7,4833 8,473 8,8683 9,653 0,503,4239 2,4252 3, ,6408 7,250 7,936 8,636 9,4226 0,2786,202 2,2236 3,3260 4, ,9894 7,6488 8,3686 9,543 0,05 0,9467,9668 3,0793 4,292 5, ,3563 8,0695 8,8498 9,7035 0,6372,6583 2,7746 3,9948 5,3283 6, ,7426 8,533 9,3587 0,2857,302 2,46 3,6369 4,9745 6,4396 8, ,490 8,985 9,8968 0,9029 2,0084 3,223 4,5574 6,0227 7,635 9, ,5769 9,4755 0,4659,5570 2,7590 4,0826 5,5400 7,443 8, , ,027 9,9967,0677 2,2505 3,5564 4,9980 6,5890 8, , , ,50 0,5465,704 2,9855 4,4037 5,9729 7,7087 9,6285 2,75 24, ,9999,266 2,3770 3,7646 5,3039 7,0 8,9040 2, ,328 25, ,5249,7385 3,0887 4,5905 6,2604 8,68 20,80 22, ,093 27, ,0774 2,384 3,843 5,4659 7,2767 9,2944 2, , , , ,6590 3,0653 4,6372 6,3939 8, , , , , , ,27 3,7838 5,4788 7,3775 9,5037 2, , , ,865 34, ,953 4,5420 6,3689 8, , , , , ,028 37,897 30

31 ( + x) n n er antallet af perioder x er vækst i procent 7,75% x 0,00% n\x 7,75% 8,00% 8,25% 8,50% 8,75% 9,00% 9,25% 9,50% 9,75% 0,00%,0775,0800,0825,0850,0875,0900,0925,0950,0975,000 2,60,664,78,772,827,88,936,990,2045,200 3,250,2597,2685,2773,286,2950,3040,329,329,330 4,3479,3605,373,3859,3987,46,4246,4377,4508,464 5,4524,4693,4864,5037,52,5386,5563,5742,5923,605 6,5650,5869,6090,635,6542,677,7003,7238,7475,776 7,6862,738,748,770,7989,8280,8576,8876,979,9487 8,869,8509,8855,9206,9563,9926 2,0294 2,0669 2,049 2,436 9,9577,9990 2,040 2,0839 2,275 2,79 2,27 2,2632 2,302 2, ,095 2,589 2,2094 2,260 2,336 2,3674 2,4222 2,4782 2,5354 2,5937 2,2730 2,336 2,397 2,4532 2,56 2,5804 2,6463 2,737 2,7826 2, ,449 2,582 2,5890 2,667 2,7362 2,827 2,89 2,975 3,0539 3, ,6389 2,796 2,8026 2,8879 2,9756 3,0658 3,585 3,2537 3,357 3, ,8434 2,9372 3,0338 3,334 3,2360 3,347 3,4506 3,5629 3,6784 3, ,0638 3,722 3,284 3,3997 3,592 3,6425 3,7698 3,903 4,037 4, ,302 3,4259 3,555 3,6887 3,827 3,9703 4,85 4,279 4,4307 4, ,557 3,7000 3,8483 4,0023 4,620 4,3276 4,4995 4,6778 4,8627 5, ,8328 3,9960 4,658 4,3425 4,526 4,77 4,957 5,222 5,3368 5, ,298 4,357 4,5095 4,76 4,9222 5,47 5,3704 5,6088 5,857 6, ,4499 4,660 4,886 5,20 5,3529 5,6044 5,8672 6,46 6,4282 6, ,7947 5,0338 5,2843 5,5466 5,822 6,088 6,4099 6,725 7,0550 7, ,663 5,4365 5,7202 6,080 6,3306 6,6586 7,0028 7,3639 7,7428 8, ,5667 5,875 6,922 6,5296 6,8845 7,2579 7,6506 8,0635 8,4978 8, ,998 6,342 6,7030 7,0846 7,4869 7,9 8,3582 8,8296 9,3263 9, ,4630 6,8485 7,2560 7,6868 8,420 8,623 9,34 9,6684 0,2356 0, ,9638 7,3964 7,8546 8,340 8,8544 9,3992 9,9760 0,5869,2336, ,5035 7,988 8,5026 9,0490 9,6292 0,245 0,8988,5926 2,3288 3, ,085 8,627 9,204 9,882 0,478,67,9069 2,6939 3,5309 4, ,77 9,373 9,9634 0,6528,3880 2,722 3,0083 3,8998 4,8502 5, ,3868 0,0627 0,7854,5583 2,3845 3,2677 4,26 5,2203 6,298 7, ,43 0,8677,6752 2,5407 3,468 4,468 5,5262 6,6662 7,887 9, ,8982,737 2,6384 3,6067 4,6466 5,7633 6,9624 8,2495 9,63 2,38 33,7428 2,6760 3,68 4,7632 5,9282 7,820 8,534 9,9832 2,545 23, ,6528 3,690 4,8098 6,08 7,329 8, ,2455 2,886 23, , ,6334 4,7853 6,036 7,3796 8, ,440 22,82 23, ,953 28, ,6900 5,9682 7,3542 8, , ,252 24,642 26, ,485 30, ,8285 7,2456 8, , , , , ,729 3, , ,0552 8, , ,988 24, , ,843 3, , , , ,53 22,035 24, , ,860 3,509 34, ,650 4, ,802 2, , ,330 28,6530 3, , ,794 4, , , , , ,3543 3,602 34, ,6079 4, , , , , , , , ,375 4, , , , ,770 27, , , ,858 40,676 44, , , , , , ,72 36,267 40, , , , ,954 66, ,7592 3, , ,295 43, , , , , , ,988 34,474 38, , , , ,53 65, ,28 80, , ,2320 4,506 46,2592 5, ,476 63,9452 7,973 79, , , ,206 44, ,92 56, , ,860 77,96 86, , , , ,637 54, , ,279 76, , ,460 06, , ,906 52, , , , , , ,7675 7,3909 3

