Kvantitative Metoder 1 - Forår Dagens program

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Starte visningen fra side:

Download "Kvantitative Metoder 1 - Forår 2007. Dagens program"

Transkript

1 Dagens program Approksimation af binomialsandsynligheder, Afsnit 4.5 Poisson fordeling og Poisson process, Afsnit 4.6 Kontinuerte fordelinger, Afsnit : - Fordelingsfunktion - Tæthedsfunktion - Eksempel: Ligefordeling 1

2 Approksimation af binomial-sandsynligheder X er binomialfordelt med antalsparameter n og sandsynlighedsparameter p. Resultat: DeMoivre X Bin(n, p) hvor np (1 p) > 5. Da gælder følgende approksimation: Ã! k +0.5 np P (X k) Φ p np (1 p) hvor funktionen Φ ( ) er fordelingsfunktionen for en normalfordeling. Eksempel (bin_approks.xls[normalfordeling]) 2

3 Poissonfordeling Hvis X Bin(n, p) og n er "stor"og p er "lille", da gælder ³ n P (X = x) = p x x (1 p) n x (np)x exp ( np) x! Sandsynlighedsfunktionen for X er givet ved f (x m) = mx exp ( m) for x =0, 1, 2,... x! X er Poissonfordelt med parameter m og dette skrives som X Poiss(m) E (X) =m Var (X) = m Eksempel (bin_approks.xls[poissonfordeling]) 3

4 Figur 1: Sandsynlighedsfunktionen for X Bin(1000, 0.01) dvs. det forventede antal succes er 10 4

5 Figur 2: Sandsynlighedsfunktionen for X Bin(2000, 0.005) dvs. det forventede antal succes er 10 5

6 Poissonproces Eksempel 4.6a: Ankomst af kunder til en butik Tidsenhed: timer λ : Det forventede antal ankomster pr. time (intensiteten) Y t : Antalankomsteriintervalaflængdet (målt i timer) Y 1 : Antalankomsterpr.time Y 5 : Antal ankomster på 5 timer Y 0.25 : Antal anksomter hvert kvarter Y t følger en Poisson-process, dvs. Y t Poisson(λt) Det forventede antal anksomter i et tidsinterval af længde t er λt 6

7 Egenskaber ved en Poissonproces: Antallet af ankomster pr time afhænger ikke af selve tidspunktet Antallet af ankomster i et tidsrum er uafhængigt af antallet af ankomster i alle andre tidsrum Ankomsterne i et givet tidsrum er cirka proportionalt med tidsrummet Sandsynligheden for flere ankomster på næsten samme tid er lille 7

8 Eksempel 4.6a: Ankomst af kunder Ankomst af kunder til en butik følger en Poissonproces med 5 kunder pr time: Antallet af ankomster per time: X Poiss(5) Sandsynlighedsfordelingen og kumulerede sandsynligheder: x P (X = x) P (X x) Forventede antal kunder pr time: E (X) =5 Spredningen: p Var (X) =

9 Figur 3: Sandsynlighedsfunktion i Poissonfordeling med parameter 5 9

10 Resultat: Addition X 1 er Poissonfordelt med parameter m 1 og X 2 er Poissonfordelt med parameter m 2, og X 1 og X 2 er uafhængige. Da er X 1 + X 2 Poissonfordelt med parameter (m 1 + m 2 ). Eksempel 4.6c i bogen: Ankomst af type 1 kunder pr. time: X 1 Poiss(3) Ankomst af type 2 kunder pr. time: X 2 Poiss(5) Ankomst af type 1 og 2 kunder: X 1 + X 2 Poiss(8) 10

11 Kontinuerte stokastiske variabler X kontinuert stokastisk variabel, der kan antage alle reelle talværdier Eksempler: Indkomster for individer Omsætning i virksomheder Udgift til forbrugsvarer i husholdninger 11

12 Fordelingsfunktionen Interesseret i hændelserne: (X x) for x R (a <X b) for a, b R og a<b Kvantitative Metoder 1 - Forår 2007 Definition: Fordelingsfunktionen for den stokastiske variabel X er defineret som F (x) =P (X x) for x R Engelsk: cumulative distribution function, forkortes til cdf Sandsynligheden for intervallet ]a, b] er givet ved: P (a <X b) =P (X b) P (X a) =F (b) F (a) 12

13 Ligefordeling (rektangulær fordeling) Engelsk: Uniform distribution Eksempel 5a i bogen: Venter på en bus Der kommer en bus hvert 10. minut. Jeg ankommer til stoppestedet uden at vide, hvornår bussen kommer. Hvor sandsynligt er det, at jeg skal vente mere end 5 minutter? Stokastisk variabel X, der angiver tidspunktet for bussens ankomst 13

14 Diskrete tilfælde: Vi kan kun måle med halve minutters nøjagtighed, dvs. X kan antage 20 forskellige værdier. Vi måler X i minutter. Alle værdier af X er lige sandsynlige, dvs. P (X = x) =1/20 = 0.05 for alle x = 1, 1, 2 11, 2,...,

15 Kontinuerte tilfælde: Vi kan måle med uendelig stor nøjagtighed, dvs. X kan antage alle reelle værdier. X =1.5: Bussenkommerefter1min.og30sek. X =2.9: Bussenkommerefter2min.og54sek. P (X x) =0for x<0 P (X x) =1for x>10 Sandsynligheden for, at bussen kommer indenfor 30 sekunder, er den samme på alle tidspunkter: P (x <X x +0.5) = 1/20 = x +0.5 x 10 15

16 Sandsynligheden for, at bussen kommer indenfor et minut, er 2 gange sandsynligheden for, at den kommer indenfor 1/2 minut: P (x <X x +1)=2P (x <X<x+0.5) = 1/10 = x +1 x 10 Sandsynligheden for at bussen kommer i intervallet mellem 1.42 og 3.61: P (1.42 <X 3.61) = 10 Sandsynligheden for, at bussen kommer i intervallet ]a, b], er givet ved P (a <X b) = b a 10 Fordelingsfunktionen for X er givet ved F (x) =P (X x) = 0 for x<0 x/10 for 0 x 10 1 for x>10 16

17 Figur 4: Fordelingsfunktionen for en ligefordeling på intervallet [0,10] (blå) samt for en diskret fordeling, hvor alle værdier 0.5, 1, 1.5,...,10 er lige sandsynlige (sort). 17

18 Fordelingsfunktion for en ligefordeling X er ligefordelt på intervallet [a, b]. DetteskrivesX U (a, b). Fordelingsfunktionen for X : F (x) = 0 for x<a x/ (b a) for a x b 1 for x>b Der gælder: P (x 1 <X x 2 )=F (x 2 ) F (x 1 )= x 2 x 1 b a 18

