Opgave design - oplæg til mundtlig prøve i matematik i 9. og 10. klasse - udvalgt baggrundsmateriale/ Mikael Skånstrøm

Størrelse: px
Starte visningen fra side:

Download "Opgave design - oplæg til mundtlig prøve i matematik i 9. og 10. klasse - udvalgt baggrundsmateriale/ Mikael Skånstrøm"

Transkript

1 Opgave design - oplæg til mundtlig prøve i matematik i 9. og 10. klasse - udvalgt baggrundsmateriale/ Mikael Skånstrøm KOM-rapporten Prøvevejledning Fælles Mål es-maal-2009-matematik Prøvevejledningen Side 25 Uddrag: Prøven tager udgangspunkt i et oplæg med tydelige problemstillinger, som giver eleverne mulighed for at vise matematiske kompetencer, viden og kunnen. Oplægget, prøveforløbet og de materialer, der er til stede i prøvelokalet, skal give eleverne mulighed for at benytte matematiske arbejdsmåder i prøvesituationen. Det samlede antal prøveoplæg skal alsidigt repræsentere samtlige områder inden for det opgivne stof Ved prøven må alle hjælpemidler anvendes. Der skal i prøvelokalet være mulighed for at anvende computer Der prøves i elevens matematiske kompetencer, som de kommer til udtryk gennem elevens handlinger i matematikholdige situationer. Ved bedømmelsen lægges hovedvægten på en eller flere af følgende matematiske kompetencer hos eleven: - problembehandlingskompetence - modelleringskompetence - ræsonnementskompetence - kommunikationskompetence - hjælpemiddelkompetence - anvendelse af faglige begreber, metoder og arbejdsmåder. Fra KOM-rapporten: Matematisk kompetence består i at have viden om, at forstå, udøve, anvende, og kunne tage stilling til matematik og matematik virksomhed i en mangfoldighed af sammenhænge, hvori matematik indgår eller kan komme til at indgå. Man kan også sige, at en matematisk kompetence er indsigtsfuld parathed til at handle hensigtsmæssigt i situationer, som rummer en bestemt slags matematiske udfordringer. Undervisningen skal lede frem mod, at eleverne har tilegnet sig kundskaber og færdigheder, der sætter dem i stand til at. 1

2 Problembehandling KOM s. 49 erkende, formulere, afgrænse og løse matematiske problemer og vurdere løsningerne (problembehandlingskompetence). Denne kompetence består dels i at kunne opstille, dvs. detektere, formulere, afgrænse og præcisere forskellige slags matematiske problemer, rene såvel som anvendte, åbne såvel som lukkede, dels i at kunne løse sådanne matematiske problemer i færdigformuleret form, egnes såvel som andres, og, om fornødent eller ønskeligt, på forskellige måder. A: Kan man få en trekant ud af tre vilkårlige sidelængder? B: Nej. Har vi fx sidelængderne 3, 5, og 10 og starter med at placere de to korte sider ved hver deres endepunkt af den lange side, vil de to korte sider ikke kunne nå hinanden. Der dannes derfor ingen trekant. A: Er der lige mange sorte og hvide felter på et sædvanligt skakbræt? B: Ja, for i hver række er der fire sorte og fire hvide. Kom s. 200 A Hvis man til et tal lægger et bestemt antal procent, og derefter trækker det samme antal procent fra resultatet, ender man ikke med det tal, man startede med. Hvorfor ikke? A Hvad er arealet af figuren her, hvis omkredsen er 56? 100?. A Skriv regneforskriften for tre forskellige funktioner, hvis graf, du mener, går igennem punktet (5,7). A Find så mange rektangler som muligt som opfylder, at a) længden og bredden er hele tal. og b) arealet og omkredsen er samme tal. A Opskriv som sum af to eller flere stambrøker (dvs. brøker hvis nævner er 1). 2

3 Modellering KOM s. 52 udføre matematisk modellering og afkode, tolke, analysere og vurdere matematiske modeller (modelleringskompetence). Denne kompetence består på den ene side i at kunne analysere grundlaget for og egenskaberne ved foreliggende modeller og at kunne bedømme deres rækkevidde og holdbarhed. Hertil hører at kunne af-matematisere (træk ved) foreliggende matematiske modeller, dvs. at kunne afkode og fortolke modelelementer og - resultater i forhold til det felt eller den situation som er modelleret. På den anden side består kompetencen i at kunne udføre aktiv modelbygning i en given sammenhæng, dvs.at bringe matematik i spil og anvendelse til behandling af anliggender uden for matematikken selv. Når det gælder analysen af foreliggende (eller foreslåede) modeller, kan man fx betragte en model, der opererer med eksponentiel vækst af verdens befolkning i perioden og sammenholde den med tilgængelige befolkningsdata. undersøge body-mass-index modellen (BMI = vægt[kg]/(højde) 2 [m 2 ]) for undervægt, normalvægt, overvægt og fedme af mennesker. Hvad angår aktiv modelbygning, kan man fx opstille en model til behandling af udfordringer som de nedenstående. I alle tilfælde er det nødvendigt at foretage afgrænsninger, gøre antagelser, eller indhente data for at behandlingen kan foretages. En undersøgelse af hvordan grundplanen for et hus kan se ud, hvis dets areal skal være 120 m 2. En undersøgelse af hvor dyrt det er at tale i mobiltelefon. En bestemmelse af den optimale form på en konservesdåse i forhold til forbrug af materiale. Er det muligt, at gennemsnitsalderen i en befolkning er 35 år samtidig med at mindst 40 % af befolkningen er 60 eller derover? KOM s. 204 E1: Toget mellem A og B tager 20 minutter, og bussen fra B til C tager 15 minutter. Da man skal vente på bussen i B i 5 minutter, tager hele turen 40 minutter. E2: Ja, fra A til C, men så mangler man at lægge den tid til, som skal bruges hen til toget, og fra bussen og derhen hvor man skal. A Vurder ud fra et regnskab for en skolebod, hvilke faktorer der får indflydelse på bodens fremtidige økonomiske situation. A Hvilken form skal en tagrende have? A Hvor mange mennesker kan der stå i rummet her? A Hvor lang tid skal du sætte af for at komme i skole til tiden om morgenen? A Hvor mange tandbørstninger er der til i en tube tandpasta? A Hvor langt fremme ad vejen skal der være fri bane, for at man sikkert kan overhale? 3