32 ( + x) n n er antallet af perioder x er vækst i procent 0,5% x 5,0% n\x 0,50%,00%,50% 2,00% 2,50% 3,00% 3,50% 4,00% 4,50% 5,00%,050,00,50,200,250,300,350,400,450,500 2,220,232,2432,2544,2656,2769,2882,2996,30,3225 3,3492,3676,3862,4049,4238,4429,462,485,50,5209 4,4909,58,5456,5735,608,6305,6595,6890,788,7490 5,6474,685,7234,7623,8020,8424,8836,9254,9680 2,04 6,8204,8704,925,9738 2,0273 2,0820 2,378 2,950 2,2534 2,33 7 2,06 2,0762 2,425 2,207 2,2807 2,3526 2,4264 2,5023 2,580 2, ,2228 2,3045 2,3889 2,4760 2,5658 2,6584 2,7540 2,8526 2,9542 3, ,4562 2,5580 2,6636 2,773 2,8865 3,0040 3,258 3,259 3,3826 3, ,74 2,8394 2,9699 3,058 3,2473 3,3946 3,5478 3,7072 3,873 4,0456 2,999 3,58 3,35 3,4785 3,6532 3,8359 4,0267 4,2262 4,4347 4, ,340 3,4985 3,6923 3,8960 4,099 4,3345 4,5704 4,879 5,0777 5, ,669 3,8833 4,69 4,3635 4,6236 4,8980 5,874 5,4924 5,840 6, ,0464 4,304 4,5904 4,887 5,206 5,5348 5,8877 6,263 6,6570 7, ,473 4,7846 5,83 5,4736 5,858 6,2543 6,6825 7,379 7,6222 8,37 6 4,9408 5,309 5,7069 6,304 6,5833 7,0673 7,5846 8,372 8,7275 9, ,4596 5,895 6,3632 6,8660 7,4062 7,986 8,6085 9,2765 9,9929 0, ,0328 6,5436 7,0949 7,6900 8,339 9,0243 9,7707 0,5752,449 2, ,6663 7,2633 7,908 8,628 9,3734 0,974,0897 2,0557 3,00 4, ,3662 8,0623 8,8206 9,6463 0,545,523 2,5869 3,7435 5,0006 6, ,397 8,9492 9,8350 0,8038,8632 3,02 4,286 5,6676 7,757 8, ,9944 9,9336 0,9660 2,003 3,346 4,738 6,247 7,860 9,6662 2, ,9388,0263 2,227 3,5523 5,044 6,6266 8, ,366 22,578 24, ,9823 2,2392 3,6332 5,786 6,892 8,788 20, ,222 25, , ,355 3,5855 5,200 7,000 9,0026 2, ,708 26,469 29,524 32, ,4097 5,0799 6,949 9,040 2, , , ,666 33, , ,877 6,7386 8,8982 2, , ,093 30,544 34, , , ,3736 8,5799 2,075 23, , , , , ,353 50, , , , , , ,658 39,344 44,693 50,740 57, , , ,967 29, , ,59 44, , , , ,098 25,404 29, ,555 38, ,200 50,684 58, , , ,44 28, , ,587 43, ,947 57, ,248 76,685 87, ,9746 3, ,337 42,095 48, , , , ,230 00, , ,752 40, ,425 54,852 63, ,070 86, ,8588 5, , , ,46 52,7996 6, , ,5 98,002 4, , , ,88 50, ,356 69,420 8, ,4665, ,974 53, ,265 47,528 56,268 66,238 78, , , ,490 49, , , , ,584 74,797 87, , , ,3397 7, , ,054 58, , ,082 98,8436 7, , , , , ,264 65, , ,050,990 32,786 58, , ,09 267, , ,50 86, ,27 25, , ,868 25, , , , , ,7263 6,723 40, , , , , , ,23 88, , , ,3283 9,590 23, , , , , , , ,475 78,93 26, ,965 39, , , , , ,086 63, , , , , , , ,7790 2, , , , , , , ,059 69, ,508 34, , , ,63 32, , , , , ,67 49, , , , , , , , , , , , , , , ,289 64, , , , , , , , , , , , ,

33 ( + x) n n er antallet af perioder x er vækst i procent 5,5% x 20,0% n\x 5,50% 6,00% 6,50% 7,00% 7,50% 8,00% 8,50% 9,00% 9,50% 20,00%,550,600,650,700,750,800,850,900,950,2000 2,3340,3456,3572,3689,3806,3924,4042,46,4280,4400 3,5408,5609,582,606,6222,6430,6640,6852,7065,7280 4,7796,806,842,8739,906,9388,978 2,0053 2,0393 2, ,0555 2,003 2,460 2,924 2,2397 2,2878 2,3366 2,3864 2,4369 2, ,374 2,4364 2,500 2,5652 2,636 2,6996 2,7689 2,8398 2,92 2, ,7420 2,8262 2,926 3,002 3,0922 3,855 3,282 3,3793 3,4800 3, ,67 3,2784 3,3932 3,55 3,6333 3,7589 3,8882 4,024 4,586 4, ,6580 3,8030 3,953 4,084 4,269 4,4355 4,6075 4,7854 4,9695 5, ,2249 4,44 4,6053 4,8068 5,062 5,2338 5,4599 5,6947 5,9385 6,97 4,8798 5,73 5,3652 5,6240 5,894 6,759 6,4700 6,7767 7,0965 7, ,6362 5,9360 6,2504 6,580 6,9256 7,2876 7,6669 8,0642 8,4804 8,96 3 6,5098 6,8858 7,288 7,6987 8,375 8,5994 9,0853 9,5964 0,340 0, ,588 7,9875 8,4833 9,0075 9,566 0,472 0,766,498 2,02 2, ,6842 9,2655 9,8830 0,5387,2349,9737 2,7578 3,5895 4,477 5, ,0302 0,7480,537 2,3303 3,200 4,290 5,80 6,75 7,2936 8,4884 7,5849 2,4677 3,435 4,4265 5,5 6,6722 7,948 9,244 20, ,86 8 3,3806 4,4625 5,6267 6,8790 8,2256 9,6733 2, , , , ,4546 6,7765 8,205 9,7484 2,45 23,244 25,564 27,256 29,54 3, ,850 9,4608 2, ,056 25,627 27, ,803 32, , , ,668 22, , , , , , ,590 42,43 46, ,824 26,864 28,7853 3, , ,42 4, , ,360 55, , , , , ,898 45, , , ,83 66, , , ,068 43, , ,090 58,785 65,0320 7,967 79, , , ,543 50, , , , ,388 85, , ,377 47,44 53, , ,293 73, , ,098 02,6988 4, , ,0004 6, , , , ,827 09, ,725 37, , ,8004 7,9658 8,342 9, ,9666 5,908 30,42 46, , , , ,840 94,927 07,4232 2, ,35 55,893 75, , ,453 85, ,6737, , , ,76 84, , , ,047 99,5859 3, , ,32 69,774 92,879 29, , , ,6059 5,596 32, , , , ,553 26, ,070 34, ,998 34, , , , , ,8355 3, , , ,208 55, , , , , , , , , ,035 80,34 209, , , , , , , , , , ,93 284, ,72 387, , , , , , , , , , , , , , , , ,455 33, , , , , , , , , , ,00 456, ,86 635, , , , , , , , , ,67 750, , , , , ,05 439, , , , , , , , , , , , , , , , , ,037 26, , ,443 7, ,05 027, , , , , , , , , , , , , , , , , , , , , , , , , , , ,748 24, , , , , , , , , , , , , , , , , , ,024 24, , , , , , , ,02 639, , , , , , , , , , , , , , , , , , , , ,

34 ( + x) n n er antallet af perioder x er vækst i procent 2< = x < = 30 n\x 2% 22% 23% 24% 25% 26% 27% 28% 29% 30%,200,2200,2300,2400,2500,2600,2700,2800,2900,3000 2,464,4884,529,5376,5625,5876,629,6384,664,6900 3,776,858,8609,9066,953 2,0004 2,0484 2,0972 2,467 2, ,436 2,253 2,2889 2,3642 2,444 2,5205 2,604 2,6844 2,7692 2, ,5937 2,7027 2,853 2,936 3,058 3,758 3,3038 3,4360 3,5723 3, ,384 3,2973 3,4628 3,6352 3,847 4,005 4,959 4,3980 4,6083 4, ,7975 4,0227 4,2593 4,5077 4,7684 5,049 5,3288 5,6295 5,9447 6, ,5950 4,9077 5,2389 5,5895 5,9605 6,3528 6,7675 7,2058 7,6686 8, ,5599 5,9874 6,4439 6,930 7,4506 8,0045 8,5948 9,2234 9,8925 0, ,7275 7,3046 7,9259 8,5944 9,332 0,0857 0,953,8059 2,764 3,7858 8,403 8,97 9,7489 0,657,645 2,7080 3,8625 5,6 6,4622 7, ,8497 0,8722,992 3,248 4,559 6,020 7,6053 9,3428 2, ,298 3,982 3,264 4,749 6,3863 8,899 20,752 22, , , , ,420 6,822 8,44 20,39 22, , ,3957 3,693 35,339 39, ,4494 9, ,340 25,956 28,427 32,030 36, , ,5875 5, ,38 24, ,4462 3, ,527 40, ,7994 5, , , , , , , , ,850 58,652 66,464 75,862 86, ,927 35,8490 4, , ,52 64, , , ,8622 2, , ,7358 5, , , ,730 93,847 08, , , , , , ,864 86,7362 0,72 9,446 39, , , , , ,2694 9,595 08, ,685 5,337 78, , , ,264 79,475 95,043 3, ,5253 6, , , , , ,795 96,8894 6, ,832 69, , , , , , ,072 8, , ,6306 2, , , , , , , ,20 76, , , , , , , , , , , ,52 330, , ,957 62, , , ,879 24, , , , , , , ,044 92, ,965 26, ,5 42, , , , , , , , , ,8072 5, , , , ,5504 6, , , , , , , , , , , , , , , , , , , , , , , ,56 753, , , , , , , , , ,74 926, , , , , , , , , ,444 39, , , , ,90 447, , , , ,408 40, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,53 822, ,53 577, , , , , , , , , , , , , , , , , , , , ,68 342, , , , , ,03 754, , , , , , , , , , , , , , , , , ,4 9032, , , , , , , , , ,722 0, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,223 34