19 Egenskaber ved fordelingsfunktionen: (i) F (x) 0 for x,f (x) 1 for x (ii) F (a) F (b) for a<b (iii) Fordelingsfunktionen er kontinuert fra højre 19

20 Tæthedsfunktionen Kvantitative Metoder 1 - Forår 2007 X kontinuert stokastisk variabel med fordelingsfunktion F (x) Hvad er sandsynligheden for, at X ligger i et lille interval omkring værdien x : P (x <X x + x) =F (x + x) F (x) = F (x) Forholdet mellem sandsynlighedsmasse og intervallængde når intervallængden går mod nul: F (x) F 0 (x) =f (x) for x 0 x f (x) kaldes tætheden for x Engelsk: Probablity density function, forkortes til pdf 20

21 Diskrete tilfælde: Sandsynlighedsfunktionen f (x) angiver sandsynligheden for at X er lig med x Kontinuerte tilfælde: Sandsynligheden for at X ligger i et interval omkring x er xf (x) Tætheden f (x) angiver koncentrationen af sandsynlighed omkring værdien x 21

22 Eksempel: Ligefordeling: X er ligefordelt på intervallet [a, b] Fordelingsfunktionen for X : F (x) = 0 for x<a x/ (b a) for a x b 1 for x>b Tætheden for X : f (x) = 0 for x<a 1/ (b a) for a x b 0 for x>b 22

23 Der gælder: Dermed også: F (x) = Z x F 0 (u) du = Z x f (u) du P (a <X<b)=F (b) F (a) = Z b f (x) dx Z a f (x) dx = Z b a f (x) dx Egenskaber ved en tæthedsfunktion f: f (x) 0 for alle x R f (x) =1 Tæthedsfunktionen definerer en fordelingsfunktion: F (x) = R x f (u) du 23

24 Figur 5: Sammenhæng mellem tæthedsfunktionen f(x) og fordelingsfunktionens værdi for x =1 24

25 Figur 6: Fordelingsfunktionen F (x) Figur 7: 25

26 Figur 8: Tæthedsfunktionen f(x) for en stokastisk variabel X og illustration af P ( 1.5 <X 1) 26

27 Figur 9: Fordelingsfunktionen F (x) for en stokastisk variabel X og illustration af P ( 1.5 <X 1) 27

28 Opsummering Approksimation af binomialfordeling med normalfordeling Poisson fordeling: - Antal gange en sjælden hændelse indtræffer i et stort antal gentagelser Poissonproces: - Eksempel: Kundeankomst Kontinuerte fordelinger: - Fordelingsfunktion - Tæthedsfunktion - Sandsynligheder af intervaller Ligefordeling: - Kontinuert version af "alle udfald lige sandsynlige" 28

29 Næste gang Onsdag gennemgåes: Afsnit Kontinuerte fordelinger Husk: - Der er stedprøve torsdag den 22. marts - Tilmelding til eksamen i uge

Kvantitative Metoder 1 - Efterår Dagens program

Kvantitative Metoder 1 - Efterår Dagens program Dagens program Approksimation af binomialsandsynligheder, Afsnit 4.5 Multinomial fordeling, Afsnit 4.8 Negativ binomialfordeling, Afsnit 4.4 Poisson fordeling og Poisson process, Afsnit 4.6 Kontinuerte

Læs mere

Kvantitative Metoder 1 - Forår 2007

Kvantitative Metoder 1 - Forår 2007 Dagens program Kapitel 4: Diskrete fordelinger Hypergeometrisk fordeling, Afsnit 4.3 Multinomial fordeling, Afsnit 4.8 Geometrisk fordeling og Negativ binomialfordeling (Inverse Sampling), Afsnit 4.4 Approksimation

Læs mere

Kvantitative Metoder 1 - Forår Dagens program

Kvantitative Metoder 1 - Forår Dagens program Dagens program Kontinuerte fordelinger Ventetider i en Poissonproces Beskrivelse af kontinuerte fordelinger: - Median og kvartiler - Middelværdi - Varians Simultane fordelinger 1 Ventetider i en Poissonproces

Læs mere

Hvad skal vi lave i dag?

Hvad skal vi lave i dag? p. 1/2 Hvad skal vi lave i dag? Eksempler på stokastiske variable. Ventetid på krone ved møntkast. Antal plat ved n kast. Antal radioaktive henfald. Ventetiden på en flyulykke. Udtrækning af tal i et interval.

Læs mere

Kvantitative Metoder 1 - Forår 2007

Kvantitative Metoder 1 - Forår 2007 Dagens program Kapitel 4: Diskrete fordelinger Afsnit 4.1-4.2, 4.7: Bernoulli fordeling Binomial fordeling Store Tals Lov (Laws of Averages, Laws of Large Numbers) 1 Bernoulli fordeling Kvantitative Metoder

Læs mere

Elementær sandsynlighedsregning

Elementær sandsynlighedsregning Elementær sandsynlighedsregning Sandsynlighedsbegrebet Et udfaldsrum S er mængden af alle de mulige udfald af et eksperiment. En hændelse A er en delmængde af udfaldsrummet S. Den hændelse, der ikke indeholder

Læs mere

Definition. Definitioner

Definition. Definitioner Definition Landmålingens fejlteori Lektion Diskrete stokastiske variable En reel funktion defineret på et udfaldsrum (med sandsynlighedsfordeling) kaldes en stokastisk variabel. - kkb@math.aau.dk http://people.math.aau.dk/

Læs mere

Teoretisk Statistik, 13 april, 2005

Teoretisk Statistik, 13 april, 2005 Poissonprocessen Teoretisk Statistik, 13 april, 2005 Setup og antagelser Fordelingen af X(t) og et eksempel Ventetider i poissonprocessen Fordeling af ventetiden T 1 til første ankomst Fortolkning af λ

Læs mere

Elementær sandsynlighedsregning

Elementær sandsynlighedsregning Elementær sandsynlighedsregning Sandsynlighedsbegrebet Et udfaldsrum S er mængden af alle de mulige udfald af et eksperiment. En hændelse A er en delmængde af udfaldsrummet S. Et sandsynlighedsmål er en

Læs mere

Kursusindhold: X i : tilfældig værdi af ite eksperiment. Antag X i kun antager værdierne 1, 2,..., M.

