Eksperimenter med areal og rumfang. Aktivitet Emne Klassetrin Side

Størrelse: px
Starte visningen fra side:

Download "Eksperimenter med areal og rumfang. Aktivitet Emne Klassetrin Side"

Transkript

1 VisiRegn ideer 5 Eksperimenter med areal og rumfang Inge B. Larsen INFA juli 2001 Indhold: Aktivitet Emne Klassetrin Side Vejledning til Areal og Rumfang 2 Red burhønsene. Vejledn. 3-7 Største kasse til centicubes. Vejledn Elevaktiviteter til Areal og Rumfang 5.1 Red burhønsene (B)-M-Æ Største kasse til centicubes (B)-M-Æ Angivelsen af klassetrin må naturligvis tages med en del forbehold. B: Begyndertrinnet klasse M: Mellemtrinnet klasse Æ: Ældste klassetrin klasse 1

2 Eksperimenter med areal og rumfang VisiRegn Vejledning Citat fra Formål og Centrale Kundskabs- og Færdighedsområder for Matematik: Eleverne skal opnå et handleberedskab over for problemer, der ikke er af rutinemæssig art, og de skal være fortrolige med eksperimenterende arbejdsformer Et problem, der skal lægge op til en eksperimenterende arbejdsform, bør være åbent, og det ideelle ville være, om eleverne ud fra en kort præsentation af problemet selv vælger, hvilken vej de vil gå for at finde en løsning. I hver af de følgende to aktiviteter (Red burhønsene og Største kasse til centicubes) er der i det første afsnit givet en sådan åben formulering af et problem, og man kan vælge kun at give eleverne disse afsnit. Ønsker man at styre eleverne gennem et bestemt forløb, kan man anvende opgaverne, der følger efter det første afsnit. Problemet bør ud over at være åbent også være af en sådan art, at det kan udforskes ved indsamling af erfaringer af forskellig art. Problemfeltet, der tages op i de to følgende aktiviteter, er bestemmelse af størsteværdi. Et problemfelt, der traditionelt hører hjemme i gymnasiet, men som man udmærket kan arbejde med i hele skoleforløbet. Erfaringer kan indsamles på de første klassetrin ved arbejdet med konkrete materialer, og senere kan man anvende gættemetoden (og VisiRegn). Med gættemetoden kan man blot med kendskab til de gængse formler for areal og rumfang indsamle erfaringer, der leder frem til en bestemmelse af størsteværdien. Ved en eksperimenterende arbejdsform vil læreren være vigtig som den, der kan inspirere eleverne til at udforske problemet og stimulere deres nysgerrighed overfor, hvad der mon kan være en løsning på problemet. Ligeledes vil der af læreren kræves en åbenhed og fleksibilitet overfor elevernes egne forslag til, hvordan problemet kan tackles. Læreren må også være den, der om nødvendigt gør eleverne opmærksomme på de matematiske værktøjer, der står til deres rådighed. Endelig har læreren en vigtig rolle i forbindelse med trimningen af elevernes logiske ræsonnementer ud fra de indsamlede data. En eksperimenterende arbejdsform kan kendetegnet ved følgende faser: Gæt (overvej hvad en løsning på problemet kunne være) (skærper opmærksomheden overfor problemet) (skærper nysgerrigheden ( Har jeg mon ret? )) Indsaml data (gennem arbejdet med konkrete materialer og/eller ved hjælp af en model) Lav oversigter (tabeller/grafer over de indsamlede data) Konkludér (ræsonnér/argumentér ud fra det indsamlede materiale) Formulér afledede problemer (fx: hvad nu, hvis man ændrede lidt på forudsætningerne?) 2

3 Red burhønsene Aktivitet 5.1 Bestemmelse af største areal, når omkredsen er givet. Også kaldet det isoperimetriske problem. Den praktiske iklædning af problemet: Hønseavler Jensen har besluttet, at burhønsene skal have en rigtig udendørs hønsegård. Jensen har mere end rigelig plads til hønsegården, men han har desværre kun 24 meter hegn. Han (og hønsene) vil naturligvis helst have hønsegården så stor som muligt (dvs., at den skal have så stort et areal som muligt). Man skal være opmærksom på, at nogle (mange?) elever nok vil mene, at når man har 24 meter hegn, så er hønsegårdens størrelse (dvs. areal) dermed fastlagt uanset hvilken form, man giver hønsegården. Den tro bør man rokke ved med nogle eksempler. Hvis man til en start beslutter, at en hønsegård skal være rektangulær, så kan problemet demonstreres med et stykke sejlgarn bundet sammen, så det danner en ring på ca. 24 cm. Hold det udspændt mellem pegefingre og tommeltotter og variér så med disse rektanglets sider. Man kan fx have en lang smal hønsegård, hvor hønsene kan løbe om kap, eller man kan have en mere bred hønsegård. Problemet kan faktisk have interesse på ethvert klassetrin, idet behandlingen af det styres af de matematiske værktøjer, man har til rådighed på det pågældende klassetrin. På de første klassetrin kan man tegne hønsegårde med samme omkreds op på kvadreret papir og så tælle, hvor mange fliser (tern) der er i hver hønsegård. Man kan også bruge centicubes som hønsegårdsfliser og med dem bygge hønsegårde, der alle kræver 24 skridt for at komme rundt, og så finde ud af, hvilken af disse hønsegårde, der skal bruges flest fliser til. På mellemtrinnet kan man (sådan som de efterfølgende aktiviteter lægger op til) i VisiRegn opstille en model for problemet og vha. gættemetoden finde frem til en løsning. På de ældste klassetrin kan elever med kendskab til andengradsfunktionen og dens grafiske billede, parablen, løse det oprindelige problem på følgende måde: Den ene side er x meter, hvor 0<x<12. Den anden side må så være 24/2 x meter, dvs. 12-x meter. Arealet af rektanglet er så for 0<x<12 følgende funktion af x: f(x) = x(12-x) Altså f(x) = - x x Det grafiske billede af funktionen f er en sur parabel med toppunkt (her altså størsteværdi) for x = (-12/-2) = 6 Altså bliver arealet størst, når rektanglet er et kvadrat med siden 6. 3