35 ( + x) n n er antallet af perioder x er vækst i procent 3% x 50% n\x 3% 32% 33% 34% 35% 40% 45% 50%,300,3200,3300,3400,3500,4000,4500,5000 2,76,7424,7689,7956,8225,9600 2,025 2, ,248 2,3000 2,3526 2,406 2,4604 2,7440 3,0486 3, ,9450 3,0360 3,290 3,2242 3,325 3,846 4,4205 5, ,8579 4,0075 4,66 4,3204 4,4840 5,3782 6,4097 7, ,0539 5,2899 5,5349 5,7893 6,0534 7,5295 9,294, ,6206 6,9826 7,364 7,7577 8,722 0,544 3,4765 7, ,6730 9,270 9,7907 0,3953,0324 4,7579 9, ,6289 9,367 2,665 3,026 3,9297 4, ,660 28, , ,8838 6,0598 7,387 8, ,066 28,9255 4, ,6650 9,4977 2,989 23, ,023 27,439 40, , , , , ,635 33,564 36, , , , ,460 36, , ,920 49, ,375 25,258 94, , , ,905 60,82 66,784,20 8,65 29, , , , , ,585 55, , , ,223 84, , ,0629 2,739 27, , , ,5399 2,390 27, , , , , , , , , , , , , , ,043 95,39 225, , , , , , , , , , , , , , , , , , ,7693 7, , , ,68 449, , , , , , , , , , , , , , , , , ,50 23, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,52 442, , , , , , , , , , , , , , , , ,5 988, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,6 6324, , , , , , , , , , , , , , , , , , ,

Formel- og tabelsamling

Formel- og tabelsamling Formel- og tabelsamling Folkeskolens afsluttende prøver i matematik Uddannelsesstyrelsens håndbogsserie nr. 2-2005 Folkeskolen Formel- og tabelsamling Folkeskolens afsluttende prøver i matematik Uddannelsesstyrelsens

Læs mere

Formel- og tabelsamling

Formel- og tabelsamling Formel- og tabelsamling Folkeskolens afsluttende prøver i matematik Uddannelsesstyrelsens håndbogsserie 2005 Grundskolen Formel- og tabelsamling Folkeskolens afsluttende prøver i matematik Uddannelsesstyrelsens

Læs mere

FORMELSAMLING FOLKESKOLENS AFSLUTTENDE PRØVER I MATEMATIK

FORMELSAMLING FOLKESKOLENS AFSLUTTENDE PRØVER I MATEMATIK FORMELSAMLING FOLKESKOLENS AFSLUTTENDE PRØVER I MATEMATIK FORMELSAMLING FOLKESKOLENS AFSLUTTENDE PRØVER I MATEMATIK Redaktion og tilrettelæggelse af indhold for Skolestyrelsen: Lektor Hans Jørgen Beck,

Læs mere

bruge en formel-samling

bruge en formel-samling Geometri Længdemål og omregning mellem længdemål... 56 Omkreds og areal af rektangler og kvadrater... 57 Omkreds og areal af andre figurer... 58 Omregning mellem arealenheder... 6 Nogle geometriske begreber

Læs mere

Matematiske færdigheder opgavesæt

Matematiske færdigheder opgavesæt Matematiske færdigheder opgavesæt SÆT + 0 :, 0 000 9 0 cm m 0 liter dl ton kg Hvilket år var der flest privatbiler i Danmark? Cirka hvor mange privatbiler var der i 99? 00 0 000 Priser i Tivoli, 00: Turpas

Læs mere

i tredje kilogram (kg) længde cirkeludsnit periferi todimensional hjørne

i tredje kilogram (kg) længde cirkeludsnit periferi todimensional hjørne median 50% halvdel geometri i tredje 3 rumfang normal 90 grader underlig indskrevet kilogram (kg) bage forkortelse tusinde (1000) rumfang beholder fylde liter passer ben sds bredde deci centi lineal tiendedel

Læs mere

matematik grundbog trin 1 Demo preben bernitt grundbog trin 1 2004 by bernitt-matematik.dk 1

matematik grundbog trin 1 Demo preben bernitt grundbog trin 1 2004 by bernitt-matematik.dk 1 33 matematik grundbog trin 1 Demo preben bernitt grundbog trin 1 2004 by bernitt-matematik.dk 1 matematik grundbog trin 1 Demo-udgave 2003 by bernitt-matematik.dk Kopiering og udskrift af denne bog er

Læs mere

Decimaltal, brøker og procent Negative tal Potens, rødder og pi Reelle og irrationale tal

Decimaltal, brøker og procent Negative tal Potens, rødder og pi Reelle og irrationale tal Navn: Nr.: Klasse: Prøvedato: mat8 Noter: Kompetencemål efter 9. klassetrin Eleven kan anvende reelle tal og algebraiske udtryk i matematiske undersøgelser Tal og algebra Tal Titalssystem Decimaltal, brøker

Læs mere

Den lille hjælper. Positionssystem...3. Positive tal...3. Negative tal...3. Hele tal...3. Potenstal...3. Kvadrattal...3

Den lille hjælper. Positionssystem...3. Positive tal...3. Negative tal...3. Hele tal...3. Potenstal...3. Kvadrattal...3 Den lille hjælper Positionssystem...3 Positive tal...3 Negative tal...3 Hele tal...3 Potenstal...3 Kvadrattal...3 Parentes...4 Parentesregler...4 Primtal...4 Addition (lægge sammen) også med decimaltal...4

Læs mere

Mødet. 6 Geometri. Begreb Eksempel Navn. Parallel. Vinkelret. Linjestykke. Polygon. Cirkelperiferi. Midtpunkt. Linje. Diagonal. Radius.

Mødet. 6 Geometri. Begreb Eksempel Navn. Parallel. Vinkelret. Linjestykke. Polygon. Cirkelperiferi. Midtpunkt. Linje. Diagonal. Radius. 6.01 Mødet Begreb Eksempel Navn Parallel Vinkelret Linjestykke Polygon Cirkelperiferi Midtpunkt Linje Diagonal Radius Ret vinkel 6.02 Fire på stribe Regler Hver spiller får en spilleplade (6.03). Alle

Læs mere

Facitliste til MAT X Grundbog

Facitliste til MAT X Grundbog Facitliste til MAT X Grundbog Foreløbig udgave Det er tanken der tæller A Formlen bliver l + b, når l og b er i uforkortet stand. B Ingen løsningsforslag. C Ved addition fås det samme facit. Ved multiplikation

Læs mere

Et kommatal som for eksempel 1,25 kaldes også noget andet. Hvad kaldes det også?