Kursusindhold: X i : tilfældig værdi af ite eksperiment. Antag X i kun antager værdierne 1, 2,..., M. Kursusindhold: Produkt og marked - matematiske og statistiske metoder Rasmus Waagepetersen Institut for Matematiske Fag Aalborg Universitet February 9, 2015 Sandsynlighedsregning og lagerstyring Normalfordelingen

Læs mere

En oversigt over udvalgte kontinuerte sandsynlighedsfordelinger

En oversigt over udvalgte kontinuerte sandsynlighedsfordelinger Institut for Økonomi Aarhus Universitet Statistik 1, Forår 2001 Allan Würtz 4. April, 2001 En oversigt over udvalgte kontinuerte sandsynlighedsfordelinger Uniform fordeling Benyttes som model for situationer,

Læs mere

Kvantitative Metoder 1 - Forår Dagens program

Kvantitative Metoder 1 - Forår Dagens program Dagens program Kontinuerte fordelinger Simultane fordelinger Kovarians og korrelation Uafhængighed Betingede fordelinger - Middelværdi og varians - Sammenhæng med uafhængighed 1 Figur 1: En tæthedsfunktion

Læs mere

Oversigt. Course 02402/02323 Introducerende Statistik. Forelæsning 3: Kontinuerte fordelinger. Per Bruun Brockhoff

Oversigt. Course 02402/02323 Introducerende Statistik. Forelæsning 3: Kontinuerte fordelinger. Per Bruun Brockhoff Course 242/2323 Introducerende Statistik Forelæsning 3: Kontinuerte fordelinger Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 22 Danmarks Tekniske Universitet 28 Lyngby Danmark

Læs mere

Oversigt. Kursus Introduktion til Statistik. Forelæsning 2: Kapitel 4, Diskrete fordelinger. Per Bruun Brockhoff. Stokastiske Variable

Oversigt. Kursus Introduktion til Statistik. Forelæsning 2: Kapitel 4, Diskrete fordelinger. Per Bruun Brockhoff. Stokastiske Variable Kursus 02402 Introduktion til Statistik Forelæsning 2: Kapitel 4, Diskrete fordelinger Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800

Læs mere

Oversigt over nyttige fordelinger

Oversigt over nyttige fordelinger Oversigt over nyttige fordelinger Helene Regitze Lund Wandsøe November 14, 2011 1 Bernoulli-fordelingen 1 Når et eksperiment har to mulige udfald: succes eller fiasko. X er en stokastisk variabel med følgende

Læs mere

Kvantitative Metoder 1 - Efterår Dagens program

Kvantitative Metoder 1 - Efterår Dagens program Dagens program Afsnit 6.1. Ligefordelinger, fra sidst Den standardiserede normalfordeling Normalfordelingen Beskrivelse af normalfordelinger: - Tæthed og fordelingsfunktion - Middelværdi, varians og fraktiler

Læs mere

Sandsynlighedsregning: endeligt udfaldsrum (repetition)

Sandsynlighedsregning: endeligt udfaldsrum (repetition) Program: 1. Repetition: sandsynlighedsregning 2. Sandsynlighedsregning fortsat: stokastisk variabel, sandsynlighedsfunktion/tæthed, fordelingsfunktion. 1/16 Sandsynlighedsregning: endeligt udfaldsrum (repetition)

Læs mere

Sandsynlighedsregning Stokastisk variabel

Sandsynlighedsregning Stokastisk variabel Sandsynlighedsregning Stokastisk variabel I eksperimenter knyttes ofte en talværdi til hvert udfald. S s X(s) R Definition: En stokastisk variabel X er en funktion defineret på S, der antager værdier på

Læs mere

Vejledende løsninger til opgaver i kapitel 6

Vejledende løsninger til opgaver i kapitel 6 Vejledende løsninger til opgaver i kapitel Opgave 1: a) Den stokastiske variabel, X, der angiver, om en elev består, X = 1, eller dumper, X =, sin eksamen i statistik. b) En binomialfordelt variabel fremkommer

Læs mere

Landmålingens fejlteori - Repetition - Kontinuerte stokastiske variable - Lektion 3

Landmålingens fejlteori - Repetition - Kontinuerte stokastiske variable - Lektion 3 Landmålingens fejlteori Repetition - Kontinuerte stokastiske variable Lektion 4 - kkb@math.aau.dk http://people.math.aau.dk/ kkb/undervisning/lf10 Institut for Matematiske Fag Aalborg Universitet 29. april

Læs mere

Oversigt. Introduktion til Statistik. Forelæsning 2: Stokastisk variabel og diskrete fordelinger

Oversigt. Introduktion til Statistik. Forelæsning 2: Stokastisk variabel og diskrete fordelinger Introduktion til Statistik Forelæsning 2: og diskrete fordelinger Oversigt 1 2 3 Fordelingsfunktion 4 Peder Bacher DTU Compute, Dynamiske Systemer Bygning 303B, Rum 017 Danmarks Tekniske Universitet 2800

Læs mere

Forelæsning 3: Kapitel 5: Kontinuerte fordelinger

Forelæsning 3: Kapitel 5: Kontinuerte fordelinger Kursus 02402 Introduktion til Statistik Forelæsning 3: Kapitel 5: Kontinuerte fordelinger Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800

Læs mere

Uge 48 II Teoretisk Statistik 27. november 2003. Numerisk modelkontrol af diskrete fordelinger: intro

Uge 48 II Teoretisk Statistik 27. november 2003. Numerisk modelkontrol af diskrete fordelinger: intro Uge 48 II Teoretisk Statistik 7. november 003 Numerisk modelkontrol af diskrete fordelinger: intro Eksempel: kvalitetskontrol Goodness-of-fit test: generel teori Endeligt udfaldsrum Udfaldsrum uden øvre

Læs mere

Introduktion til Statistik. Forelæsning 3: Kontinuerte fordelinger. Peder Bacher

Introduktion til Statistik. Forelæsning 3: Kontinuerte fordelinger. Peder Bacher Introduktion til Statistik Forelæsning 3: Kontinuerte fordelinger Peder Bacher DTU Compute, Dynamiske Systemer Bygning 303B, Rum 009 Danmarks Tekniske Universitet 2800 Lyngby Danmark e-mail: pbac@dtu.dk

Læs mere

Produkt og marked - matematiske og statistiske metoder

Produkt og marked - matematiske og statistiske metoder Produkt og marked - matematiske og statistiske metoder Rasmus Waagepetersen Institut for Matematiske Fag Aalborg Universitet February 11, 2016 1/22 Kursusindhold: Sandsynlighedsregning og lagerstyring

Læs mere

Oversigt. Kursus Introduktion til Statistik. Forelæsning 3: Kapitel 5: Kontinuerte fordelinger. Per Bruun Brockhoff.