4 Ræsonnement KOM s. 54 udtænke og gennemføre egne ræsonnementer til begrundelse af matematiske påstande og følge og vurdere andres matematiske ræsonnementer. Denne kompetence består på den ene side i at kunne følge og bedømme et matematisk ræsonnement, dvs. en kæde af argumenter fremsat af andre på skrift eller i tale til støtte for en påstand, specielt at vide og forstå hvad et matematisk beviser, og hvordan det adskiller sig fra andre former for matematiske ræsonnementer, fx heuristiske ræsonnementer hvilende på intuition eller på betragtning af specialtilfælde, og at kunne afgøre hvornår et matematisk ræsonnement faktisk udgør et bevis, og hvornår ikke. Heri indgår at forstå den logiske betydning af et modeksempel. Det indgår tillige i kompetencen at kunne afdække de bærende idéer i et matematisk bevis, herunder skelne mellem hovedpunkter og detaljer, mellem idéer og teknikaliteter. Som eksempler på det at følge og bedømme et matematisk ræsonnement kan nævnes: A: Når man kvadrerer et tal, bliver resultatet altid større. Det gælder jo for alle de uendeligt mange hele tal, og så må det også gælde for alle andre tal. B: Nej, påstanden er for det første forkert, idet fx ( ) 2 = ( ), og der er jo mindre end. For det andet kan man ikke overføre alle egenskaberne ved mængden af hele tal til egenskaber ved en mere omfattende talmængde, fx de rationale tal. KOM s.209 E1: Kasper og Marie bor henholdsvis 1,5 og 2 kilometer fra skolen, så må de bo 1,5 km + 2 km = 3,5 km fra hinanden. E2: Nej, det behøver de ikke. Det kunne jo være, at de boede på den samme lige vej til skolen, og så ville der kun være 0,5 kilometer mellem dem. Enhver trekant kan indtegnes i et rektangel således, at en side følger en af rektanglets sider, og den modstående vinkelspids i trekanten rører den modstående side i rektanglet. Trekantens areal vil udgøre halvdelen af rektanglets areal, hvilket forklarer formlen for arealet af en trekant. Man kan finde arealet af et parallelogram ved at klippe en trekant af i den ene ende og tilføje den til den anden ende, for så får man et rektangel, og der er arealet jo bare de to sidelængder ganget sammen. 4

5 Kommunikation KOM s. 60 udtrykke sig om matematiske spørgsmål og aktiviteter på forskellige måder, indgå i dialog og fortolke andres matematiske kommunikation (kommunikationskompetence). Denne kompetence består dels i at kunne sætte sig ind i og fortolke andres matematikholdige skriftlige, mundtlige eller visuelle udsagn og tekster, dels i at kunne udtrykke sig på forskellige måder og på forskellige niveauer af teoretisk eller teknisk præcision om matematikholdige anliggender, skriftligt, mundtligt eller visuelt over for forskellige kategorier af modtagere. E1: Vi får altid at vide, at vi ikke må dividere med 0. Hvorfor må man egentlig ikke det; er det bare en regel eller hvad? E2: Ja, det er det vel. E1: Men hvor kommer den så fra? Der må da være en grund. E2: Lad os prøve at se, hvad division går ud på. Hvis vi skulle dividere a med 0,så skulle vi finde det tal, som ganget med 0 giver a. Men et tal ganget med 0 giver jo 0 og ikke a. Så divisionen kan slet ikke lade sig gøre. Det er måske derfor, det er forbudt? E1: Hov, hvis a er 0 går det jo godt. Så kan man gange 0 med fx 1 og få det rigtige, nemlig 0. E2: Nå ja, vi kunne også have ganget med og stadig få 0. Så ville jo være E1: Ja, vi kunne gange med hvad som helst og få det rigtige. E2: Men så kan man vel også godt sige, at divisionen ikke giver noget bestemt resultat, når der kan komme alt muligt ud af den. Og så er den vel også umulig? E1: OK, det er altså forbudt at dividere med 0, fordi vi aldrig kan få noget bestemt ud af det. I de fleste tilfælde får vi slet ingenting ud af det, og hvis a=0, får vi hvad som helst. KOM s. 219 En elev vil vise læreren, hvordan han fandt frem til, at = 55: Først lagde jeg de tre første tal sammen. Det giver 6. Så de tre næste, det giver 15. Nu har jeg i alt 21. De sidste tager jeg to og to: 7+8=15, 9+10=19. Det vil sige i alt Det regnede jeg ud til 55. Men så sagde Marie, at hun havde gjort det på en anden måde. Hun fik også 55. Hun tog først 1 og 10. Det giver 11, så 2 og 9, det giver også 11. Så tog hun 3 og 8, 4 og 7, de giver også 11, to gange. Til sidst var der kun 5 og 6 tilbage, og de giver også 11. På den måde fik hun 5 11-taller. Det er jo 5 tiere, altså 50 og fem enere. Så det blive 55 til sammen. Jeg ved ikke, hvilken måde der er bedst. Jeg regnede det jo bare ud, man skulle ikke tænke så meget, men Marie blev jo nødt til at tænke først, og det er vel mere besværligt, ikke? Hvem siger, at der altid er en smart måde at gøre det på? Om matematikkens natur: Hvordan kan det være, at man mange gange kan få det rigtige resultat på helt forskellige måder? 5

6 Hjælpemiddel KOM s. 62 kende, vælge og anvende hjælpemidler i arbejdet med matematik, herunder it, og have indblik i deres muligheder og begrænsninger (hjælpemiddelkompetence). Denne kompetence består dels i at have kendskab til eksistensen og egenskaberne ved diverse former for relevante redskaber til brug for matematisk virksomhed, og have indblik i deres muligheder og begrænsninger i forskellige slags situationer, dels i at være i stand til, på reflekteret vis, at betjene sig af sådanne hjælpemidler. Der er ingen grænser for, hvor mange eksempler man kan give på reflekteret omgang med hjælpemidler for matematisk virksomhed. På de lavere klassetrin kan man nævne evnen til at omgås konkrete materialer til støtte for begrebsdannelsen, undersøgelse af sammenhænge og mønstre, efterprøvelse af hypoteser, grundlæggelse af færdigheder osv. Geoboards, centicubes eller andre klods-, brik- eller stangsystemer, kuglerammer, geometriske skabeloner, spirografer, linealer, passere, vinkelmålere, terninger, særligt indstreget papir, karton til foldning eller udskæring hører alle hjemme i denne sammenhæng. Vi kan også nævne den tænksomme omgang med lommeregnere og computere, samt it-software af typen Wordmat, Geogebra, regneark, MathCad osv., til brug for såvel kalkulationer som grafiske repræsentationer, empiriske undersøgelser, visualisering osv. KOM s. 221 Vi kan fx forestille os elever, som med en passer tegner to cirkler med samme radius, den ene med centrum i den andens periferi, forbinder cirklernes centre og skæringspunkterne med centrene og måler de fremkomne linjestykker med en lineal, med henblik på at finde mønstre og foreslå regler. elever, der undersøger sammenhænge mellem de indgående størrelser i forskellige areal- og rumfangsformler ved at trække eller skubbe i hjørnerne på figuren vha. et geometriprogram. elever, der bruger lommeregnere eller regneark til at undersøge hypoteser om tal: Hvad kan man sige om et tal, der fremgår af et andet ved multiplikation med fx 5?. elever, der som led i at udvikle kendskab til hjælpemidlers muligheder og begrænsninger vurderer resultatet af en regneoperation udført på lommeregner, og begynder at reflektere over fordele og ulemper ved at anvende forskellige programtyper. 6