Et kommatal som for eksempel 1,25 kaldes også noget andet. Hvad kaldes det også? Et tal som både består af et helt tal og en brøk, for eksempel. Hvad hedder det? Et kommatal som for eksempel 1,25 kaldes også noget andet. Hvad kaldes det også? Hvad kalder man tallet over brøkstregen

Læs mere

Decimaltal, brøker og procent Negative tal Potens, rødder og pi Reelle og irrationale tal

Decimaltal, brøker og procent Negative tal Potens, rødder og pi Reelle og irrationale tal Navn: Nr.: Klasse: Prøvedato: mat6 Noter: Kompetencemål efter 6. klassetrin Eleven kan anvende reelle tal og algebraiske udtryk i matematiske undersøgelser Tal og algebra Tal Titalssystem Decimaltal, brøker

Læs mere

Formelsamling Matematik C

Formelsamling Matematik C Formelsamling Matematik C Ib Michelsen Ikast 2011 Ligedannede trekanter Hvis to trekanter er ensvinklede har de proportionale sider (dvs. alle siderne i den ene er forstørrelser af siderne i den anden

Læs mere

Faglig årsplan 2010-2011 Skolerne i Oure Sport & Performance. Emne Tema Materialer. Læringsmål Faglige aktiviteter. Evaluering.

Faglig årsplan 2010-2011 Skolerne i Oure Sport & Performance. Emne Tema Materialer. Læringsmål Faglige aktiviteter. Evaluering. Fag: Matematik Hold: 27 Lærer: Jesper Svejstrup Pedersen Undervisnings-mål 9 klasse Læringsmål Faglige aktiviteter Emne Tema Materialer ITinddragelse Evaluering 32-37 i arbejdet med geometri at benytte

Læs mere

Bjørn Grøn. Euklids konstruktion af femkanten

Bjørn Grøn. Euklids konstruktion af femkanten Bjørn Grøn Euklids konstruktion af femkanten Euklids konstruktion af femkanten Side af 17 Euklids konstruktion af femkanten Et uddrag af sætninger fra Euklids Elementer, der fører frem til konstruktionen

Læs mere

Forslag til løsning af Opgaver om areal (side296)

Forslag til løsning af Opgaver om areal (side296) Forslag til løsning af Opgaver om areal (side96) Opgave 1 6 0 8 Vi kan beregne arealet af 6 8 0 s 4. ved hjælp af Heron s formel: ( ) 4 4 6 4 8 4 0 6. Parallelogrammets areal er det dobbelte af trekantens

Læs mere

Et kommatal som for eksempel 1,25 kaldes også noget andet. Hvad kaldes det også?

Et kommatal som for eksempel 1,25 kaldes også noget andet. Hvad kaldes det også? Et tal som både består af et helt tal og en brøk, for eksempel 2 " #. Hvad hedder det? Et kommatal som for eksempel 1,25 kaldes også noget andet. Hvad kaldes det også? Hvad kalder man tallet over brøkstregen

Læs mere

Decimaltal, brøker og procent Negative tal Potens, rødder og pi Reelle og irrationale tal

Decimaltal, brøker og procent Negative tal Potens, rødder og pi Reelle og irrationale tal Navn: Nr.: Klasse: Prøvedato: mat7 Noter: Kompetencemål efter 9. klassetrin Eleven kan anvende reelle tal og algebraiske udtryk i matematiske undersøgelser Tal og algebra Tal Titalssystem Decimaltal, brøker

Læs mere

Lærereksemplar. Kun til lærerbrug GEOMETRI 89. Kopiering er u-økonomisk og forbudt til erhvervsformål.

Lærereksemplar. Kun til lærerbrug GEOMETRI 89. Kopiering er u-økonomisk og forbudt til erhvervsformål. Kun salg ved direkte kontakt mellem skole og forlag. Kopiering er u-økonomisk og forbudt til erhvervsformål. GEOMETRI 89 Side Emne 1 Indholdsfortegnelse 2 Måling af vinkler 3 Tegning og måling af vinkler

Læs mere

Matematik på Åbent VUC

Matematik på Åbent VUC Lektion 8 Geometri Når du bruger denne facitliste skal du være opmærksom på, at: - der kan være enkelte fejl. - nogle af facitterne er udeladt - bl.a. der hvor facitterne er tegninger. - decimaltal kan

Læs mere

4x + 3y + k 4(x + 3y + k) 2(y + x) + 2(xy + k) 7(2y + 3x) 2(k + 2(y + x))

4x + 3y + k 4(x + 3y + k) 2(y + x) + 2(xy + k) 7(2y + 3x) 2(k + 2(y + x)) A.0 A Algebradans x + y + k (x + y + k) (y + x) + (xy + k) (y + x) (k + (y + x)) k + k + k + (y +xy + k) (y + x) + k x + x + x + x + x + k (xy + (y + x) xy + xy + k (k + y + k) (xy + x) + y 6(x + xy) k

Læs mere

Min egen formelsamling & Noter (Matematik)

Min egen formelsamling & Noter (Matematik) Tilhører: Min egen formelsamling & Noter (Matematik) http://madsmatik.dk/ d.03-02-2016 1/56 1.0 Basal Matematik... 4 1.1 Tal & Talsystemer... 4 1.2 De 4 regnearter... 5 1.3 Brøkregning... 8 1.4 Enheder...

Læs mere

Geometri Følgende forkortelser anvendes:

Geometri Følgende forkortelser anvendes: Geometri Følgende forkortelser anvendes: D eller d = diameter R eller r = radius K eller k = korde tg = tangent Fig. 14 Benævnelser af cirklens liniestykker Cirkelperiferien inddeles i grader Cirkelperiferien

Læs mere

Matematik. Trinmål 2. Nordvestskolen 2006 Forord. Trinmål 2 (4. 6. klasse)

Matematik. Trinmål 2. Nordvestskolen 2006 Forord. Trinmål 2 (4. 6. klasse) Matematik Trinmål 2 Nordvestskolen 2006 Forord Forord For at sikre kvaliteten og fagligheden i folkeskolen har Undervisningsministeriet udarbejdet faghæfter til samtlige fag i folkeskolen med bindende

Læs mere

Matematik for malere praktikopgave

Matematik for malere praktikopgave Matematik for malere praktikopgave 1 Tilhører: 2 Indhold: Regneregler... side 4 Omregning af måleenheder... side 6 Måleskoksforhold... side 7 Beregningsopgave til praktikopgave 1.... side 8 Evaluerings

Læs mere

Geometri i plan og rum

Geometri i plan og rum INTRO I kapitlet arbejder eleverne med plane og rumlige figurers egenskaber og med deres anvendelse som geometriske modeller. I den forbindelse kommer de bl.a. til at beskæftige sig med beregninger af

Læs mere

kilogram (kg) passer isometrisk liter veje kvadratmeter kasse

kilogram (kg) passer isometrisk liter veje kvadratmeter kasse i tredje 3 i anden kilogram (kg) bage forkortelse tusinde (1000) efter bagved foran placering beholder fylde passer ben sds bredde deci centi tiendedel isometrisk centicube stoksforhold prikpar længere

Læs mere

GeoGebra. Tegn følgende i Geogebra. Indsæt tegningen fra geogebra. 1. Indsæt punkterne: (2,3) (-2, 4) (-3, -4,5)

GeoGebra. Tegn følgende i Geogebra. Indsæt tegningen fra geogebra. 1. Indsæt punkterne: (2,3) (-2, 4) (-3, -4,5) Tegn følgende i Geogebra 1. Indsæt punkterne: (2,3) (-2, 4) (-3, -4,5) Forbind disse tre punker (brug polygon ) 2. Find omkreds, vinkler, areal og sidelængder 3. Tegn en vinkelret linje fra A og ned på

Læs mere

Matematik 2011/2012 Skovbo Efterskole Trigonometri. Trigonometri

Matematik 2011/2012 Skovbo Efterskole Trigonometri. Trigonometri Trigonometri Spidse og stumpe vinkler En vinkel kaldes spids, når den er mindre end 90. En vinkel kaldes ret, når den er 90. En vinkel kaldes stump, når den er større end 90. En vinkel kaldes lige, når

Læs mere

1 Trekantens linjer. Definition af median En median er en linje i en trekant der forbinder en vinkelspids med midtpunktet af modstående side.