Oversigt. Kursus Introduktion til Statistik. Forelæsning 3: Kapitel 5: Kontinuerte fordelinger. Per Bruun Brockhoff. Kursus 242 Introduktion til Statistik Forelæsning 3: Kapitel 5: Kontinuerte fordelinger Per Bruun Brockhoff DTU Compute, Statistik Bygning 35/324 Danmarks Tekniske Universitet 28 Lyngby Danmark e-mail:

Læs mere

DANMARKS TEKNISKE UNIVERSITET Side 1 af 17 sider. Skriftlig prøve, den: 29. maj 2015 Kursus nr : (navn) (underskrift) (bord nr)

DANMARKS TEKNISKE UNIVERSITET Side 1 af 17 sider. Skriftlig prøve, den: 29. maj 2015 Kursus nr : (navn) (underskrift) (bord nr) DANMARKS TEKNISKE UNIVERSITET Side af 7 sider Skriftlig prøve, den: 9. maj 05 Kursus nr : 0405 Kursus navn: Sandsynlighedsregning Varighed : 4 timer Tilladte hjælpemidler: Alle Dette sæt er besvaret af:

Læs mere

Note til styrkefunktionen

Note til styrkefunktionen Teoretisk Statistik. årsprøve Note til styrkefunktionen Først er det vigtigt at gøre sig klart, at når man laver statistiske test, så kan man begå to forskellige typer af fejl: Type fejl: At forkaste H

Læs mere

Binomialfordelingen. Binomialfordelingen. Binomialfordelingen

Binomialfordelingen. Binomialfordelingen. Binomialfordelingen Statistik og Sandsynlighedsregning 1 MS kapitel 3 Susanne Ditlevsen Institut for Matematiske Fag Email: susanne@math.ku.dk http://math.ku.dk/ susanne Definition 3.2.1 Lad X 1, X 2,..., X n være uafhængige

Læs mere

Hvad skal vi lave i dag?

Hvad skal vi lave i dag? p. 1/1 Hvad skal vi lave i dag? Repeterer lidt om diskrete sv. Standardfordelinger (binomial, Poisson, geometrisk) Stokastiske vektorer Diskrete stokastiske vektorer p. 2/1 Repetition Heltallige sv er

Læs mere

Sandsynlighedsregning

Sandsynlighedsregning Mogens Bladt www2.imm.dtu.dk/courses/02405 12. Oktober, 2007 Kontinuerte fordelinger Vi har hidtil set på fordelinger af stokastiske variable der højst kan antage tælleligt mange værdier (diskrete stokastiske

Læs mere

enote 2: Kontinuerte fordelinger Introduktion til Statistik Forelæsning 3: Kontinuerte fordelinger Peder Bacher enote 2: Continuous Distributions

enote 2: Kontinuerte fordelinger Introduktion til Statistik Forelæsning 3: Kontinuerte fordelinger Peder Bacher enote 2: Continuous Distributions Introduktion til Statistik Forelæsning 3: Kontinuerte fordelinger Peder Bacher DTU Compute, Dynamiske Systemer Bygning 33B, Rum 9 Danmarks Tekniske Universitet 28 Lyngby Danmark e-mail: pbac@dtu.dk Efterår

Læs mere

Diskrete fordelinger. Fire vigtige diskrete fordelinger: 1. Uniform fordeling (diskret) 2. Binomial fordeling. 3. Hyper-geometrisk fordeling

Diskrete fordelinger. Fire vigtige diskrete fordelinger: 1. Uniform fordeling (diskret) 2. Binomial fordeling. 3. Hyper-geometrisk fordeling Disrete fordelinger Fire vigtige disrete fordelinger: 1. Uniform fordeling (disret) 2. Binomial fordeling 3. Hyper-geometris fordeling 4. Poisson fordeling 1 Uniform fordeling Definition Esperiment med

Læs mere

Introduktion til Statistik. Forelæsning 2: Stokastisk variabel og diskrete fordelinger. Peder Bacher

Introduktion til Statistik. Forelæsning 2: Stokastisk variabel og diskrete fordelinger. Peder Bacher Introduktion til Statistik Forelæsning 2: Stokastisk variabel og diskrete fordelinger Peder Bacher DTU Compute, Dynamiske Systemer Bygning 303B, Rum 009 Danmarks Tekniske Universitet 2800 Lyngby Danmark

Læs mere

Introduktion til Statistik. Forelæsning 3: Kontinuerte fordelinger. Peder Bacher

Introduktion til Statistik. Forelæsning 3: Kontinuerte fordelinger. Peder Bacher Introduktion til Statistik Forelæsning 3: Kontinuerte fordelinger Peder Bacher DTU Compute, Dynamiske Systemer Bygning 303B, Rum 009 Danmarks Tekniske Universitet 2800 Lyngby Danmark e-mail: pbac@dtu.dk

Læs mere

DANMARKS TEKNISKE UNIVERSITET Side 1 af 17 sider. Skriftlig prøve, den: 19. december 2012 Kursus nr : 02405. (navn) (underskrift) (bord nr)

DANMARKS TEKNISKE UNIVERSITET Side 1 af 17 sider. Skriftlig prøve, den: 19. december 2012 Kursus nr : 02405. (navn) (underskrift) (bord nr) DANMARKS TEKNISKE UNIVERSITET Side af 7 sider Skriftlig prøve, den: 9. december 0 Kursus nr : 0405 Kursus navn: Sandsynlighedsregning Varighed : 4 timer Tilladte hjælpemidler: Alle Dette sæt er besvaret

Læs mere

Statistik og Sandsynlighedsregning 2

Statistik og Sandsynlighedsregning 2 Statistik og Sandsynlighedsregning 2 Sandsynlighedstætheder og kontinuerte fordelinger på R Helle Sørensen Uge 6, mandag SaSt2 (Uge 6, mandag) Tætheder og kont. fordelinger 1 / 19 Program Velkommen I dag:

Læs mere

Statistik viden eller tilfældighed

Statistik viden eller tilfældighed MATEMATIK i perspektiv Side 1 af 9 DNA-analyser 1 Sandsynligheden for at en uskyldig anklages Følgende histogram viser, hvordan fragmentlængden for et DNA-område varierer inden for befolkningen. Der indgår

Læs mere

Kvantitative Metoder 1 - Forår Dagens program

Kvantitative Metoder 1 - Forår Dagens program Dagens program Afsnit 6.1 Den standardiserede normalfordeling Normalfordelingen Beskrivelse af normalfordelinger: - Tæthed og fordelingsfunktion - Middelværdi, varians og fraktiler Lineære transformationer

Læs mere

Oversigt. Kursus 02402 Introduktion til Statistik. Forelæsning 4: Kapitel 5: Kontinuerte fordelinger. Per Bruun Brockhoff. Eksponential fordelingen