4 Opgave 1) Der tages udgangspunkt i et bestemt rektangel med omkreds 24 m, og man ser, at når længden er valgt til 8 m, så er det muligt at finde bredden. Opgave 2)-3) Det er vigtigt, at eleven er klar over, at når omkredsen altid skal være 24 meter, så kan man vælge længden (dog skal den jo være mindre end 24/2), men dermed vil så også bredden være fastlagt. Den sammenhæng som blev udnyttet i det specielle tilfælde i opgave 1) skal nu generaliseres: længde+bredde er den halve omkreds, så bredde kan udtrykkes som: omkreds/2 - længde En anden måde at udtrykke bredde på kunne være: Det er det halve af det, der bliver tilbage, når man fra omkredsen trækker 2 gange længden: (omkreds-2*længde)/2 Det er oplagt (her som mange andre steder) at se på, hvordan forskellige udtryk kan bruges til at beskrive en bestemt sammenhæng. Forhåbentlig vil eleverne selv som forslag komme med forskellige udtryk, og det vil så være oplagt at overveje, hvorfor to forskellige udtryk giver det samme resultat. Sådanne overvejelser lægger op til algebraiske regneregler og reduktion af udtryk se også VisiRegn ideer 4: Ligeværdige udtryk. Opgave 5) Man er nødt til at tænke nøjere over problemet, hvis man skal give et gæt på en løsning - med andre ord: opstille en hypotese, som man så i det videre arbejde prøver at få bekræftet. Opgave 6)-12) Når man har indsat udtrykket længde*bredde for areal, kan man bruge gættemetoden til at bestemme den værdi for a, der giver det største areal. Man spores ind på, at det her er praktisk at samle gættene op i en tabel og at afbilde tabelværdierne i xy-punkter, så det er nemt at se hvilken længdeværdi, der giver det største areal. Ser man kun på heltal, er det tydeligt at længden 6 giver det største areal. Men måske er der værdier mellem 5 og 6, som giver et større areal? Dette kan let udforskes ved fortsat brug af gættemetoden på den opstillede model. Se skærmbilledet på næste side. Opgave 13) Nærliggende spørgsmål, som man måske kan få eleverne til selv at formulere: Hvis omkredsen (hegnet) ikke længere er 24 meter, men fx 40 meter eller 30 meter, hvad skal så siderne i rektanglet være for at give det største areal? Vil man igen få at det største areal opnås ved et kvadrat? Skulle eleverne ikke selv stille spørgsmålet, så er der i denne opgave lagt op til det. Her skal omkreds, der hidtil har været fastholdt som 24 m ændres i modellen til 31.5 m. Opgave 14) Der er her ingen grænser for, hvilken form man kan forsøge at give hønsegården. Måske vil man forsøge sig med trekanter med omkreds 24, og udforske dels hvilken form (stumpvinklet?, retvinklet?, ligebenet?, ligesidet?) trekanten skal have for at arealet bliver så stort som muligt. Man tegner trekanter med omkredsen 24, måler en af højderne og regner arealet ud. Måske kan man også ræsonnere sig frem til at nogle trekantstyper vil give bedre resultater end andre. Går man i gang med andre polygoner med omkreds 24, kan man opdele dem i trekanter og derigennem finde deres areal. 4

5 Opgave 6)-12): Opgave 15)-16) I værdifeltet kan værdien af PI vises med 7 decimaler som Højreklikker man på værdifeltet med dette tal, vises værdien i et lille vindue i E-notation, og man får angivet PI med 10 decimaler som Som altid ved gættemetoden bør man samle op i en tabel, som så også er dokumentation for ens løsning. Eksempel: radius omkreds Opgave 17) *Udfordring Man kan naturligvis også sætte en baglæns regnende model ind: 5

6 Opgave 18) Det er formentlig umiddelbart klart for eleverne, at når Jensen får den ene side i hegnet forærende, så kan hønsegården blive større. Det skulle nu gerne være klart for eleven, at man starter med at angive modellens inddata og så finder uddata vha. udtryk, der beskriver afhængigheden af inddata. Det springende punkt vil naturligvis være at kunne bestemme disse udtryk for afhængigheden. Opgave 19) Her kan man lige som ved opgave 6 finde halvcirklens radius ved gættemetoden anvendt på en passende VisiRegn model. En udfordring kunne være i stedet, som i opgave 17), at opstille en tilbageregnende model, der har cirklens halve omkreds som inddata og cirklens radius som uddata. Opgave 20)-22) Ideen med mur til erstatning for hegn føres et skridt videre, og de fundne resultater samles, og der konkluderes. P.S. Problemet med at få så stort et areal som muligt ud fra en given omkreds kaldes for det isoperimetriske problem (iso betyder samme og perimeter betyder omkreds). Et fysisk bevis for at cirklen giver det største areal kan fås vha. fx kobbertråd, sytråd og sæbevand. Kobbertråden formes til en rektangulær ramme med håndtag. Et stykke sytråd bindes i ring, og ringen fastgøres med sytråd til rammen tre steder. Rammens fire felter forsynes med sæbehinde ved at rammen dyppes i sæbevand. Sæbehinder forsøger altid at minimere deres areal, så prikker man forsigtigt hul i ringens sæbehinde, vil der danne sig en flot cirkel, da de resterende sæbehinder minimerer deres areal, når ringens areal gøres så stort som muligt. En mere udførlig behandling af det isoperimetriske problem kan findes i Vagn Lundsgaard Hansen Temaer fra geometrien. S Matematiklærerforeningen 1992 P.S. 2 En nærliggende tanke kunne være at betragte areal af hønsegårde med samme omkreds og af form som regulære n-sidede polygoner. Man kunne starte med at finde arealet af en ligesidet trekant (n=3), dernæst gå til kvadratet (n=4), så til den regulære femkant (n=5), osv. Det ville være tidskrævende at tegne, måle og beregne på sådanne figurer for at finde deres areal. 6

7 Man kunne i stedet i VisiRegn opbygge en model, som den nedenfor, der som inddata har n (og omkredsen) og som uddata har arealet af den regulære n-polygon med den givne omkreds (og diverse mellemresultater). Fra centrum i den omskrevne cirkel tænkes polygonen opdelt i n ligebenede trekanter, hvor g er grundlinie, v er topvinkel og h er højden på grundlinien. arealt er arealet af en sådan trekant arealp er polygonens areal. Til sammenligning er også fundet arealc arealet af cirklen med den givne omkreds. Det ses af tabellen og grafen, hvordan arealet af polygonerne for voksende n nærmer sig cirklens areal. Med denne model kan man hurtigt finde, at når omkredsen er 24 m, så har man fx, at arealet af en regulær 100-sidet polygon er m 2 (angivet med 2 decimaler), og arealet af en regulær 1000-sidet polygon er 45,84 m 2 (angivet med 2 decimaler), osv. 7

8 Største kasse til centicubes Aktivitet 5.2 Bestemmelse af største rumfang, der kan opnås for en kasse, dannet af et papstykke, som man fraklipper kvadrater i hjørnerne. Opgave 1)-2) Her må man overveje, hvad siden i kvadrathjørnet overhovedet kan være. Det vil nok også være på sin plads at aftale, at man i første omgang kun ser på hele antal cm. Opgave 3) Brug kopier af side 10 med 2 kvadrater (12 cm x 12 cm) tegnet ind til at klippe og samle kasser af forskellig størrelse. Når man har de 5 forskellige kasser at se på, vil det måske nok forekomme lidt lettere at vælge en af dem til at være den, der kan rumme flest centicubes. Mange erfaringer viser, at det sjældent er den rigtige, der vælges. Opgave 4) Her fokuseres på at beskrive den sammenhæng, der er mellem hjørnekvadratets side og kassens højde, længde og bredde. Dette skal anvendes ved udformningen af VisiRegn-arket i næste opgave. Opgave 5)-7) Sammenhold resultatet med de tidligere gæt ved opgaverne 2) og 3). 8

9 Opgave 8)-9) Her kan man starte med igen at bygge kasser eller man kan gå direkte til VisiRegn modellen og tilpasse denne til den nye situation først med papside 18 cm og dernæst papside 24 cm. Løsningerne indhentet her kunne hjælpe med til at se mere generelt på problemet, sådan som der lægges op til det i den sidste opgave. Opgave 10) Kassen med det største rumfang vil altid være den, der fremkommer, når man vælger hjørnekvadraternes side til 1/6 af kvadratets side. ***** Også dette problem kan angribes i hele skoleforløbet, men med forskelligt matematisk værktøj til rådighed: På de første klassetrin kan man bygge kasserne, fylde en af dem med centicubes og dernæst forsøge at flytte disse centicubes over i en anden kasse og på den måde afgøre, hvor der er plads til flest. Senere i skoleforløbet kan man opstille en model for problemet i VisiRegn og vha. gættemetoden finde frem til en løsning. I gymnasiet kan man løse opgaven vha. differentialregning: Lad siden i papstykket være a cm og lad hjørnekvadratets side være x cm. Kassens rumfang er da følgende funktion af x (hvor 0 < x < a/2): f(x) = x (a-2x)(a-2x) f(x) = 4x 3-4ax 2 + a 2 x Bestemmelse af størsteværdi for f(x) i intervallet 0 < x < a/2: f (x) = 12x 2-8ax + a 2 f (x) = 12(x-a/6)(x-a/2) Fortegnsovervejelse: max. voksende aftagende f(x) f (x) 0 a/6 a/2 x Altså har rumfanget størsteværdi for x = a/6 9

