og Fermats lille sætning

Størrelse: px
Starte visningen fra side:

Download "og Fermats lille sætning"

Transkript

1 Projekter: Kaitel 0. Projekt 0. Modulo-regig, restklassegruer og Fermats lille sætig Projekt 0. Modulo-regig, restklassegruere ( { 0 }, ) og Fermats lille sætig Vi aveder moduloregig og restklasser mage gage om dage, emlig år vi taler om tid, om hvad klokke er, om hvor lag tid der er til et eller adet, vi har aftalt, dvs. år vi udmåler tid med et ur. Når tide udmåles i timer, reger vi modulo 2 (eller 12), og år tide udmåles i miutter reger vi modulo 0. Vi siger ikke, at klokke er 80 miutter over 10, me at de er 20 mimutter over 11. Når klokke asserer midat, tæller vi ikke videre å tallije med 2, 2 osv., me forfra om atte er klokke 1, 2 osv. Siger vi, at vi går i seg KL 2, reger vi modulo 2, mes de som siger, at de går i seg KL 11, reger modulo 12. Reger ma modulo 12, idetificerer ma altså 2 og 11. Går ma i seg KL 2 og sætter uret, så ma ka sove i 8 timer, så står ma ikke o kl = 1, me kl. 7. Tallet 7 får vi matematisk, ved at trække 2 fra 1. I raksis tæller de fleste ok o til 2 (det var é time) og reste af de 8 timer, altså tallet 7 agiver så klokkeslettet, hvor vi står o. Også her idetificerer vi altså 1 og 7. Me vi ka aturligvis ikke skrive: 1 = 7. Derfor har ma i matematik idført e særlig betegelse for dee måde at idetificerer tal å, emlig ved at skrive: 1(mod2) = 7 (mod2) mod 2 læses modulo 2, og agiver, at vi trækker 2 fra tallet lige så mage gage vi ka, idtil vi har et tal mellem 0 og 2. Således gælder altså: 8 (mod2) = 0 (mod2) og 2(mod 2) = (mod 2) Det sidste udtryk ka vi tolke således: Hvis klokke u fx er 9, så er de om 2 timer 9 + = 1. ka ofattes som reste vi får ved divisio af 2 med 2. Divisioe går jo ikke o, me giver 10 og altså til rest. Vi kue også rege tilbage i tide: 20 (mod2) = (mod2) Dette ka vi tolke således. Hvis klokke u fx er 9, så var de for 20 timer side 9 + = 1. Tilsvarede gælder der: 80 (mod 0) = 20 (mod 0) og 80 (mod ) = 1(mod ) Prøv at give e fortolkig af disse to udtryk. Reger vi modulo 2, så idetificerer vi altså alle tallee: {...,, 20,,28,2,... } Tilføj selv yderligere to egative og to ositive tal. E såda mægde af tal kalder vi for e restklasse modulo 2. Vi siger også, at tallee i e såda restklasse er kogruete modulo 2, og aveder symbolet til at udtrykke dette. Vi skriver fx: 2 (mod2). Øvelse 1. a) Oskriv restklase hørede til tallet 0, og restklasse hørede til tallet 10. b) Hvor mage forskellige restklasser modulo 2 fides der? I almidelighed ka ma ved restklasser modulo, hvor er et aturligt tal, forestille sig, at ma vikler e tallije rudt om e cirkel, der har omkredse. Hver gag vi går ositioer frem å de omviklede tallije rammer vi altså det samme ukt å cirkle. Restklassere reræseteres af tallee {0, 1, 2,, -1}, der kaldes for de riciale rester ved divisio med. På illustratioe ser ma fx, at tallee og 9 er i samme restklasse og altså er kogruete modulo L&R Uddaelse A/S Vogmagergade 11 DK-118 Købehav K Tlf:

2 Projekter: Kaitel 0. Projekt 0. Modulo-regig, restklassegruer og Fermats lille sætig Bemærkig. Vi reger ku med hele tal. Me riciet med restklasser ka udstrækkes til alle reelle tal. Et vigtigt eksemel er ehedscirkle, hvor vi reger modulo 2π, år vi løser trigoometriske ligiger. Eksemel 7 12 (mod ) (mod ) 1(mod ) 17 (mod ) Vi skriver ikke altid (mod ) efter tallet, hvis dette tal er de riciale rest. I stedet tillader vi os for emheds skyld at skrive eksemelvis 12 (mod ) = 2. Her står, at de riciale rest ved divisio af 12 med er 2. Øvelse 2 Bestem følgede: a) 21 (mod ) b) 8 (mod17) c) 009 (mod10) d) 20 (mod ) e)121212(mod 9) Regig med restklasser Vi vil u gå over til e mere systematisk idførig i regig med restklasser, der er et cetralt elemet i modere talteori og dermed i krytologi. Defiitioer: Begreber hørede til divisiosligige Mægde af hele tal (ositive, egative og ul) beteges. At et tal a er et helt tal agives således: a, der læses a tilhører mægde af hele tal,. Når vi har to vilkårlige hele tal, ab,, ka vi dividere a o i b ved de metode, vi lærte i folkeskole. Det giver et helt talt q som resultat og dertil e rest r. Resultatet skrives således: b= q a+ r, hvor q, og 0 r< a (*) Vi vil altid skrive resultatet således at reste r ligger i dette iterval. Dee rest kaldes de riciale rest. Oskrivige af (*) kaldes divisiosligige. Hvis a går o i b, dvs. hvis reste er 0, siger vi at a er divisor i b, og vi skriver: a b Hvis a ikke går o i b skriver vi: a b Tallee 1 og b går altid o i b, og de reges sjældet med, år vi taler om divisorer. Hvis vi vil uderstrege dette taler vi om ægte divisorer. Eksemel: Oskrivig af divisiosligiger 1) a =, b = 2: 2 = + 2 2) a =, b = 1: 1 = + 1 ) a =, b = -1: 1 = + 2 Bemærk, at kravet om 0 r< a giver e lidt ade divisiosligig for egative tal. Eksemel: Divisorer I et tal a) b) Du ka fide samtlige divisorer i et tal ved hjæl af dit værktøjsrogram. Det ka eksemelvis se således ud: factor(0) = 2 og factor(21) = 2 Oskriviger af tye: 0= 2 og 21 = 2 kaldes for e faktoriserig i rimfaktorer. På grud af rimtallees atur ka vi ikke faktorisere videre. Omvedt ka vi ud af faktoriserige se, hvilke tal der er divisorer. Eksemelvis ka vi se, at tallee: 2,,, ( = 2 ),10 ( = 2 ) og 1 ( = ) er divisorer i L&R Uddaelse A/S Vogmagergade 11 DK-118 Købehav K Tlf:

3 Projekter: Kaitel 0. Projekt 0. Modulo-regig, restklassegruer og Fermats lille sætig Øvelse Faktoriser tallee 210 og og oskriv samtlige ægte divisorer. Sætig 1 For vilkårlige tal ab, er divisiosligige étydig. Bevis Atag at vi har to oskriviger af divisiosligige: b= q1 a+ r1 b= q2 a+ r2 og lad os sige r 2 r 1 Træk fra og få: ( q1 q2) a= r2 r1 Da 0 r1 < a, 0 r2 < a og r 2 r 1, vil_ 0 r2 r1 < a Derfor må der gælde: ( q1 q2) = 0, dvs. at q1 = q2 Idsæt u dette i de to første ligiger: b= q1 a+ r1 b= q1 a+ r2 hvoraf vi let ser, at også r 1 = r 2 Hermed er sætige vist. Udersøgelse af, om to tal er kogruete modulo et tal ka udføres å e lidt ade måde, ed ved at oskrive divisiosligige, emlig ved at udersøge, om forskelle å de to tal er delelig med. Dette er idholdet i æste sætig. Ma ka ofte se dee egeskab avedt som defiitio å kogrues. Sætig 2 1) Hvis a(mod ) = b(mod ), så gælder: ( a b) a b, så gælder: a(mod ) = b(mod ) 2) Hvis ( ) Bevis for ukt 1 Oskriv divisiosligigere for a og b: a= q1 + r b= q2 + r Vi trækker fra og får: a b= ( q1 q2) a b Me her står jo, at går o i tallet ( ) : ( a b) Bevis for ukt 2 Atag ( a b). Dvs. der fides et tal k, så: a b= k (*) Oskriv divisiosligige for b: b= h + r (**) Læg u de to ligiger (*) og (**) samme: a= ( k+ h) + r (***) Me her står jo i (***) og, at tallee a og b har samme rest ved divisio med. Hermed er sætig 2 bevist L&R Uddaelse A/S Vogmagergade 11 DK-118 Købehav K Tlf:

4 Projekter: Kaitel 0. Projekt 0. Modulo-regig, restklassegruer og Fermats lille sætig I øvelse 1 så vi, at der er 2 restklasser modulo 2, hvilket svarer til at sige, at der ka forekomme 2 forskellige (riciale) rester, år vi dividerer tal, med 2. Restklassere reræseteres af de riciale rester, så mægde af alle restklasser modulo 2 er: 2 = { 0,1,2,,,...,22,2} Tilsvarede har vi_ = { 0,1,2} = { 0,1,2,,} = { 0,1,2,,,} og geerelt: Defiitioer: Mægde Lad være et ositivt helt tal. Mægde af riciale rester ved divisio med beteges: = { 0,1,2,..., 1} Et tal i ofattes som reræsetat for si tilsvarede restklasse. Hvis ab, defierer vi additio af restklasser således: a+ b= a+ b mod Sætig Regig med restklasser a+ b mod = a mod + b mod mod 1) ( ) ( ) 2) ( a b) ( mod ) = ( a( mod ) b( mod ) ) ( mod ) ) ( a b) ( mod ) = ( a( mod ) b( mod ) ) ( mod ) Bevis Alle beviser bygger blot å defiitioe og avedelse af divisiosligigere: a= q1 + r1, hvoraf secielt: a( mod ) = r1 b= q2 + r2, hvoraf secielt: b( mod ) = r2 Når vi reger modulo ka vi smide alle led, der ideholder faktore væk. Pukt 1) a+ b= q1 + r1+ q2 + r2 = ( q1+ q2) + ( r1+ r2) Heraf får vi: a+ b mod = r + r mod Udyt defiitioe å modulo ( 1 2) ( ) a+ b mod = a mod + b mod mod Idsæt udtrykkee for r 1 og r 2 Pukt 2) Overlades til læsere som e øvelse. Pukt ) a b= q + r q + r = q q + q r + q r + r r = ( q1 q2 + q1 r2+ q2 r1) + r1 r2 Heraf får vi: a b mod = r r mod Udyt defiitioe å modulo ( 1 2) ( ) a b mod = a mod b mod mod Idsæt udtrykkee for r 1 og r 2 Hermed er formlere bevist L&R Uddaelse A/S Vogmagergade 11 DK-118 Købehav K Tlf:

5 Projekter: Kaitel 0. Projekt 0. Modulo-regig, restklassegruer og Fermats lille sætig Bemærkig. Når vi er ødt til at udføre e ekstra omgag modulo å højre side skyldes det, at summe eller roduktet af de riciale rester ofte vil falde udefor. Eksemel: Moduloregig med og ude lommereger Ka ma si lille tabel, er det forholdsvis let at geemføre simle modulo-udregiger som: 7 (mod 7) = (mod 7) Ma foretager divisioe i hovedet og år frem til, at de sidste divisio er 7 o i 27. Det giver med som rest. Ma ka også rege lidt mere avaceret ved at iddrage de egative tal og udytte moduloregereglere samt vores kedskab til de lille tabel (7 går o i 00 og 7 går o i 9): 7 (mod 7) = ( 7 00 ) (mod 7) = (mod 7) = ( + 9 ) (mod 7) = (mod 7) Med e lommereger ude modulofaciliteter kue ma udrege: = Det største hele tal i 7-tabelle, der er midre ed 7 er derfor 9. Lommeregere ka så give reste: = Øvelse a) Bestem ( 1! + 2! +! +! ! ) ( mod12) 0 b) Bestem 2 ( mod 7 ) Øvelse Vis ved at give et modeksemel, at vi ikke ka slutte: a 2 b 2 (mod ) a b (mod ) Eksemel: Regler for, hvorår et helt tal går o i et adet helt tal Før lommeregeres tid lærte ma e række regler, der skulle hjæle til hurtige udregiger. Det var fx regler om, hvorår et tal går o i et adet tal. Det er let at idse, at - 2 går o, hvis det går o i sidste ciffer (lige tal) - går o, hvis det går o i tallet bestemt af de sidste to cifre - går o, hvis tallet eder å 0 eller - 10 går o, hvis tallet eder å 10. Det er også let accetere, at et tal som går o, hvis tallets rimfaktorer, heh. 2 og begge går o. Der er ige let avedelig regel for hvorår 7 går o. Me der er simle regler for hvorår, 9 og 11 går o. Det ka ma idse ved modulo-regig: Det tal vi vil dividere o i skrives ud i titalsystemet således: 2 N= a a a a0 hvor N er tallet N= aa 1... aaa Eksemelvis ka vi skrive 7 = Når vi udersøger om et tal k går o, så reducerer vi modulo k. Går o i tallet N? Vi aveder de tre regeregler: 2 N mod = a a 10 + a 10 + a mod ( ) ( 2 1 0) ( ) 2 (( a 10 ) ( mod )... ( a 10 ) ( mod ) ( a 10) ( mod ) a ( mod ) ) ( mod ) a ( ) ( ( )) a2( ) ( ( )) a1 a0 ( ) = ( mod 10 mod... mod 10 mod mod 10 mod mod ) ( mod ) = Og u kommer det smarte med tallet tre: 10 ( mod ) = 1. Dvs oveståede bliver lige med: 2012 L&R Uddaelse A/S Vogmagergade 11 DK-118 Købehav K Tlf:

6 Projekter: Kaitel 0. Projekt 0. Modulo-regig, restklassegruer og Fermats lille sætig 2 ( a ( mod ) a2( mod ) 1 + a1( mod ) 1+ a0 ( mod ) ) ( mod ) = ( a ( mod ) a2( mod ) + a1( mod ) + a0 ( mod ) ) ( mod ) = ( a... + a + a + a ) ( mod ) Koklusio: Tallet går o i et tal, hvis tallet går o i tværsumme af taklets cifre. går ikke o i 97, fordi ikke går o i = 2 går o i tallet , fordi går o i tværsumme, der er Øvelse : Hvorår går 9 og 11 o i et tal? Aved samme metode som ovefor til at vise: a) 9 går o i et tal, hvis 9 går o i tallets tværsum b) 11 går o i et tal, hvis 11 går o i de altererede tværsum: (Hit: Udyt, at 10 (mod11) = 1(mod11) ) Betragter vi = { } 1 ( 1) a+ ( 1) a a1+ a0 0,1,2,,, og lader vi tallee a og b være og, så er: a+ b= + = 7 1 (mod ) a b= = 12 0 (mod ) Dvs., at idefor = { 0,1,2,,,} gælder der: + = 1 = 0 Allerede her ka vi se, at regig ide for disse mægder er e del aderledes ed idefor almidelige tal, hvor ulregle altid gælder: Er et rodukt 0, er e af faktorere 0. Eksemel: Tabeller i Vi ka få et godt overblik over regereglere i disse mægder ved at ostille tabeller af samme tye, som vi lærte at kede i folkeskole, da vi i de første klasser lærte at addere og multilicere. For multilikatio udelader vi ormalt tallet 0. For ser det således ud: : : Øvelse 7: Tabeller og ligiger med additio i a) Ostil tilsvarede tabeller i heholdsvis. b) For additiostabellere lægger vi mærke til, at hver koloe og hver række ideholder alle tallee i ågældede ræcis é gag. Secielt ideholder de 0. Det betyder at ethvert tal har et omvedt (iverst) tal, der ved additio ohæver det, så vi får 0. I er det omvedte tal til tallet 1, og det omvedte til 2 er 2 selv. Hvad er i det omvedte til? Hvad er i det omvedte til? c) De egeskab vi har set i b) betyder, at vi ka løse ligiger (med additio) i. Løs følgede ligiger: - i : 2+ x = L&R Uddaelse A/S Vogmagergade 11 DK-118 Købehav K Tlf:

7 Projekter: Kaitel 0. Projekt 0. Modulo-regig, restklassegruer og Fermats lille sætig - i : + x = - i : + x = 0 d) De egeskab vi har set, at har, år vi fokuserer å additio, er de samme egeskab som mægde af alle hele tal har. Hvad kalder vi her de omvedte (iverse) tal til de aturlige tal? Hvad er løsigere til ligigere idefor? Øvelse 8: Ligiger med multilikatio i a) For multilikatiostabellere lægger vi mærke til et adet system: - i ideholder hver koloe og hver række alle tallee i ågældede (frareget 0) ræcis é gag. Secielt ideholder de 1. Det betyder at ethvert tal har et recirokt (iverst) tal, der ved multilikatio ohæver det, så vi får 1. I er det recirokke tal til 2 lig med tallet. Hvad er det recirokke tal til? - har ikke dee egeskab. Vi ser fx, at i ideholder koloe og række ud for tallet 2 ikke alle tal i, secielt ikke tallet 1. Hvilke tal har ikke et recirokt elemet, og hvilke har? c) Udersøgelsere i b) fortæller os, at vi ka løse ligiger (med multilikatio) i, me ku i secielle situatioer i. Udersøg om følgede ligiger har e løsig, og bestem i givet fald løsige: - i : 2 x = 1 - i : 2 x = 1 - i : x = : x = 2 - i d) De egeskab, vi har set, at har, år vi fokuserer å multilikatio, har mægde af alle hele tal ikke. Ma ka betragte udvidelse af talmægdere fra de hele tal til de ratioale tal (alle brøkere) som svaret å et øske om at kue løse de slags ligiger. Hvad er løsigere til ligigere idefor? Et kig id i de modere algebra Når vi som ovefor udersøger, om ma ka løse ligiger idefor e mægde som udstyret med regigsarte additio, eller udstyret med regigsarte multilikatio, så bevæger vi os id i de del af matematikke, vi kalder for modere algebra. I modere algebra studerer ma mægder, der er udstyret med e komositio. Eksemler ka være: - Mægde af hele tal udstyret med komositioe +. Dette skriver vi kort således: (,+). - Mægde af ositive ratioale tal + - Mægde af restklasser udstyret med komositioe. Dette skriver vi kort således: (, ). udstyret med komositioe. Dette skriver vi kort således: (, ) - Mægde af vektorer i 2D, udstyret med vektoradditio +. Dette ka vi skrive kort således: ( V, + 2 ). - Mægde af vektorer i D, udstyret med vektorrodukt. Dette ka vi skrive kort således: ( V ). - Mægde af lieære fuktioer udstyret med komositioe (sammesætig af fuktioer). Dette,. kue vi kort skrive således: ( ) - Mægde af ositive hele tal + udstyret med komositioe y skrive således: ( +, x )., + y x (otesoløftig). Dette kue vi kort E komositio i e mægde M er e regigsart, der kombierer to elemeter i mægde, så vi får et yt elemet i mægde: Hvis xy, M, så vil også x y M Derfor er fx lus (+), me ikke gage ( ) e komositio i mægde af egative hele tal L&R Uddaelse A/S Vogmagergade 11 DK-118 Købehav K Tlf:

8 Projekter: Kaitel 0. Projekt 0. Modulo-regig, restklassegruer og Fermats lille sætig Og derfor er skalarroduktet ikke e komositio i mægde af vektorer. Skalarroduktet kombierer to vektorer så resultatet bliver et tal og ikke e vektor. Årsage til, at modere algebra er e succeshistorie, er bl.a. at ma her har fudet redskaber til at studere fælles træk ved vidt forskellige strukturer, hvilket ka give dybere idsigt i hvorfor bestemte matematiske sammehæge er gældede. De grudlæggede kostruktio i modere algebra er begrebet e grue: Defiitioer: Gruer Lad M være e mægde udstyret med e komositio. Vi kalder ( M, ) for e grue, hvis der gælder følgede: 1) ofylder de associative lov: ( a b) c= a ( b c) for alle elemeter a, b og c i M. 2) Der fides et eutralt elemet, e i M: a e= e a= a for alle elemeter a i M. ) Ethvert elemet a i M har et iverst elemet a : a a = a a= e Eksemel: (,+ ) er e grue 1) De associative lov siger, at ma ka hæve og sætte lus-areteser: a+ ( b+ c) = ( a+ b) + c= a+ b+ c 2) Tallet 0 er eutralt elemet, da a+ 0= 0+ a= a, for ethvert tal a. ) Det hele tal a har et iverst elemet, emlig a : a+ ( a) = ( a) + a= 0 Øvelse 9 a) Vis, at ( +, ) er e grue. b) Vis, at (, + ) er e grue for ethvert tal. c) Vis, at { } er e grue, hvor { } ( 0, ) 0 agiver, at vi ser bort fra tallet 0. d) Hvad ka du sige om de øvrige mægder med komositio i eksemlet ovefor? Øvelse 10: I e grue ka ma løse simle ligiger Vis, at hvis ( M, ) er e grue, så ka ma idefor dee mægde løse ligiger af tye: 1) a x= b b) x a= b Øvelse 11: Der er ku ét eutralt elemet Atag at både e og f er eutrale elemeter. Udyt defiitioe herå til at vise e= f. Det har altså god meig at tale om det eutrale elemet. Øvelse 12: Iverse elemeter er etydigt bestemt. Atag, at a har to iverse elemeter: a og a. Vis ved a rege å udtrykket a a a, at a = a. Det har altså god meig at tale om det iverse elemet til a. Øvelse 1: Kommutative gruer Hvis der om e komositio gælder: a b= b a, for alle ab, M siger vi, at er kommutativ. Hvis M er e grue, kaldes de e kommutativ grue. Hvilke af komositioere i eksemlet i starte af afsittet er kommutative? ( 0, ) Restklassegruere { } 2012 L&R Uddaelse A/S Vogmagergade 11 DK-118 Købehav K Tlf:

9 Projekter: Kaitel 0. Projekt 0. Modulo-regig, restklassegruer og Fermats lille sætig Vi ka ikke løse ligiger af tye: a x b,+. Søger vi at løse ligige vil vi dividere a over å h (dvs. gage med det iverse elemet til a). Me så er vi ude i de ratioale tals verde. Det er derfor heller ikke så overraskede, at vi heller ikke ka løse sådae ligiger geerelt idefor. Det så vi ovefor. Derimod er det overraskede, at vi ka løse multilikative ligiger både ide for. I øvelse c) så vi, at { 0 }, er e grue, hvor { } agiver, at vi ser bort fra tallet 0. ( ) = idefor ( ) 0 Vi ville have fået et tilsvarede resultat, hvis vi havde ostillet tabeller over 7 8. Ma ka løse simle multilikative ligiger idefor ( 7 { 0 }, ), me ikke idefor ( 8 { 0 }, ). De ser ud til at der gælder følgede geerelle resultat: Sætig: Restklassegruere ( ) 1) Hvis er et rimtal, så er { 0 }, 2) Hvis ikke er et rimtal, så er ( { 0 }, ) e grue ikke e grue Bevis for 1) Vi får brug for e sætig om rimtal, som vi her gegiver ude bevis: Atag er et rimtal. Så gælder, at hvis a bså vil gå o i ete a eller b. Beviset fides i rojekt 0. om Euklids algoritme. Atag u er et rimtal. Mægde { 0} består af: { 1,2,,..., 1} De associative lov gælder klart, idet de edarves fra (, ). Restklasse 1 er ifølge defiitioe å multilikatio af restklasser et eutralt elemet i { 0}. Det eeste vaskelige ukt er at vise, at et vilkårligt elemet a har et iverst elemet. Vi lader os lede af det mere simle argumet, vi i øvelse geemførte for at ethvert elemet i { 0} har et iverst elemet: Vi ostillede multilikatiostabelle, og her fadt vi, at hver koloe og hver række ideholdt alle tallee i { 0} ræcis é gag. Secielt ideholder de det eutrale elemet 1. Det betyder at ethvert tal har et recirokt (iverst) tal, der ved multilikatio ohæver det, så vi får 1. 0 ideholder følgede: a-række i multilikatiostabelle for { } a 1, a 2, a,..., a ( 1) { } (*) Hvis er et rimtal er alle disse forskellige. For atag, at to af dem var es, dvs. de reræseterede samme restklasse: a r(mod ) = a s(mod ) Hvis r og s er forskellige er ét af dem størst, lad os sige det er r. Ifølge sætig 2 gælder så: ( a r a s) a ( r s) Me ifølge sætige vi citerede i starte af beviset gælder så: Ete: a eller: ( r s) Da a< ka det første ikke være tilfældet. Derfor må det adet gælde, dvs.: ( r s) Vi atog, at r og s er forskellige, og at r > s. Så er 0 < r s< Me så ka jo ikke gå o i ( r s), hvilket giver e modstrid. Altså er r = s og atagelse om at der fides to restklasser i (*) der er es er forkert: De er alle forskellige L&R Uddaelse A/S Vogmagergade 11 DK-118 Købehav K Tlf:

10 Projekter: Kaitel 0. Projekt 0. Modulo-regig, restklassegruer og Fermats lille sætig 0 ræcis é gag. Secielt ideholder de det eutrale elemet 1. Koklusio: Et af tallee i (*) er kogruet med 1. Lad os sige det er a b. Så er b det det recirokke (iverse) elemet til a. Når de alle er forskellige, betyder det, at a-række ideholder alle tallee i { } Bemærkig 1. Da multilikatio er kommutativ er det lige meget, om vi ser å a-række eller a-koloe. Bemærkig 2. Beviset ovefor er et eksistesbevis, dvs. vi viser, at der må fides et recirokt elemet, me vi agiver ikke e metode til at fide det. Det gør vi i rojektet 0. om Euklids algoritme. Øvelse 1: Bevis for 2). Atag ikke er et rimtal, dvs. er et sammesat tal: = r s 0, har et iverst elemet. Vis ved at give et modeksemel, at ikke alle elemeter i ( { } ) Vi får i øvrigt forholdsvis let et si-off af oveståede i form af e berømt sætig fra matematikhistorie. Sætige er okaldt efter Pierre Fermat, der første gag formulerede de i et brev fra 10. Fermat beviste aldrig sie mage åstade, i dette tilfælde fordi beviset var alt for lagt, så det blev først bevist i 17 af Euler. Sætige fik sit av, Fermats lille sætig i e artikel fra 191. Sætige er bl.a. iteressat, fordi e geeraliserig heraf, som Euler geemførte, og som idgår i rojekt 0., er helt cetral i argumetatioe for, at kryterigssystemet RSA virker. Fermats lille sætig 1 1) Hvis er et rimtal, og a er et tal, som ikke går o i, så gælder der: a 1 ( mod ) 2) Hvis er et rimtal, og a er vilkårligt tal, så gælder der: a a( mod ) Bevis for ukt 1) Atag er et rimtal, og at a er et tal, som ikke går o i. I beviset for sætige ovefor om restklassegruere så vi å situatioe a<. Me ser vi beviset igeem, ser vi, at det cetrale var, om gik o i a eller ej. Så vi behøver ikke begræsige a<. I beviset idgik, at de to mægder: { 1,2,,..., 1} og { a 1, a 2, a,..., a ( 1) } reræseterer de samme restklasser. Ifølge regereglere for modulo-regig og sætig 2 gælder derfor: = a 1 a 2 a... a 1 (mod ) ( ) = a (mod ) a ( ) ( ) a 1 Nu har vi ige situatioe beskrevet i sætige først i beviset ovefor: rimtallet går o i et rodukt, derfor går det o i midst é af faktorere: a 1 ( ( )) eller ( ) Det første er umuligt, da er et rimtal. Derfor gælder det adet. Me ifølge sætig 2, så betyder det, at: a 1 ( mod ) = 1 ( mod ) 1 eller: a 1 ( mod ) Dette var første versio af sætige. Bevis for ukt 2) Lad a være et vilkårligt tal. Der er u to muligheder: 1) a er et tal, som ikke går o i 2) at a er et tal, som går o i 2012 L&R Uddaelse A/S Vogmagergade 11 DK-118 Købehav K Tlf:

11 Projekter: Kaitel 0. Projekt 0. Modulo-regig, restklassegruer og Fermats lille sætig I første tilfælde har vi situatioe fra før, så: 1 a 1 ( mod ) Samtidig er: a a( mod ) så regereglere for modulo-regig giver: 1 aa a 1 mod ( ) ( mod ) a a I adet tilfælde har vi, at går o i a. Dermed går også o i ethvert tal, som ideholder a som e faktor, 1 a a 1. Me dette tal er lig med a a, så: eksemelvis i ( ) ( a a), ( mod ) ( mod ) ( mod ) a = a Aved sætig 2 a a Samme udtryk skrevet med kogrues symbolet. Hermed er sætige bevist. Øvelse Hvis = og a =, så siger Fermats lille sætig, at a = = = 2 er kogruet med 1 modulo. Kotroller at det er tilfældet. Kotroller yderligere Fermats lille sætig med følgede eksemler: a) = og a = b) = 7 og a = 2 c) = 11 og a = 2 d) = 1 og a = 10 Eksemel: Persektiverig til kryterig I de modere krytologi, der kaldes RSA-systemet, avedes meget store rimtal i kryterige af e besked. Udgagsuktet er to rimtal og q med fx 100 cifre hver. De to tal er hemmelige. Så udreges deres rodukt = q, samt yderligere tallet ϕ ( ) = ( 1) ( q 1). Herefter smides oulært sagt de to rimtal, og q væk. Derved bliver systemet ubrydeligt. Ved hjæl af tallet ϕ( ) bestemmes så de to øgler, de ee til kryterig, de ade til dekryterig. De to øgler bestemmes ved hjæl af Euklids algoritme, som behadles i rojekt 0.. Alle beregiger foretages modulo, så dette tal er offetlig kedt, me det er ikke oget roblem, for der fides ige ekle måder til at faktorisere store tal i rimfaktorer. Så ma ka ikke bestemme rimtallee ud fra kedskab til tallet. Ma ka derfor heller ikke bestemme tallet ϕ ( ), ude kedskab til de to oridelige rimtal. Det betyder, at selv om ma keder øgle til kryterig, ka ma ikke bestemme øgle til dekryterig. Der er aturligvis mage tekiske roblemer i et sådat system. Der er uedeligt mage rimtal, og faktisk ikke så få edda af dem. Me der fides ige formler, der ka geerere rimtal, så hvorda får vi fat i et rimtal å 100 cifre? Eller sagt å e ade måde hvis vi har et godt bud å et stort rimtal, hvorda afgør vi så med sikkerhed, at det faktisk er et rimtal? Et stort område idefor modere krytografi drejer sig eto om rimtalstest. Der fides ikke et rimtalstest, der med 100% sikkerhed giver svaret, det er eto et test. Me der fides meget avacerede og meget stærke sådae test. Det første rimtalstest ma udsætter et tal for er faktisk Fermats lille sætig! Sætige siger, at hvis et 1 tal er et rimtal så gælder det, at for ethvert midre tal a har a reste 1 ved divisio med. De siger q 1 ikke det omvedte, at hvis det om et tal q gælder, at for ethvert midre tal a har a reste 1 ved divisio med q, så er tallet q et rimtal. Me hvis et tal q ofylder dette, så er der meget god sadsylighed for, at det er et rimtal, hvorfor det giver meig at gå videre med stærkere og mere krævede test L&R Uddaelse A/S Vogmagergade 11 DK-118 Købehav K Tlf:

12 Projekter: Kaitel 0. Projekt 0. Modulo-regig, restklassegruer og Fermats lille sætig Der fides tal q, der ofylder betigelsere i Fermats lille sætig, og som ikek er rimtal. Disse kaldes Carmichael tal. Det midste Carmichael tal er tallet 1. Det er altså det første sammesatte tal, som består Fermats test. 1 er et sammesat tal: 1 = L&R Uddaelse A/S Vogmagergade 11 DK-118 Købehav K Tlf:

Projekt 4.8 De reelle tal og 1. hovedsætning om kontinuerte funktioner

Projekt 4.8 De reelle tal og 1. hovedsætning om kontinuerte funktioner Projekter: Kapitel 4 Projekt 48 De reelle tal og hovedsætig om kotiuerte fuktioer Projekt 48 De reelle tal og hovedsætig om kotiuerte fuktioer Kotiuitet og kotiuerte fuktioer Ord som kotiuert og kotiuerlig

Læs mere

Matematik A. Studentereksamen. Forberedelsesmateriale. Forsøg med digitale eksamensopgaver med adgang til internettet.

Matematik A. Studentereksamen. Forberedelsesmateriale. Forsøg med digitale eksamensopgaver med adgang til internettet. Matematik A Studetereksame Forsøg med digitale eksamesopgaver med adgag til iterettet Forberedelsesmateriale Vejledede opgave Forår 0 til stx-a-net MATEMATIK Der skal afsættes 6 timer af holdets sædvalige

Læs mere

- et værktøj til fejlrettende QR-koder. Projekt 0.3 Galois-legemerne. Indhold. Hvad er matematik? A, i-bog

- et værktøj til fejlrettende QR-koder. Projekt 0.3 Galois-legemerne. Indhold. Hvad er matematik? A, i-bog Projekt 0.3 Galois-legemere GF é ëp û - et værktøj til fejlrettede QR-koder Idhold De karakteristiske egeskaber ved de tre mest almidelige talsystemer, og... De kommutative, associative og distributive

Læs mere

Bjørn Grøn. Analysens grundlag

Bjørn Grøn. Analysens grundlag Bjør Grø Aalyses grudlag Aalyses grudlag Side af 4 Idholdsfortegelse Kotiuerte og differetiable fuktioer 3 Differetial- og itegralregiges udviklig 5 3 Hovedsætiger om differetiable fuktioer 8 Opgaver til

Læs mere

MOGENS ODDERSHEDE LARSEN. Komplekse tal

MOGENS ODDERSHEDE LARSEN. Komplekse tal MOGENS ODDERSHEDE LARSEN Komplekse tal a b. udgave 004 FORORD Dette otat giver e kort idførig i teorie for komplekse tal, regeregler, røddere i polyomier bl.a. med heblik på avedelser ved løsig af lieære

Læs mere

hvor i er observationsnummeret, som løber fra 1 til stikprøvestørrelsen n, X i

hvor i er observationsnummeret, som løber fra 1 til stikprøvestørrelsen n, X i Normalfordeliger For at e stokastisk variabel X ka være ormalfordelt, skal X agive værdie af e eller ade målig, f.eks. tid, lægde, vægt, beløb osv. Notatioe er: Xi ~ N( μ, σ hvor i er observatiosummeret,

Læs mere

Formelskrivning i Word 2. Sådan kommer du i gang 4. Eksempel med skrivning af brøker 5. Brøker skrevet med småt 6. Hævet og sænket skrift 6

Formelskrivning i Word 2. Sådan kommer du i gang 4. Eksempel med skrivning af brøker 5. Brøker skrevet med småt 6. Hævet og sænket skrift 6 Dee udgave er til geemkig på ettet. Boge ka købes for kr. 5 hos EH-Mat. E y og udvidet udgave med title»symbol- og formelskrivig«er udkommet september 00. Se mere om de her. Idholdsfortegelse Formelskrivig

Læs mere

DATV: Introduktion til optimering og operationsanalyse, 2007. Følsomhed af Knapsack Problemet

DATV: Introduktion til optimering og operationsanalyse, 2007. Følsomhed af Knapsack Problemet DATV: Itroduktio til optimerig og operatiosaalyse, 2007 Følsomhed af Kapsack Problemet David Pisiger, Projektopgave 1 Dette er de første obligatoriske projektopgave på kurset DATV: Itroduktio til optimerig

Læs mere

Renteformlen. Erik Vestergaard

Renteformlen. Erik Vestergaard Reteformle Erik Vestergaard 2 Erik Vestergaard www.matematikfysik.dk Erik Vestergaard, 2010. Billeder: Forside: istock.com/ilbusca Side 4: istock.com/adresrimagig Desude ege illustratioer. Erik Vestergaard

Læs mere

Projekt 1.3 Brydningsloven

Projekt 1.3 Brydningsloven Projekt 1.3 Brydigslove Når e bølge, fx e lysbølge, rammer e græseflade mellem to stoffer, vil bølge ormalt blive spaltet i to: Noget af bølge kastes tilbage (spejlig), hvor udfaldsvikle u er de samme

Læs mere

Sandsynlighedsregning i biologi

Sandsynlighedsregning i biologi Om begrebet sadsylighed Sadsylighedsregig i biologi Hvis vi kaster e almidelig, symmetrisk terig, er det klart for de fleste af os, hvad vi meer, år vi siger, at sadsylighede for at få e femmer er 1/6.

Læs mere

Sammenligning af to grupper

Sammenligning af to grupper Sammeligig af to gruer Reetitio, heruder om kritiske værdier Sammeligig af to gruer Sammeligig af to middelværdier Sammeligig af to adele Sammeligig af to variaser yoteser og hyotesetest. E hyotese er

Læs mere

9. Binomialfordelingen

9. Binomialfordelingen 9. Biomialfordelige 9.. Gekedelse Hvert forsøg ka ku resultere i to mulige udfald; succes og fiasko. I modsætig til poissofordelige er atallet af forsøg edeligt. 9.. Model X : Stokastisk variabel, der

Læs mere

Introduktion til uligheder

Introduktion til uligheder Itroduktio til uligheder, marts 0, Kirste Rosekilde Itroduktio til uligheder Dette er e itroduktio til ogle basale uligheder om det aritmetiske geemsit, det geometriske geemsit, det harmoiske geemsit og

Læs mere

Vejledende opgavebesvarelser

Vejledende opgavebesvarelser Vejledede opgavebesvarelser 1. Atal hæder er lig med K(52,5), altså 2598960. Ved brug af multiplikatiospricippet ka atal hæder med 3 ruder og 2 spar udreges som K(13, 3) K(13, 2), hvilket giver 22308.