1 Trekantens linjer. Definition af median En median er en linje i en trekant der forbinder en vinkelspids med midtpunktet af modstående side. Geometrinoter 1, januar 2009, Kirsten Rosenkilde 1 Geometrinoter 1 Disse noter omhandler grundlæggende sætninger om trekantens linjer, sammenhængen mellem en vinkel og den cirkelbue den spænder over, samt

Læs mere

Løsningsforslag til Geometri 4.-10. klasse

Løsningsforslag til Geometri 4.-10. klasse Løsningsforslag til Geometri 4.-0. klasse Bemærk, at vi benytter betegnelsen øvelser som en meget bred betegnelse. Derfor er der også nogle af vores øvelser, der nærmer sig kategorien undersøgelser, dem

Læs mere

Fagårsplan 12/13 Fag: Matematik Klasse: 6.a Lærer: LBJ Fagområde/ emne

Fagårsplan 12/13 Fag: Matematik Klasse: 6.a Lærer: LBJ Fagområde/ emne Fagårsplan 12/13 Fag: Matematik Klasse: 6.a Lærer: LBJ Fagområde/ emne Umulige figurer Periode Mål Eleverne skal: At opdage muligheden for og blive fascineret af gengivelse af det umulige. At få øvelse

Læs mere

Matematik undervisningsplan 4-6. klassetrin Årsplan 2015 & 2016

Matematik undervisningsplan 4-6. klassetrin Årsplan 2015 & 2016 Materialer Grundbog: kontext Arbejdsbog: kontext Rema Matematik undervisningsplan Matematikmappe til opgaveark, tilpasset elevernes individuelle niveau Tabeltræning og anden basistræning efter behov Supplerende

Læs mere

Den lille hjælper. Krogårdskolen. Hvordan løses matematik? Indskoling 0. 3. klasse, mellemtrin 4. 6. klasse og udskoling 7. 9.

Den lille hjælper. Krogårdskolen. Hvordan løses matematik? Indskoling 0. 3. klasse, mellemtrin 4. 6. klasse og udskoling 7. 9. Den lille hjælper Krogårdskolen Indskoling 0. 3. klasse, mellemtrin 4. 6. klasse og udskoling 7. 9. klasse Hvordan løses matematik? Positionssystem... 4 Positive tal... 4 Negative tal... 4 Hele tal...

Læs mere

F-dag om geometri. Fremstilling og beskrivelse af stiliserede blade

F-dag om geometri. Fremstilling og beskrivelse af stiliserede blade F-dag om geometri Fremstilling og beskrivelse af stiliserede blade I foråret fejrede Canada at landet havde eksisteret som nation i 150 år. I den anledning blev der fremstillet et logo, der tog afsæt i

Læs mere

Dynamiske konstruktioner med et dynamisk geometriprogram En øvelsessamling

Dynamiske konstruktioner med et dynamisk geometriprogram En øvelsessamling Dynamiske konstruktioner med et dynamisk geometriprogram En øvelsessamling Disse opgaver er i sin tid udarbejdet til programmerne Geometer, og Geometrix. I dag er GeoGebra (af mange gode grunde, som jeg

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Termin hvori undervisningen afsluttes: December 2011 HTX

Læs mere

fortsætte høj retning mellem mindre over større

fortsætte høj retning mellem mindre over større cirka (ca) omtrent overslag fortsætte stoppe gentage gentage det samme igen mønster glat ru kantet høj lav bakke lav høj regel formel system lov retning højre nedad finde t system rod orden nøjagtig præcis

Læs mere

Asbjørn Madsen Årsplan for 8. klasse Matematik Jakobskolen

Asbjørn Madsen Årsplan for 8. klasse Matematik Jakobskolen Årsplan for matematik i 8. klasse Årsplanen er opbygget ud fra kapitlerne i kernebogen Kontext+ 8. De forskellige kapitler tager udgangspunkt i matematikholdige kontekster, som eleverne på den ene eller

Læs mere

fortsætte høj retning benævnelse afstand form kort

fortsætte høj retning benævnelse afstand form kort cirka (ca) omtrent overslag fortsætte stoppe gentage gentage det samme igen mønster glat ru kantet høj lav bakke lav høj regel formel system lov retning højre nedad finde rundt system rod orden nøjagtig

Læs mere

Matematik for lærerstuderende klasse Geometri

Matematik for lærerstuderende klasse Geometri Matematik for lærerstuderende 4.-10. klasse Geometri Klassisk geometri (kapitel 6) Deduktiv tankegang Ræsonnementskompetence Mål med kapitlet: Erkender Thales sætning som fundament for afstandsberegning.

Læs mere

Uge Emne Formål Faglige mål Evaluering

Uge Emne Formål Faglige mål Evaluering Uge Emne Formål Faglige mål Evaluering (Der evalueres løbende på følgende hovedpunkter) 33-36 Regneregler Vedligeholde og udbygge forståelse og færdigheder inden for de fire regningsarter Blive fortrolig

Læs mere

Vejledende Matematik A

Vejledende Matematik A Vejledende Matematik A Prøvens varighed er 5 timer. Alle hjælpemidler er tilladt. Af opgaverne 10A, 10B, 10C og 10D skal kun én opgave afleveres til bedømmelse. Hvis flere end én opgave afleveres, bedømmes

Læs mere

Vi håber disse svarforslag kan være til glæde for læseren, og vi modtager gerne forslag til forbedringer:

Vi håber disse svarforslag kan være til glæde for læseren, og vi modtager gerne forslag til forbedringer: Svarforslag til Alfa, Forstudier Vi håber disse svarforslag kan være til glæde for læseren, og vi modtager gerne forslag til forbedringer: Kristine.Jess@skolekom.dk Med venlig hilsen forfatterne Indhold

Læs mere

matematik grundbog basis preben bernitt

matematik grundbog basis preben bernitt 33 matematik grundbog basis preben bernitt 1 matematik grundbog basis ISBN: 978-87-92488-27-5 2. udgave som E-bog 2010 by bernitt-matematik.dk Kopiering af denne bog er kun tilladt efter aftale med bernitt-matematik.dk

Læs mere

Matematik. Jonas Albrekt Karmann (JK) og Shiva Qvistgaard Sharifi (SQ) Mål for undervisningen:

Matematik. Jonas Albrekt Karmann (JK) og Shiva Qvistgaard Sharifi (SQ) Mål for undervisningen: Matematik Årgang: Lærer: 7. årgang Jonas Albrekt Karmann (JK) og Shiva Qvistgaard Sharifi (SQ) Mål for : Formålet med er, at udvikler matematiske kompetencer og opnår viden og kunnen således, at de bliver

Læs mere

HENRIETTE HOLTE HENRIK THOMSEN MICHAEL WAHL ANDERSEN PETER WENG FACITLISTE TIL TRÆNINGSHÆFTE 8

HENRIETTE HOLTE HENRIK THOMSEN MICHAEL WAHL ANDERSEN PETER WENG FACITLISTE TIL TRÆNINGSHÆFTE 8 HENRIETTE HOLTE HENRIK THOMSEN MICHAEL WAHL ANDERSEN PETER WENG 8 FACITLISTE TIL TRÆNINGSHÆFTE 8 Kontext 8, Facitliste til træningshæfte Samhørende titler: Kontext 8, Kernebog Kontext 8, Kopimappe Kontext

Læs mere

Vi håber disse svarforslag kan være til glæde for læseren, og vi modtager gerne forslag til forbedringer:

Vi håber disse svarforslag kan være til glæde for læseren, og vi modtager gerne forslag til forbedringer: Svarforslag til Alfa, Forstudier Vi håber disse svarforslag kan være til glæde for læseren, og vi modtager gerne forslag til forbedringer: Kristine.Jess@skolekom.dk Med venlig hilsen forfatterne Indhold

Læs mere

Trekanttypespil. 7 Trekanter. En trekant, hvor to af vinklerne er 90. En retvinklet trekant med siderne 3, 4, og 5. Kan ikke konstrueres.