10 10

11 Red burhønsene VisiRegn Aktivitet 5.1 Hønseavler Jensen har besluttet, at burhønsene skal have en rigtig udendørs hønsegård. Jensen har mere end rigelig plads til hønsegården, men han har desværre kun 24 meter hegn. Han (og hønsene) vil naturligvis helst have hønsegården så stor som muligt (dvs., at den skal have så stort et areal som muligt). Jensen beslutter sig i første omgang for, at hønsegården skal have form af et rektangel. 1) Hvis rektanglets længde er 8 m (og omkredsen er altså 24 m), hvad er så rektanglets bredde? m 2) længde bredde Hvis man kender længden og ved, at omkredsen skal være 24 m, hvordan kan man så finde bredden (hvad gjorde du i opgave 1)? 3) Opstil som nedenfor, og opbyg udtrykket for bredde ved hjælp af omkreds og længde. 4) Hvad må rektanglets længde nødvendigvis være mindre end? m 5) Gæt på hvad længden skal være, for at rektanglets areal bliver så stort som muligt? m 6) Indsæt også udtrykket for areal. (Husk enheder). 11

12 Red burhønsene VisiRegn Aktivitet 5.1 7) T-mærk længde og areal og start med at indsætte værdierne 1 og 2 for længde. 8) Vælg Grafik/Fra tabel/xy-punkter og få punkterne forbundet med rette liniestykker (højreklik på grafikbilledet). 9) Fortsæt nu med at afprøve med 3, 4, 5, osv. som længde, og iagttag hvordan kurven for areal opfører sig. 10) Bestem hvad hønsegårdens længde og bredde skal være, for at hønsegården får så stort et areal som muligt. (Brug både tabel og xy-punkter). længde: bredde: areal: 11) Prøv også for en sikkerheds skyld med længdeværdier, der ligger tæt på dit resultat i 10). Fx værdier, der er 0,5 m større eller 0,5 m mindre end den længde du fandt i 10). 12) Hvad kalder man et rektangel, som det du fandt i 10)? Antag nu at hegnet (dvs. omkredsen) ikke er 24 m men derimod 31,5 m og brug så VisiRegn modellen til at løse opgaven igen. 13) Hønsene får så mest plads med: længde: og deraf bredde: og deraf areal: 12

13 Red burhønsene VisiRegn Aktivitet ) Jensen overvejede, om han kunne få et endnu større areal ud af sine 24 m hegn, hvis han valgte en anden figur end en firkant. Kunne han mon det? Fx kunne han af de 24 m hegn fremstille en cirkelrund hønsegård. Tror du, at den vil blive større end 36 m 2? 15) Vi vil i VisiRegn opstille en model, der kan bruges til at finde arealet af en sådan cirkelrund hønsegård. Dertil får vi brug for formlerne for omkreds og areal af en cirkel: omkreds = 2*ð*radius areal = ð*radius*radius Tallet ð er indbygget i VisiRegn som PI med så mange decimaler, som programmet kan klare. Indtast PI som udtryk og aflæs værdien: For at kunne finde arealet af en cirkel med omkreds 24 meter, må man først finde cirklens radius. Opstil som nedenfor og brug gættemetoden til at finde, hvad radius skal være (angivet i meter med 2 decimaler), for at omkredsen kommer så tæt som muligt på 24 m uden at overstige 24 m. radius = m 16) Indsæt nu udtryk for cirklens areal. Hvad giver det? areal = m 2 (Gættede du rigtigt i opgave 14?) 13

14 Red burhønsene VisiRegn Aktivitet ) *Udfordring: Opstil en VisiRegn-model, der ud fra omkredsen for en cirkel direkte (uden gættemetode som ovenfor) finder radius (og arealet) for cirklen? Altså inddata for modellen: omkreds og uddata for modellen: radius og areal 18) Jensen har en mur omkring sin grund, og han kom nu i tanke om, at hønsegården nok kunne gøres større, hvis han brugte muren som den ene side i hønsegården. Tror du, at han har ret i det? Han vil så bygge en rektangulær hønsegård af de 24 m hegn (og muren). Han kalder nu længden for a og bredden for b, som vist på tegningen. mur Altså må der gælde, at b + a + b = 24. Brug denne sammenhæng til at finde a, når man kender b: a = Opstil som nedenfor en model i VisiRegn, der har b (og hegn) som inddata, og som uddata giver a og areal. 14

15 Red burhønsene VisiRegn Aktivitet 5.1 Brug modellen og gættemetoden til at bestemme, hvad b (og dermed a) skal være, for at arealet bliver så stort som muligt. Resultat: b = m giver a = m og areal = m 2 19) Hvor stor kunne hønsegården mon blive, hvis de 24 meter hegn i stedet var blevet brugt til en halvcirkel? Muren skulle så udgøre den afgrænsende diameter i halvcirklen. Tror du, at hønsegården bliver større? Når den halve omkreds er 24 m, hvad er så hele cirklens omkreds? m For at kunne finde arealet af halvcirklen, må man først finde radius i cirklen. Bestem radius (i meter med 2 decimaler), sådan at cirklens halve omkreds er så tæt som muligt på 24 m uden at overstige 24 m (se evt. fremgangsmåden i opgave 15). radius = m Hvad er så hønsegårdens areal? areal = m 2 mur 20) Jensen får nu den idé, at han kan lægge hønsegården i et af murens hjørner, sådan at de to sider i hønsegården udgøres af muren. Han håber så at kunne gøre hønsegården større med de 24 meter hegn? 15

16 Red burhønsene VisiRegn Aktivitet 5.1 mur mur Tror du, at han kan gøre hønsegården større på den måde? Hvor stor kan den blive? a = m, b = m og areal = m 2 21) Hvordan ville det gå, hvis han stadig brugte hjørnemuren men nu gav hønsegården form af en kvartcirkel? mur mur Man må igen først bestemme radius i cirklen for at kunne finde arealet. Bestem radius (i meter med 2 decimaler), så længden af den kvarte cirkel er så tæt som muligt på 24 m uden at overstige 24 m. radius = m Hvad er så hønsegårdens areal? areal = m 2 16

17 Red burhønsene VisiRegn Aktivitet ) Saml dine resultater om hønsegårde i skemaet nedenfor. Ingen mur Mur på en side Mur på to sider Opgave 10) areal = Opgave 18) areal = Opgave 20) areal = Rektangulær Opgave 16) areal = Opgave 19) areal = Opgave 21) areal = Cirkulær Beskriv med dine egne ord, hvad din undersøgelse af forskellige former for hønsegårde har ført til: 17

18 Største kasse til centicubes VisiRegn Aktivitet 5.2 På en skole har man kvadratiske papstykker med siden 12 cm, og man beslutter, at disse skal bruges til kasser til opbevaring af centicubes. Man vil derfor ved hvert papstykke skære et kvadrat af hvert hjørne og så folde til en åben kasse, der holdes sammen med tape. 12 cm x x Kassen skal kunne indeholde så mange centicubes som muligt. Vi vil undersøge, hvor stor siden så skal være i det kvadrat, man skærer af et hjørne. 1) Hvad må x nødvendigvis være mindre end? cm 2) Gæt her inden du starter en undersøgelse: Siden i de 4 kvadrater, der skæres væk, skal være cm 3) Byg fem forskellige kasser. Kig på dem, og gæt igen: Siden i de 4 kvadrater, der skæres væk, skal være cm 18