Oversigt. Kursus 02402 Introduktion til Statistik. Forelæsning 4: Kapitel 5: Kontinuerte fordelinger. Per Bruun Brockhoff. Eksponential fordelingen Kursus 02402 Introduktion til Statistik Forelæsning 4: Kapitel 5: Kontinuerte fordelinger Per Bruun Brockhoff DTU Compute, Statistik Bygning 305/324 Danmarks Tekniske Universitet 2800 Lyngby Danmark e-mail:

Læs mere

Binomial fordeling. n f (x) = p x (1 p) n x. x = 0, 1, 2,...,n = x. x x!(n x)! Eksempler. Middelværdi np og varians np(1 p). 2/

Binomial fordeling. n f (x) = p x (1 p) n x. x = 0, 1, 2,...,n = x. x x!(n x)! Eksempler. Middelværdi np og varians np(1 p). 2/ Program: 1. Repetition af vigtige sandsynlighedsfordelinger: binomial, (Poisson,) normal (og χ 2 ). 2. Populationer og stikprøver 3. Opsummering af data vha. deskriptive størrelser og grafer. 1/29 Binomial

Læs mere

Program. Statistik og Sandsynlighedsregning 2 Middelværdi og varians. Eksempler fra sidst. Sandsynlighedstæthed og sandsynlighedsmål

Program. Statistik og Sandsynlighedsregning 2 Middelværdi og varians. Eksempler fra sidst. Sandsynlighedstæthed og sandsynlighedsmål Program Statistik og Sandsynlighedsregning 2 Middelværdi og varians Helle Sørensen Uge 6, onsdag I formiddag: Tætheder og fordelingsfunktioner kort resume fra i mandags og et par eksempler mere om sammenhængen

Læs mere

Statistik Lektion 3. Simultan fordelte stokastiske variable Kontinuerte stokastiske variable Normalfordelingen

Statistik Lektion 3. Simultan fordelte stokastiske variable Kontinuerte stokastiske variable Normalfordelingen Statistik Lektion 3 Simultan fordelte stokastiske variable Kontinuerte stokastiske variable Normalfordelingen Repetition En stokastisk variabel er en funktion defineret på S (udfaldsrummet, der antager

Læs mere

Teoretisk Statistik, 9 marts nb. Det forventes ikke, at alt materialet dækkes d. 9. marts.

Teoretisk Statistik, 9 marts nb. Det forventes ikke, at alt materialet dækkes d. 9. marts. Teoretisk Statistik, 9 marts 2005 Empiriske analoger (Kap. 3.7) Normalfordelingen (Kap. 3.12) Opsamling på Kap. 3 nb. Det forventes ikke, at alt materialet dækkes d. 9. marts. 1 Empiriske analoger Betragt

Læs mere

Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab. Statistisk Model

Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab. Statistisk Model Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab Statistisk Model Indhold Binomialfordeling Sandsynlighedsfunktion Middelværdi og spredning 1 Aalen: Innføring i statistik med medisinske eksempler

Læs mere

Bernoulli og binomial fordelingerne Kontinuerte stokastiske variable Normalfordelingen

Bernoulli og binomial fordelingerne Kontinuerte stokastiske variable Normalfordelingen Bernoulli og binomial fordelingerne Kontinuerte stokastiske variable Normalfordelingen Repetition Lov om total sandsynlighed Bayes sætning P( B A) = P(A) = P(AI B) + P(AI P( A B) P( B) P( A B) P( B) +

Læs mere

Sandsynlighedsregning Oversigt over begreber og fordelinger

Sandsynlighedsregning Oversigt over begreber og fordelinger Tue Tjur Marts 2007 Sandsynlighedsregning Oversigt over begreber og fordelinger Stat. MØK 2. år Kapitel : Sandsynlighedsfordelinger og stokastiske variable En sandsynlighedsfunktion på en mængde E (udfaldsrummet)

Læs mere

Statistik og Sandsynlighedsregning 2

Statistik og Sandsynlighedsregning 2 Statistik og Sandsynlighedsregning 2 Transformation af kontinuerte fordelinger på R, flerdimensionale kontinuerte fordelinger, mere om normalfordelingen Helle Sørensen Uge 7, onsdag SaSt2 (Uge 7, onsdag)

Læs mere

Kvantitative Metoder 1 - Forår 2007

Kvantitative Metoder 1 - Forår 2007 Dagens program Kapitel 8.7, 8.8 og 8.10 Momenter af gennemsnit og andele kap. 8.7 Eksempel med simulationer Den centrale grænseværdisætning (Central Limit Theorem) kap. 8.8 Simulationer Normalfordelte

Læs mere

INSTITUT FOR MATEMATISKE FAG c

INSTITUT FOR MATEMATISKE FAG c INSTITUT FOR MATEMATISKE FAG c AALBORG UNIVERSITET FREDRIK BAJERS VEJ 7 G 9220 AALBORG ØST Tlf.: 96 35 89 27 URL: www.math.aau.dk Fax: 98 15 81 29 E-mail: bjh@math.aau.dk Dataanalyse Sandsynlighed og stokastiske

Læs mere

Billedbehandling og mønstergenkendelse: Lidt elementær statistik (version 1)

Billedbehandling og mønstergenkendelse: Lidt elementær statistik (version 1) ; C ED 6 > Billedbehandling og mønstergenkendelse Lidt elementær statistik (version 1) Klaus Hansen 24 september 2003 1 Elementære empiriske mål Hvis vi har observationer kan vi udregne gennemsnit og varians

Læs mere

Oversigt. Kursus Introduktion til Statistik. Forelæsning 4: Kapitel 5: Kontinuerte fordelinger

Oversigt. Kursus Introduktion til Statistik. Forelæsning 4: Kapitel 5: Kontinuerte fordelinger Kursus 02402 Introduktion til Statistik Forelæsning 4: Kapitel 5: Kontinuerte fordelinger Rune Haubo B Christensen (based on slides by Per Bruun Brockhoff) DTU Compute, Statistik og Dataanalyse Bygning

Læs mere

Program. Statistik og Sandsynlighedsregning. Eksempler. Sandsynlighedstæthed og sandsynlighedsmål

Program. Statistik og Sandsynlighedsregning. Eksempler. Sandsynlighedstæthed og sandsynlighedsmål Program Statistik og Sandsynlighedsregning Sandsynlighedstætheder og kontinuerte fordelinger på R Varians og middelværdi Normalfordelingen Susanne Ditlevsen Uge 48, tirsdag Tætheder og fordelingsfunktioner

Læs mere

Oversigt. Course 02402/02323 Introducerende Statistik. Forelæsning 2: Stokastisk variabel og diskrete fordelinger

Oversigt. Course 02402/02323 Introducerende Statistik. Forelæsning 2: Stokastisk variabel og diskrete fordelinger Course 02402/02323 Introducerende Statistik Forelæsning 2: Stokastisk variabel og diskrete fordelinger Klaus K. Andersen og Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Danmarks Tekniske Universitet