7 Anvendelse af faglige begreber, metoder og arbejdsmåder. CKF: Matematiske emner: Algebra Geometri Statistik og Sandsynlighedsregning Fælles Mål s. 4 Slutmål og metoder deltage i udvikling af hensigtsmæssige beregningsmetoder på baggrund af egen forståelse samt vælge og benytte regneregler og formler benytte geometriske begreber og metoder til beskrivelse af objekter og fænomener fra dagligdagen CKF: Matematiske Arbejdsmåder - slutmål 9. klasse: Undervisningen skal lede frem mod, at eleverne har tilegnet sig kundskaber og færdigheder, der sætter dem i stand til at deltage i udvikling af strategier og metoder i forbindelse med de matematiske emner undersøge, systematisere, ræsonnere og generalisere i arbejdet med matematiske problemstillinger læse faglige tekster og kommunikere om fagets emner arbejde individuelt og sammen med andre om behandlingen af matematiske opgaver og problemstillinger arbejde med problemløsning i en proces, der bygger på dialog og på elevernes forskellige forudsætninger og potentialer. CKF: Matematik i anvendelse - slutmål 9. klasse: Undervisningen skal lede frem mod, at eleverne har tilegnet sig kundskaber og færdigheder, der sætter dem i stand til at matematisere problemstillinger fra dagligdag, samfundsliv og natur og tolke matematiske modellers beskrivelse af virkeligheden anvende faglige redskaber, begreber og kompetencer til løsningen af matematiske problemstillinger i forbindelse med dagligliv, samfundsliv og natur bruge matematik som et redskab til at beskrive eller forudsige en udvikling eller en begivenhed erkende matematikkens muligheder og begrænsninger ved beskrivelse af virkeligheden. 7

Mundtlig prøve i Matematik

Mundtlig prøve i Matematik Mundtlig prøve i Matematik Mandag d. 9. september 2013 CFU Sjælland Mikael Scheby Dagens indhold Velkomst, præsentation, formål med dagen Vekselvirkning mellem formalia, oplæg og arbejde med eksempler

Læs mere

Mundtlig prøve i Matematik

Mundtlig prøve i Matematik Mundtlig prøve i Matematik Tirsdag d. 9. september 2014 CFU Sjælland Mikael Scheby NTS-Center Øst Dagens indhold Prøvebekendtgørelse highlights Vekselvirkning mellem formalia, oplæg og arbejde med eksempler

Læs mere

Matematik. Matematiske kompetencer

Matematik. Matematiske kompetencer Matematiske kompetencer stille spørgsmål, som er karakteristiske for matematik og have blik for hvilke typer af svar, som kan forventes(tankegangskompetence) erkende, formulere, afgrænse og løse matematiske

Læs mere

MATEMATIK. GIDEONSKOLENS UNDERVISNINGSPLAN Oversigt over undervisning i forhold til trinmål og slutmål

MATEMATIK. GIDEONSKOLENS UNDERVISNINGSPLAN Oversigt over undervisning i forhold til trinmål og slutmål MATEMATIK GIDEONSKOLENS UNDERVISNINGSPLAN Oversigt over undervisning i forhold til trinmål og slutmål KOMMENTAR Vi har i det følgende foretaget en analyse og en sammenstilling af vore materialer til skriftlig

Læs mere

MATEMATIK. Formål for faget

MATEMATIK. Formål for faget MATEMATIK Formål for faget Formålet med undervisningen er, at eleverne udvikler matematiske kompetencer og opnår viden og kunnen således, at de bliver i stand til at begå sig hensigtsmæssigt i matematikrelaterede

Læs mere

Årsplan for Matematik 8. klasse 2011/2012

Årsplan for Matematik 8. klasse 2011/2012 Årsplan for Matematik 8. klasse 2011/2012 Formål for faget matematik Formålet med undervisningen er, at eleverne udvikler matematiske kompetencer og opnår viden og kunnen således, at de bliver i stand

Læs mere

Emmas og Frederiks nye værelser - maling eller tapet?

Emmas og Frederiks nye værelser - maling eller tapet? Emmas og Frederiks nye værelser - maling eller tapet? Emmas og Frederiks familie skal flytte til et nyt hus. De har fået lov til at bestemme, hvordan væggene på deres værelser skal se ud. Emma og Frederik

Læs mere

Undervisningsplan for faget matematik. Ørestad Friskole

Undervisningsplan for faget matematik. Ørestad Friskole Undervisningsplan for faget matematik Ørestad Friskole 1. af 11 sider Undervisningsplan for faget matematik. Ørestad Friskole Undervisningsplanens indhold Undervisningens organisering og omfang side 2

Læs mere

Selam Friskole Fagplan for Matematik

Selam Friskole Fagplan for Matematik Selam Friskole Fagplan for Matematik Formål Formålet med undervisningen er, at eleverne udvikler matematiske kompetencer og opnår viden og kunnen således, at de bliver i stand til at begå sig hensigtsmæssigt

Læs mere

Fag- og indholdsplan 9. kl.:

Fag- og indholdsplan 9. kl.: Fag- og indholdsplan 9. kl.: Indholdsområder: Tal og algebra: Tal - regneregler og formler Størrelser måling, beregning og sammenligning. Matematiske udtryk Algebra - teoretiske sammenhænge absolut og

Læs mere

Mundtlig prøve i matematik

Mundtlig prøve i matematik Mundtlig prøve i matematik Onsdag d. 5. december 2012 CFU Sjælland Mari-Ann Skovlund & Mikael Scheby Hvorfor en mundtlig prøve? Der er trinmål, vi ikke kan prøve eleverne i ved en skriftlig prøve, eller

Læs mere

Årsplan 9. klasse matematik 2014-2015 Uge Emne Faglige mål Trinmål Materialer/ systemer 33-34

Årsplan 9. klasse matematik 2014-2015 Uge Emne Faglige mål Trinmål Materialer/ systemer 33-34 Årsplan 9. klasse matematik 2014-2015 33-34 Årsprøve og rettevejledledning 34-36 Årsprøven i matematik Talmængder og regnemetoder 37 Fordybelses uge 38-39 40 Termins-prøve 41 Studieturen 42 Efterårsferie

Læs mere

Fælles Mål 2009. Matematik. Faghæfte 12

Fælles Mål 2009. Matematik. Faghæfte 12 Fælles Mål 2009 Matematik Faghæfte 12 Undervisningsministeriets håndbogsserie nr. 14 2009 Fælles Mål 2009 Matematik Faghæfte 12 Undervisningsministeriets håndbogsserie nr. 14 2009 Indhold Formål for faget

Læs mere

Fælles Mål 2009. Matematik. Faghæfte 12

Fælles Mål 2009. Matematik. Faghæfte 12 Fælles Mål 2009 Matematik Faghæfte 12 Undervisningsministeriets håndbogsserie nr. 14 2009 Fælles Mål 2009 Matematik Faghæfte 12 Undervisningsministeriets håndbogsserie nr. 14 2009 Indhold Formål for faget

Læs mere

Mormor Matematiker Missionær

Mormor Matematiker Missionær Pernille Pind Mormor Matematiker Missionær Test uden brug af hjælpemidler 1. Beregn 27,17+33,73 2. Beregn 95467823-9747289 3. Skriv 5 som decimaltal med tre cifre: 4. Skriv sin(30 ) med én decimal: 5.