19 Største kasse til centicubes VisiRegn Aktivitet 5.2 4) Hvis siden i hver af de 4 kvadrater, som man skærer væk, er x cm, hvad er så kassens: højde? cm længde? cm bredde? cm 5) Opstil i VisiRegn en model, der som inddata har længden af siden på det oprindelige papstykke og siden på det hjørnekvadrat, man afskærer. Som uddata skal modellen levere kassens højde, længde, bredde og rumfang. 6) Lav en tabel over x og tilhørende rumfang, og afbild tabellens værdier som xy-punkter. 7) Brug tabel og graf til at bestemme, hvilken værdi x skal have, for at der kan være så mange centicubes i kassen som muligt. Husk at tjekke for x- værdier i nærheden af den værdi, du har fundet. Når der skal være plads til så mange centicubes i kassen som muligt, hvad skal så siden x i det afskårne hjørnekvadrat være? Hvor mange centicubes er der så plads til? Antag nu at papstykkets side ikke er 12 cm men derimod 18 cm. 8) Hvad skal så siden x i de afskårne hjørnekvadrater være, for at kassens rumfang kan blive så stort som muligt? Gæt først: cm og find så svaret: cm 19

20 Største kasse til centicubes VisiRegn Aktivitet 5.2 Antag nu at papstykkets side er 24 cm. 9) Hvad skal så siden x i de afskårne hjørnekvadrater være, for at kassens rumfang kan blive så stort som muligt? Gæt først: cm og find så svaret: cm Saml resultaterne fra 7), 8) og 9) sammen til besvarelse af følgende: 10) Hvor stor en del udgør hjørnekvadratets side x af hele papstykkets side, når a) papstykkets side er 12 cm: b) papstykkets side er 18 cm: c) papstykkets side er 24 cm: Beskriv med dine egne ord, de resultater, du har fundet: 20

VisiRegn: En e-bro mellem regning og algebra

VisiRegn: En e-bro mellem regning og algebra Artikel i Matematik nr. 2 marts 2001 VisiRegn: En e-bro mellem regning og algebra Inge B. Larsen Siden midten af 80 erne har vi i INFA-projektet arbejdet med at udvikle regne(arks)programmer til skolens

Læs mere

GEOMETRI I PLAN OG RUM

GEOMETRI I PLAN OG RUM LÆRERVEJLEDNING GEOMETRI I PLN OG RUM Kopiark Indhold og kommentarer Vejledende sværhedsgrad Tilknytning til Kolorit 9 matematik grundbog Navne på figurer På siden arbejder eleverne med navnene på forskellige

Læs mere

bruge en formel-samling

bruge en formel-samling Geometri Længdemål og omregning mellem længdemål... 56 Omkreds og areal af rektangler og kvadrater... 57 Omkreds og areal af andre figurer... 58 Omregning mellem arealenheder... 6 Nogle geometriske begreber

Læs mere

Ligeværdige udtryk. Aktivitet Emne Klassetrin Side. Vejledning til Ligeværdige udtryk 2

Ligeværdige udtryk. Aktivitet Emne Klassetrin Side. Vejledning til Ligeværdige udtryk 2 VisiRegn ideer 4 Ligeværdige udtryk Inge B. Larsen ibl@dpu.dk INFA juli 2001 Indhold: Aktivitet Emne Klassetrin Side Vejledning til Ligeværdige udtryk 2 Elevaktiviteter til Ligeværdige udtryk 4.1 Ligeværdige

Læs mere

Talregning. Aktivitet Emne Klassetrin Side. Indledning til VisiRegn ideer 1-7 2 Oversigt over VisiRegn ideer 1-7 3

Talregning. Aktivitet Emne Klassetrin Side. Indledning til VisiRegn ideer 1-7 2 Oversigt over VisiRegn ideer 1-7 3 VisiRegn ideer 1 Talregning Inge B. Larsen ibl@dpu.dk INFA juli 2001 Indhold: Aktivitet Emne Klassetrin Side Indledning til VisiRegn ideer 1-7 2 Oversigt over VisiRegn ideer 1-7 3 Vejledning til Talregning

Læs mere

Matematik interne delprøve 09 Tesselering

Matematik interne delprøve 09 Tesselering Frederiksberg Seminarium Opgave nr. 60 Matematik interne delprøve 09 Tesselering Line Købmand Petersen 30281023 Hvad er tesselering? Tesselering er et mønster, der består af en eller flere figurer, der

Læs mere

Projekt 1.5: Tagrendeproblemet en modelleringsøvelse!

Projekt 1.5: Tagrendeproblemet en modelleringsøvelse! Projekt 1.5: Tagrendeproblemet en modelleringsøvelse! Det er velkendt at det største rektangel med en fast omkreds er et kvadrat. Man kan nemt illustrere dette i et værktøjsprogram ved at tegne et vilkårligt

Læs mere

Det er en af de hyppigst forekommende udregninger i den elementære talbehandling at beregne gennemsnit eller middeltal af en række tal.

Det er en af de hyppigst forekommende udregninger i den elementære talbehandling at beregne gennemsnit eller middeltal af en række tal. Tre slags gennemsnit Allan C. Malmberg Det er en af de hyppigst forekommende udregninger i den elementære talbehandling at beregne gennemsnit eller middeltal af en række tal. For mange skoleelever indgår

Læs mere

Bjørn Grøn. Euklids konstruktion af femkanten

Bjørn Grøn. Euklids konstruktion af femkanten Bjørn Grøn Euklids konstruktion af femkanten Euklids konstruktion af femkanten Side af 17 Euklids konstruktion af femkanten Et uddrag af sætninger fra Euklids Elementer, der fører frem til konstruktionen

Læs mere

Konstruktion. d: En cirkel med diameter 7,4 cm. e: En trekant med grundlinie på 9,6 cm og højde på 5,2 cm. (Der er mange muligheder)

Konstruktion. d: En cirkel med diameter 7,4 cm. e: En trekant med grundlinie på 9,6 cm og højde på 5,2 cm. (Der er mange muligheder) 1: Tegn disse figurer: a: Et kvadrat med sidelængden 3,5 cm. b: En cirkel med radius 4,. c: Et rektangel med sidelængderne 3,6 cm og 9,. d: En cirkel med diameter 7,. e: En trekant med grundlinie på 9,6

Læs mere

Gratisprogrammet 27. september 2011

Gratisprogrammet 27. september 2011 Gratisprogrammet 27. september 2011 1 Brugerfladen: Små indledende øvelser: OBS: Hvis et eller andet ikke fungerer, som du forventer, skal du nok vælge en anden tilstand. Dette ses til højre for ikonerne

Læs mere

MULTI PRINTARK CAROLINE KREIBERG ANETTE SKIPPER-JØRGENSEN RIKKE TEGLSKOV GYLDENDAL

MULTI PRINTARK CAROLINE KREIBERG ANETTE SKIPPER-JØRGENSEN RIKKE TEGLSKOV GYLDENDAL 8 MULTI PRINTARK CAROLINE KREIBERG ANETTE SKIPPER-JØRGENSEN RIKKE TEGLSKOV GYLDENDAL DIGITALE VÆRKTØJER A1.1 SORTER LIGNINGER 2x + 3 = 15 x 17 = 25 61 x = 37 2x + 11 = 5x 10 x 2 = 2x + 3 4x + 1 5 = 9 4x

Læs mere

Matematik. Trinmål 2. Nordvestskolen 2006 Forord. Trinmål 2 (4. 6. klasse)

Matematik. Trinmål 2. Nordvestskolen 2006 Forord. Trinmål 2 (4. 6. klasse) Matematik Trinmål 2 Nordvestskolen 2006 Forord Forord For at sikre kvaliteten og fagligheden i folkeskolen har Undervisningsministeriet udarbejdet faghæfter til samtlige fag i folkeskolen med bindende

Læs mere

geometri trin 2 brikkerne til regning & matematik preben bernitt

geometri trin 2 brikkerne til regning & matematik preben bernitt brikkerne til regning & matematik geometri trin 2 preben bernitt brikkerne til regning & matematik geometri, trin 2 ISBN: 978-87-92488-16-9 1. Udgave som E-bog 2003 by bernitt-matematik.dk Kopiering er

Læs mere

Projekt 1.4 Tagrendeproblemet en instruktiv øvelse i modellering med IT.