Læs mere

Sprednings problemer. David Pisinger

Sprednings problemer. David Pisinger Spredigs problemer David Pisiger 2001 Idledig Jukfood A/S er e amerikask kæde af familierestaurater der etop er ved at etablere sig i Damark. E massiv reklamekampage med de to slogas vores fritter er de

Læs mere

Branchevejledning. ulykker indenfor. lager. området. Branchearbejdsmiljørådet for transport og engros

Branchevejledning. ulykker indenfor. lager. området. Branchearbejdsmiljørådet for transport og engros Brachevejledig ulykker idefor lager området Brachearbejdsmiljørådet for trasport og egros Baggrud Udersøgelser på lager- og trasportområdet har vist, at beskrivelse af hædelsesforløbet ved udfyldelse

Læs mere

Dagens forelæsning. Claus Munk. kap. 1-3. Obligationer Grundlæggende Intro. Obligationer Grundlæggende Intro. Obligationer Grundlæggende Intro

Dagens forelæsning. Claus Munk. kap. 1-3. Obligationer Grundlæggende Intro. Obligationer Grundlæggende Intro. Obligationer Grundlæggende Intro Dages forelæsig Grudlæggede itroduktio til obligatioer Claus Muk kap. - 3 Betaligsrækker og låeformer Det daske obligatiosmarked Effektive reter 2 Obligatioer Grudlæggede Itro Obligatioer Grudlæggede Itro

Læs mere

Claus Munk. kap. 1-3

Claus Munk. kap. 1-3 Claus Muk kap. 1-3 1 Dages forelæsig Grudlæggede itroduktio til obligatioer Betaligsrækker og låeformer Det daske obligatiosmarked Pris og kurs Effektive reter 2 1 Obligatioer Grudlæggede Itro Debitor

Læs mere

Grundlæggende matematiske begreber del 1 Mængdelære Talmængder Tal og regneregler Potensregneregler Numerisk værdi Gennemsnit

Grundlæggende matematiske begreber del 1 Mængdelære Talmængder Tal og regneregler Potensregneregler Numerisk værdi Gennemsnit Grudlæggede mtemtiske begreber del 1 Mægdelære Tlmægder Tl og regeregler Potesregeregler Numerisk værdi Geemsit x-klssere Gmmel Hellerup Gymsium 1 Idholdsfortegelse MÆNGDELÆRE... 3 TAL... 9 De turlige

Læs mere

STATISTISKE GRUNDBEGREBER

STATISTISKE GRUNDBEGREBER MOGENS ODDERSHEDE LARSEN STATISTISKE GRUNDBEGREBER med avedelse af TI 89 og Excel 8 5 9 6 3 0 Histogram for ph 6,9 7, 7,3 7,5 7,7 7,9 ph. udgave 0 FORORD Der er i dee bog søgt at give letlæst og askuelig

Læs mere

MOGENS ODDERSHEDE LARSEN. Fourieranalyse

MOGENS ODDERSHEDE LARSEN. Fourieranalyse MOGENS ODDERSHEDE LARSEN Fourieraalyse. udgave 7 FORORD Dette otat giver e kort idførig i teorie for fourierrækker og fouriertrasformatio. Det forudsættes i dette otat, at ma har rådighed over matematiklommeregere

Læs mere

Du skal redegøre for løsning af ligninger og herunder behandle omformningsreglerne for ligninger.

Du skal redegøre for løsning af ligninger og herunder behandle omformningsreglerne for ligninger. Eksamesspørgsmål mac7100 maj/jui 013. Spørgsmål 1: Ligiger Du skal redegøre for løsig af ligiger og heruder behadle omformigsreglere for ligiger. Giv eksempler på hvorda forskellige ligigstyper (lieære,

Læs mere

Kompendie Komplekse tal

Kompendie Komplekse tal Kompedie Komplekse tal Prebe Holm 08-06-003 "!#!%$'&($)+*-,. cos(s + t) )0/ si(s + t) Trigoometri er måske ikke så relevat, år ma såda umiddelbart sakker om komplekse tal. Me faktisk avedes de trigoometriske

Læs mere

Kvadratisk 0-1 programmering. David Pisinger

Kvadratisk 0-1 programmering. David Pisinger Kvadratisk - programmerig David Pisiger 27-8 MAX-CUT problemet Givet e ikke-orieteret graf G = (V, E) er MAX-CUT problemet defieret som MAX-CUT = {< G > : fid et sit S, T i grafe G som maksimerer atal

Læs mere

EGA Vejledning om EGA og monotont arbejde

EGA Vejledning om EGA og monotont arbejde EGA og mootot arbejde 04/09/02 14:27 Side 1 Orgaisatioer repræseteret i Idustries Brachearbejdsmiljøråd: Arbejdstagerside: Arbejdsgiverside: Dask Metal Specialarbejderforbudet Kvideligt Arbejderforbud

Læs mere

Lys og gitterligningen

Lys og gitterligningen Fysik rapport: Lys og gitterligige Forfatter: Bastia Emil Jørgese.z Øvelse blev udført osdag de 25. jauar 202 samme med Lise Kjærgaard Paulse 2 - Bastia Emil Jørgese Fysik rapport (4 elevtimer), februar

Læs mere

Situationen er illustreret på figuren nedenfor. Her er også afsat nogle eksempler: Punktet på α giver anledning til punktet Q

Situationen er illustreret på figuren nedenfor. Her er også afsat nogle eksempler: Punktet på α giver anledning til punktet Q 3, 45926535 8979323846 2643383279 50288497 693993750 5820974944 592307864 0628620899 8628034825 34270679 82480865 3282306647 0938446095 505822372 535940828 4874502 84027093 85205559 6446229489 549303896

Læs mere

Komplekse tal Matematik og naturfag i verdensklasse, 2004. Komplekse tal

Komplekse tal Matematik og naturfag i verdensklasse, 2004. Komplekse tal Komplekse tl Mtemtik og turfg i verdesklsse, 004 Komplekse tl Dette mterile er ereget til udervisig i mtemtik i gymsiet. Der forudsættes kedsk til løsig f degrdsligiger, trigoometri og e lille smule vektorregig.

Læs mere

GENEREL INTRODUKTION.

GENEREL INTRODUKTION. Study Guide til Matematik C. OVERSIGT. Dee study guide ideholder følgede afsit - Geerel itroduktio. - Emeliste. - Eksame. - Bilag. Udervisigsmiisteriets bekedtgørelse for matematik C. GENEREL INTRODUKTION.

Læs mere

Hvis man vil lægge 15% til 600, så kan det gøres ved at udregne, hvor meget 15% af 600 er lig med og lægge det til det oprindelige beløb:

Hvis man vil lægge 15% til 600, så kan det gøres ved at udregne, hvor meget 15% af 600 er lig med og lægge det til det oprindelige beløb: 0BRetesegig BTæk i femskivigsfaktoe! I dette tillæg skal vi se, at begebet femskivigsfaktoe e yttigt til at fostå og løse foskellige poblemstillige idefo pocet- og etesegig. 3B. Lægge pocet til elle tække

Læs mere

Duo HOME Duo OFFICE. Programmeringsmanual DK 65.044.50-1

Duo HOME Duo OFFICE. Programmeringsmanual DK 65.044.50-1 Duo HOME Duo OFFICE Programmerigsmaual DK 65.044.50-1 INDHOLD Tekiske data Side 2 Systemiformatio, brugere Side 3-4 Ligge til og slette brugere Side 5-7 Ædrig af sikkerhedsiveau Side 8 Programmere: Nødkode

Læs mere

ERHVERVS- OG BYGGESTYRELSEN. Huseftersyn. Tilstandsrapport for ejendommen. Sælger: Kirsten Hammerum. Postnr. By 7000 Fredericia

ERHVERVS- OG BYGGESTYRELSEN. Huseftersyn. Tilstandsrapport for ejendommen. Sælger: Kirsten Hammerum. Postnr. By 7000 Fredericia ^ ERHVERVS- OG BYGGESTYRELSEN Huseftersy Tilstadsrapport for ejedomme Sælger: Kirste Hammerum dresse 6.Jullvej93 Postr. By 7000 Fredericia ato Udløbsdato 3-07-200 3-0-20 HE r. Lb. r. Kommuer/Ejedomsr.

Læs mere

Projektstyringsmetoden PRINCE2 som grundlag for opfyldelse af modenhedskrav PRINCE2 is a Trade Mark of the Office of Government Commerce

Projektstyringsmetoden PRINCE2 som grundlag for opfyldelse af modenhedskrav PRINCE2 is a Trade Mark of the Office of Government Commerce Projektstyrigsmetode PRINCE2 som grudlag for opfyldelse af modehedskrav PRINCE2 is a Trade Mark of the Office of Govermet Commerce som beskrevet i Modehed i it-baserede forretigsprojekter, Modeller til

Læs mere

14. Fagligt samarbejde matematik og samfundsfag

14. Fagligt samarbejde matematik og samfundsfag ISBN 978-87-766-494-3 4. Fagligt samarbejde matematik og samfudsfag Idholdsfortegelse Idledig Samfudsfag sat på formler II... 2 Tema : Multiplikatorvirkige... 3. Hvad er e multiplikatoreffekt?... 3 2.

Læs mere

Er det en naturlov at aminosyrer er venstredrejede?