Trekanttypespil. 7 Trekanter. En trekant, hvor to af vinklerne er 90. En retvinklet trekant med siderne 3, 4, og 5. Kan ikke konstrueres. .01 Trekanter Trekanttypespil En retvinklet trekant med siderne,, og. Kan ikke konstrueres. En trekant, hvor to af vinklerne er 90. En ligesidet trekant med siden. En spidsvinklet trekant hvor den ene

Læs mere

Elevbog s. 14-25 Vi opsummerer hvad vi ved i. kendskab til geometriske begreber og figurer.

Elevbog s. 14-25 Vi opsummerer hvad vi ved i. kendskab til geometriske begreber og figurer. Årsplan 5. LH. Matematik Lærer Pernille Holst Overgaard (PHO) Lærebogsmateriale. Format 5 Tid og fagligt Aktivitet område Uge 33-37 Tal Uge 38-41 (efterårsferie uge 42) Figurer Elevbog s. 1-13 Vi opsummerer

Læs mere

Forslag til løsning af Opgaver til analytisk geometri (side 338)

Forslag til løsning af Opgaver til analytisk geometri (side 338) Forslag til løsning af Opgaver til analytisk geometri (side 8) Opgave Linjerne har ligningerne: a : y x 9 b : x y 0 y x 8 c : x y 8 0 y x Der må gælde: a b, da Skæringspunkt mellem a og b:. Det betyder,

Læs mere

Funktioner generelt. for matematik pä B- og A-niveau i stx og hf. 2014 Karsten Juul

Funktioner generelt. for matematik pä B- og A-niveau i stx og hf. 2014 Karsten Juul Funktioner generelt for matematik pä B- og A-niveau i st og hf f f ( ),8 014 Karsten Juul 1 Funktion og dens graf, forskrift og definitionsmängde 11 Koordinatsystem I koordinatsystemer (se Figur 1): -akse

Læs mere

Matematik Delmål og slutmål

Matematik Delmål og slutmål Matematik Delmål og slutmål Ferritslev friskole 2006 SLUTMÅL efter 9. Klasse: Regning med de rationale tal, såvel som de reelle tal skal beherskes. Der skal kunne benyttes og beherskes formler i forbindelse

Læs mere

Årsplan for matematik 4.kl 2013-2014 udarbejdet af Anne-Marie Kristiansen (RK)

Årsplan for matematik 4.kl 2013-2014 udarbejdet af Anne-Marie Kristiansen (RK) Matematikundervisningen vil i år ændre sig en del fra, hvad eleverne kender fra de tidligere år. vil få en fælles grundbog, hvor de ikke må skrive i, et kladdehæfte, som de skal skrive i, en arbejdsbog

Læs mere

Facitliste til elevbog

Facitliste til elevbog Facitliste til elevbog Algebra a 8x 4 b 6x c 7x 8 d 0 5x e x 54 f 8x 6 x a x 7x + 4 b 48a 4 + 8a c 56x + x d 6a 4 5a e 4x 80x f 6a 4 4a a 8(x + ) b 5x(4x 7) c 4( a) d 9a ( a) e 4( + 7a ) f 6(x + y) 4 a

Læs mere

Forlag Malling Beck Best. nr Sigma for syvende

Forlag Malling Beck Best. nr Sigma for syvende Navn: Klasse: Forlag Malling Beck Best. nr. 0 Sigma for svende Navn: Klasse: Forlag Malling Beck Best. nr. 0 Sigma for svende Navn: Klasse: Forlag Malling Beck Best. nr. 0 Sigma for svende Navn: Klasse:

Læs mere

Lærervejledning til Træn matematik på computer. Lærervejledning. Træn matematik på computer. ISBN 978-87-992954-5-6 www.learnhow.dk v/rikke Josiasen

Lærervejledning til Træn matematik på computer. Lærervejledning. Træn matematik på computer. ISBN 978-87-992954-5-6 www.learnhow.dk v/rikke Josiasen Lærervejledning Træn matematik på computer Materialet består af 31 selvrettende emner til brug i matematikundervisningen i overbygningen. De fleste emner består af 3 sider med stigende sværhedsgrad. I

Læs mere

OVERSIGT OVER 23 KOPIARK TIL AFRUNDING

OVERSIGT OVER 23 KOPIARK TIL AFRUNDING OVERSIGT OVER KOPIARK TIL AFRUNDING Kopiarkene til afrunding er ikke fortløbende nummereret. Til hvert kapitel er der knyttet eller tre kopiark. Variable Kopiark : Fokus på kapitlets stof Kopiark : Fokus

Læs mere

Repetition til eksamen. fra Thisted Gymnasium

Repetition til eksamen. fra Thisted Gymnasium Repetition til eksamen fra Thisted Gymnasium 20. oktober 2015 Kapitel 1 Introduktion til matematikken 1. Fortegn Husk fortegnsregnereglerne for multiplikation og division 2. Hierarki Lær sætningen om regnearternes

Læs mere

Statistikkompendium. Statistik

Statistikkompendium. Statistik Statistik INTRODUKTION TIL STATISTIK Statistik er analyse af indsamlet data. Det vil sige, at man bearbejder et datamateriale, som i matematik næsten altid er tal. Derved får man et samlet overblik over

Læs mere

fs10 1 Rejsen til New York 2 Fra fahrenheit til celsius 3 Højde og vægt 4 Sukkerroer 5 Afstand til en båd 6 Regulær ottekant Matematik

fs10 1 Rejsen til New York 2 Fra fahrenheit til celsius 3 Højde og vægt 4 Sukkerroer 5 Afstand til en båd 6 Regulær ottekant Matematik fs10 10.-klasseprøven Matematik December 2012 Et svarark er vedlagt som bilag til dette opgavesæt 1 Rejsen til New York 2 Fra fahrenheit til celsius 3 Højde og vægt 4 Sukkerroer 5 Afstand til en båd 6

Læs mere

Birgit Mortensen. Begynderkonference d. 26/2 2014. Sproglig bevidsthed i matematik - hvorfor og hvordan

Birgit Mortensen. Begynderkonference d. 26/2 2014. Sproglig bevidsthed i matematik - hvorfor og hvordan Birgit Mortensen. Begynderkonference d. 26/2 2014 Sproglig bevidsthed i matematik - hvorfor og hvordan Sproglig bevidsthed i matematik undervisningen Sum er noget bierne gør, når de flyver i haven Negativ