Læs mere

Repetition. Diskrete stokastiske variable. Kontinuerte stokastiske variable

Repetition. Diskrete stokastiske variable. Kontinuerte stokastiske variable Normal fordelingen Normal fordelingen Egenskaber ved normalfordelingen Standard normal fordelingen Find sandsynligheder ud fra tabel Transformation af normal fordelte variable Invers transformation Repetition

Læs mere

DANMARKS TEKNISKE UNIVERSITET Side 1 af 16 sider. Skriftlig prøve, den: 24. maj 2012 Kursus nr : (navn) (underskrift) (bord nr)

DANMARKS TEKNISKE UNIVERSITET Side 1 af 16 sider. Skriftlig prøve, den: 24. maj 2012 Kursus nr : (navn) (underskrift) (bord nr) DANMARKS TEKNISKE UNIVERSITET Side af 6 sider Skriftlig prøve, den: 24. maj 2 Kursus nr : 02405 Kursus navn: Sandsynlighedsregning Varighed : 4 timer Tilladte hjælpemidler: Alle Dette sæt er besvaret af:

Læs mere

Statistik Lektion 2. Betinget sandsynlighed Bayes regel Diskrete stokastiske variable Middelværdi og varians for diskret SV Binomialfordelingen

Statistik Lektion 2. Betinget sandsynlighed Bayes regel Diskrete stokastiske variable Middelværdi og varians for diskret SV Binomialfordelingen Statistik Lektion etinget sandsynlighed ayes regel Diskrete stokastiske variable Middelværdi og varians for diskret SV inomialfordelingen Repetition Udfaldsrum S Hændelse S Simpel hændelse O i 1, 3 4,

Læs mere

Kvantitative Metoder 1 - Efterår Dagens program

Kvantitative Metoder 1 - Efterår Dagens program Dagens program Afsnit 3.1-3.2 Middelværdi -Definition - Regneregler Betinget middelværdi Middelværdier af funktioner af stokastiske variable Loven om den itererede middelværdi Eksempler 1 Beskrivelse af

Læs mere

Modul 2: Sandsynlighedsmodeller og diskrete stokastiske variable

Modul 2: Sandsynlighedsmodeller og diskrete stokastiske variable Forskningsenheden for Statistik ST501: Science Statistik Bent Jørgensen Modul 2: Sandsynlighedsmodeller og diskrete stokastiske variable 2.1 Sandsynlighedsbegrebet............................... 1 2.1.1

Læs mere

Nanostatistik: Middelværdi og varians

Nanostatistik: Middelværdi og varians Nanostatistik: Middelværdi og varians JLJ Nanostatistik: Middelværdi og varians p. 1/28 Repetition Stokastisk variabel: funktion fra udfaldsrum over i de hele tal eller over i de reelle tal Ex: Ω = alle

Læs mere

Kvantitative Metoder 1 - Forår Dagens program

Kvantitative Metoder 1 - Forår Dagens program Dagens program Afsnit 3.1-3.2 Middelværdi -Definition - Regneregler Betinget middelværdi Middelværdier af funktioner af stokastiske variabler Loven om den itererede middelværdi Eksempler 1 Beskrivelse

Læs mere

02402 Vejledende løsninger til hjemmeopgaver og øvelser, Uge 4

02402 Vejledende løsninger til hjemmeopgaver og øvelser, Uge 4 02402 Vejledende løsninger til hjemmeopgaver og øvelser, Uge 4 Vejledende løsning 5.46 P (0.010 < error < 0.015) = (0.015 0.010)/0.050 = 0.1 > punif(0.015,-0.025,0.025)-punif(0.01,-0.025,0.025) [1] 0.1

Læs mere

Supplement til kapitel 7: Approksimationen til normalfordelingen, s. 136

Supplement til kapitel 7: Approksimationen til normalfordelingen, s. 136 Supplement til kapitel 7: Approksimationen til normalfordelingen, s. 36 Det er besværligt at regne med binomialfordelingen, og man vælger derfor ofte at bruge en approksimation med normalfordeling. Man

Læs mere

Statistik vejledende læreplan og læringsmål, efteråret 2013 SmartLearning

Statistik vejledende læreplan og læringsmål, efteråret 2013 SmartLearning Side 1 af 6 Statistik vejledende læreplan og læringsmål, efteråret 2013 SmartLearning Litteratur: Kenneth Hansen & Charlotte Koldsø: Statistik I økonomisk perspektiv, Hans Reitzels Forlag 2012, 2. udgave,

Læs mere

Teoretisk Statistik, 2. december 2003. Sammenligning af poissonfordelinger

Teoretisk Statistik, 2. december 2003. Sammenligning af poissonfordelinger Uge 49 I Teoretisk Statistik, 2. december 2003 Sammenligning af poissonfordelinger o Generel teori o Sammenligning af to poissonfordelinger o Eksempel Opsummering om multinomialfordelinger Fishers eksakte

Læs mere

Kombinatorik. Eksempel 2: En mand har 7 par bukser og 10 skjorter. Skal han både vælge en skjorte og et par bukser, så har han 10. 7=70 mulige valg.

Kombinatorik. Eksempel 2: En mand har 7 par bukser og 10 skjorter. Skal han både vælge en skjorte og et par bukser, så har han 10. 7=70 mulige valg. Noter til Biomat, 005. Kombinatorik. - eller kunsten at tælle. Alle tal i kombinatorik-afsnittet er hele og ikke-negative. Additionsprincippet enten - eller : Antag vi enten skal lave et valg med m muligheder

Læs mere

Løsninger til kapitel 5

Løsninger til kapitel 5 1 Løsninger til kapitel 5 Opgave 51 Det nemmeste er her at omskrive alle sandsynlighederne til differenser mellem kumulerede sandsynligheder, dvs af sandsynligheder af formen, og derefter beregne disse

Læs mere

Statistiske modeller

Statistiske modeller Statistiske modeller Statistisk model Datamatrice Variabelmatrice Hændelse Sandsynligheder Data Statistiske modeller indeholder: Variable Hændelser defineret ved mulige variabel værdier Sandsynligheder

Læs mere

DANMARKS TEKNISKE UNIVERSITET Side?? af?? sider. Skriftlig prøve, den: 18. december 2014 Kursus nr : (navn) (underskrift) (bord nr)

DANMARKS TEKNISKE UNIVERSITET Side?? af?? sider. Skriftlig prøve, den: 18. december 2014 Kursus nr : (navn) (underskrift) (bord nr) DANMARKS TEKNISKE UNIVERSITET Side?? af?? sider Skriftlig prøve, den: 8. december 04 Kursus nr : 040 Kursus navn: Sandsynlighedsregning Varighed : 4 timer Tilladte hjælpemidler: Alle Dette sæt er besvaret

