Bogstavregning. En indledning for stx og hf 2. del Karsten Juul

Størrelse: px
Starte visningen fra side:

Download "Bogstavregning. En indledning for stx og hf 2. del. 2008 Karsten Juul"

Transkript

1 Bogstvregning En indledning for st og f. del 008 Krsten Juul ) )( ( ) ( ) (

2 Indold 0. Gnge to prenteser....,, osv Kvdrtsætninger Brøer. del... Bogstvregning. En indledning for st og f.. del. udgve Krsten Juul Dette æfte n downlodes fr Hæftet må enyttes i undervisningen vis læreren med det smme sender en e-mil til som dels oplyser t dette æfte enyttes, dels oplyser om lsse/old, lærer og sole/ursus.

3 Afsnit 0. Gnge to prenteser 0. Regel (Gnge prenteser smmen) Vi n gnge to prenteser ved t gnge vert led i den ene med vert led i den nden. 0. Esempel (Hvordn regel 0. sl forstås) I udtryet ( ) ( ) indeolder første prentes de to led og nden prentes de tre led Ved t gnge første led i første prentes med vert f leddene i nden prentes får vi de tre led: Ved t gnge ndet led i første prentes med vert f leddene i nden prentes får vi: De ses led vi r eregnet, lægger vi smmen og får: ( ) ( ) 0. Esempel (Advrsel) Der gælder t ( )( ) ( ) Vi n ie omsrive ( )( ) til Afsnit 0. Øvelser 0. Øvelse (Hvile er ens?) Hvile f følgende udtry er lig innden unset vile tl og står for: () ( ) () () 8 () (e) ( ) ( ) (f) 8 0. Øvelse (Hvile er ens?) Hvile f følgende udtry er lig innden unset vile tl og står for: () ( ) () ( ) () (e) (f) ( ) Bogstvregning. En indledning for st og f.. del Side 008 Krsten Juul

4 0. Øvelse (Gng smmen) Gng prenteserne smmen: () ( )( ) () ( )( ) () ( )( ) ( )( ) (e) ( )( ) (f) ( )( ) 0.7 Øvelse (Reduér) () Reduér: () ( )( ) ( ) () ( )( ) () ( )( ) ( )( ) ( ) () I vilet f de fire udtry er det ie smrt t ruge Øvelse (Hvd eregner regneudtryet?) I en lsse med piger og 0 drenge r ver elev 8 store øger og små øger (og ie ndre øger). () Afgør for ver f følgende udregninger vd det er den pågældende udregning eregner. () Læg 0 til. () Læg til 8. Gng 0 med resulttet. () Læg 0 til. Læg til 8. Gng de to resultter. Læg 0 til og gng resulttet med 8. Læg 0 til og gng resulttet med. Læg de to gngeresultter smmen. (e) Gng med 8. Gng med. Gng 0 med 8. Gng 0 med. Læg de fire resultter smmen. () Sriv ver f de fem udregninger som et regneudtry. () Afgør vile f regneudtryene der er lig innden, og sriv disse med ligedstegn imellem. 0.9 Øvelse (Hvd eregner regneudtryet?) Vi øer r røde sodvnd og g grønne sodvnd. For ver sodvnd etler vi prisen r. plus pnten p r. For vert f følgende regneudtry sl du ort ngive vd det eregner, og regneudtry der er lig innden, sl du opsrive med ligedstegn imellem. () r rp ( r g) ( r g) p () p (e) ( r g)( p) () r ( p) (f) r rp g gp Bogstvregning. En indledning for st og f.. del Side 008 Krsten Juul

5 0.0 Øvelse (Hvd eregner regneudtryet?) Et puslespil estår f nogle grønne rier og nogle røde rier. Hver elev i en lsse får udleveret et esemplr f puslespillet. () Afgør for ver f fem følgende udregninger vd det er den pågældende udregning eregner. () Træ ntl drenge fr ntl elever. Læg ntl røde til ntl grønne. Gng de to resultter. () Læg ntl røde til ntl grønne, og gng ntl elever med resulttet. Læg ntl røde til ntl grønne, og gng resulttet med ntl drenge. Træ sidste gngeresultt fr første gngeresultt. () Gng ntl elever med ntl grønne. Gng ntl elever med ntl røde. Læg de to resultter smmen. A: Gng ntl elever med ntl grønne. B: Gng ntl elever med ntl røde. C: Gng ntl drenge med ntl grønne. D: Gng ntl drenge med ntl røde. E: Læg resultt B til resultt A. F: Træ resultt C fr resultt E. Træ resultt D fr resultt F. (e) Læg ntl røde til ntl grønne. Gng ntl elever med resulttet. () Sriv ver f de fem udregninger som et regneudtry vor e, d, g og r står for v. ntl elever i lssen, ntl drenge i lssen, ntl grønne rier i ét puslespil og ntl røde rier i ét puslespil. () Afgør vile f regneudtryene der er lig innden, og sriv disse med ligedstegn imellem. 0. Øvelse (Hvd eregner regneudtryet?) Figuren viser et retngel der er delt op i ses mindre retngler. For vert f følgende regneudtry sl du ort ngive vd det eregner: () v v () ( u )( v ) () v () u vu u u Afsnit.,, osv.. Regel (Hvd etyder,, osv.?) osv. Bogstvregning. En indledning for st og f.. del Side Krsten Juul

6 . Esempel Når du fleverer opgver, eøver du ie medtge mellemregninger som dem der er srevet i de syv udregninger ()-(7). () () () () ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) () ( ) ( ) ( ) () (7) (8) ( ) ( ) Afsnit. Øvelser. Øvelse (Hvile er ens?) Afgør vile f de ses udtry der er lig innden (se.). () () (e) 9 () (f). Øvelse (Reduér) Reduer de fire udtry (se.). () () ( ) ( ) () ( ) ( ) ( ). Øvelse (Hvile er ens?) Afgør vile f de ses udtry der er lig innden (se.). () 0 () 0 () 0 (e) 0 0 (f) 0 ) ( Bogstvregning. En indledning for st og f.. del Side Krsten Juul

7 . Øvelse (Hvile er ens?) Afgør vile f de fire udtry der er lig innden (se.). () ( ) () ().7 Øvelse (Hvile er ens?) Afgør vile f de ses udtry der er lig innden (se.). () () ( ) () ( ) (e) (f) ( ).8 Øvelse (Reduér) Reduer de to udtry (se. og.7). () () ) (.9 Øvelse (Hvile er ens?) Afgør vile f de fire udtry der er lig innden (se.). () ( ) () () ( ) ( ) ( ).0 Øvelse (Reduér) Reduer de to udtry (se. og.9). () (). Øvelse (Hvile er ens?) Afgør vile f de otte udtry der er lig innden. () 9 (e) ( )( ) () ( ) (f) ( )( ) () ( )( ) (g) 9 9 () ( ). Øvelse Gng prenteserne smmen. () ( m n)( m n) () ( m n)( m n) () ( m n)( m n) Bogstvregning. En indledning for st og f.. del Side Krsten Juul