Læs mere

Introduktion til mat i 4 klasse Vejle Privatskole 2013/14:

Introduktion til mat i 4 klasse Vejle Privatskole 2013/14: Introduktion til mat i 4 klasse Vejle Privatskole 2013/14: Udgangspunktet bliver en blød screening, der skal synliggøre summen af elevernes standpunkt. Det betyder i realiteten, at der uddeles 4 klasses

Læs mere

Evaluering af matematik undervisning

Evaluering af matematik undervisning Evaluering af matematik undervisning Udarbejdet af Khaled Zaher, matematiklærer 6-9 klasse og Boushra Chami, matematiklærer 2-5 klasse Matematiske kompetencer. Fællesmål efter 3.klasse indgå i dialog om

Læs mere

Undervisningsplan for matematik

Undervisningsplan for matematik Undervisningsplan for matematik Formål for faget Formålet med undervisningen i matematik er, at eleverne udvikler kompetencer og opnår viden og kunnen således, at de bliver i stand til at begå sig hensigtsmæssigt

Læs mere

Matematisk argumentation

Matematisk argumentation Kapitlets omdrejningspunkt er matematisk argumentation, der især bruges i forbindelse med bevisførelse altså, når det drejer sig om at overbevise andre om, at matematiske påstande er sande eller falske.

Læs mere

Årsplan for 5. klasse, matematik

Årsplan for 5. klasse, matematik Årsplan for 5. klasse, matematik I matematik bruger vi bogsystemet Sigma som grundmateriale. I systemet er der, ud over også kopiark og tests tilknyttet de enkelte kapitler. Systemet er udarbejdet så det

Læs mere

3. klasse 6. klasse 9. klasse

3. klasse 6. klasse 9. klasse Børne- og Undervisningsudvalget 2012-13 BUU Alm.del Bilag 326 Offentligt Elevplan 3. klasse 6. klasse 9. klasse Matematiske kompetencer Status tal og algebra sikker i, er usikker i de naturlige tals opbygning

Læs mere

Matematik, basis. Undervisningen på basisniveau skal udvikle kursisternes matematikkompetencer til at følge undervisningen

Matematik, basis. Undervisningen på basisniveau skal udvikle kursisternes matematikkompetencer til at følge undervisningen avu-bekendtgørelsen, august 2009 Matematik Basis, G-FED Matematik, basis 1. Identitet og formål 1.1 Identitet I matematik basis er arbejdet med forståelsen af de faglige begreber i centrum. Den opnåede

Læs mere

Opgave Du skal undersøge, hvad der gælder for andre størrelser af rektangler i en taltavlen.

Opgave Du skal undersøge, hvad der gælder for andre størrelser af rektangler i en taltavlen. Problembehandlingskompetence handler om at kunne opstille og løse matematiske problemer. Et matematisk problem er i denne forbindelse et problem, som ikke kan løses med rutineprægede færdigheder, men kræver

Læs mere

Undervisningsplan: Matematik Skoleåret 2014/2015 Strib Skole: 5B Ugenumre: Hovedområder: Emner og temaer: Side 1 af 5

Undervisningsplan: Matematik Skoleåret 2014/2015 Strib Skole: 5B Ugenumre: Hovedområder: Emner og temaer: Side 1 af 5 Ugenumre: Hovedområder: Emner og temaer: 33 Addition og subtraktion Anvendelse af regningsarter 34 Multiplikation og division Anvendelse af regningsarter 35 Multiplikation med decimaltal Anvendelse af

Læs mere

Årsplan matematik 5 kl 2015/16

Årsplan matematik 5 kl 2015/16 Årsplan matematik 5 kl 2015/16 I matematik bruger vi bogsystemet Sigma som grundmateriale, og har matematikfessor som suplerende materiale, samt kopisider. I systemet er der,ud over grundbogen, også kopiark

Læs mere

Årsplan for 7. klasse, matematik

Årsplan for 7. klasse, matematik Årsplan for 7. klasse, matematik I matematik bruger vi bogsystemet Sigma som grundmateriale. I systemet er der, ud over grundbogen, også kopiark og tests tilknyttet de enkelte kapitler. Systemet er udarbejdet

Læs mere

Geometri i plan og rum

Geometri i plan og rum INTRO I kapitlet arbejder eleverne med plane og rumlige figurers egenskaber og med deres anvendelse som geometriske modeller. I den forbindelse kommer de bl.a. til at beskæftige sig med beregninger af

Læs mere

Matematik. Matematiske kompetencer

Matematik. Matematiske kompetencer Matematiske kompetencer formulere sig skriftligt og mundtligt om matematiske påstande og spørgsmål og have blik for hvilke typer af svar, der kan forventes (tankegangskompetence) løse matematiske problemer

Læs mere

Årsplan for 5. klasse, matematik

Årsplan for 5. klasse, matematik Ringsted Lilleskole, Uffe Skak Årsplan for 5. klasse, matematik Som det fremgår af nedenstående uddrag af undervisningsministeriets publikation om fælles trinmål til matematik efter 6. klasse, bliver faget

Læs mere

Andreas Nielsen Kalbyrisskolen 2009

Andreas Nielsen Kalbyrisskolen 2009 Andreas Nielsen Kalbyrisskolen 2009 Matematiske kompetencer. Matematiske emner (tal og algebra, geometri, statistik og sandsynlighed). Matematik i anvendelse. Matematiske arbejdsmåder. Tankegangskompetence

Læs mere

Årsplan 2013/2014 6. ÅRGANG: MATEMATIK. Lyreskovskolen. FORMÅL OG FAGLIGHEDSPLANER - Fælles Mål II 2009

Årsplan 2013/2014 6. ÅRGANG: MATEMATIK. Lyreskovskolen. FORMÅL OG FAGLIGHEDSPLANER - Fælles Mål II 2009 Årsplan 2013/2014 6. ÅRGANG: MATEMATIK FORMÅL OG FAGLIGHEDSPLANER - Fælles Mål II 2009 Formålet med undervisningen i matematik er, at eleverne udvikler matematiske r og opnår viden og kunnen således, at

Læs mere

Matematik på Humlebæk lille Skole

Matematik på Humlebæk lille Skole Matematik på Humlebæk lille Skole Matematikundervisningen på HLS er i overensstemmelse med Undervisningsministeriets Fælles Mål, dog med få justeringer som passer til vores skoles struktur. Det betyder

Læs mere

Klassen er sammenlæst, altså 5 og 6 klasse på en og samme tid. Samtidig er klassen pt på ca 11 elever ialt.