Læs mere

Kvantitative Metoder 1 - Forår 2007

Kvantitative Metoder 1 - Forår 2007 Dagens program Afsnit 3.3-3.5 Varians Eksempel: Forventet nytte Kovarians og korrelation Middelværdi og varians af summer af stokastiske variabler Eksempel: Porteføljevalg 1 Beskrivelse af fordelinger

Læs mere

MM501 forelæsningsslides

MM501 forelæsningsslides MM501 forelæsningsslides uge 40, 2010 Produceret af Hans J. Munkholm bearbejdet af JC 1 Separabel 1. ordens differentialligning En generel 1. ordens differentialligning har formen s.445-8 dx Eksempler

Læs mere

Teoretisk Statistik, 16. februar Generel teori,repetition

Teoretisk Statistik, 16. februar Generel teori,repetition 1 Uge 8 Teoretisk Statistik, 16. februar 2004 1. Generel teori, repetition 2. Diskret udfaldsrum punktssh. 3. Fordelingsfunktionen 4. Tæthed 5. Transformationer 6. Diskrete vs. Kontinuerte stokastiske

Læs mere

Dagens program. Afsnit Diskrete stokastiske variable Sandsynlighedsfunktioner Simultane fordelinger Betingede sandsynligheder

Dagens program. Afsnit Diskrete stokastiske variable Sandsynlighedsfunktioner Simultane fordelinger Betingede sandsynligheder Dagens program Afsnit 2.1-2.3 Diskrete stokastiske variable Sandsynlighedsfunktioner Simultane fordelinger Betingede sandsynligheder 1 Stokastiske variable (diskrete) Et eksperiment med usikkerhed beskrives

Læs mere

Sandsynlighedsregning 6. forelæsning Bo Friis Nielsen

Sandsynlighedsregning 6. forelæsning Bo Friis Nielsen Sandsynlighedsregning 6. forelæsning Bo Friis Nielsen Matematik og Computer Science Danmarks Tekniske Universitet 2800 Kgs. Lyngby Danmark Email: bfn@dtu.dk Dagens emner: Afsnit 4.2, 4.3 og 4.4 Poissonprocessen/eksponentialfordelingen

Læs mere

Nanostatistik: Stokastisk variabel

Nanostatistik: Stokastisk variabel Nanostatistik: Stokastisk variabel JLJ Nanostatistik: Stokastisk variabel p. 1/29 Repetition Ω: udfaldsrummet: alle de mulige udfald af et experiment P(A): ss for hændelsen A = frekvens i uafhængige gentagelser

Læs mere

Kapitel 4 Sandsynlighed og statistiske modeller

Kapitel 4 Sandsynlighed og statistiske modeller Kapitel 4 Sandsynlighed og statistiske modeller Peter Tibert Stoltze stat@peterstoltze.dk Elementær statistik F2011 1 Indledning 2 Sandsynlighed i binomialfordelingen 3 Normalfordelingen 4 Modelkontrol

Læs mere

Regneregler for middelværdier M(X+Y) = M X +M Y. Spredning varians og standardafvigelse. 1 n VAR(X) Y = a + bx VAR(Y) = VAR(a+bX) = b²var(x)

Regneregler for middelværdier M(X+Y) = M X +M Y. Spredning varians og standardafvigelse. 1 n VAR(X) Y = a + bx VAR(Y) = VAR(a+bX) = b²var(x) Formelsamlingen 1 Regneregler for middelværdier M(a + bx) a + bm X M(X+Y) M X +M Y Spredning varians og standardafvigelse VAR(X) 1 n n i1 ( X i - M x ) 2 Y a + bx VAR(Y) VAR(a+bX) b²var(x) 2 Kovariansen

Læs mere

Grundlæggende statistik Lektion 2 Indhold Diskrete fordelinger Binomial fordelingen Poisson fordelingen Hypergeometrisk fordeling Data typer el. typer af tilfældige variable Diskrete variable > Kategoriseres

Læs mere

Kvantitative Metoder 1 - Efterår 2006. Dagens program

Kvantitative Metoder 1 - Efterår 2006. Dagens program Dagens program Afsnit 1.7-1.8 Fødselsdagseksemplet, fra sidst Eksperimenterikkealleerligesandsynlige Diskrete sandsynlighedsfordelinger -Definition af sandsynligheder - Regneregler Hvad er sandsynligheder?

Læs mere

Nanostatistik: Stokastisk variabel

Nanostatistik: Stokastisk variabel Nanostatistik: Stokastisk variabel JLJ Nanostatistik: Stokastisk variabel p. 1/34 Repetition Ω: udfaldsrummet: alle de mulige udfald af et experiment P(A): ss for hændelsen A = frekvens i uafhængige gentagelser

Læs mere

Definition: Normalfordelingen. siges at være normalfordelt med middelværdi µ og varians σ 2, hvor µ og σ er reelle tal og σ > 0.

Definition: Normalfordelingen. siges at være normalfordelt med middelværdi µ og varians σ 2, hvor µ og σ er reelle tal og σ > 0. Landmålingens fejlteori Lektion 2 Transformation af stokastiske variable - kkb@math.aau.dk http://people.math.aau.dk/ kkb/undervisning/lf12 Institut for Matematiske Fag Aalborg Universitet Repetition:

Læs mere

Stokastiske processer og køteori

Stokastiske processer og køteori Stokastiske processer og køteori 2. kursusgang Anders Gorst-Rasmussen Institut for Matematiske Fag Aalborg Universitet 1 STOKASTISK MODEL FOR KØSYSTEM Population Ankomst Kø Ekspedition Output Ankomstproces

Læs mere

Kvantitative Metoder 1 - Forår 2007. Dagens program

Kvantitative Metoder 1 - Forår 2007. Dagens program Dagens program Hypoteser: kap: 10.1-10.2 Eksempler på Maximum likelihood analyser kap 9.10 Test Hypoteser kap. 10.1 Testprocedure kap 10.2 Teststørrelsen Testsandsynlighed 1 Estimationsmetoder Kvantitative

Læs mere

Kvantitative Metoder 1 - Efterår 2006. Dagens program

Kvantitative Metoder 1 - Efterår 2006. Dagens program Dagens program Afsnit 2.4-2.5 Bayes sætning Uafhængige stokastiske variable - Simultane fordelinger - Marginale fordelinger - Betingede fordelinger Uafhængige hændelser - Indikatorvariable Afledte stokastiske

Læs mere

Agenda Sandsynlighedsregning. Regneregler (kap. 3-4) Fordelinger og genkendelse af fordelinger (kap. 3-5) Simultane, marginale og betingede

Agenda Sandsynlighedsregning. Regneregler (kap. 3-4) Fordelinger og genkendelse af fordelinger (kap. 3-5) Simultane, marginale og betingede Agenda Sandsynlighedsregning. Regneregler (kap. 3-4) Fordelinger og genkendelse af fordelinger (kap. 3-5) Simultane, marginale og betingede fordelinger (kap. 4) Middelværdi og varians (kap. 3-4) Fordelingsresultater

Læs mere

Modul 3: Kontinuerte stokastiske variable

Modul 3: Kontinuerte stokastiske variable Forskningsenheden for Statistik ST501: Science Statistik Bent Jørgensen Modul 3: Kontinuerte stokastiske variable 3.1 Kontinuerte stokastiske variable........................... 1 3.1.1 Tæthedsfunktion...............................