8 Afsnit. Kvdrtsætninger. Regel (Kvdrtsætninger). vdrtsætning: ( ). vdrtsætning: ( ). vdrtsætning: ( )( ) Gyldigeden f vdrtsætningerne følger f øvelse.. Kvdrtet på et tl er det smme som tllet opløftet til nden, så vdrtet på er 9, og vdrtet på er.. Esempel (. vdrtsætning) Der gælder ( ) ( ) vis og og så er () () 9 Altså er () ( ) 9 ifølge. vdrtsætning. Når du fleverer opgver, må du gerne foretge en omsrivning som () uden t srive mellemregningerne.. Esempel (. vdrtsætning) Der gælder ( )( ) ( )( ) vis og ( og så er ) 9 Altså er () ( )( ) 9 ifølge. vdrtsætning. Når du fleverer opgver, må du gerne foretge en omsrivning som () uden t srive mellemregningerne. Bogstvregning. En indledning for st og f.. del Side Krsten Juul

9 Afsnit. Øvelser. Øvelse (. vdrtsætning) Omsriv ved jælp f. vdrtsætning: () ( ) () ( ) () ( ) ( ) (e) ( u v) (f) ( u v). Øvelse (. vdrtsætning rugt glæns) () Find ud f vd der sl indsættes for og for t 9 () Brug svret på () til t omsrive 9 til formen ( ) () Find ud f vd der sl indsættes for og for t () Brug svret på () til t omsrive til formen ( ) () Omsriv 0 til formen ( ). Øvelse (. vdrtsætning) Omsriv ved jælp f. vdrtsætning: () ( 0 ) () ( 7) () ( u v) ( ).7 Øvelse (. vdrtsætning rugt glæns) () Find ud f vd der sl indsættes for og for t 9 () Brug svret på () til t omsrive 9 til formen ( ) () Omsriv til formen ( ).8 Øvelse (. vdrtsætning) Omsriv ved jælp f. vdrtsætning: () ( )( ) () ( pq )( pq ) ( () ( p q)( p q) )( ) Bogstvregning. En indledning for st og f.. del Side 008 Krsten Juul

10 .9 Øvelse (. vdrtsætning rugt glæns) () Find ud f vd der sl indsættes for og for t () Brug svret på () til t 9 omsrive 9 til formen ( )( ) () Find ud f vd der sl indsættes for og for t () Brug svret på () til t omsrive til formen ( )( ) () Omsriv u v til formen ( )( ).0 Øvelse (Reduér) Reduer de udtry (se.). () ( y) y ( y)( y ) () ( y) y (e) ) y ( y () ( y) y (f) 9 ( y)( y). Øvelse (Reduér) Reduer de udtry (se.). () () 8 (). Øvelse (Hvd eregner regneudtryet?) Figuren viser et stort vdrt der er delt op i to små vdrter og to retngler. Hvis står for længderne f siderne i det mindste f de små vdrter, og står for længderne f siderne i det ndet, vd eregner følgende regneudtry så? () () ( ) () () Bogstvregning. En indledning for st og f.. del Side 008 Krsten Juul

11 Bogstvregning. En indledning for st og f.. del Side 008 Krsten Juul Afsnit. Brøer. del. Regel (Brøregler) () Vi ændrer ie en røs tlværdi når vi forlænger (dvs. gnger tæller og nævner med smme tl) eller fororter (dvs. dividerer tæller og nævner med smme tl): () Vi n gnge to røer ved t gnge tæller med tæller og nævner med nævner: d d () Vi n gnge en rø med et tl ved t gnge røens tæller med tllet: Vi n dividere en rø med et tl ved t gnge nævneren med tllet: : (e) Vi n dividere med en rø ved t gnge med den omvendte rø: : (f) Hvis røerne r smme nævner, n vi sætte på fælles røstreg sådn: Ellers må vi først forlænge røerne så de får smme nævner (se.).. Esempel (Sætte på fælles røstreg) Her er to esempler på vordn vi n sætte på fælles røstreg ved først t forlænge så røerne får smme nævner:. Esempel (Advrsel) Der gælder ) ( Vi n ie omsrive til

12 Afsnit. Øvelser. Øvelse (Sætte på fælles røstreg) Sæt på fælles røstreg: () () (e) () (f) 9. Øvelse (Hvile er ens?) Afgør vile f de otte udtry der er lig innden. () () () (e) (f) (g) : () :. Øvelse (Hvile er ens?) Afgør vile f de otte udtry der er lig innden. () () () (e) (f) (g) ().7 Øvelse (Hvile er ens?) Afgør vile f de ses udtry der er lig innden. () () : () (e) (f).8 Øvelse (Reduér) Reduér: () () : () n n (e) (f) Bogstvregning. En indledning for st og f.. del Side 008 Krsten Juul

Bogstavregning. for gymnasiet og hf Karsten Juul. a a

Bogstavregning. for gymnasiet og hf Karsten Juul. a a Bogstvregning for gymnsiet og hf 010 Krsten Juul Til eleven Brug lynt og viskelæder når du skriver og tegner i hæftet, så du får et hæfte der er egenet til jævnligt t slå op i under dit videre rejde med

Læs mere

Regneregler for brøker og potenser

Regneregler for brøker og potenser Regneregler for røker og potenser Roert Josen 4. ugust 009 Indhold Brøker. Eksempler......................................... Potenser 7. Eksempler......................................... 8 I de to fsnit

Læs mere

Potens- sammenhænge. inkl. proportionale og omvendt proportionale variable. 2010 Karsten Juul

Potens- sammenhænge. inkl. proportionale og omvendt proportionale variable. 2010 Karsten Juul Potens- smmenhænge inkl. proportionle og omvendt proportionle vrible 010 Krsten Juul Dette hæfte er en fortsættelse f hæftet "Eksponentielle smmenhænge, udgve ". Indhold 1. Hvd er en potenssmmenhæng?...1.

Læs mere

Bogstavregning. for gymnasiet og hf (2012) Karsten Juul

Bogstavregning. for gymnasiet og hf (2012) Karsten Juul Bogstvregning for gymnsiet og hf 010 (01) Krsten Juul Til eleven Brug lynt og viskeläder når du skriver og tegner i häftet, så du får et häfte der er egenet til jävnligt t slå op i under dit videre rejde

Læs mere

Eksponentielle Sammenhænge

Eksponentielle Sammenhænge Kort om Eksponentielle Smmenhænge 011 Krsten Juul Dette hæfte indeholder pensum i eksponentielle smmenhænge for gymnsiet og hf. Indhold 1. Procenter på en ny måde... 1. Hvd er en eksponentiel smmenhæng?....

Læs mere

TAL OG BOGSTAVREGNING

TAL OG BOGSTAVREGNING TAL OG BOGSTAVREGNING De elementære regnerter I mtemtik kn vi regne med tl, men vi kn også regne med bogstver, som gør det hele en smugle mere bstrkt. Først skl vi se lidt på de fire elementære regnerter,

Læs mere

Integralregning. 2. del. 2006 Karsten Juul

Integralregning. 2. del. 2006 Karsten Juul Integrlregning del ( ( 6 Krsten Juul Indhold 6 Uestemt integrl8 6 Sætning om eksistens stmunktioner 8 6 Oplæg til "regneregler or integrl"8 6 Regneregler or uestemt integrl 9 68 Foreredelse til "integrtion

Læs mere

Regneregler. 1. Simple regler for regning med tal.