Klassen er sammenlæst, altså 5 og 6 klasse på en og samme tid. Samtidig er klassen pt på ca 11 elever ialt. Introduktion til mat i 5/6 klasse Vejle Privatskole 13/14: Klassen er sammenlæst, altså 5 og 6 klasse på en og samme tid. Samtidig er klassen pt på ca 11 elever ialt. Udgangspunktet bliver en blød screening,

Læs mere

Mundtlig gruppeprøve i matematik. 17-09-2012 klaus.fink@uvm.dk Mobil: 2041 0721 Side 1

Mundtlig gruppeprøve i matematik. 17-09-2012 klaus.fink@uvm.dk Mobil: 2041 0721 Side 1 Mundtlig gruppeprøve i matematik 2012 klaus.fink@uvm.dk Mobil: 2041 0721 Side 1 Hvorfor en mundtlig prøve? Der er trinmål, vi ikke kan prøve eleverne i ved en skriftlig prøve Eller kun delvist kan prøve

Læs mere

Matematik. Trinmål 2. Nordvestskolen 2006 Forord. Trinmål 2 (4. 6. klasse)

Matematik. Trinmål 2. Nordvestskolen 2006 Forord. Trinmål 2 (4. 6. klasse) Matematik Trinmål 2 Nordvestskolen 2006 Forord Forord For at sikre kvaliteten og fagligheden i folkeskolen har Undervisningsministeriet udarbejdet faghæfter til samtlige fag i folkeskolen med bindende

Læs mere

Matematik. Matematiske kompetencer

Matematik. Matematiske kompetencer Matematiske kompetencer skelne mellem definitioner og sætninger, mellem enkelttilfælde og generaliseringer og anvende denne indsigt til at udforske og indgå i dialog om forskellige matematiske begrebers

Læs mere

Fagårsplan 10/11 Fag: Matematik Klasse: 7.ABC Lærer: Henrik Stillits. Fagområde/ emne

Fagårsplan 10/11 Fag: Matematik Klasse: 7.ABC Lærer: Henrik Stillits. Fagområde/ emne Fagårsplan 10/11 Fag: Matematik Klasse: 7.ABC Lærer: Henrik Stillits. Fagområde/ emne Matematiske færdigheder Grundlæggende færdigheder - plus, minus, gange, division (hele tal, decimaltal og brøker) Identificer

Læs mere

Årsplan for matematik 2012-13

Årsplan for matematik 2012-13 Årsplan for matematik 2012-13 Uge Tema/emne Metode/mål 32 Matematiske arbejdsmåder(metode) 33 Intro 34 Tal + talforståelse 35 Brøker-procent 36 Potens+kvadrat-og kubikrod 37 Emneuge 38 Ligninger-uligheder

Læs mere

Årsplan 9. klasse matematik 2013-2014 Uge Emne Faglige mål Trinmål Materialer/ systemer 33 Årsprøven i matematik

Årsplan 9. klasse matematik 2013-2014 Uge Emne Faglige mål Trinmål Materialer/ systemer 33 Årsprøven i matematik Årsplan 9. klasse matematik 2013-2014 33 Årsprøven i matematik Årsprøve og rettevejledledning 34-35 36 og løbe nde Talmængder og regnemetoder Mundtlig matematik 37 Fordybelses uge 38-39 Procent - Gennemgå

Læs mere

Matematik Basis. Faglige mål. Kernestof. Supplerende stof

Matematik Basis. Faglige mål. Kernestof. Supplerende stof Matematik Basis Undervisningens mål er, at kursisten kan: a) forstå tallenes opbygning i positionssystemet samt gange og dividere med et multiplum af 10 b) forstå de fire regningsarter og vælge hensigtsmæssige

Læs mere

10.klasse. Naturfaglige fag: Matematik, Fysik/kemi. Matematik. Formål for faget matematik

10.klasse. Naturfaglige fag: Matematik, Fysik/kemi. Matematik. Formål for faget matematik 10.klasse Naturfaglige fag: Matematik, Fysik/kemi Matematik Formål for faget matematik Formålet med undervisningen er, at eleverne udvikler matematiske kompetencer og opnår viden og kunnen således, at

Læs mere

Års- og aktivitetsplan i matematik hold 4 2014/2015

Års- og aktivitetsplan i matematik hold 4 2014/2015 Års- og aktivitetsplan i matematik hold 4 2014/2015 Der arbejdes hen mod slutmålene i matematik efter 10. klassetrin. www.uvm.dk => Fælles Mål 2009 => Faghæfter alfabetisk => Matematik => Slutmål for faget

Læs mere

Algebra INTRO. I kapitlet arbejdes med følgende centrale matematiske begreber:

Algebra INTRO. I kapitlet arbejdes med følgende centrale matematiske begreber: INTRO Kapitlet sætter fokus på algebra, som er den del af matematikkens sprog, hvor vi anvender variable. Algebra indgår i flere af bogens kapitler, men hensigten med dette kapitel er, at eleverne udvikler

Læs mere

Årsplan 8. klasse matematik 2013-2014 Uge Emne Faglige mål Trinmål Materialer/ systemer 33 og løbende

Årsplan 8. klasse matematik 2013-2014 Uge Emne Faglige mål Trinmål Materialer/ systemer 33 og løbende Årsplan 8. klasse matematik 2013-2014 33 løbende 33-34 løbende Løbende Problemregning ( faglig læsning) Mundtlig matematik (forberede oplæg til 6. klasse) - flere forskellige trinmål Ben, formelsamlingen,

Læs mere

MATEMATIK. Formål for faget

MATEMATIK. Formål for faget Fælles Mål II MATEMATIK Formål for faget Fælles Mål Formålet med undervisningen i matematik er, at eleverne bliver i stand til at forstå og anvende matematik i sammenhænge, der vedrører dagligliv, samfundsliv

Læs mere

Matematik. Matematiske kompetencer

Matematik. Matematiske kompetencer Matematiske kompetencer skelne mellem definitioner og sætninger, mellem enkelttilfælde og generaliseringer og anvende denne indsigt til at udforske og indgå i dialog om forskellige matematiske begrebers

Læs mere

Fagplan for matematik

Fagplan for matematik Fagplan for matematik Formål Undervisningen i matematik skal give eleverne lyst til, forståelse for og teoretisk baggrund for at analysere, vurdere, kontrollere og argumentere, når de i deres dagligdag

Læs mere

Den mundtlige prøve i matematik og forenklede Fælles Mål Odense 20. April 2015

Den mundtlige prøve i matematik og forenklede Fælles Mål Odense 20. April 2015 Den mundtlige prøve i matematik og forenklede Fælles Mål Odense 20. April 2015 153 = 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 + 11 + 12 + 13 + 14+ 15 + 16 + 17 153 = 1! + 2! + 3! + 4! + 5! 153 = 1 3 + 5

Læs mere

Årsplan for matematik

Årsplan for matematik Årsplan for matematik 2016-17 Uge Tema/emne Metode/mål 33 Brøker + talforståelse Matematiske arbejdsmåder(metode) 34 Brøker + procent 35 Excel 35 GeoGebra/Geometri 36 Geometri 37 Emneuge 38 Geometri 39

Læs mere

Matematik. Formål for faget matematik. Slutmål for faget matematik efter 9. klasse. Matematiske kompetencer. Matematiske emner