Læs mere

Affine transformationer/afbildninger

Affine transformationer/afbildninger Affine transformationer. Jens-Søren Kjær Andersen, marts 2011 1 Affine transformationer/afbildninger Følgende afbildninger (+ sammensætninger af disse) af planen ind i sig selv kaldes affine: 1) parallelforskydning

Læs mere

Geometri med Geometer I

Geometri med Geometer I f Frans Kappel Øvre, Morsø Gymnasium Geometri med Geometer I Markeringspil: Klik på et objekt (punkt, linje, cirkel) for at markere det. Hvis du trykker Shift samtidig kan du markere flere objekter eller

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Juni 2017 Institution HANSENBERG Gymnasium Uddannelse Fag og niveau Lærer(e) Hold htx Matematik A Irina Kristensen

Læs mere

Rettevejledning, FP9, Prøven med hjælpemidler, endelig version

Rettevejledning, FP9, Prøven med hjælpemidler, endelig version Rettevejledning, FP9, Prøven med hjælpemidler, endelig version I forbindelse med FP9, Matematik, Prøven med hjælpemidler, maj 2016, afholdes forsøg med en udvidet rettevejledning. Den udvidede rettevejledning

Læs mere

Tip til 1. runde af Georg Mohr-Konkurrencen Geometri

Tip til 1. runde af Georg Mohr-Konkurrencen Geometri Tip til. runde af - Geometri, Kirsten Rosenkilde. Tip til. runde af Geometri Her er nogle centrale principper om og strategier for hvordan man løser geometriopgaver. et er ikke en særlig teoretisk indføring,

Læs mere

Facitliste til MAT X linjehæfte 1

Facitliste til MAT X linjehæfte 1 Facitliste til MAT X linjehæfte Tal og størrelser De naturlige tal Ingen løsningsforslag. a. 5 77 b. 5 0 c. 868 d. 599 e. 708 f. 89 g. 0 h. 50 690 i. 7, j. 6,5 k., a. 68 b. c. 6 d. 76 e. 66 f. 5 g. 5 h.

Læs mere

8.1 Lav en ordbog med tegninger og/eller definitioner af de geometriske begreber:

8.1 Lav en ordbog med tegninger og/eller definitioner af de geometriske begreber: 8. 8.1 Lav en ordbog med tegninger og/eller definitioner af de geometriske begreber: Kvadrat Rektangel Parallelogram Trapez Ligebenet trekant Ligesidet trekant Retvinklet trekant Rombe Polygon Ellipse

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni, 2014 Institution Frederiksberg HF Uddannelse Fag og niveau Lærer(e) HF Matematik C Susanne Hansen

Læs mere

Matematiske formler og fagord. Til matematik i klasse og folkeskolens prøver i matematik

Matematiske formler og fagord. Til matematik i klasse og folkeskolens prøver i matematik Matematiske formler og fagord Til matematik i 7.-10. klasse og folkeskolens prøver i matematik Matematiske formler og fagord Til matematik i 7.-10. klasse og folkeskolens prøver i matematik Redaktion og

Læs mere

Grønland. Matematik A. Højere teknisk eksamen

Grønland. Matematik A. Højere teknisk eksamen Grønland Matematik A Højere teknisk eksamen Onsdag den 12. maj 2010 kl. 9.00-14.00 Matematik A Prøvens varighed er 5 timer. Alle hjælpemidler er tilladt. Ved valgopgaver må kun det anførte antal afleveres

Læs mere

A Hvor mange omgange skal hjulene rulle for at komme hele vejen?

A Hvor mange omgange skal hjulene rulle for at komme hele vejen? A Hvor mange omgange skal hjulene rulle for at komme hele vejen? B Tegn den vej, som hjulene kan rulle på tre omgange. Skriv vejens længde med én decimal. C Tegn det hjul, der kan rulle to omgange på vejen.

Læs mere

Konstruktion. d: En cirkel med diameter 7,4 cm. e: En trekant med grundlinie på 9,6 cm og højde på 5,2 cm. (Der er mange muligheder)

Konstruktion. d: En cirkel med diameter 7,4 cm. e: En trekant med grundlinie på 9,6 cm og højde på 5,2 cm. (Der er mange muligheder) 1: Tegn disse figurer: a: Et kvadrat med sidelængden 3,5 cm. b: En cirkel med radius 4,. c: Et rektangel med sidelængderne 3,6 cm og 9,. d: En cirkel med diameter 7,. e: En trekant med grundlinie på 9,6

Læs mere

Tal og regning. 1 a 5 b 2 c 2 d 8 e 4 f 3 g 6 h 3. 3 a 2 b 5 c 3 d 3 e 2 f 12 g 2 h 7. 4 a 8 b 2 c 12 d 16 5... 7... 10. 6 2 og 5.

Tal og regning. 1 a 5 b 2 c 2 d 8 e 4 f 3 g 6 h 3. 3 a 2 b 5 c 3 d 3 e 2 f 12 g 2 h 7. 4 a 8 b 2 c 12 d 16 5... 7... 10. 6 2 og 5. Facitliste Tal og regning Tal og regning a 5 b c d 8 e 4 f g 6 h 9 a b 5 c d e f g h 7 4 a 8 b c d 6 5... 7... 0 6 og 5 7 9 cm og cm 8 a 4 b 6 c 0 d 0 e f g 4 h 9, 0 og 0 x 8 a 84 b 0 c d 56 e 44 f 5 g

Læs mere

matematik grundbog trin 2 preben bernitt

matematik grundbog trin 2 preben bernitt matematik grundbog trin 2 preben bernitt matematik grundbog 2 3. udgave som E-bog ISBN: 978-87-92488-29-9 2006 by bernitt-matematik.dk Kopiering af denne bog er kun tilladt efter aftale med bernitt-matematik.dk

Læs mere

ÅRSPLAN MATEMATIK 8. KL SKOLEÅRET 2017/2018

ÅRSPLAN MATEMATIK 8. KL SKOLEÅRET 2017/2018 ÅRSPLAN MATEMATIK 8. KL SKOLEÅRET 2017/2018 Der tages udgangspunkt i forenklede fællesmål fra UVM for matematik på 7-9. Klasse. Ved denne plan skal der tages højde for, at ændringer kan forekomme i løbet

Læs mere

Sproglig bevidsthed i matematik - hvorfor og hvordan. Syv

Sproglig bevidsthed i matematik - hvorfor og hvordan. Syv Sproglig bevidsthed i matematik - hvorfor og hvordan Syv Sproglig bevidsthed i matematik undervisningen Sum er noget bierne gør, når de flyver i haven Negativ betyder at være sur og positiv betyder at

Læs mere

GUX-2013. Matematik Niveau B prøveform b Vejledende sæt 2

GUX-2013. Matematik Niveau B prøveform b Vejledende sæt 2 GUX-01 Matematik Niveau B prøveform b Vejledende sæt Matematik B Prøvens varighed er 4 timer. Delprøven uden hjælpemidler består af opgaverne 1 til 6 med i alt 6 spørgsmål. Besvarelsen af denne delprøve

Læs mere

Thomas Kaas Heidi Kristiansen. Gyldendal MATEMATIK KOPIMAPPE

Thomas Kaas Heidi Kristiansen. Gyldendal MATEMATIK KOPIMAPPE Thomas Kaas Heidi Kristiansen 8 KO L O R I T Gyldendal MATEMATIK KOPIMAPPE Thomas Kaas Heidi Kristiansen KOLORIT 8 Gyldendal KOLORIT 8 KOLORIT 8 MATEMATIK KOPIMAPPE 1. udgave, 1. oplag 2011 2011 Gyldendal

Læs mere

Matematik C. Højere forberedelseseksamen

Matematik C. Højere forberedelseseksamen Matematik C Højere forberedelseseksamen 2hf103-MAT/C-10122010 Fredag den 10. december 2010 kl. 9.00-12.00 Opgavesættet består af 8 opgaver med i alt 15 spørgsmål. De 15 spørgsmål indgår med lige vægt ved

Læs mere

Opgave 1 Til denne opgave anvendes bilag 1.