Regneregler. 1. Simple regler for regning med tal. Regneregler. Simple regler for regning med tl. Vi rejder l.. med følgende fire regningsrter: plus (), minus ( ), gnge () og dividere (: eller røkstreg, se senere), eller med fremmedord : ddition, sutrktion,

Læs mere

TAL OG REGNEREGLER. Vi ser nu på opbygningen af et legeme og noterer os samtidig, at de reelle tal velkendte regneoperationer + og er et legeme.

TAL OG REGNEREGLER. Vi ser nu på opbygningen af et legeme og noterer os samtidig, at de reelle tal velkendte regneoperationer + og er et legeme. TAL OG REGNEREGLER Inden for lgeren hr mn indført egreet legeme. Et legeme er en slgs konstruktion, hvor mn fstsætter to regneregler og nogle sætninger (ksiomer), der gælder for disse. Pointen med en sådn

Læs mere

Lektion 6 Bogstavregning

Lektion 6 Bogstavregning Lektion Bogstvregning Formler... Reduktion... Ligninger... Lektion Side 1 Formler En formel er en slgs regne-opskrift, hvor mn med bogstver viser, hvorledes noget skl regnes ud. F.eks. formler til beregning

Læs mere

Matematikkens sprog INTRO

Matematikkens sprog INTRO Mtemtikkens sprog Mtemtik hr sit eget sprog, der består f tl og symboler fx regnetegn, brøkstreger bogstver og prenteser På mnge måder er det ret prktisk - det giver fx korte måder t skrive formler på.

Læs mere

MATEMATIK-KOMPENDIUM TIL KOMMENDE ELEVER PÅ DE GYMNASIALE UNGDOMSUDDANNELSER I SILKEBORG (HF, HHX, HTX & STX)

MATEMATIK-KOMPENDIUM TIL KOMMENDE ELEVER PÅ DE GYMNASIALE UNGDOMSUDDANNELSER I SILKEBORG (HF, HHX, HTX & STX) Silkeorg -0- MATEMATIK-KOMPENDIUM TIL KOMMENDE ELEVER PÅ DE GYMNASIALE UNGDOMSUDDANNELSER I SILKEBORG (HF, HHX, HTX & STX) FACITLISTE Udrejdet f mtemtiklærere fr HF, HHX, HTX & STX. PS: Hvis du opdger

Læs mere

ALGEBRA. symbolbehandling). Der arbejdes med hjælpemiddelkompetencen,

ALGEBRA. symbolbehandling). Der arbejdes med hjælpemiddelkompetencen, INTRO Alger er lngt mere end ogstvregning. Alger kn være t omskrive ogstvtrk, men lger er f også t generlisere mønstre og smmenhænge, t eskrive smmenhænge mellem tlstørrelse f i forindelse med funktioner

Læs mere

Formelsamling Mat. C & B

Formelsamling Mat. C & B Formelsmling Mt. C & B Indhold BRØER... PARENTESER...3 PROCENT...4 RENTE...5 INDES...6 GEOMETRI... Arel f treknt... Vinkelsum i en treknt... Ens- vinklede treknter... Vilkårlig treknt... Ret- vinklet treknt...8

Læs mere

Lektion 7s Funktioner - supplerende eksempler

Lektion 7s Funktioner - supplerende eksempler Lektion 7s Funktioner - supplerende eksempler Oversigt over forskellige tper f funktioner Omvendt proportionlitet og hperler.grdsfunktioner og prler Eksponentilfunktioner Potensfunktioner Lektion 7s Side

Læs mere

Kort om. Potenssammenhænge. 2011 Karsten Juul

Kort om. Potenssammenhænge. 2011 Karsten Juul Kot om Potenssmmenhænge 011 Ksten Juul Dette hæfte indeholde pensum i potenssmmenhænge, heunde popotionle og omvendt popotionle vible, fo gymnsiet og hf. Indhold 1. Ligning og gf fo potenssmmenhænge...

Læs mere

Trigonometri. Matematik A niveau

Trigonometri. Matematik A niveau Trigonometri Mtemtik A niveu Arhus Teh EUX Niels Junge Trigonometri Sinus Cosinus Tngens Her er definitionen for Cosinus Sinus og Tngens Mn kn sige t osinus er den projierede på x-ksen og sinus er den

Læs mere

Opstakning og afstakning, fremadregning og tilbageregning

Opstakning og afstakning, fremadregning og tilbageregning 1 Opstkning og fstkning, fremdregning og tilgeregning 1.1 Fremdregning og tilgeregning...2 1.2 Æskeregning...2 1.3 Høseringe-regning, indkodning og fkodning...3 1.4 Vndret tilgeregning, t dnse en ligning...3

Læs mere

PotenssammenhÄnge. 2009 Karsten Juul

PotenssammenhÄnge. 2009 Karsten Juul PotenssmmenhÄnge y b y k k 009 Krsten Juul Dette häfte er en fortsättelse f häftet "Eksponentielle smmenhänge, 009". Indhold 4. Hvd er en potens-smmenhäng?... 83 5. Hvordn ser grfen ud for en potens-smmenhäng...

Læs mere

Kort om Potenssammenhænge

Kort om Potenssammenhænge Øvelser til hæftet Kort om Potenssmmenhænge 2011 Krsten Juul Dette hæfte indeholder bl.. mnge småspørgsmål der gør det nemmere for elever t rbejde effektivt på t få kendskb til emnet. Indhold 1. Ligning

Læs mere

Trigonometri. Trigonometri. Sinus og cosinus... 2 Tangens... 6 Opgaver... 9. Side 1

Trigonometri. Trigonometri. Sinus og cosinus... 2 Tangens... 6 Opgaver... 9. Side 1 Trigonometri Sinus og osinus... 2 Tngens... 6 Opgver... 9 Side Sinus og osinus Til lle vinkler hører der to tl, som kldes osinus og sinus. Mn finder sinus og osinus til en vinkel ved t tegne vinklen midt

Læs mere

Diverse. Ib Michelsen

Diverse. Ib Michelsen Diverse Ib Michelsen Ikst 2008 Forsidebilledet http://www.smtid.dk/visen/billede.php?billedenr69 Version: 0.02 (2-1-2009) Diverse (Denne side er A-2 f 32 sider) Indholdsfortegnelse Regning med procent

Læs mere

Hvad ved du om mobning?

Hvad ved du om mobning? TEST: Hvd ved du om moning? I testen her kn du fprøve, hvor meget du ved om moning på rejdspldsen. Testen estår f tre dele: Selve testen, hvor du skl sætte ét kryds for hvert f de ti spørgsmål. Et hurtigt

Læs mere

GrundlÄggende funktioner

GrundlÄggende funktioner GrundlÄggende funktioner for B-niveu i hf Udgve 014 Krsten Juul GrundlÄggende funktioner for B-niveu i hf Procent 1. Procenter på en ny måde... 1. VÄkstrte.... Gennemsnitlig procent... LineÄr väkst 4.