Er det en naturlov at aminosyrer er venstredrejede? Er det e aturlov at amiosyrer er vestredrejede? Aja C. Aderse, Axel Bradeburg og Tuomas Multamäki (NORDITA) Stort set samtlige amiosyrer fides i to udgaver (eatiomere) e vestre og e højredrejet (se figur

Læs mere

Beregning af prisindeks for ejendomssalg

Beregning af prisindeks for ejendomssalg Damarks Saisik, Priser og Forbrug 2. april 203 Ejedomssalg JHO/- Beregig af prisideks for ejedomssalg Baggrud: e radiioel prisideks, fx forbrugerprisidekse, ka ma ofe følge e ideisk produk over id og sammelige

Læs mere

Med disse betegnelser gælder følgende formel for en annuitetsopsparing:

Med disse betegnelser gælder følgende formel for en annuitetsopsparing: Matema10k C-iveau, Fydelud Side 1 af 10 Auitetsopspaig De fides mage måde at spae op på. Vi vil he se på de såkaldte auitetsopspaig. Emet ka buges som e del af det suppleede stof, og det ka avedes som

Læs mere

Et træ med x blade.. h lg(x) DVS. decision-træet vil en maks højde på lg n! blade. lg(n!) >= n*lg(n) -1.5n = Ө(n*lg(n))

Et træ med x blade.. h lg(x) DVS. decision-træet vil en maks højde på lg n! blade. lg(n!) >= n*lg(n) -1.5n = Ө(n*lg(n)) DM19 1. Iformatio-theoretic lower bouds kap. 8 + oter. Ma ka begræse de teoretiske græse for atallet af sammeligiger der er påkrævet for at sortere e liste af tal. Dette gøres ved at repræsetere sorterig-algoritme

Læs mere

Matematisk trafikmodellering

Matematisk trafikmodellering - Mathematical traffic modelig Grupper.: 8 Gruppemedlemmer: Jacob Hallberg Hasema Kim Alla Hase Ria Roja Kari Vejleder: Morte Blomhøj Semester: 4. Semester, forår 2007, hus 13.1 Studieretig: Det aturvideskabelige

Læs mere

Vold på arbejdspladsen. Forebyggelse

Vold på arbejdspladsen. Forebyggelse F O A f a g o g a r b e j d e Vold på arbejdspladse Forebyggelse Idhold Et godt forebyggede arbejde Trivsel Faglighed Ledelse Brugeriddragelse Fællesskab Tekiske og fysiske forhold E løbede proces E positiv

Læs mere

Plejebrochure. Gør dit bassin til det bedste

Plejebrochure. Gør dit bassin til det bedste Plejebrochure Gør dit bassi til det bedste Er du god til at vedligeholde dit svømmebassi? Hvis ikke, så lad os hjælpe dig. Med dee brochure vil du hurtigt blive e ekspert. Ethvert svømmebassi ka opå krystalklart

Læs mere

Kap 1. Procent og Rentesregning

Kap 1. Procent og Rentesregning Idhold Kp. Procet og Retesregig.... Regig med proceter.... Reteformle.... Geemsitlig retefod (vækstrte)... Kp Opsprigs- og gældsuiteter...5. Auiteter...5. Sumformel for e kvotietrække...5. Opsprigsuitet...6.

Læs mere

Bogstavregning - supplerende eksempler. Reduktion... 54 b Ligninger... 54 d

Bogstavregning - supplerende eksempler. Reduktion... 54 b Ligninger... 54 d Mtetik på AVU Eksepler til iveu F, E og D Bogstvregig - supplerede eksepler Reduktio... Ligiger... d Bogstvregig Side Mtetik på AVU Eksepler til iveu F, E og D Reduktio M gger to preteser ed hide ved -

Læs mere

Procent og eksponentiel vækst - supplerende eksempler

Procent og eksponentiel vækst - supplerende eksempler Eksemple til iveau F, E og D Pocet og ekspoetiel vækst - suppleede eksemple Pocete og decimaltal... b Vækst-fomle... d Fa side f og femefte vises eksemple på bug af vækstfomle. Fomle skives omalt på dee

Læs mere

Kommunens styringssystemer og offentlige leders krydspres eller

Kommunens styringssystemer og offentlige leders krydspres eller Kommues styrigssystemer og offetlige leders krydspres eller hvorda får du forebyggelse sat på kommues dagsorde 1 Dispositio: Præsetatio og itroduktio til emet Ledergruppes styrigsmæssige dagsorde Begreber

Læs mere

OM BEVISER. Poul Printz

OM BEVISER. Poul Printz OM BEVISER Poul Printz Enhver, der har stiftet bekendtskab med matematik selv å et relativt beskedent niveau, er klar over, at matematiske beviser udgør et meget væsentligt element af matematikken. De

Læs mere

Hvidbog omhandlende de indkomne indsigelser, bemærkninger og kommentarer til forslag til Kommuneplan 2009. Udgave A: Rækkefølge som forslag

Hvidbog omhandlende de indkomne indsigelser, bemærkninger og kommentarer til forslag til Kommuneplan 2009. Udgave A: Rækkefølge som forslag Hvidbog omhadlede de idkome idsigelser, bemærkiger og kommetarer til forslag til Kommuepla 2009 Udgave A: Rækkefølge som forslag 4. jauar 2010 Idhold Idledig. 3 Proces og behadlig m.v 3 Hvidboges opbygig..

Læs mere

Små og store varmepumper. n Bjarke Paaske n Teknologisk Institut n Telefon: +45 7220 2037 n E-mail: bjarke.paaske@teknologisk.dk

Små og store varmepumper. n Bjarke Paaske n Teknologisk Institut n Telefon: +45 7220 2037 n E-mail: bjarke.paaske@teknologisk.dk Små og store varmepumper Bjarke Paaske Tekologisk Istitut Telefo: +45 7220 2037 E-mail: bjarke.paaske@tekologisk.dk Ree stoffers tre tilstadsformer (faser) Fast stof (solid) Eksempel: is ved H 2 0 Væske

Læs mere

Grundlæggende Lederuddannelse

Grundlæggende Lederuddannelse Grudlæggede Lederuddaelse Grudlæggede Lederuddaelse God ledelse er vigtig for både dig og di virksomhed. Det er vigtigt for di ege persolige udviklig, for die medarbejderes motivatio og dermed i sidste

Læs mere

Viden Om Vind oftere, stop i tide

Viden Om Vind oftere, stop i tide Vide Om Vid oftere, stop i tide Spørgsmål og svar Idhold Risici og relevas 2 Steffe Aderse Sadsyligheder 5 Per Hedegård Spørgsmål til eksperte 7 Thomas Aderse Til 8 Rasmus Østergaard Pederse E sikker strategi

Læs mere

FUNKTIONER del 2 Rentesregning Eksponentielle udviklinger Trigonometriske funktioner Potensfunktioner Polynomier

FUNKTIONER del 2 Rentesregning Eksponentielle udviklinger Trigonometriske funktioner Potensfunktioner Polynomier FUNKTIONER del Retesregig Ekspoetielle udvikliger Trigoometriske fuktioer Potesfuktioer Polyomier -klssere Gmmel Hellerup Gymsium Idhold RENTESREGNING... 3 Kotiuert rete... EKSPONENTIELLE UDVIKLINGER...

Læs mere

Januar2003/ AM Rentesregning - LÅN & OPSPARING 1/8. Aftager med...% Gange med (1...%) r:=...% Før aftager med...% og bliver til Efter, dvs.

Januar2003/ AM Rentesregning - LÅN & OPSPARING 1/8. Aftager med...% Gange med (1...%) r:=...% Før aftager med...% og bliver til Efter, dvs. Jaua2003/ AM Retesegig - LÅN & OPSPARING 1/8 PROCENT Po cet betyde p. 100" altså hudededele p% = p 100 Decimaltal Ved omskivig fa pocet til decimaltal flyttes kommaet to pladse mod veste 5%=0,05 0,1%=0,001

Læs mere

x-klasserne Gammel Hellerup Gymnasium

x-klasserne Gammel Hellerup Gymnasium SANDSYNLIGHEDSREGNING OG KOMBINATORIK x-klassere Gammel Hellerup Gymasum Idholdsfortegelse SANDSYNLIGHEDSREGNING... 3 Sadsylghedsfelt... 3 Edelge sadsylghedsfelter (sadsylghedsfordelger):... 3 Uedelge

Læs mere

Kommunikation over støjfyldte kanaler

Kommunikation over støjfyldte kanaler Istitut for Matematise Fag wwwmathaaud Kommuiatio over støjfyldte aaler MAT2-projetrapport af G3-7 forårssemestret 2008 Istitut for Matematise Fag Fredri Bajers Vej 7G 9220 Aalborg Øst Telefo 99 40 88

Læs mere

Differentiation af potensfunktioner

Differentiation af potensfunktioner Hvd er mtemti? B, i-bog ISBN 978 87 766 494 3 Hjemmesideevisig: Differetitio f potesfutioer, Kpitel 4, side 76 Differetitio f potesfutioer. Pscls tret og biomilformle Vi strter med t mide om t poteser

Læs mere

Vanebryderdagen 2009 Vanens magt eller magt over vanen? Valget er dit!

Vanebryderdagen 2009 Vanens magt eller magt over vanen? Valget er dit! Vaebryderdage 2009 Vaes magt eller magt over vae? Valget er dit! Osdag de 4. marts 2009 taastr u p Vaebrydere Torbe Wiese Meditatiosgurue Heig Davere Hjereforskere Milea Pekowa COACHEN Chris MacDoald Ulrik

Læs mere

Projekt 4. Anlægsøkonomien i Storebæltsforbindelsen hvordan afdrages

Projekt 4. Anlægsøkonomien i Storebæltsforbindelsen hvordan afdrages Pojekt 4. Alægsøkoomie i Stoebæltsfobidelse hvoda afdages lå? Dette pojekt hadle om, hvoda økoomie va skuet samme, da ma byggede Stoebæltsfobidelse. Stoe alægspojekte e æste altid helt elle delvist låefiasieet.