Matematik. Formål for faget matematik. Slutmål for faget matematik efter 9. klasse. Matematiske kompetencer. Matematiske emner Formål for faget matematik Matematik Formålet med undervisningen er, at eleverne udvikler matematiske kompetencer og opnår viden og kunnen således, at de bliver i stand til at begå sig hensigtsmæssigt

Læs mere

www.aalborg-friskole.dk

www.aalborg-friskole.dk www.aalborg-friskole.dk Sohngårdsholmsvej 47, 9000 Aalborg, Tlf.98 14 70 33, E-mail: kontor@aalborg-friskole.dk Årsplan for 9. klasse Matematik 12/13 Materialer Matematik-Tak for 9. klasse Matematik for

Læs mere

Space Challenge og Undervisningsminsteriets Fælles Mål for folkeskolen

Space Challenge og Undervisningsminsteriets Fælles Mål for folkeskolen Space Challenge og Undervisningsminsteriets Fælles Mål for folkeskolen I dette kapitel beskrives det, hvilke Fælles Mål man kan nå inden for udvalgte fag, når man i skolen laver aktiviteter med Space Challenge.

Læs mere

Overordnet set kan man inddele matematikholdige tekster i to kategorier tekster i matematiksammenhænge og tekster i andre sammenhænge.

Overordnet set kan man inddele matematikholdige tekster i to kategorier tekster i matematiksammenhænge og tekster i andre sammenhænge. I Fælles Mål 2009 er faglig læsning en del af CKF et matematiske arbejdsmåder. Faglig læsning inddrages gennem elevernes arbejde med hele Kolorit 8, men i dette kapitel sætter vi et særligt fokus på denne

Læs mere

Tal og algebra. I kapitlet arbejdes med følgende centrale matematiske begreber: algebra variable. Huskeliste: Tændstikker (til side 146) FRA FAGHÆFTET

Tal og algebra. I kapitlet arbejdes med følgende centrale matematiske begreber: algebra variable. Huskeliste: Tændstikker (til side 146) FRA FAGHÆFTET I kapitlet skal eleverne arbejde med fire forskellige vinkler på algebra de præsenteres på kapitlets første mundtlige opslag. De fire vinkler er algebra som et redskab til at løse matematiske problemer.

Læs mere

LÆRINGSMÅL PÅ NIF MATEMATIK 2014-15

LÆRINGSMÅL PÅ NIF MATEMATIK 2014-15 LÆRINGSMÅL PÅ NIF MATEMATIK 2014-15 Mål for undervisningen i Matematik på NIF Følgende er baseret på de grønlandske læringsmål, tilføjelser fra de danske læringsmål står med rød skrift. Læringsmål Yngstetrin

Læs mere

Kompetencemål i undervisningsfaget Matematik yngste klassetrin

Kompetencemål i undervisningsfaget Matematik yngste klassetrin Kompetencemål i undervisningsfaget Matematik yngste klassetrin Kort bestemmelse af faget Faget matematik er i læreruddannelsen karakteriseret ved et samspil mellem matematiske emner, matematiske arbejds-

Læs mere

Der er ikke væsentlig niveauforskel i opgaverne inden for de fire emner, men der er fokus på forskellige matematiske områder.

Der er ikke væsentlig niveauforskel i opgaverne inden for de fire emner, men der er fokus på forskellige matematiske områder. Dette tema lægger forskellige vinkler på temaet biografen. Udgangspunktet er således ikke et bestemt matematisk område, men et stykke virkelighed, der bl.a. kan beskrives ved hjælp af matematik. I dette

Læs mere

Kommentarer til matematik B-projektet 2015

Kommentarer til matematik B-projektet 2015 Kommentarer til matematik B-projektet 2015 Mandag d. 13/4 udleveres årets eksamensprojekt i matematik B. Dette brev er tænkt som en hjælp til vejledningsprocessen for de lærere, der har elever, som laver

Læs mere

Matematik 3. klasse Årsplan

Matematik 3. klasse Årsplan Matematik 3. klasse Årsplan Årets overordnede mål inddelt i faglige kategorier: Tal og algebra Kende positionssystemet. Kunne veksle mellem titusinder og hundredetusinder. Kunne gange med 10. Kunne gange

Læs mere

It i Fælles mål 2009- Matematik

It i Fælles mål 2009- Matematik It i Fælles mål 2009- Matematik Markeringer af hvor it er nævnt. Markeringen er ikke udtømmende og endelig. Flemming Holt, PITT Aalborg Kommune Fælles Mål 2009 - Matematik Faghæfte 12 Formål for faget

Læs mere

Skolens formål med faget matematik følger beskrivelsen af formål i folkeskolens Fælles Mål:

Skolens formål med faget matematik følger beskrivelsen af formål i folkeskolens Fælles Mål: Formål: Skolens formål med faget matematik følger beskrivelsen af formål i folkeskolens Fælles Mål: Formålet med undervisningen i matematik er, at eleverne bliver i forstå og anvende matematik i sammenhænge,

Læs mere

Årsplan matematik 7 kl 2015/16

Årsplan matematik 7 kl 2015/16 Årsplan matematik 7 kl 2015/16 I matematik bruger vi bogsystemet Sigma som grundmateriale, og har matematikfessor som suplerende materiale, samt kopisider. I systemet er der,ud over grundbogen, også kopiark

Læs mere

LEGO MINDSTORMS Education. Green City. Fremtiden tilhører de kreative. Problemløsning. Robotter og it Kreativitet. Samarbejde.

LEGO MINDSTORMS Education. Green City. Fremtiden tilhører de kreative. Problemløsning. Robotter og it Kreativitet. Samarbejde. LEGO MINDSTORMS Education Green City Robotter og it Kreativitet Samarbejde Problemløsning Fremtiden tilhører de kreative Mikro Værkstedet Læring for fremtiden LEGO MINDSTORMS Education har bevist, at det

Læs mere

Matematik - undervisningsplan

Matematik - undervisningsplan I 4. klasse starter man på andet forløb i matematik, der skal lede frem mod at eleverne kan opfylde fagets trinmål efter 6. klasse. Det er dermed det som undervisningen tilrettelægges ud fra og målsættes

Læs mere

Rettevejledning, FP10, endelig version

Rettevejledning, FP10, endelig version Rettevejledning, FP10, endelig version I forbindelse med FP9, Matematik, Prøven med hjælpemidler, maj 2016, afholdes forsøg med en udvidet rettevejledning. I forbindelse med FP10 fremstiller opgavekommissionen

Læs mere

Faglige delmål og slutmål i faget Matematik. Trin 1

Faglige delmål og slutmål i faget Matematik. Trin 1 Faglige delmål og slutmål i faget Matematik. Trin 1 Faglige delmål for matematik i 1. og 2. klasse. Undervisningen skal lede frem mod, at eleverne efter 2. klasse har tilegnet sig kundskaber og færdigheder,

Læs mere

Årsplan matematik 4.klasse - skoleår 11/12- Ida Skov Andersen Med ret til ændringer og justeringer