Projekt 1.4 Tagrendeproblemet en instruktiv øvelse i modellering med IT. Projekt 1.4 Tagrendeproblemet en instruktiv øvelse i modellering med IT. Projektet kan bl.a. anvendes til et forløb, hvor en af målsætningerne er at lære om samspillet mellem værktøjsprogrammernes geometriske

Læs mere

Matematik Delmål og slutmål

Matematik Delmål og slutmål Matematik Delmål og slutmål Ferritslev friskole 2006 SLUTMÅL efter 9. Klasse: Regning med de rationale tal, såvel som de reelle tal skal beherskes. Der skal kunne benyttes og beherskes formler i forbindelse

Læs mere

Funktioner generelt. for matematik pä B- og A-niveau i stx og hf. 2014 Karsten Juul

Funktioner generelt. for matematik pä B- og A-niveau i stx og hf. 2014 Karsten Juul Funktioner generelt for matematik pä B- og A-niveau i st og hf f f ( ),8 014 Karsten Juul 1 Funktion og dens graf, forskrift og definitionsmängde 11 Koordinatsystem I koordinatsystemer (se Figur 1): -akse

Læs mere

Tip til 1. runde af Georg Mohr-Konkurrencen Geometri

Tip til 1. runde af Georg Mohr-Konkurrencen Geometri Tip til. runde af - Geometri, Kirsten Rosenkilde. Tip til. runde af Geometri Her er nogle centrale principper om og strategier for hvordan man løser geometriopgaver. et er ikke en særlig teoretisk indføring,

Læs mere

LÆRINGSMÅL PÅ NIF MATEMATIK 2014-15

LÆRINGSMÅL PÅ NIF MATEMATIK 2014-15 LÆRINGSMÅL PÅ NIF MATEMATIK 2014-15 Mål for undervisningen i Matematik på NIF Følgende er baseret på de grønlandske læringsmål, tilføjelser fra de danske læringsmål står med rød skrift. Læringsmål Yngstetrin

Læs mere

Rettevejledning, FP10, endelig version

Rettevejledning, FP10, endelig version Rettevejledning, FP10, endelig version I forbindelse med FP9, Matematik, Prøven med hjælpemidler, maj 2016, afholdes forsøg med en udvidet rettevejledning. I forbindelse med FP10 fremstiller opgavekommissionen

Læs mere

Funktioner generelt. for matematik pä B-niveau i stx. 2013 Karsten Juul

Funktioner generelt. for matematik pä B-niveau i stx. 2013 Karsten Juul Funktioner generelt for matematik pä B-niveau i st f f ( ),8 0 Karsten Juul Funktioner generelt for matematik pä B-niveau i st Funktion, forskrift, definitionsmångde Find forskrift StÇrste og mindste vårdi

Læs mere

MATEMATIK, MUNDTLIG PRØVE TEMA: SEFTON PARK PALM HOUSE

MATEMATIK, MUNDTLIG PRØVE TEMA: SEFTON PARK PALM HOUSE MATEMATIK, MUNDTLIG PRØVE TEMA: SEFTON PARK PALM HOUSE I den midtengelske by Liverpool ligger bydelen Sefton med Sefton Park - et parkanlæg, der bl.a. er kendt for det ottekantede palmehus, hvor man kan

Læs mere

Hunden kan sige et nyt tal (legen kan selvfølgelig udvides til former) hver dag, men kun det tal.

Hunden kan sige et nyt tal (legen kan selvfølgelig udvides til former) hver dag, men kun det tal. 4. oktober 9.00-15.00 Tårnby Faglig læsning Program Præsentation Hunden - en aktivitet til at vågne op på Oplæg om begrebsdannelse Aktiviteter hvor kroppen er medspiller Matematikkens særlige sprog Aktiviteter

Læs mere

Mattip om. Arealer 2. Tilhørende kopi: Arealer 4 og 5. Du skal lære om: Repetition af begreber og formler. Arealberegning af en trekant

Mattip om. Arealer 2. Tilhørende kopi: Arealer 4 og 5. Du skal lære om: Repetition af begreber og formler. Arealberegning af en trekant Mattip om Arealer 2 Du skal lære om: Repetition af begreber og formler Kan ikke Kan næsten Kan Arealberegning af en trekant Arealberegning af en trapez Tilhørende kopi: Arealer 4 og 5 2016 mattip.dk 1

Læs mere

Du skal lave en tegning af bordet set lige på fra alle sider (fra langsiden, den korte side, fra oven og fra neden - 4 tegninger i alt).

Du skal lave en tegning af bordet set lige på fra alle sider (fra langsiden, den korte side, fra oven og fra neden - 4 tegninger i alt). Mit bord. Tegn det bord, du sidder ved. Du skal lave en tegning af bordet set lige på fra alle sider (fra langsiden, den korte side, fra oven og fra neden - 4 tegninger i alt). Tegningerne skal laves på

Læs mere

Matematik på Åbent VUC

Matematik på Åbent VUC Lektion 8 Geometri Når du bruger denne facitliste skal du være opmærksom på, at: - der kan være enkelte fejl. - nogle af facitterne er udeladt - bl.a. der hvor facitterne er tegninger. - decimaltal kan

Læs mere

areal og rumfang trin 1 brikkerne til regning & matematik preben bernitt

areal og rumfang trin 1 brikkerne til regning & matematik preben bernitt brikkerne til regning & matematik areal og rumfang trin 1 preben bernitt brikkerne til regning & matematik areal og rumfang, trin 1 ISBN: 978-87-92488-17-6 1. Udgave som E-bog 2003 by bernitt-matematik.dk

Læs mere

Hop videre med. Udforskning af opgaverne for 6. og 7. klassetrin i Danmark. 1 a) Tegn alle de mulige symmetriakser på vejskiltene.

Hop videre med. Udforskning af opgaverne for 6. og 7. klassetrin i Danmark. 1 a) Tegn alle de mulige symmetriakser på vejskiltene. Hop videre med Udforskning af opgaverne ne bygger videre på opgaver fra Kænguruen og lægger op til, at klassen sammen kan diskutere og udforske problemstillingerne. Opgavenumrene henviser til de opgaver,

Læs mere

Lærereksemplar. Kun til lærerbrug GEOMETRI 89. Kopiering er u-økonomisk og forbudt til erhvervsformål.

Lærereksemplar. Kun til lærerbrug GEOMETRI 89. Kopiering er u-økonomisk og forbudt til erhvervsformål. Kun salg ved direkte kontakt mellem skole og forlag. Kopiering er u-økonomisk og forbudt til erhvervsformål. GEOMETRI 89 Side Emne 1 Indholdsfortegnelse 2 Måling af vinkler 3 Tegning og måling af vinkler

Læs mere

Matematiske færdigheder opgavesæt

Matematiske færdigheder opgavesæt Matematiske færdigheder opgavesæt SÆT + 0 :, 0 000 9 0 cm m 0 liter dl ton kg Hvilket år var der flest privatbiler i Danmark? Cirka hvor mange privatbiler var der i 99? 00 0 000 Priser i Tivoli, 00: Turpas

Læs mere

Matematik - undervisningsplan Årsplan 2015 & 2016 Klassetrin: 9-10.