Læs mere

MATEMATIK-KOMPENDIUM TIL KOMMENDE ELEVER PÅ DE GYMNASIALE UNGDOMSUDDANNELSER I SILKEBORG (HF, HHX, HTX & STX)

MATEMATIK-KOMPENDIUM TIL KOMMENDE ELEVER PÅ DE GYMNASIALE UNGDOMSUDDANNELSER I SILKEBORG (HF, HHX, HTX & STX) Silkeborg 09-0-0 MATEMATIK-KOMPENDIUM TIL KOMMENDE ELEVER PÅ DE GYMNASIALE UNGDOMSUDDANNELSER I SILKEBORG (HF, HHX, HTX & STX) Udrbejdet f mtemtiklærere fr HF, HHX, HTX & STX. PS: Hvis du opdger fejl i

Læs mere

Mere end blot lektiehjælp. Få topkarakter i din SRP. 12: Hovedafsnittene i din SRP (Redegørelse, analyse, diskussion)

Mere end blot lektiehjælp. Få topkarakter i din SRP. 12: Hovedafsnittene i din SRP (Redegørelse, analyse, diskussion) Mere end lot lektiehjælp Få topkrkter i din SRP 12: Hovedfsnittene i din SRP (Redegørelse, nlyse, diskussion) Hjælp til SRP-opgven Sidste år hjlp vi 3.600 gymnsieelever med en edre krkter i deres SRP-opgve.

Læs mere

Taldiktat. Talhus. Tal. Format 5. Nr. 1. Enere 1. Tiere 10. Hundreder 100. Tusinder 1.000. Titusinder 10.000. Hundredetusinder 100.000 1.000.

Taldiktat. Talhus. Tal. Format 5. Nr. 1. Enere 1. Tiere 10. Hundreder 100. Tusinder 1.000. Titusinder 10.000. Hundredetusinder 100.000 1.000. Tldiktt Nr. Timillioner 0.000.000 Millioner.000.000 Hundredetusinder.000 Tlhus Titusinder 0.000 Tusinder.000 Hundreder Tiere 0 Enere Prktivitet. Træk - kort i skjul fr et lmindeligt kortspil. Læg dem på

Læs mere

Pust og sug Design og konstruktion af et apparat til at måle udåndingsvolumen Biomedicinsk teknologi

Pust og sug Design og konstruktion af et apparat til at måle udåndingsvolumen Biomedicinsk teknologi Pust og sug Design og konstruktion f et pprt til t måle udåndingsvolumen Biomedicinsk teknologi Ingeniørens udfordring Elevæfte Menneskekroppen, Åndedrætssystemet 1 Pust og sug Ingeniørens udfordring At

Læs mere

Formelsamling Matematik C Indhold

Formelsamling Matematik C Indhold Formelsmling Mtemtik C Indhold Eksempler på esvrelser, lin, eksp, pot, geo... Tl, regneopertioner og ligninger... 6 Ligninger... 7 Geometri... 9 Funktioner og modeller... Lineær funktion... Procentregning...

Læs mere

Krydsprodukt. En introduktion Karsten Juul

Krydsprodukt. En introduktion Karsten Juul Kydspodut En ntoduton 5 Ksten Juul Bugsnvsnng Du sl se de fuldt optune mme fo t fnde defntone og sætnnge De e st punteet mme om esemple og evse Indhold Rmme Sde Defnton f ydspodut Esempel på ug f defntonen

Læs mere

Retningslinjer for bedømmelsen Georg Mohr-Konkurrencen runde

Retningslinjer for bedømmelsen Georg Mohr-Konkurrencen runde Retningslinjer for bedømmelsen Georg Mohr-Konkurrencen 016. runde Besvrelser som flder uden for de løsninger som ligger til grund for pointskemerne, bedømmes ved nlogi så skridt med tilsvrende vægt i den

Læs mere

Erik Vestergaard www.matematikfysik.dk. Erik Vestergaard, 2009.

Erik Vestergaard www.matematikfysik.dk. Erik Vestergaard, 2009. Erik Vestergrd www.mtemtikfysik.dk Erik Vestergrd, 009. Billeder: Forside: Collge f billeder: istock.com/titoslck istock.com/yuri Desuden egne fotos og illustrtioner Erik Vestergrd www.mtemtikfysik.dk

Læs mere

Spil- og beslutningsteori

Spil- og beslutningsteori Spil- og eslutningsteori Peter Hrremoës Niels Brock 26. novemer 2 Beslutningsteori De økonomiske optimeringssitutioner, vi hr set på hidtil, hr været helt deterministiske. Det vil sige t vores gevinst

Læs mere

ØVEHÆFTE FOR MATEMATIK C POTENS-SAMMENHÆNG

ØVEHÆFTE FOR MATEMATIK C POTENS-SAMMENHÆNG ØVEHÆFTE FOR MATEMATIK C POTENS-SAMMENHÆNG INDHOLDSFORTEGNELSE 1 Formelsmling... side 2 Uddbning f visse formler... side 3 2 Grundlæggende færdigheder... side 5 2 Finde konstnterne og b i en formel...

Læs mere

Formelsamling Mat. C LINEÆR VÆKST... 11 EKSPONENTIEL VÆKST... 11 POTENS-VÆKST... 11

Formelsamling Mat. C LINEÆR VÆKST... 11 EKSPONENTIEL VÆKST... 11 POTENS-VÆKST... 11 Formelsmling Mt. C BRØER... LIGNINGER... PARENTESER... RENTE... 5 INDES... 6 GEOMETRI... Arel f treknt... Vinkelsum i en treknt... Ens- vinklede treknter... VILÅRLIG TREANT... Sinusreltionerne:... Cosinusreltionerne:...

Læs mere

Formelsamling Matematik C Indhold

Formelsamling Matematik C Indhold Formelsmling Mtemtik C Indhold Eksempler på besvrelser, lin, eksp, pot, geo... Tl, regneopertioner og ligninger... 6 Ligninger... 7 Geometri... 0 Funktioner og modeller... 3 Lineær funktion... 3 Procentregning...

Læs mere

Institut for Matematik, DTU: Gymnasieopgave. Integrationsprincippet og Keplers tønderegel

Institut for Matematik, DTU: Gymnasieopgave. Integrationsprincippet og Keplers tønderegel Integrtionsprincippet og Keplers tønderegel. side Institut for Mtemtik, DTU: Gymnsieopgve Integrtionsprincippet og Keplers tønderegel Littertur: H. Elrønd Jensen, Mtemtisk nlyse, Institut for Mtemtik,

Læs mere

Hvad ved du om mobning?