Læs mere

Sandsynlighedsregning & Statistik

Sandsynlighedsregning & Statistik Jørgen Larsen Sandsynlighedsregning & Statistik for matematikstuderende 2006 Indhold Forord 5 Del I Sandsynlighedsregning 7 Indledning 9 Endelige udfaldsrum. Grundlæggende definitioner.....................

Læs mere

Sandsynlighedsregning 4. forelæsning Bo Friis Nielsen

Sandsynlighedsregning 4. forelæsning Bo Friis Nielsen Sandsynlighedsregning 4. forelæsning Bo Friis Nielsen Anvendt Matematik og Computer Science Danmarks Tekniske Universitet 2800 Kgs. Lyngby Danmark Email: bfni@dtu.dk Dagens emner: Afsnit 3.3 og 3.4 Varians/standardafvigelse

Læs mere

2 Gennemsnitligt indhold af aktivt stof i en tablet fra et glas med 200 tabletter

2 Gennemsnitligt indhold af aktivt stof i en tablet fra et glas med 200 tabletter Ekstraopgaver uge 2-02402 Multiple choice opgaver Der gøres opmærksom på, at ideen med opgaverne er, at der er ét og kun ét rigtigt svar på de enkelte spørgsmål. Endvidere er det ikke givet, at alle de

Læs mere

Modeller for ankomstprocesser

Modeller for ankomstprocesser Modeller for ankomstprocesser Eric Bentzen Institut for Produktion og Erhvervsøkonomi Handelshøjskolen i København November 2007 1 . Afsnit Indhold Side 1 Indledning 3 2 Ankomstprocessen 3 3 Servicesystemet

Læs mere

Statistik og Sandsynlighedsregning 2

Statistik og Sandsynlighedsregning 2 Statistik og Sandsynlighedsregning 2 Uafhængighed og reelle transformationer Helle Sørensen Uge 8, mandag SaSt2 (Uge 8, mandag) Uafh. og relle transf. 1 / 16 Program I dag: Uafhængighed af kontinuerte

Læs mere

1/41. 2/41 Landmålingens fejlteori - Lektion 1 - Kontinuerte stokastiske variable

1/41. 2/41 Landmålingens fejlteori - Lektion 1 - Kontinuerte stokastiske variable Landmålingens fejlteori - lidt om kurset Landmålingens fejlteori Lektion 1 Det matematiske fundament Kontinuerte stokastiske variable - rw@math.aau.dk Institut for Matematiske Fag Aalborg Universitet Kursusholder

Læs mere

Opgaver i sandsynlighedsregning

Opgaver i sandsynlighedsregning Afdeling for Teoretisk Statistik STATISTIK Institut for Matematiske Fag Preben Blæsild Aarhus Universitet 9. januar 005 Opgaver i sandsynlighedsregning Opgave Lad A og B være hændelser således at P(A)

Læs mere

StatDataN: Middelværdi og varians

StatDataN: Middelværdi og varians StatDataN: Middelværdi og varians JLJ StatDataN: Middelværdi og varians p. 1/33 Repetition Stokastisk variabel: funktion fra udfaldsrum over i de hele tal eller over i de reelle tal Ex: Ω = alle egetræer,

Læs mere

Sandsynlighedsregning 4. forelæsning Bo Friis Nielsen

Sandsynlighedsregning 4. forelæsning Bo Friis Nielsen Sandsynlighedsregning 4. forelæsning Bo Friis Nielsen Anvendt Matematik og Computer Science Danmarks Tekniske Universitet 2800 Kgs. Lyngby Danmark Email: bfni@dtu.dk Dagens emner: Afsnit 3.3 og 3.4 Varians/standardafvigelse

Læs mere

MM501/MM503 forelæsningsslides

MM501/MM503 forelæsningsslides MM501/MM503 forelæsningsslides uge 50, 2009 Produceret af Hans J. Munkholm 1 Separabel 1. ordens differentialligning En generel 1. ordens differentialligning har formen dx Eksempler = et udtryk, der indeholder

Læs mere

Statistik vejledende læreplan og læringsmål, foråret 2015 SmartLearning

Statistik vejledende læreplan og læringsmål, foråret 2015 SmartLearning Side 1 af 6 Statistik vejledende læreplan og læringsmål, foråret 2015 SmartLearning Litteratur: Kenneth Hansen & Charlotte Koldsø: Statistik I økonomisk perspektiv, Hans Reitzels Forlag 2012, 2. udgave,

Læs mere

Uge 10 Teoretisk Statistik 1. marts 2004

Uge 10 Teoretisk Statistik 1. marts 2004 1 Uge 10 Teoretisk Statistik 1. marts 004 1. u-fordelingen. Normalfordelingen 3. Middelværdi og varians 4. Mere normalfordelingsteori 5. Grafisk kontrol af normalfordelingsantagelse 6. Eksempler 7. Oversigt

Læs mere

Produkt og marked - matematiske og statistiske metoder

Produkt og marked - matematiske og statistiske metoder Produkt og marked - matematiske og statistiske metoder Rasmus Waagepetersen Institut for Matematiske Fag Aalborg Universitet February 19, 2016 1/26 Kursusindhold: Sandsynlighedsregning og lagerstyring

Læs mere

Deskriptiv statistik. Version 2.1. Noterne er et supplement til Vejen til matematik AB1. Henrik S. Hansen, Sct. Knuds Gymnasium

Deskriptiv statistik. Version 2.1. Noterne er et supplement til Vejen til matematik AB1. Henrik S. Hansen, Sct. Knuds Gymnasium Deskriptiv (beskrivende) statistik er den disciplin, der trækker de væsentligste oplysninger ud af et ofte uoverskueligt materiale. Det sker f.eks. ved at konstruere forskellige deskriptorer, d.v.s. regnestørrelser,

Læs mere