Matematik - undervisningsplan Årsplan 2015 & 2016 Klassetrin: 9-10. Form Undervisningen vil veksle mellem individuelt arbejde, gruppearbejde og tavleundervisning. Materialer Undervisningen tager udgangspunkt i følgende grundbøger og digitale lærings- og undervisningsplatforme.

Læs mere

Geometri i plan og rum

Geometri i plan og rum INTRO I kapitlet arbejder eleverne med plane og rumlige figurers egenskaber og med deres anvendelse som geometriske modeller. I den forbindelse kommer de bl.a. til at beskæftige sig med beregninger af

Læs mere

geometri trin 1 brikkerne til regning & matematik preben bernitt

geometri trin 1 brikkerne til regning & matematik preben bernitt brikkerne til regning & matematik geometri trin 1 preben bernitt brikkerne til regning & matematik geometri, trin 1 ISBN: 978-87-92488-15-2 1. Udgave som E-bog 2003 by bernitt-matematik.dk Kopiering er

Læs mere

OM KAPITLET DIGITALE VÆRKTØJER. egne svar eller Elevernes egne forklaringer. I disse

OM KAPITLET DIGITALE VÆRKTØJER. egne svar eller Elevernes egne forklaringer. I disse OM KPITLET I dette kapitel om digitale værktøjer skal eleverne arbejde med anvendelse og vurdering af forskellige digitale værktøjer, som kan bruges til at løse opgaver og matematiske problemstillinger.

Læs mere

Geometriske eksperimenter

Geometriske eksperimenter I kapitlet arbejder eleverne med nogle af de egenskaber, der er knyttet til centrale geometriske figurer og begreber (se listen her under). Set fra en emneorienteret synsvinkel handler kapitlet derfor

Læs mere

MATEMATIK A-NIVEAU. Anders Jørgensen & Mark Kddafi. Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 2012

MATEMATIK A-NIVEAU. Anders Jørgensen & Mark Kddafi. Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 2012 MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 01 Kapitel 3 Ligninger & formler 016 MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver

Læs mere

Emmas og Frederiks nye værelser - maling eller tapet?

Emmas og Frederiks nye værelser - maling eller tapet? Emmas og Frederiks nye værelser - maling eller tapet? Emmas og Frederiks familie skal flytte til et nyt hus. De har fået lov til at bestemme, hvordan væggene på deres værelser skal se ud. Emma og Frederik

Læs mere

*HRPHWUL PHG *HRPH7ULFNV. - et fundament af erfaringer - et arbejde med undersøgelser og overvejelser

*HRPHWUL PHG *HRPH7ULFNV. - et fundament af erfaringer - et arbejde med undersøgelser og overvejelser *HRPHWUL PHG *HRPH7ULFNV q2nodvvh - et fundament af erfaringer - et arbejde med undersøgelser og overvejelser INFA 1998 1 Forord I den nye læseplan for matematik og i den tilhørende undervisningsvejledning

Læs mere

Læseplan for faget matematik. 1. 9. klassetrin

Læseplan for faget matematik. 1. 9. klassetrin Læseplan for faget matematik 1. 9. klassetrin Matematikundervisningen bygger på elevernes mange forudsætninger, som de har med når de starter i skolen. Der bygges videre på elevernes forskellige faglige

Læs mere

Inge B. Larsen ibl@dpu.dk INFA december 2001. Ideer til programmet Mønster

Inge B. Larsen ibl@dpu.dk INFA december 2001. Ideer til programmet Mønster Inge B. Larsen ibl@dpu.dk INFA december 2001 Ideer til programmet Mønster Indhold Emne Type Side Klassetrin Forord 2 Spejle og skubbe Aktivitet 1 3-4 B-M Spejling og symmetri Aktivitet 2 5-6 M-Æ Spejle

Læs mere

Undersøgelser af trekanter

Undersøgelser af trekanter En rød tråd igennem kapitlet er en søgen efter svar på spørgsmålet: Hvordan kan vi beregne os frem til længder, vi ikke kan komme til at måle?. Hvordan kan vi fx beregne højden på et træ eller et hus,

Læs mere

Uge Emne Formål Faglige mål Evaluering

Uge Emne Formål Faglige mål Evaluering Uge Emne Formål Faglige mål Evaluering (Der evalueres løbende på følgende hovedpunkter) 33-36 Regneregler Vedligeholde og udbygge forståelse og færdigheder inden for de fire regningsarter Blive fortrolig

Læs mere

LÆRERVEJLEDNING. Matematik -6. klase. Hasle bakker 4.-6.klassetrin

LÆRERVEJLEDNING. Matematik -6. klase. Hasle bakker 4.-6.klassetrin LÆRERVEJLEDNING Matematik -6. klase Hasle bakker 4.-6.klassetrin Lærervejledningen Forord: Hasle bakker forløbet er et nyskabende undervisningsmateriale hvor teknologien, i form af mobiltelefonen og dens

Læs mere

Optimale konstruktioner - når naturen former. Opgaver. Opgaver og links, der knytter sig til artiklen om topologioptimering

Optimale konstruktioner - når naturen former. Opgaver. Opgaver og links, der knytter sig til artiklen om topologioptimering Opgaver Opgaver og links, der knytter sig til artiklen om solsikke Opgave 1 Opgave 2 Opgaver og links, der knytter sig til artiklen om bobler Opgave 3 Opgave 4 Opgaver og links, der knytter sig til artiklen

Læs mere

Skolens formål med faget matematik følger beskrivelsen af formål i folkeskolens Fælles Mål:

Skolens formål med faget matematik følger beskrivelsen af formål i folkeskolens Fælles Mål: Formål: Skolens formål med faget matematik følger beskrivelsen af formål i folkeskolens Fælles Mål: Formålet med undervisningen i matematik er, at eleverne bliver i forstå og anvende matematik i sammenhænge,

Læs mere

Undervisningsplan for matematik

Undervisningsplan for matematik Undervisningsplan for matematik Formål for faget Formålet med undervisningen i matematik er, at eleverne udvikler kompetencer og opnår viden og kunnen således, at de bliver i stand til at begå sig hensigtsmæssigt

Læs mere

Vejledende årsplan for matematik 5.v 2009/10

Vejledende årsplan for matematik 5.v 2009/10 Vejledende årsplan for matematik 5.v 2009/10 Uge Emne Formål Opgaver samt arbejdsområder 33-36 Geometri 1 Indlæring af geometriske navne Figurer har bestemte egenskaber Lære at måle vinkler med vinkelmåler

Læs mere

Noter til læreren side 1 I Trinmål for faget matematik står der bl.a.

Noter til læreren side 1 I Trinmål for faget matematik står der bl.a. Noter til læreren side 1 I Trinmål for faget matematik står der bl.a. Undervisningen skal lede frem mod, at eleverne har tilegnet sig kundskaber og færdigheder, der sætter dem i stand til i arbejdet med

Læs mere

1 Oversigt I. 1.1 Poincaré modellen

1 Oversigt I. 1.1 Poincaré modellen 1 versigt I En kortfattet gennemgang af nogle udvalgte emner fra den elementære hyperbolske plangeometri i oincaré disken. Der er udarbejdet både et Java program HypGeo inkl. tutorial og en Android App,

Læs mere

Beregninger Microsoft Excel 2010 Grundforløb Indhold

Beregninger Microsoft Excel 2010 Grundforløb Indhold Indhold Arealberegning... 2 Kvadrat/rektangulær... 2 Rektangel... 2 Kvadrat... 2 Cirkel... 2 Omkredsberegning... 3 Kvadrat/rektangulær... 3 Rektangel... 3 Kvadrat... 3 Cirkel... 3 Rumfangsberegning...