Læs mere

H. TORNEHA VE FOREL$SNINGSNOTER MATEMATISK ANALYSE

H. TORNEHA VE FOREL$SNINGSNOTER MATEMATISK ANALYSE H. TORNEHA VE FOREL$SNINGSNOTER I MATEMATISK ANALYSE Kursus ma1;.ematik 1 f'or f rste ars studerede uder..k behavs Ui versi teta..jll8. tema ti skatucvideskabelige f'akultet~ samt ~or aktuarog stat~t~studerede.

Læs mere

Den Store Sekretærdag

Den Store Sekretærdag De Store Sekretærdag Tilmeld dig ide 1. oktober og få 300 kr. i rabat! De 25. ovember 2008 Tekologisk Istitut Taastrup De 8. december 2008 Mukebjerg Hotel Vejle Nia Siegefeldt, chefsekretær Camilla Miehe-Reard,

Læs mere

Talteori. Teori og problemløsning. Indhold. Talteori - Teori og problemløsning, august 2013, Kirsten Rosenkilde.

Talteori. Teori og problemløsning. Indhold. Talteori - Teori og problemløsning, august 2013, Kirsten Rosenkilde. Indhold 1 Delelighed, primtal og primfaktoropløsning Omskrivning vha. kvadratsætninger 4 3 Antal divisorer 6 4 Største fælles divisor og Euklids algoritme 7 5 Restklasser 9 6 Restklasseregning og kvadratiske

Læs mere

Den servicemindede økonomi- og regnskabsmedarbejder

Den servicemindede økonomi- og regnskabsmedarbejder De servicemidede økoomi- og regskabsmedarbejder 25. og 26. marts 2009 Tekologisk Istitut Taastrup 16. og 17. april 2009 Tekologisk Istitut Århus Få idsigt og redskaber, der styrker service og rådgivig

Læs mere

Matematikkens mysterier - på et obligatorisk niveau. 6. Matematik og økonomi

Matematikkens mysterier - på et obligatorisk niveau. 6. Matematik og økonomi Matematikkes mysterier - på et obligatorisk iveau af Keeth Hase 6. Matematik og økoomi 20% 40% 60% 40% Hvor udbredt er vaskepulveret af type A? 6. Matematik og økoomi Idhold 6.1 Procettal 2 6.2 Vejet geemsit

Læs mere

Opgave 1 Regning med rest

Opgave 1 Regning med rest Den digitale signatur - anvendt talteori og kryptologi Opgave 1 Regning med rest Den positive rest, man får, når et helt tal a divideres med et naturligt tal n, betegnes rest(a,n ) Hvis r = rest(a,n) kan

Læs mere

Administartive oplysninger.

Administartive oplysninger. DGU r. Stamoplysiger LOOP Nr. Lokal betegelse Matrikkel Nr.: X koordiat Y Koordiat Z kote. 98.853 3.21.03.01 G1-1 6a/7c, Tåig by 552020,95 6207170,19 66,58 T Admiistartive oplysiger. koordiat oplysiger

Læs mere

AUGUST v. Margit Ingtoft, María Muniz Auken,

AUGUST v. Margit Ingtoft, María Muniz Auken, SOMMER-, WEEKEND- & EFTERÅRSKURSER 2007 SOMMERKURSER AUGUST v. Margit Igtoft, María Muiz Auke, JUNI og / eller Sommer 2007 Jui (A) + August (B) Dato: 5/6 28/6 og eller 7/8 30/8: MUY BARATO: Pris pr. hold

Læs mere

Her svigtes de ældre mest. Fokus. Dokumentation: Ældre patienter behandles meget forskelligt alt efter, hvor i landet de bor. De

Her svigtes de ældre mest. Fokus. Dokumentation: Ældre patienter behandles meget forskelligt alt efter, hvor i landet de bor. De 50+ sygdomme Nyhedsmagasi om forebyggelse og behadlig magasiet Overaktiv blære er e tabubelagt sygdom Side 8 Geidlæggelser for dehydrerig Regio Hovedstade 26,2% Nyt middel mod forhøjet blodtryk Omkrig

Læs mere

LAMINATGULV KOLLEKTION 2012 2013....det brugervenlige gulv

LAMINATGULV KOLLEKTION 2012 2013....det brugervenlige gulv LAMINATGULV KOLLEKTION 2012 2013...det brugervelige gulv Smart på mage......forskellige måder Lami art Black & Hype Der fides æppe oget gulv, der sætter brugere mere i fokus ed lamiatgulve fra Tarkett.

Læs mere

Opsparing og afvikling af gæld

Opsparing og afvikling af gæld Opspaig og afviklig af gæld Opspaig Eksempel 1 Lad os state med at se på et eksempel. 100 Euo idbetales å i tæk på e koto, de foetes med 3 % p.a. Vi ha tidligee beeget e såda kotos udviklig skidt fo skidt:

Læs mere

Atom og kernefysik Ingrid Jespersens Gymnasieskole 2007

Atom og kernefysik Ingrid Jespersens Gymnasieskole 2007 Atom og kerefysik Igrid Jesperses Gymasieskole 2007 Baggrudsstrålig Mål baggrudsstrålige i 5 miutter. Udreg atallet af impulser i 10 sekuder. Alfa-strålig α Mål atallet af impulser fra e alfa-kilde ude

Læs mere

Undgå tab med effektiv debitorstyring og inkasso

Undgå tab med effektiv debitorstyring og inkasso Udgå tab med effektiv debitorstyrig og ikasso 6. maj 2009 tekologisk istitut TAASTRUP Bliv opdateret på de yeste regler hvad betyder de for di virksomhed? Har du styr på virksomhedes tilgodehaveder? Etablerig

Læs mere

Softwaretest når det er bedst 2009

Softwaretest når det er bedst 2009 Tekologisk Istitut i samarbejde med softwaretest.dk Softwaretest år det er bedst 2009 8. o g 9. J U N I 2 0 0 9 T e k o l o g i s k I s t i t u t T a a s t r u p Succes med itegrerig af test i SCRUM og

Læs mere

Nuance ecopy ShareScan. Dokumentbehandling i den digitale verden. Document capture & distribution Nuance ecopy

Nuance ecopy ShareScan. Dokumentbehandling i den digitale verden. Document capture & distribution Nuance ecopy Nuace ecopy ShareSca Dokumetbehadlig i de digitale verde Documet capture & distributio Nuace ecopy Nuace ecopy, documet capture & distributio Itegratio af papirdokumeter i digitale arbejdsgage Med Nuace

Læs mere

Program. Statistisk inferens En enkelt stikprøve og lineær regression Stat. modeller, estimation og konfidensintervaller. Fordeling af gennemsnit

Program. Statistisk inferens En enkelt stikprøve og lineær regression Stat. modeller, estimation og konfidensintervaller. Fordeling af gennemsnit Faculty of Life Sciece Program Statitik ifere E ekelt tikprøve og lieær regreio Stat. modeller, etimatio og kofideitervaller Clau Ektrøm E-mail: ektrom@life.ku.dk Fordelig af geemit Statitik ifere for

Læs mere

BRANDBEKÆMPELSE OG KRÆFTRISIKO

BRANDBEKÆMPELSE OG KRÆFTRISIKO BRANDBEKÆMPELSE OG KRÆFTRISIKO Rapport fra Videskoferece på Christiasborg 22. jauar 2013 1 Bradbekæmpelse og kræftrisiko bygger på idlæg og diskussioer på koferece, afholdt på Christiasborg 22. jauar 2013.

Læs mere

Affine - et krypteringssystem

Affine - et krypteringssystem Affine - et krypteringssystem Matematik, når det er bedst Det Affine Krypteringssystem (Affine Cipher) Det Affine Krypteringssystem er en symmetrisk monoalfabetisk substitutionskode, der er baseret på

Læs mere

DIÆTISTEN FOKUS. Besparelser i Region Midt angriber kliniske diætisters faglighed

DIÆTISTEN FOKUS. Besparelser i Region Midt angriber kliniske diætisters faglighed Nr. 135. Jui 2015. 23. årgag DIÆTISTEN FOKUS Erærigsidsats ka spare milliarder - Vi har spurgt politikere, hvorda de ser på erærigsrelaterede problemer som overvægt og udererærig Besparelser i Regio Midt

Læs mere

ALLE BØRN HAR RETTIGHEDER DET ER BARE ALMINDELIGE MENNESKER, DER HAR EN SÅRBARHED BØRN OG UNGE FORTÆLLER OM AT VÆRE INDLAGT I PSYKIATRIEN

ALLE BØRN HAR RETTIGHEDER DET ER BARE ALMINDELIGE MENNESKER, DER HAR EN SÅRBARHED BØRN OG UNGE FORTÆLLER OM AT VÆRE INDLAGT I PSYKIATRIEN ALLE BØRN HAR RETTIGHEDER DET ER BARE ALMINDELIGE MENNESKER, DER HAR EN SÅRBARHED BØRN OG UNGE FORTÆLLER OM AT VÆRE INDLAGT I PSYKIATRIEN DET ER BARE ALMINDELIGE MENNESKER, DER HAR EN SÅRBARHED BØRN OG

Læs mere

Brændstof. til krop og hjerne

Brændstof. til krop og hjerne Brædstof til krop og hjere Idhold 3 6 8 10 11 12 14 15 17 22 24 26 27 28 29 30 Kaloriebomber og eergibudter Døget rudt skal di krop og hjere bruge eergi Morgemad Med morgemad er du sikker på, det går godt

Læs mere

Referat for bestyrelsesmøde d. 22. marts 2015 kl. 11.00 Ellidshøjskole, Ny skolevej 2, 9230 Svenstrup. Dagsorden for bestyrelsesmøde