Hvad ved du om mobning? TEST: Hvd ved du om moning? I testen her kn du fprøve, hvor meget du ved om moning på rejdspldsen. Testen estår f tre dele: Selve testen, hvor du skl sætte ét kryds for hvert f de ti spørgsmål. Et hurtigt

Læs mere

Matematik B-A. Trigonometri og Geometri. Niels Junge

Matematik B-A. Trigonometri og Geometri. Niels Junge Mtemtik B-A Trigonometri og Geometri Niels Junge Indholdsfortegnelse Indledning...3 Trigonometri...3 Sinusreltionen:...6 Cosinusreltionen...7 Dobbeltydighed...7 Smmendrg...8 Retvinklede treknter...8 Ikke

Læs mere

3. Vilkårlige trekanter

3. Vilkårlige trekanter 3. Vilkårlige treknter 3. Vilkårlige treknter I dette fsnit vil vi beskæftige os med treknter, der ikke nødvendigvis er retvinklede. De formler, der er omtlt i fsnittet om retvinklede treknter, kn ikke

Læs mere

Mat. B (Sådan huskes fomlerne) Formler, som skal kunnes til prøven uden hjælpemidler

Mat. B (Sådan huskes fomlerne) Formler, som skal kunnes til prøven uden hjælpemidler Mt. B (Sån huskes fomlerne) Formler, som skl kunnes til prøven uen hjælpemiler Inhol Her er tilføjet emærkninger til nogle f formlerne BRØKER... PARENTESER... EKSPONENTER... LOGARITMER... GEOMETRI... Arel

Læs mere

Mattip om. Vinkler 2. Tilhørende kopier: Vinkler 2-3. Du skal lære om: Polygoner. Ligesidede trekanter. Gradtal og vinkelsum

Mattip om. Vinkler 2. Tilhørende kopier: Vinkler 2-3. Du skal lære om: Polygoner. Ligesidede trekanter. Gradtal og vinkelsum Mttip om Vinkler 2 Du skl lære om: Polygoner Kn ikke Kn næsten Kn Ligesidede treknter Grdtl og vinkelsum Ligeenede og retvinklede treknter At forlænge en linje i en treknt Tilhørende kopier: Vinkler 2-3

Læs mere

1,0. sin(60º) 1,0 cos(60º) I stedet for cosinus til 60º og sinus til 60º skriver man cos(60º) og sin(60º).

1,0. sin(60º) 1,0 cos(60º) I stedet for cosinus til 60º og sinus til 60º skriver man cos(60º) og sin(60º). Mtemtik på VU Eksempler til niveu F, E og D Til lle vinkler hører der to tl, som kldes osinus og sinus. Mn finder sinus og osinus ved først t tegne vinklen i et koordint-system som vist til venstre. Derefter

Læs mere

Algebra, ligninger og uligheder

Algebra, ligninger og uligheder Alger, ligninger og uligheder I dette kpitel skl du rejde med ligninger og uligheder. Et esøg på Bkken kn give nledning til mnge overvejelser over priser. Det kunne fx være den smlede pris for turen og

Læs mere

Integrationsteknikker

Integrationsteknikker Integrtionsteknikker Frnk Vill. jnur 14 Dette dokument er en del f MtBog.dk 8-1. IT Teching Tools. ISBN-13: 978-87-9775--9. Se yderligere betingelser for brug her. Indhold 1 Introduktion 1 Numerisk integrtion.1

Læs mere

Elementær Matematik. Algebra Analytisk geometri Trigonometri Funktioner

Elementær Matematik. Algebra Analytisk geometri Trigonometri Funktioner Elementær Mtemtik Alger Anlytisk geometri Trigonometri Funktioner Ole Witt-Hnsen Køge Gymnsium 0 Indhold Indhold... Kp. Tl og regning med tl.... De nturlige tl.... Regneregler for nturlige tl.... Kvdrtsætningerne.....

Læs mere

Sandsynligheder og diskrete stokastiske variable

Sandsynligheder og diskrete stokastiske variable Sndsynligheder og disrete stostise vrible Regler for sndsynligheder Byes sætning Stostis vribel disret Sndsynligheds fordeling Kumultiv fordeling Middelværdi, vrins, stndrd fvigelse Sidste gng Mængder

Læs mere

Differentiation af potensfunktioner

Differentiation af potensfunktioner Hvd er mtemti? B, i-bog ISBN 978 87 766 494 3 Hjemmesideevisig: Differetitio f potesfutioer, Kpitel 4, side 76 Differetitio f potesfutioer. Pscls tret og biomilformle Vi strter med t mide om t poteser

Læs mere

Lektion 6 Bogstavregning

Lektion 6 Bogstavregning Mtemtik på Åbent VUC Lektion 6 Bogstvregning Formler... Udtryk... Ligninger... Ligninger som løsningsmetode i regneopgver... Simultion... Opsmlingsopgver... Lvet f Niels Jørgen Andresen, VUC Århus. Redigeret

Læs mere

ELEVER underviser elever En motiverende metode Drejebog med eksempler

ELEVER underviser elever En motiverende metode Drejebog med eksempler ELEVER underviser elever En motiverende metode Drejeog med eksempler Lyngy Tekniske Gymnsium Introduktion Lyngy Tekniske Gymnsium, HTX, hr i smrejde med Udviklingslortoriet for pædgogisk og didktisk prksis

Læs mere

Bogstavregning. En indledning for stx og hf. 2008 Karsten Juul

Bogstavregning. En indledning for stx og hf. 2008 Karsten Juul Bogstavregning En indledning for stx og hf 2008 Karsten Juul Dette hæfte træner elever i den mest grundlæggende bogstavregning (som omtrent springes over i lærebøger for stx og hf). Når elever har lært

Læs mere

Et udvalg af funktionerne tegnet på grafregneren (eller her med Derive)

Et udvalg af funktionerne tegnet på grafregneren (eller her med Derive) GDS, opgve 85 En strt på opgven (undervisnings- og tvleprotokol): En milie unktioner hr orskrit 4 ( ) + R, Et udvlg unktionerne tegnet på grregneren (eller her med Derive) Værdier tllet, or hvilke hr henholdsvis

Læs mere

Vektorer. koordinatgeometri

Vektorer. koordinatgeometri Vektorer og koordintgeometri for gymnsiet, dge 5 Krsten Jl VEKTORER Koordinter til pnkt i plnen Koordinter til pnkt i rmmet Vektor: Definition, sprogrg, mm 4 Vektor: Koordinter 5 Koordinter til ektors

Læs mere

Formelsamling Mat. C & B

Formelsamling Mat. C & B Formelsmling Mt. C & B Indhold FORMELSAMLING MAT. C & B... 1 BRØER... PARENTESER... 3 PROCENT... 4 RENTE... 5 INDES... 6 GEOMETRI... Arel f treknt... Vinkelsum i en treknt... Ens- vinklede treknter...