Læs mere

Opgave design - oplæg til mundtlig prøve i matematik i 9. og 10. klasse - udvalgt baggrundsmateriale/ Mikael Skånstrøm

Opgave design - oplæg til mundtlig prøve i matematik i 9. og 10. klasse - udvalgt baggrundsmateriale/ Mikael Skånstrøm Opgave design - oplæg til mundtlig prøve i matematik i 9. og 10. klasse - udvalgt baggrundsmateriale/ Mikael Skånstrøm KOM-rapporten Prøvevejledning Fælles Mål http://pub.uvm.dk/2002/kom/hel.pdf http://qa.uvm.dk/uddannelser-og-dagtilbud/folkeskolen/afsluttendeproever/om-afsluttende-proever/proevevejledninger

Læs mere

Jeg er den største. Vagn Lundsgaard Hansen. Annoncering af en konkurrence

Jeg er den største. Vagn Lundsgaard Hansen. Annoncering af en konkurrence Normat 2/1998 71 Jeg er den største Vagn Lundsgaard Hansen Institut for Matematik Danmarks Tekniske Universitet Bygning 303 DK 2800 Lyngby V.L.Hansen@mat.dtu.dk Optimalitetsbetragtninger optræder i næsten

Læs mere

Rettevejledning, FP9, Prøven med hjælpemidler, endelig version

Rettevejledning, FP9, Prøven med hjælpemidler, endelig version Rettevejledning, FP9, Prøven med hjælpemidler, endelig version I forbindelse med FP9, Matematik, Prøven med hjælpemidler, maj 2016, afholdes forsøg med en udvidet rettevejledning. Den udvidede rettevejledning

Læs mere

Introduktion til cosinus, sinus og tangens

Introduktion til cosinus, sinus og tangens Introduktion til cosinus, sinus og tangens Jes Toft Kristensen 24. maj 2010 1 Forord Her er en lille introduktion til cosinus, sinus og tangens. Det var et af de emner jeg selv havde svært ved at forstå,

Læs mere

GeoGebra. Tegn følgende i Geogebra. Indsæt tegningen fra geogebra. 1. Indsæt punkterne: (2,3) (-2, 4) (-3, -4,5)

GeoGebra. Tegn følgende i Geogebra. Indsæt tegningen fra geogebra. 1. Indsæt punkterne: (2,3) (-2, 4) (-3, -4,5) Tegn følgende i Geogebra 1. Indsæt punkterne: (2,3) (-2, 4) (-3, -4,5) Forbind disse tre punker (brug polygon ) 2. Find omkreds, vinkler, areal og sidelængder 3. Tegn en vinkelret linje fra A og ned på

Læs mere

Talrækker. Aktivitet Emne Klassetrin Side

Talrækker. Aktivitet Emne Klassetrin Side VisiRegn ideer 3 Talrækker Inge B. Larsen ibl@dpu.dk INFA juli 2001 Indhold: Aktivitet Emne Klassetrin Side Vejledning til Talrækker 2-4 Elevaktiviteter til Talrækker 3.1 Talrækker (1) M-Æ 5-9 3.2 Hanoi-spillet

Læs mere

Opgaver hørende til undervisningsmateriale om Herons formel

Opgaver hørende til undervisningsmateriale om Herons formel Opgaver hørende til undervisningsmateriale om Herons formel 20. juni 2016 I Herons formel (Danielsen og Sørensen, 2016) er stillet en række opgaver, som her gengives. Referencer Danielsen, Kristian og

Læs mere

Studentereksamen i Matematik B 2012

Studentereksamen i Matematik B 2012 Studentereksamen i Matematik B 2012 (Gammel ordning) Besvarelse Ib Michelsen Ib Michelsen stx_121_b_gl 2 af 11 Opgave 1 På tegningen er gengivet 3 grafer for de nævnte funktioner. Alle funktionerne er

Læs mere

Tilfældige rektangler: Et matematikeksperiment Variable og sammenhænge

Tilfældige rektangler: Et matematikeksperiment Variable og sammenhænge Tilfældige rektangler: Et matematikeksperiment Variable og sammenhænge Baggrund: I de senere år har en del gymnasieskoler eksperimenteret med HOT-programmet i matematik og fysik, hvor HOT står for Higher

Læs mere

Regneark hvorfor nu det?

Regneark hvorfor nu det? Regneark hvorfor nu det? Af seminarielektor, cand. pæd. Arne Mogensen Et åbent program et værktøj... 2 Sådan ser det ud... 3 Type 1 Beregning... 3 Type 2 Præsentation... 4 Type 3 Gæt... 5 Type 4 Eksperiment...

Læs mere

Fagårsplan 10/11 Fag: Matematik Klasse: 7.ABC Lærer: Henrik Stillits. Fagområde/ emne

Fagårsplan 10/11 Fag: Matematik Klasse: 7.ABC Lærer: Henrik Stillits. Fagområde/ emne Fagårsplan 10/11 Fag: Matematik Klasse: 7.ABC Lærer: Henrik Stillits. Fagområde/ emne Matematiske færdigheder Grundlæggende færdigheder - plus, minus, gange, division (hele tal, decimaltal og brøker) Identificer

Læs mere

Matematik - undervisningsplan

Matematik - undervisningsplan I 4. klasse starter man på andet forløb i matematik, der skal lede frem mod at eleverne kan opfylde fagets trinmål efter 6. klasse. Det er dermed det som undervisningen tilrettelægges ud fra og målsættes

Læs mere

Matematik A August 2016 Delprøve 1

Matematik A August 2016 Delprøve 1 Anvendelse af løsningerne læses på hjemmesiden www.matematikhfsvar.page.tl Sættet løses med begrænset tekst og konklusion. Formålet er jo, at man kan se metoden, og ikke skrive af! Opgave 1 - Vektorer,

Læs mere

I denne opgave arbejder vi med følgende matematiske begreber:

I denne opgave arbejder vi med følgende matematiske begreber: I denne opgave arbejder vi med følgende matematiske begreber: En meter: 1 m. En kvadratmeter: 1 m. 1 m 2 1 m. En kubikmeter: 1 m 3 Radius-beregning af træet Find omkredsen af træet, mål i brysthøjde. Ca.

Læs mere

Den pythagoræiske læresætning

Den pythagoræiske læresætning Den pythagoræiske læresætning 1. Udfyld skemaet herunder dvs. find den manglende hypotenuse ved a 2 + b 2 = c 2 : 1 20 21 2 12 35 3 28 45 4 56 33 5 119 120 6 168 95 7 52 165 8 207 224 9 315 572 10 627

Læs mere

Mødet. 6 Geometri. Begreb Eksempel Navn. Parallel. Vinkelret. Linjestykke. Polygon. Cirkelperiferi. Midtpunkt. Linje. Diagonal. Radius.