Årsplan matematik 4.klasse - skoleår 11/12- Ida Skov Andersen Med ret til ændringer og justeringer Basis: Klassen består af 22 elever og der er afsat 4 ugentlige timer. Grundbog: Vi vil arbejde ud fra Matematrix 4, arbejds- og grundbog, kopisider, Rema, ekstraopgaver og ugentlige afleveringsopgaver

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer Hold Termin hvori undervisningen afsluttes: Juni 2017 HANSENBERG

Læs mere

Læseplan for faget matematik. 1. 9. klassetrin

Læseplan for faget matematik. 1. 9. klassetrin Læseplan for faget matematik 1. 9. klassetrin Matematikundervisningen bygger på elevernes mange forudsætninger, som de har med når de starter i skolen. Der bygges videre på elevernes forskellige faglige

Læs mere

Årsplan for matematik i 1. klasse 2010-11

Årsplan for matematik i 1. klasse 2010-11 Årsplan for matematik i 1. klasse 2010-11 Vanløse den 6. juli 2010 af Musa Kronholt Formål for faget matematik Formålet med undervisningen er, at eleverne udvikler matematiske kompetencer og opnår viden

Læs mere

ræsonnere og argumentere intuitivt om konkrete matematiske aktiviteter og følge andres mundtlige argumenter (ræsonnementskompetence)

ræsonnere og argumentere intuitivt om konkrete matematiske aktiviteter og følge andres mundtlige argumenter (ræsonnementskompetence) Matematiske kompetencer indgå i dialog om spørgsmål og svar, som er karakteristiske i arbejdet med matematik (tankegangskompetence) løse matematiske problemer knyttet til en kontekst, der giver mulighed

Læs mere

Mål Kompetencer Matematiske arbejdsmåder. Problembehandling. Ræsonnement

Mål Kompetencer Matematiske arbejdsmåder. Problembehandling. Ræsonnement Forslag til årsplan for 9. klasse, matematik Udarbejdet af Susanne Nielson og Pernille Peiter revideret august 2011 af pædagogisk konsulent Rikke Teglskov 33-38 Rumgeometri Kende og anvende forskellige

Læs mere

FFM Matematik pop-up eftermiddag. CFU, UCC 11. Maj 2015

FFM Matematik pop-up eftermiddag. CFU, UCC 11. Maj 2015 FFM Matematik pop-up eftermiddag CFU, UCC 11. Maj 2015 Formål Deltagerne har: Kendskab til Forenklede Fælles Måls opbygning Kendskab til tankegangen bag den målstyrede undervisning i FFM Kendskab til læringsmål

Læs mere

Når vi forbereder et nyt emne eller område vælger vi de metoder, materialer og evalueringsformer, der egner sig bedst til forløbet.

Når vi forbereder et nyt emne eller område vælger vi de metoder, materialer og evalueringsformer, der egner sig bedst til forløbet. MATEMATIK Delmål for fagene generelt. Al vores undervisning hviler på de i Principper for skole & undervisning beskrevne områder (- metoder, materialevalg, evaluering og elevens personlige alsidige udvikling),

Læs mere

bruge en formel-samling

bruge en formel-samling Geometri Længdemål og omregning mellem længdemål... 56 Omkreds og areal af rektangler og kvadrater... 57 Omkreds og areal af andre figurer... 58 Omregning mellem arealenheder... 6 Nogle geometriske begreber

Læs mere

Vejledende årsplan for matematik 5.v 2009/10

Vejledende årsplan for matematik 5.v 2009/10 Vejledende årsplan for matematik 5.v 2009/10 Uge Emne Formål Opgaver samt arbejdsområder 33-36 Geometri 1 Indlæring af geometriske navne Figurer har bestemte egenskaber Lære at måle vinkler med vinkelmåler

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer Hold Termin hvori undervisningen afsluttes: Juni 2017 HANSENBERG

Læs mere

Matematik. Matematikundervisningen tager udgangspunkt i Folkeskolens Fælles Mål

Matematik. Matematikundervisningen tager udgangspunkt i Folkeskolens Fælles Mål Matematik Matematikundervisningen tager udgangspunkt i Folkeskolens Fælles Mål Formålet med undervisningen i matematik er, at eleverne bliver i stand til at forstå og anvende matematik i sammenhænge, der

Læs mere

forstå, arbejde med og analysere problemstillinger af matematisk art i sammenhænge, der vedrører dagligliv, samfundsliv og naturforhold

forstå, arbejde med og analysere problemstillinger af matematisk art i sammenhænge, der vedrører dagligliv, samfundsliv og naturforhold Årsplan for undervisningen i matematik på 4. klassetrin 2006/2007 Retningslinjer for undervisningen i matematik: Da Billesborgskolen ikke har egne læseplaner for faget matematik, udgør folkeskolens formål

Læs mere

Dette kapitel tager især udgangspunkt i det centrale kundskabs- og færdighedsområde: Matematik i anvendelse med økonomi som omdrejningspunktet.

Dette kapitel tager især udgangspunkt i det centrale kundskabs- og færdighedsområde: Matematik i anvendelse med økonomi som omdrejningspunktet. Dette kapitel tager især udgangspunkt i det centrale kundskabs- og færdighedsområde: Matematik i anvendelse med økonomi som omdrejningspunktet. Kapitlet indledes med fokus på løn og skat og lægger op til,

Læs mere

Matematik - undervisningsplan Årsplan 2015 & 2016 Klassetrin: 9-10.

Matematik - undervisningsplan Årsplan 2015 & 2016 Klassetrin: 9-10. Form Undervisningen vil veksle mellem individuelt arbejde, gruppearbejde og tavleundervisning. Materialer Undervisningen tager udgangspunkt i følgende grundbøger og digitale lærings- og undervisningsplatforme.

Læs mere

Hvad er matematik? Indskolingskursus

Hvad er matematik? Indskolingskursus Hvad er matematik? Indskolingskursus Vordingborg 25. 29. april 2016 Matematikbog i 50 erne En bonde sælger en sæk kartofler for 40 kr. Fremstillingsomkostningerne er 4/5 af salgsindtægterne. Hvor stor

Læs mere

Årsplan 2012/2013. 9. årgang: Matematik. Lyreskovskolen. FORMÅL OG FAGLIGHEDSPLANER - Fælles Mål II 2009

Årsplan 2012/2013. 9. årgang: Matematik. Lyreskovskolen. FORMÅL OG FAGLIGHEDSPLANER - Fælles Mål II 2009 Årsplan 2012/2013 9. årgang: Matematik FORMÅL OG FAGLIGHEDSPLANER - Fælles Mål II 2009 Formålet med undervisningen i matematik er, at eleverne udvikler matematiske r og opnår viden og kunnen således, at

Læs mere

Mundtlighed i matematikundervisningen

Mundtlighed i matematikundervisningen Mundtlighed i matematikundervisningen 1 Mundtlighed Annette Lilholt Side 2 Udsagn! Det er nemt at give karakter i færdighedsregning. Mine elever får generelt højere standpunktskarakter i færdighedsregning

Læs mere

MATEMATIK SLUTMÅL FOR FAGET MATEMATIK

MATEMATIK SLUTMÅL FOR FAGET MATEMATIK MATEMATIK FORMÅLET FOR FAGET Formålet med undervisningen i matematik er, at eleverne bliver i stand til at forstå og anvende matematik i sammenhænge, der vedrører dagligliv, samfundsliv og naturforhold.