Læs mere

... ... ... ... ... ... ... b > 0 og x > 0, vil vi kalde en potensfunktion. 492 10. Potensfunktioner

... ... ... ... ... ... ... b > 0 og x > 0, vil vi kalde en potensfunktion. 492 10. Potensfunktioner POTENSFUNKTIONER 0 49 0. Potensfunktioner POTENSFUNKTIONER DEFINITION En funktion med forskriften f( )= b hvor b > 0 og > 0 vil vi klde en potensfunktion. I MAT C kpitel så vi t hvis skl være et vilkårligt

Læs mere

Kompendium. Matematik HF C niveau. Frederiksberg HF Kursus. Lars Bronée 2014

Kompendium. Matematik HF C niveau. Frederiksberg HF Kursus. Lars Bronée 2014 Kompendium Mtemtik HF C niveu π Frederiksberg HF Kursus Lrs Bronée 04 Mil: post@lrsbronee.dk Web: www.lrsbronee.dk Indholdsfortegnelse: Forord Det grundlæggende Ligningsløsning 8 Procentregning Rentesregning

Læs mere

MM501 forelæsningsslides

MM501 forelæsningsslides MM501 forelæsningsslides uge 39, 009 Produceret f Hns J. Munkholm 1 Linerisering s. 66-67 Lineriseringen f f omkring x =, er den lineære funktion, der hr tngenten som grf. Klder mn den L er forskriften

Læs mere

Simple udtryk og ligninger

Simple udtryk og ligninger Simple udtryk og ligninger 009 Karsten Juul Til eleven Brug blyant og viskelæder når du skriver og tegner i hæftet, så du får et hæfte der er egenet til jævnligt at slå op i under dit videre arbejde med

Læs mere

Matematik - introduktion. Martin Lauesen February 23, 2011

Matematik - introduktion. Martin Lauesen February 23, 2011 Mtemtik - introduktion Mrtin Luesen Februry 23, 2011 1 Contents 1 Aritmetik og elementær lgebr 3 1.1 Symboler............................... 3 1.1.1 ligheder............................ 4 1.1.2 uligheder...........................

Læs mere

Matematisk modellering og numeriske metoder. Lektion 17

Matematisk modellering og numeriske metoder. Lektion 17 Mtemtisk modellering og numeriske metoder Lektion 1 Morten Grud Rsmussen 8. november, 1 1 Numerisk integrtion og differentition [Bogens fsnit 19. side 84] 1.1 Grundlæggende om numerisk integrtion Vi vil

Læs mere

Projekt 10.3 Terningens fordobling

Projekt 10.3 Terningens fordobling Hvd er mtemtik? C, i-og Projekt 0.3 Terningens fordoling Elementerne indeholder, hvd mn kn deduere sig til og konstruere ud fr de få givne ksiomer. Mn kn derfor i en vis forstnd sige, t l den viden, der

Læs mere

Integralregning. for A-niveau i stx, udgave Karsten Juul

Integralregning. for A-niveau i stx, udgave Karsten Juul Integrlregning or A-niveu i st, udgve 5 Krsten Juul Stmunktion (uestemt integrl) Hvd er en stmunktion? UndersÄg om g( er stmunktion til ( GÄr rede or t g( er stmunktion til ( En unktion hr mnge stmunktioner

Læs mere

Matematikkens mysterier - på et obligatorisk niveau. 2. Trigonometri

Matematikkens mysterier - på et obligatorisk niveau. 2. Trigonometri Mtemtikkens mysterier - på et oligtorisk niveu f Kenneth Hnsen 2. Trigonometri T D Hvd er fstnden fr flodred til flodred? 2. Trigonometri og geometri Indhold.0 Indledning 2. Vinkler 3.2 Treknter og irkler

Læs mere

Analyse 30. januar 2015

Analyse 30. januar 2015 30. jnur 2015 Større dnsk indkomstulighed skyldes i høj grd stigende kpitlindkomster Af Kristin Thor Jkosen Udgivelsen f Thoms Pikettys Kpitlen i det 21. århundrede hr fstedkommet en del diskussion f de

Læs mere

Eksamensopgave august 2009

Eksamensopgave august 2009 Ib Michelsen, Viborg C / Skive C Side 1 09-04-011 1 Eksmensopgve ugust 009 Opgve 1 3 4 5 6 7 8 9 10 11 1 13 14 15 16 17 18 19 0 1 Givet ovenstående ensvinklede treknter. D treknterne er ensvinklede, er

Læs mere

Ligninger. 1 a 3 b 2 c 8 d 9 e 42 f 6 g 70 h 9 i 2 eller 2 j 13 k 8 l 9 eller 9

Ligninger. 1 a 3 b 2 c 8 d 9 e 42 f 6 g 70 h 9 i 2 eller 2 j 13 k 8 l 9 eller 9 Ligninger 1 3 2 c 8 d 9 e 42 f 6 g 70 h 9 i 2 eller 2 j 13 k 8 l 9 eller 9 2 c d e f 6 æg + 5 høns. 1 æle + 13 pærer. 5 myg + 1 flue. 6x + 5y + 13 3x + 5y 3 4 Gælder i nogle tilfælde. Gælder ltid. c Gælder

Læs mere

Forudsætninger. Eleverne forudsættes: at kunne tælle sig frem til rumfanget af Matematiske kompetencer. kasser, der er bygget af centicubes. HVORFOR?

Forudsætninger. Eleverne forudsættes: at kunne tælle sig frem til rumfanget af Matematiske kompetencer. kasser, der er bygget af centicubes. HVORFOR? KAP 0 RUMFANG I dette kpitel skl eleverne rejde med t eregne rumfng f ksser. De skl lære t skelne lem forskellige eneder (, og ). Eleverne skl endvidere rejde med verdgsmål (ml, cl, dl, L, knivspids, tsk.

Læs mere

Tal 2, 3, 5, 7, 11, 13, 17 19, 23, 29, 31, 37, 41, 43, 47. Talsyste Brøk Decimalt Procent. Primtal eller sammensat tal

Tal 2, 3, 5, 7, 11, 13, 17 19, 23, 29, 31, 37, 41, 43, 47. Talsyste Brøk Decimalt Procent. Primtal eller sammensat tal Tl Prisen på g uld tog tors d stte ny re kord i Lon g et stort spring op d og don med rende til.,, kron er per ounce dollr sv.000 (, grm )..00.000 Guld.00.000 00 0 0 0 0 0 0 0 0 0 000 00 m Tlsyste Brøk

Læs mere

Tolkningsrapport. Ella Explorer. October 15, 2008 FORTROLIGT

Tolkningsrapport. Ella Explorer. October 15, 2008 FORTROLIGT Tolkningsrpport Ell Explorer Otoer 1, 2 FORTROLIGT Tolkningsrpport Ell Explorer Introduktion Otoer 1, 2 Introduktion Anvendelse Denne rpport må udelukkende tolkes f kvlifierede rugere under overholdelse

Læs mere

Arctan x = x x3 3 + x5 (En syvende berømt række er binomialrækken, [S] 8.8.) Eksempel

Arctan x = x x3 3 + x5 (En syvende berømt række er binomialrækken, [S] 8.8.) Eksempel Oversigt [S] 8.5, 8.6, 8.7, 8.0 Nøgleord og begreber Seks berømte potensrækker Potensrække Konvergensrdius Differentition og integrtion f potensrækker Tylor og McLurin rækker August 00, opgve 4 Den geometriske

Læs mere

Måling. Omkreds Areal Rumfang Enheder Regnehistorier. 1 Mål og omskriv Mål trælisterne i centimeter, og omskriv til decimeter og centimeter.