Opgave 1 Til denne opgave anvendes bilag 1. Opgave 1 Til denne opgave anvendes bilag 1. a) Undersøg figur 1. Mål og noter vinklerne Mål og noter længderne b) Undersøg figur 2. Mål og noter vinklerne Mål og noter længderne c) Undersøg figur 3. Mål

Læs mere

ØVEHÆFTE FOR MATEMATIK C GEOMETRI

ØVEHÆFTE FOR MATEMATIK C GEOMETRI ØVEHÆFTE FOR MATEMATIK C GEOMETRI Indhold Begreber i klassisk geometri + formelsamling... 2 Pythagoras Sætning... 8 Retvinklede trekanter. Beregn den ukendte side markeret med et bogstav.... 9 Øve vinkler

Læs mere

1 Trekantens linjer. Indhold

1 Trekantens linjer. Indhold Geometri - Teori og opgaveløsning Formålet med disse noter er at give en grundig introduktion til geometri med fokus på hvad man har brug for til internationale matematikkonkurrencer. Noterne forudsætter

Læs mere

STUDENTEREKSAMEN AUGUST 2009 MATEMATIK A-NIVEAU. Onsdag den 12. august 2009. Kl. 09.00 14.00 STX092-MAA. Undervisningsministeriet

STUDENTEREKSAMEN AUGUST 2009 MATEMATIK A-NIVEAU. Onsdag den 12. august 2009. Kl. 09.00 14.00 STX092-MAA. Undervisningsministeriet STUDENTEREKSAMEN AUGUST 009 MATEMATIK A-NIVEAU Onsdag den 1. august 009 Kl. 09.00 14.00 STX09-MAA Undervisningsministeriet Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-5

Læs mere

Eksamensspørgsmål: Trekantberegning

Eksamensspørgsmål: Trekantberegning Eksamensspørgsmål: Trekantberegning Indhold Definition af Sinus og Cosinus... 1 Bevis for Sinus- og Cosinusformlerne... 3 Tangens... 4 Pythagoras s sætning... 4 Arealet af en trekant... 7 Vinkler... 8

Læs mere

Matematik A. Studentereksamen

Matematik A. Studentereksamen Matematik A Studentereksamen 2stx101-MAT/A-01062010 Tirsdag den 1. juni 2010 kl. 9.00-14.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål. Delprøven

Læs mere

Forklar hvad betyder begrebet procent og hvordan man beregner det. Forklar, hvordan man lægger procenter til og trækker procenter fra.

Forklar hvad betyder begrebet procent og hvordan man beregner det. Forklar, hvordan man lægger procenter til og trækker procenter fra. 1. Procent og rente Forklar hvad betyder begrebet procent og hvordan man beregner det. Forklar, hvordan man lægger procenter til og trækker procenter fra. Gør rede for begrebet fremskrivningsfaktor. Vis,

Læs mere

Matematik A. Højere handelseksamen. 1. Delprøve, uden hjælpemidler. Mandag den 20. december 2010. kl. 9.00-14.00

Matematik A. Højere handelseksamen. 1. Delprøve, uden hjælpemidler. Mandag den 20. december 2010. kl. 9.00-14.00 Matematik A Højere handelseksamen 1. Delprøve, uden hjælpemidler kl. 9.00-10.00 hhx103-mat/a-01010 Mandag den 0. december 010 kl. 9.00-14.00 Matematik A Prøven uden hjælpemidler Dette opgavesæt består

Læs mere

Statistik er at behandle en stor mængde af tal, så de bliver lettere at overskue og forstå.

Statistik er at behandle en stor mængde af tal, så de bliver lettere at overskue og forstå. Statistik er at behandle en stor mængde af tal, så de bliver lettere at overskue og forstå. Hvis man fx samler de karakterer, der er givet til en eksamen i én stor bunke (se herunder), kan det være svært

Læs mere

Deskriptorspil. Navn Klasse Dato Statistik og sandsynlighed

Deskriptorspil. Navn Klasse Dato Statistik og sandsynlighed 9.0 Deskriptorspil Klip de 6 brikker ud, og del dem ligeligt. Læg kortene foran jer i en bunke med bagsiden opad. Tag hver det øverste kort fra bunken. Den ældste begynder med at vælge kategori fx typetal.

Læs mere

Matematik Basis. Faglige mål. Kernestof. Supplerende stof

Matematik Basis. Faglige mål. Kernestof. Supplerende stof Matematik Basis Undervisningens mål er, at kursisten kan: a) forstå tallenes opbygning i positionssystemet samt gange og dividere med et multiplum af 10 b) forstå de fire regningsarter og vælge hensigtsmæssige

Læs mere

ØVEHÆFTE FOR MATEMATIK C GEOMETRI

ØVEHÆFTE FOR MATEMATIK C GEOMETRI ØVEHÆFTE FOR MATEMATIK C GEOMETRI Indhold Begreber i klassisk geometri + formelsamling... 2 Ensvinklede trekanter... 7 Pythagoras Sætning... 10 Øve vinkler i retvinklede trekanter... 15 Sammensatte opgaver....

Læs mere

Deskriptiv statistik. Version 2.1. Noterne er et supplement til Vejen til matematik AB1. Henrik S. Hansen, Sct. Knuds Gymnasium

Deskriptiv statistik. Version 2.1. Noterne er et supplement til Vejen til matematik AB1. Henrik S. Hansen, Sct. Knuds Gymnasium Deskriptiv (beskrivende) statistik er den disciplin, der trækker de væsentligste oplysninger ud af et ofte uoverskueligt materiale. Det sker f.eks. ved at konstruere forskellige deskriptorer, d.v.s. regnestørrelser,

Læs mere

Mål for kapitlet, begreber og ord som anvendes i kapitlet og aktivering af forhåndsviden.

Mål for kapitlet, begreber og ord som anvendes i kapitlet og aktivering af forhåndsviden. FAGLIG LÆSNING e. OPGAVE. Hvad står der altid i sådan en ramme? Aktiviteter. 2. Hvad står der altid i sådan en ramme? Teori. 3. Hvad starter alle kapitler med? Mål for kapitlet, begreber og ord som anvendes

Læs mere

Årsplan 5. Årgang

Årsplan 5. Årgang Årsplan 5. Årgang 2016-2017 Materialer til 5.årgang: - Matematrix grundbog 5.kl - Matematrix arbejdsbog 5.kl - Skrivehæfte - Kopiark - Færdighedsregning 5.kl - Computer Vi skal i løbet af året arbejde

Læs mere

Funktioner generelt. for matematik pä B-niveau i stx. 2013 Karsten Juul

Funktioner generelt. for matematik pä B-niveau i stx. 2013 Karsten Juul Funktioner generelt for matematik pä B-niveau i st f f ( ),8 0 Karsten Juul Funktioner generelt for matematik pä B-niveau i st Funktion, forskrift, definitionsmångde Find forskrift StÇrste og mindste vårdi

Læs mere

1hf Spørgsmål til mundtlig matematik eksamen sommer 2014

1hf Spørgsmål til mundtlig matematik eksamen sommer 2014 1. Procent og rente Vis, hvordan man beregner gennemsnitlig procentændring 2. Procent og rente Vis hvordan man beregner indekstal. 3. Procent og rente Vis, hvordan man kan beregne forskellige størrelser

Læs mere