Læs mere

Geometriske eksperimenter

Geometriske eksperimenter I kapitlet arbejder eleverne med nogle af de egenskaber, der er knyttet til centrale geometriske figurer og begreber (se listen her under). Set fra en emneorienteret synsvinkel handler kapitlet derfor

Læs mere

MATEMATIK. Basismål i matematik på 1. klassetrin:

MATEMATIK. Basismål i matematik på 1. klassetrin: MATEMATIK Basismål i matematik på 1. klassetrin: at kunne indgå i samtale om spørgsmål og svar, som er karakteristiske i arbejdet med matematik at kunne afkode og anvende tal og regnetegn og forbinde dem

Læs mere

Årsplan for matematik 4.kl 2013-2014 udarbejdet af Anne-Marie Kristiansen (RK)

Årsplan for matematik 4.kl 2013-2014 udarbejdet af Anne-Marie Kristiansen (RK) Matematikundervisningen vil i år ændre sig en del fra, hvad eleverne kender fra de tidligere år. vil få en fælles grundbog, hvor de ikke må skrive i, et kladdehæfte, som de skal skrive i, en arbejdsbog

Læs mere

Matematik. Jonas Albrekt Karmann (JK) og Shiva Qvistgaard Sharifi (SQ) Mål for undervisningen:

Matematik. Jonas Albrekt Karmann (JK) og Shiva Qvistgaard Sharifi (SQ) Mål for undervisningen: Matematik Årgang: Lærer: 7. årgang Jonas Albrekt Karmann (JK) og Shiva Qvistgaard Sharifi (SQ) Mål for : Formålet med er, at udvikler matematiske kompetencer og opnår viden og kunnen således, at de bliver

Læs mere

Øresunds Internationale Skole Engvej 153, 2300 København S. Tlf.: 32598002 www.o-i-s.dk ois@mail.sonofon.dk

Øresunds Internationale Skole Engvej 153, 2300 København S. Tlf.: 32598002 www.o-i-s.dk ois@mail.sonofon.dk Øresunds Internationale Skole Engvej 153, 2300 København S. Tlf.: 32598002 www.o-i-s.dk ois@mail.sonofon.dk Øresunds Internationale Skole læseplan for matematik. Formål for faget matematik Formålet med

Læs mere

Læseplan og fælles mål for matematik på Engskolen Januar 2005

Læseplan og fælles mål for matematik på Engskolen Januar 2005 Læseplan og fælles mål for matematik på Engskolen Januar 2005 (Fælles mål faghæfte 12 matematik 1.udgave, 1.oplag 2003 ) Indhold 1. Indledning 2. Formål for faget matematik 3. Fælles mål 4. Læreplan 5.

Læs mere

Faglig årsplan 2010-2011 Skolerne i Oure Sport & Performance. Emne Tema Materialer. Læringsmål Faglige aktiviteter. Evaluering.

Faglig årsplan 2010-2011 Skolerne i Oure Sport & Performance. Emne Tema Materialer. Læringsmål Faglige aktiviteter. Evaluering. Fag: Matematik Hold: 27 Lærer: Jesper Svejstrup Pedersen Undervisnings-mål 9 klasse Læringsmål Faglige aktiviteter Emne Tema Materialer ITinddragelse Evaluering 32-37 i arbejdet med geometri at benytte

Læs mere

Vejledende årsplan for matematik 4.v 2008/09

Vejledende årsplan for matematik 4.v 2008/09 Vejledende årsplan for matematik 4.v 2008/09 Uge Emne Formål Opgaver samt arbejdsområder 33-35 Kendskab og skriftligt arbejde At finde elevernes individuelle niveau samt tilegne mig kendskab til deres

Læs mere

Eleverne skal lære at:

Eleverne skal lære at: PK: Årsplan 8.Ga. M, matematik Tid og fagligt område Aktivitet Læringsmål Uge 32 uge 50 Tal og algebra Eleverne skal arbejde med at: kende de reelle tal og anvende dem i praktiske og teoretiske sammenhænge

Læs mere

Modellering med Lego education kran (9686)

Modellering med Lego education kran (9686) Modellering med Lego education kran (9686) - Et undervisningsforløb i Lego education med udgangspunkt i matematiske emner og kompetencer Af: Ralf Jøker Dohn Henrik Dagsberg Kranen - et modelleringsprojekt

Læs mere

Årsplan matematik 1.klasse - skoleår 12/13- Ida Skov Andersen Med ret til ændringer og justeringer

Årsplan matematik 1.klasse - skoleår 12/13- Ida Skov Andersen Med ret til ændringer og justeringer BASIS: Klassen består af 26 elever og der er afsat 5 ugentlige timer. Grundbog: Vi vil arbejde ud fra Matematrix 1A og 1B, de tilhørende kopisider + CD-rom, Rema samt evt. ekstraopgaver. Derudover vil

Læs mere

Eleven kan handle med overblik i sammensatte situationer med matematik. Eleven kan anvende rationale tal og variable i beskrivelser og beregninger

Eleven kan handle med overblik i sammensatte situationer med matematik. Eleven kan anvende rationale tal og variable i beskrivelser og beregninger Kompetenceområde Efter klassetrin Efter 6. klassetrin Efter 9. klassetrin Matematiske kompetencer handle hensigtsmæssigt i situationer med handle med overblik i sammensatte situationer med handle med dømmekraft

Læs mere

Årsplan for matematik i 2. klasse 2013-14

Årsplan for matematik i 2. klasse 2013-14 Årsplan for matematik i 2. klasse 2013-14 Klasse: 2. Fag: Matematik Lærer: Ali Uzer Lektioner pr. uge: 5(mandag, tirsdag, onsdag, torsdag, fredag) Formål for faget matematik Formålet med undervisningen

Læs mere

Af jord er vi kommet

Af jord er vi kommet Evaluering af Matematik for 5 og 6 kl.: Af jord er vi kommet Heden, Samsø, Ulla Fredsøe Undervisningsplan Emne: Af jord er vi kommet Fag: Matematik 6. kl. Forløbsperiode: August September 2013 Begrundelse

Læs mere

Fagårsplan 10/11 Fag: Matematik Klasse: 8.A Lærer: Henrik Stillits Fagområde/ emne Færdighedsregning - Typer af opgaver - Systematik

Fagårsplan 10/11 Fag: Matematik Klasse: 8.A Lærer: Henrik Stillits Fagområde/ emne Færdighedsregning - Typer af opgaver - Systematik Fagårsplan 10/11 Fag: Matematik Klasse: 8.A Lærer: Henrik Stillits Fagområde/ emne Færdighedsregning - Typer af opgaver - Systematik Periode Mål Eleverne skal: 32/33 Få kendskab til opgavetypen og få rutine.

Læs mere