Måling. Omkreds Areal Rumfang Enheder Regnehistorier. 1 Mål og omskriv Mål trælisterne i centimeter, og omskriv til decimeter og centimeter. Måling Omkreds Arel Rumfng Enheder Regnehistorier Milli =. 000 Centi = Dei = = 0,00 00 = 0,0 0 = 0, entimeter m kvdrtentimeter m 2 kuikentimeter m I det 8. århundrede lev måleenheden meter opfundet i Frnkrig.

Læs mere

Plantehoteller 1 Resultater og konklusioner

Plantehoteller 1 Resultater og konklusioner Plntehoteller 1 Resultter og konklusioner Hvid mrguerit 1. Umiddelrt efter kølelgring i op til 14 dge vr den ydre kvlitet ikke redueret 2. Mistede holdrhed llerede efter 7 dges kølelgring ved 4ºC og lv

Læs mere

Sammensætning af regnearterne - supplerende eksempler

Sammensætning af regnearterne - supplerende eksempler Mtetik på AVU Ekseplet til iveu F, E og D Sesætig f regertere - supplerede eksepler Poteser... Rødder... d 0-tls-poteser... e Sesætig f regertere Side Mtetik på AVU Ekseplet til iveu F, E og D Sesætig

Læs mere

Følg altid de grundlæggende sikkerhedsregler vedrørende brug af maskinen, herunder følgende:

Følg altid de grundlæggende sikkerhedsregler vedrørende brug af maskinen, herunder følgende: VIGTIGE SIKKERHEDSREGLER Følg ltid de grundlæggende sikkerhedsregler vedrørende rug f mskinen, herunder følgende: Læs smtlige instruktioner, inden mskinen tges i rug. FARLIGT - Sådn undgår du t få stød:.

Læs mere

GrundlÄggende funktioner

GrundlÄggende funktioner GrundlÄggende funktioner for B-niveu i st Udgve 016 Krsten Juul GrundlÄggende funktioner for B-niveu i st Procent 1. Procenter på en ny måde... 1. VÄkstrte.... Gennemsnitlig procent... LineÄr väkst. LineÄr

Læs mere

Tal. Talsystem Brøk Decimaltal Procent Negative tal 3803 m. Titanic vejede:

Tal. Talsystem Brøk Decimaltal Procent Negative tal 3803 m. Titanic vejede: Tl Titni vejede: 0 Tlsystem Brøk Deimltl Proent Negtive tl 0 m Rom Titni, der i snk på sin jomfrurejse og forliste 00 sømil SØ for Newfoundlnd, er fundet. År 000 f.kr. År 00 f.kr. År 0 År 00 År.000 År.00

Læs mere

6 +15 4 = 17 3 + 30 2 = 31 11 + 15 12 7 = 13 7 13,57 S F. a : 2 b : 2 c : 2 d : 2 e : 2 f : 3. 1 Hvor mange led er der. a 2 + 5 + 11 5 + 22

6 +15 4 = 17 3 + 30 2 = 31 11 + 15 12 7 = 13 7 13,57 S F. a : 2 b : 2 c : 2 d : 2 e : 2 f : 3. 1 Hvor mange led er der. a 2 + 5 + 11 5 + 22 Hvor mnge led er der i hvert f disse regneudtryk? Beregn værdien f udtrykkene. ANTAL LED + 5 + 5 + 5 5 5 + + 9 5 c + 5 6 +5 = 7 d + 5 + 0 = e 5 5 8 5 6 = 800 6 = 78 f + 6,5 87 : 7 + 5 7 = 7,57 Forind udtrykkene

Læs mere

Ny Sigma 9, s Andengradsfunktioner med regneforskrift af typen y = ax + bx + c, hvor a 0.

Ny Sigma 9, s Andengradsfunktioner med regneforskrift af typen y = ax + bx + c, hvor a 0. Ny Sigm 9, s 110 Andengrdsfunktioner med regneforskrift f typen y = x + x + c, hvor 0 Lineære funktioner (førstegrdsfunktioner) med regneforskrift f typen y = αx + β Grfen for funktioner f disse typer

Læs mere

Mattip om. Brøker 2. Tilhørende kopier: Brøker 2 og 3. Du skal lære: Om addition af brøker. At forkorte en brøk. At forlænge en brøk

Mattip om. Brøker 2. Tilhørende kopier: Brøker 2 og 3. Du skal lære: Om addition af brøker. At forkorte en brøk. At forlænge en brøk Mattip om Brøker 2 Du skal lære: Om addition af brøker Kan ikke Kan næsten Kan At forkorte en brøk At forlænge en brøk At gange en brøk med et helt tal Tilhørende kopier: Brøker 2 og 2016 mattip.dk 1 Brøker

Læs mere

Tredimensional grafik

Tredimensional grafik Teimensionl gfi 6 Ksten Juul Inhol I Homogene oointsæt og gngning f mtie sie Vi vil fose og eje figue i ummet og æne ees støelse Defo inføe vi homogene oointsæt og gngning f mtie II th sie Et olsninge

Læs mere

Vitaminer, mineraler og foderværdi af græsmarksarter

Vitaminer, mineraler og foderværdi af græsmarksarter Vitminer, minerler og foderværdi f græsmrksrter Kren Søegrd, Søren K. Jensen og Jko Sehested Det Jordrugsvidenskelige Fkultet, Arhus Universitet Smmendrg Med det formål t undersøge mulighederne for selvforsyning

Læs mere

Variabel- sammenhænge

Variabel- sammenhænge Variabel- sammenhænge 2008 Karsten Juul Dette hæfte kan bruges som start på undervisningen i variabelsammenhænge for st og hf. Indhold 1. Hvordan viser en tabel sammenhængen mellem to variable?... 1 2.

Læs mere

Linjer på skift. Figurer. Format 5. Nr. 15. a a Tegn AB, BC, AE, CD og CF, GH, GI. b Tegn de to parallelle linjestykker, der kan tegnes til GH.

Linjer på skift. Figurer. Format 5. Nr. 15. a a Tegn AB, BC, AE, CD og CF, GH, GI. b Tegn de to parallelle linjestykker, der kan tegnes til GH. Linjer på skift Nr. 15 Tegn B, BC, E, CD og CF, GH, GI. Tegn de to prllelle linjestykker, der kn tegnes til GH. c Hvd hedder de to linjestykker? d Tegn det vinkelrette linjestykke til GH, der endnu ikke

Læs mere

Matematik. Kompendium i faget. Tømrerafdelingen. 1. Hovedforløb. a 2 = b 2 + c 2 2 b c cos A. cos A = b 2 + c 2 - a 2 2 b c

Matematik. Kompendium i faget. Tømrerafdelingen. 1. Hovedforløb. a 2 = b 2 + c 2 2 b c cos A. cos A = b 2 + c 2 - a 2 2 b c Kompendium i fget Mtemtik Tømrerfdelingen 1. Hovedforlø. Trigonometri nvendes til eregning f snd længde og snd vinkel i profiler. Sinus Cosinus Tngens 2 2 + 2 2 os A os A 2 + 2-2 2 Svendorg Erhvervsskole

Læs mere

Et liv uden styrende rusmidler. Fylder alkohol for meget?