Referat for bestyrelsesmøde d. 22. marts 2015 kl. 11.00 Ellidshøjskole, Ny skolevej 2, 9230 Svenstrup. Dagsorden for bestyrelsesmøde Referat for bestyrelsesmøde d. 22. marts 2015 kl. 11.00 Ellidshøjskole, Ny skolevej 2, 9230 Svestrup Tilstede: Hae Veggerby, formad( Hveg), Ae sofie Gothe, æstformad (Asgr), Mette Nødskov sekretær ( Met),

Læs mere

Affaldshåndbog. Batteriindsamling. Genbrugsstationer. Storskrald. Konkurrence

Affaldshåndbog. Batteriindsamling. Genbrugsstationer. Storskrald. Konkurrence Affaldshådbog 2008 Batteriidsamlig Gebrugsstatioer Storskrald Kokurrece Idhold Hilse fra direktøre 3 Nyheder i 2008 4 Geerelt 5 Hjælp di skraldemad 5 ORDNINGER Restaffald 6 Papiridsamlig 8 Batterier på

Læs mere

Nye veje til den gode forflytning

Nye veje til den gode forflytning TEMA Ergoomi Nye veje til de gode forflytig Nye veje til de gode forflytig Brachearbejdsmiljørådet Social & Sudhed Nye veje til de gode forflytig Idhold Nye veje til de gode forflytig side 3 Lies første

Læs mere

MAG SYSTEM. Gulvrengøring

MAG SYSTEM. Gulvrengøring DK MAG SYSTEM Gulvregørig Mag system Kocept E fremfører for alt. Det er helt yt: Ved Mag-systemet passer e fremfører til alle moptyper. Således ka de optimale arbejdsbredde, tekstilkvalitet og regørigsmetode

Læs mere

Hvad vi gør for jer og hvordan vi gør det

Hvad vi gør for jer og hvordan vi gør det Hvad vi gør for jer og hvorda vi gør det Vi skaber resultater der er sylige på di budliie... Strategi Orgaisatio Produktio Økoomi [ Ide du læser videre ] [ Om FastResults ] [ Hvorfor os? ] I foråret 2009

Læs mere

og til summer af stambrøker. Bemærk: De enkelte brøker kan opskrives på flere måder som summer af stambrøker.

og til summer af stambrøker. Bemærk: De enkelte brøker kan opskrives på flere måder som summer af stambrøker. Hvad er en brøk? Når vi taler om brøker i dette projekt, mener vi tal på formen a, hvor a og b er hele tal (og b b 0 ), fx 2,, 3 og 3 7 13 1. Øvelse 1 Hvordan vil du forklare, hvad 7 er? Brøker har været

Læs mere

FY01 Obligatorisk laboratorieøvelse. O p t i k. Jacob Christiansen Afleveringsdato: 3. april 2003 Morten Olesen Andreas Lyder

FY01 Obligatorisk laboratorieøvelse. O p t i k. Jacob Christiansen Afleveringsdato: 3. april 2003 Morten Olesen Andreas Lyder FY0 Oblgatorsk laboratoreøvelse O p t k Hold E: Hold: D Jacob Chrstase Alevergsdato: 3. aprl 003 Morte Olese Adreas Lyder Idholdsortegelse Idholdsortegelse Forål...3 Måleresultater...4. Salelser...4. Spredelse...5.3

Læs mere

Introduktion til Kryptologi. Mikkel Kamstrup Erlandsen

Introduktion til Kryptologi. Mikkel Kamstrup Erlandsen Introduktion til Kryptologi Mikkel Kamstrup Erlandsen Indhold 1 Introduktion 2 1.1 Om Kryptologi.......................... 2 1.2 Grundlæggende koncepter.................... 2 1.3 Bogstaver som tal........................

Læs mere

Formelsamling til statistik-del af metodekursus, 4. semester, lægevidenskab Version 3 (26/9-2011)

Formelsamling til statistik-del af metodekursus, 4. semester, lægevidenskab Version 3 (26/9-2011) Formelsamlig til statistik-el af metoekursus, 4. semester, lægevieskab Versio 3 (6/9-011) Kære læser Dee formelsamlig er lavet me ugagspukt i Meical Statistics, seco eitio af Betty R. Kirkwoo og A. C.

Læs mere

DIÆTISTEN FOKUS. Besparelser i Region Midt angriber kliniske diætisters faglighed

DIÆTISTEN FOKUS. Besparelser i Region Midt angriber kliniske diætisters faglighed Nr. 135. Jui 2015. 23. årgag DIÆTISTEN FOKUS Erærigsidsats ka spare milliarder - Vi har spurgt politikere, hvorda de ser på erærigsrelaterede problemer som overvægt og udererærig Besparelser i Regio Midt

Læs mere

Professionel IT-forundersøgelse og MUST-metoden. Jesper Simonsen

Professionel IT-forundersøgelse og MUST-metoden. Jesper Simonsen Professioel IT-forudersøgelse og MUST-metode Jesper Simose simose@ruc.dk www.ruc.dk/~simose Datalogi, hus 42.1 Roskilde Uiversitetsceter Uiversitetsvej 1 4000 Roskilde Telefo: 4674 2000 www.dat.ruc.dk

Læs mere

Intelligent Drivesystems, Worldwide Services. Aluminiumsgear og -motorer. Fås med Sealed Surface Conversion System

Intelligent Drivesystems, Worldwide Services. Aluminiumsgear og -motorer. Fås med Sealed Surface Conversion System Itelliget Drivesystems, Worldwide Services DK Alumiiumsgear og -motorer Fås med Sealed Surface Coversio System NORD Itelliget Drivesystems, Worldwide Services Fordele ved alumiiumsgear Korrosiosbestadigt

Læs mere

Kvalitetsmål til On-line algoritmer

Kvalitetsmål til On-line algoritmer Istitut for Matematik og Datalogi Bachelorprojekt Kvalitetsmål til O-lie algoritmer Forfatter: Christia Kuahl Vejleer: Joa Boyar Jauary 1, 2011 Cotets 1 Ileig 3 2 Problemet 3 3 Algoritmer og variater 4

Læs mere

RV Unique mop-guide. til alle overflader

RV Unique mop-guide. til alle overflader til alle overflader RV Uique mopguide - ét sortimet til alle gulvoverflader I dee brochure fider du et bredt sortimet af mopper til regørig af alle former for gulvoverfalder. Vi har sammesat et sortimet

Læs mere

1. Indledning... 1 2. Lineær iteration... 2

1. Indledning... 1 2. Lineær iteration... 2 Hvad e matematik? B, i og ISBN 978 87 766 494 3 Pojekte: Kapitel Pojekt.3 Lieæe Iteatiospocesse Idhold 1. Idledig... 1 2. Lieæ iteatio... 2 2.1 Lieæ vækst... 2 2.2 Ekspoetiel vækst... 2 2.3 Foskudt ekspoetiel

Læs mere

RSA-kryptosystemet. RSA-kryptosystemet Erik Vestergaard

RSA-kryptosystemet. RSA-kryptosystemet Erik Vestergaard RSA-kryptosystemet RSA-kryptosystemet Erik Vestergaard Erik Vestergaard www.matematikfysik.dk Erik Vestergaard, 007. Billeder: Forside: istock.com/demo10 Erik Vestergaard www.matematikfysik.dk 3 1. Indledning

Læs mere

Helende miljø en udfordring for patientsikkkerhed? Workshop Patientsikkerhed og syge børn fredag den 15. oktober 2010

Helende miljø en udfordring for patientsikkkerhed? Workshop Patientsikkerhed og syge børn fredag den 15. oktober 2010 Helede miljø e udfordrig for patietsikkkerhed? Workshop Patietsikkerhed og syge bør fredag de 15. oktober 2010 Elisabeth Brøgger Jese mag.art. kultursociolog elisabeth.broegger.jese@regioh.dk. Pricipper

Læs mere

Komplekse tal. Mikkel Stouby Petersen 27. februar 2013

Komplekse tal. Mikkel Stouby Petersen 27. februar 2013 Komplekse tal Mikkel Stouby Petersen 27. februar 2013 1 Motivationen Historien om de komplekse tal er i virkeligheden historien om at fjerne forhindringerne og gøre det umulige muligt. For at se det, vil

Læs mere

Fra viden til handling. Få flere unge, især med anden etnisk baggrund end dansk, til at begynde på og gennemføre en erhvervsfaglig uddannelse

Fra viden til handling. Få flere unge, især med anden etnisk baggrund end dansk, til at begynde på og gennemføre en erhvervsfaglig uddannelse 2013 Fra vide til hadlig Få flere uge, især med ade etisk baggrud ed dask, til at begyde på og geemføre e erhvervsfaglig uddaelse Tekst/forfatter LG Isight Udgivet af Fastholdelseskaravae/- Miisteriet

Læs mere

Adfærdsmodel for persontrafik

Adfærdsmodel for persontrafik Miljø- og Eergimiisteriet Damarks Miljøudersøgelser ALTRANS Adfærdsmodel for persotrafik Faglig rapport fra DMU, r. 348 Marts 2001 [Tom side] Miljø- og Eergimiisteriet Damarks Miljøudersøgelser ALTRANS

Læs mere

TIL FORÆLDRE TIL BØRN I DAGTILBUD (DAGINSTITUTION, DAGPLEJE OG SÆRLIGE DAGTILBUD)

TIL FORÆLDRE TIL BØRN I DAGTILBUD (DAGINSTITUTION, DAGPLEJE OG SÆRLIGE DAGTILBUD) Uderøgele af forældre brugerilfredhed med dagilbud i kommue Sep. 2013 SPØRGESKEMA TIL FORÆLDRE TIL BØRN I DAGTILBUD (DAGINSTITUTION, DAGPLEJE OG SÆRLIGE DAGTILBUD) De er valgfri for kommue, om de pørgmål,

Læs mere