Et liv uden styrende rusmidler. Fylder alkohol for meget? Et liv uden styrende rusmidler Fylder lkohol for meget? 2 Novvis tilbud Novvi vretger blndt ndet lkoholbehndlingen for mnge f kommunerne på Sjællnd. Foregår mbulnt uden indlæggelse, så du kn psse dine

Læs mere

International økonomi

International økonomi Interntionl økonomi Indhold Interntionl økonomi... 1 Bilg I1 Oversigt over smmenhæng mellem kompetencer og kernestof i 3 skriftlige eksmensopgver i Interntionl økonomi A.... 2 Bilg I2 Genrer i IØ fr oplæg

Læs mere

SoundSations! Sow[' 9arcft LtbrarY- 'M6k:::'t;q:v:,& l. l(rb af datamaskine. 2. llusikplogram. Pia overvejer at ksbe en datamaskine.

SoundSations! Sow[' 9arcft LtbrarY- 'M6k:::'t;q:v:,& l. l(rb af datamaskine. 2. llusikplogram. Pia overvejer at ksbe en datamaskine. l. l(rb f dtmskine Pi overvejer t ksbe en dtmskine. Hvor meget ville Pi komme til t betle for dtmskinen PC 386, nar der betles 295 kr. pr. maned i36 maneder? Hvor meget ville hun spre ved t kobe kontnt?

Læs mere

DATALOGI V - Introduktion til Scientific Computing. Forelæsningsnote 5. Om store tynde ( sparse ) matricer og LAPACK

DATALOGI V - Introduktion til Scientific Computing. Forelæsningsnote 5. Om store tynde ( sparse ) matricer og LAPACK øenhvns niversitet et nturvidenskelige kultet TO ntroduktion til cientific omputing orelæsningsnote Om store tynde sprse ) mtricer og P fter stndrdmetoden for generelle mtricer dvs fktorisering med prtiel

Læs mere

JAGTEN POST 4: BØRNENES MAGASIN I BADSTUEGADE

JAGTEN POST 4: BØRNENES MAGASIN I BADSTUEGADE HISTORIEJAGTEN Kære lærere Tusind tk, fordi I vil deltge i Historiejgten. Her følger en kort vejledning til, hvordn Historiejgten kn ruges. Denne PDF indeholder ud over introduktionen: - Et rk med spørgsmål

Læs mere

Bogstavregning - supplerende eksempler. Reduktion... 54 b Ligninger... 54 d

Bogstavregning - supplerende eksempler. Reduktion... 54 b Ligninger... 54 d Mtetik på AVU Eksepler til iveu F, E og D Bogstvregig - supplerede eksepler Reduktio... Ligiger... d Bogstvregig Side Mtetik på AVU Eksepler til iveu F, E og D Reduktio M gger to preteser ed hide ved -

Læs mere

GrundlÄggende funktioner

GrundlÄggende funktioner GrundlÄggende funktioner for B-niveu i hf 013 Krsten Juul GrundlÄggende funktioner for B-niveu i hf Procent 1. Procenter på en ny måde.... 1 LineÄr väkst. LineÄr funktion... 3. LineÄr väkst... 4. Skriv

Læs mere

Bernoullis differentialligning v/ Bjørn Grøn Side 1 af 10

Bernoullis differentialligning v/ Bjørn Grøn Side 1 af 10 Bernoullis differentialligning v/ Bjørn Grøn Side af 0 Bernoullis differentialligning Den logistise differentialligning er et esempel på en ie-lineær differentialligning Den logistise differentialligning

Læs mere

- 77 - i stedet for ( f ), så vi har, at f (x) = 6x, x R. Funktionen f

- 77 - i stedet for ( f ), så vi har, at f (x) = 6x, x R. Funktionen f - 77 - Appendi : Den delt fledede f en funktin. Sm eken gælder der, t funktinen f() 3 er differentiel fr lle R, g t f () 3. Vi kn derfr til et vilkårligt punkt tilrdne differentilkvtienten f f i, hvrved

Læs mere

Integralregning. Erik Vestergaard

Integralregning. Erik Vestergaard Integrlregning Erik Vestergrd Erik Vestergrd www.mtemtikfysik.dk Erik Vestergrd, Hderslev 4 Erik Vestergrd www.mtemtikfysik.dk Indholdsfortegnelse Indholdsfortegnelse. Indledning 4. Stmfunktioner 4. Smmenhængen

Læs mere

Potens regression med TI-Nspire

Potens regression med TI-Nspire Potensvækst og modellering - Mt-B/A 2.b 2007-08 Potens regression med TI-Nspire Vi tger her udgngspunkt i et eksempel med tovværk, hvor mn får oplyst en tbel over smmenhængen mellem dimeteren (xdt) i millimeter

Læs mere

Matematisk modellering og numeriske metoder. Lektion 12

Matematisk modellering og numeriske metoder. Lektion 12 Mtemtisk modellering numeriske metoder Lektion 12 Morten Grud Rsmussen 21. oktober, 213 1 Prtielle differentilligninger 1.1 Løsning f vrmeligningen vh. Fourierrækker [Bens sektion 12.6 på side 558] Vi

Læs mere

Bilag 1. Frafaldsanalyse elever. Generelle oplysninger:

Bilag 1. Frafaldsanalyse elever. Generelle oplysninger: Bilg Frfldsnlyse elever Generelle oplysninger: Skole Frekvens AMU Center Århus Dnsk Center Jordrugsuddnnelse Den Jyske Hndværkerskole Djurslnd ES ES Års Esjerg TS EUC Midt EUC SYD Frederici-Middelfrt TS

Læs mere

Brug af regneark til beregninger, statistik og grafisk afbildning. Excel 97

Brug af regneark til beregninger, statistik og grafisk afbildning. Excel 97 Brug f regnerk til eregninger, sttistik og grfisk filning Exel 97 pril 2003 * St Om vurering f tlmterile sie 1 I Definitioner BLOK En eller flere eller eller rækker eller kolonner MARKER BLOK Peg på øverste

Læs mere

Lidt Om Fibonacci tal

Lidt Om Fibonacci tal Lidt om Fioi tl Lidt Om Fioi tl Idhold. Defiitio f Fioi tllee.... Kivl... 3. Telefokæder....3 4. E formel for Fioi tllee...4 Ole Witt-Hse 008 Lidt om Fioi tl. Defiitio f Fioi tllee Fioi tllee er opkldt

Læs mere

Krumningsradius & superellipsen

Krumningsradius & superellipsen Krumningsrdius & suerellisen Side /5 Steen Toft Jørgensen Krumningsrdius & suerellisen Formålet med dette mini-rojekt er t erhverve mtemtisk viden om krumningsrdius f en kurve og nvende denne viden å det

Læs mere