Mødet. 6 Geometri. Begreb Eksempel Navn. Parallel. Vinkelret. Linjestykke. Polygon. Cirkelperiferi. Midtpunkt. Linje. Diagonal. Radius. 6.01 Mødet Begreb Eksempel Navn Parallel Vinkelret Linjestykke Polygon Cirkelperiferi Midtpunkt Linje Diagonal Radius Ret vinkel 6.02 Fire på stribe Regler Hver spiller får en spilleplade (6.03). Alle

Læs mere

Ideer til matematik-aktiviteter i yngstetrinet

Ideer til matematik-aktiviteter i yngstetrinet Ideer til matematik-aktiviteter i yngstetrinet Følgende ideer er ment som praktiske og konkrete ting, man kan bruge i matematik-undervisningen i de yngste klasser. Nogle af aktiviteterne kan bruges til

Læs mere

************************************************************************

************************************************************************ Projektet er todelt: Første del har fokus på Euklids system og består af introduktionen, samt I og II. Anden del har fokus på Hilberts system fra omkring år 1900 og består af III sammen med bilagene. Man

Læs mere

7 Trekanter. Faglige mål. Linjer i trekanter. Ligedannethed. Pythagoras. Trigonometri

7 Trekanter. Faglige mål. Linjer i trekanter. Ligedannethed. Pythagoras. Trigonometri 7 Trekanter Faglige mål Kapitlet Trekanter tager udgangspunkt i følgende faglige mål: Linjer i trekanter: kende til højde, vinkelhalveringslinje, midtnormal og median, kunne tegne indskrevne og omskrevne

Læs mere

Matematik 2011/2012 Skovbo Efterskole Trigonometri. Trigonometri

Matematik 2011/2012 Skovbo Efterskole Trigonometri. Trigonometri Trigonometri Spidse og stumpe vinkler En vinkel kaldes spids, når den er mindre end 90. En vinkel kaldes ret, når den er 90. En vinkel kaldes stump, når den er større end 90. En vinkel kaldes lige, når

Læs mere

Vejledende årsplan for matematik 4.v 2008/09

Vejledende årsplan for matematik 4.v 2008/09 Vejledende årsplan for matematik 4.v 2008/09 Uge Emne Formål Opgaver samt arbejdsområder 33-35 Kendskab og skriftligt arbejde At finde elevernes individuelle niveau samt tilegne mig kendskab til deres

Læs mere

Den mundtlige prøve i matematik og forenklede Fælles Mål Odense 20. April 2015

Den mundtlige prøve i matematik og forenklede Fælles Mål Odense 20. April 2015 Den mundtlige prøve i matematik og forenklede Fælles Mål Odense 20. April 2015 153 = 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 + 11 + 12 + 13 + 14+ 15 + 16 + 17 153 = 1! + 2! + 3! + 4! + 5! 153 = 1 3 + 5

Læs mere

Geometri Følgende forkortelser anvendes:

Geometri Følgende forkortelser anvendes: Geometri Følgende forkortelser anvendes: D eller d = diameter R eller r = radius K eller k = korde tg = tangent Fig. 14 Benævnelser af cirklens liniestykker Cirkelperiferien inddeles i grader Cirkelperiferien

Læs mere

Matematik B. Studentereksamen

Matematik B. Studentereksamen Matematik B Studentereksamen 2st101-MAT/B-01062010 Tirsdag den 1. juni 2010 kl. 9.00-13.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål. Delprøven

Læs mere

Når vi forbereder et nyt emne eller område vælger vi de metoder, materialer og evalueringsformer, der egner sig bedst til forløbet.

Når vi forbereder et nyt emne eller område vælger vi de metoder, materialer og evalueringsformer, der egner sig bedst til forløbet. MATEMATIK Delmål for fagene generelt. Al vores undervisning hviler på de i Principper for skole & undervisning beskrevne områder (- metoder, materialevalg, evaluering og elevens personlige alsidige udvikling),

Læs mere

fx 8 Sandsynligheden for at slå en 4 er med en 6-sidet 1 terning 2

fx 8 Sandsynligheden for at slå en 4 er med en 6-sidet 1 terning 2 Logik Udsagn Reduktion Ligninger Uligheder Regnehistorier I en trekant er den største vinkel 0 større end den næststørste og denne igen 0 større end den mindste. Find vinklernes gradtal. = og Lig med og

Læs mere

Matematik på Humlebæk lille Skole

Matematik på Humlebæk lille Skole Matematik på Humlebæk lille Skole Matematikundervisningen på HLS er i overensstemmelse med Undervisningsministeriets Fælles Mål, dog med få justeringer som passer til vores skoles struktur. Det betyder

Læs mere

Matematik. Matematikundervisningen tager udgangspunkt i Folkeskolens Fælles Mål

Matematik. Matematikundervisningen tager udgangspunkt i Folkeskolens Fælles Mål Matematik Matematikundervisningen tager udgangspunkt i Folkeskolens Fælles Mål Formålet med undervisningen i matematik er, at eleverne bliver i stand til at forstå og anvende matematik i sammenhænge, der

Læs mere

Matematik for malere. praktikopgaver. Geometri Regneregler Areal Procent. Tilhører:

Matematik for malere. praktikopgaver. Geometri Regneregler Areal Procent. Tilhører: Matematik for malere praktikopgaver 2 Geometri Regneregler Areal Procent Tilhører: 2 Indhold: Geometri... side 4 Regneregler... side 10 Areal... side 12 Procent... side 16 Beregninger til praktikopgave

Læs mere

VisiRegn og folkeskolens skriftlige afgangsprøve i matematik, maj 2001 Inge B. Larsen (ibl@dpu.dk) Juni 2001

VisiRegn og folkeskolens skriftlige afgangsprøve i matematik, maj 2001 Inge B. Larsen (ibl@dpu.dk) Juni 2001 VisiRegn og folkeskolens skriftlige afgangsprøve i matematik, maj 2001 Inge B. Larsen (ibl@dpu.dk) Juni 2001 I det følgende gives et forslag til, hvordan en elev i 9. klasse med programmet VisiRegn til

Læs mere

Projekt 3.1 Pyramidestub og cirkelareal

Projekt 3.1 Pyramidestub og cirkelareal Projekt. Pyramidestub og cirkelareal - i tilknytning til afsnit., især for A Indhold Rumfanget af en pyramidestub... Moderne metode... Ægyptisk metode... Kommentarer til den ægyptiske beregning... Arealet

Læs mere

Lærervejledning. Matematik i Hasle Bakker 4.-6. klasse

Lærervejledning. Matematik i Hasle Bakker 4.-6. klasse Lærervejledning Matematik i Hasle Bakker 4.-6. klasse Lærervejledning I Matematik for 4.-6. klasse sendes eleverne gruppevis ud i for at løse matematikopgaver med direkte afsæt i både natur og menneskeskabte

Læs mere

Flere ideer til Excel og Works regneark i matematikundervisningen

Flere ideer til Excel og Works regneark i matematikundervisningen Flere ideer til Excel og Works regneark i matematikundervisningen Inge B. Larsen INFA 2002 Indhold Side Forord 2 1. Regnskaber 3 Entréindtægt 3 Saftblanding 5 Vafler 7 2. Talrækker 8 De naturlige tal 8

Læs mere

3. klasse 6. klasse 9. klasse

3. klasse 6. klasse 9. klasse Børne- og Undervisningsudvalget 2012-13 BUU Alm.del Bilag 326 Offentligt Elevplan 3. klasse 6. klasse 9. klasse Matematiske kompetencer Status tal og algebra sikker i, er usikker i de naturlige tals opbygning

Læs mere

Klassen er sammenlæst, altså 5 og 6 klasse på en og samme tid. Samtidig er klassen pt på ca 11 elever ialt.

Klassen er sammenlæst, altså 5 og 6 klasse på en og samme tid. Samtidig er klassen pt på ca 11 elever ialt. Introduktion til mat i 5/6 klasse Vejle Privatskole 13/14: Klassen er sammenlæst, altså 5 og 6 klasse på en og samme tid. Samtidig er klassen pt på ca 11 elever ialt. Udgangspunktet bliver en blød screening,

Læs mere

Årsplan 9. klasse matematik 2013-2014 Uge Emne Faglige mål Trinmål Materialer/ systemer 33 Årsprøven i matematik

Årsplan 9. klasse matematik 2013-2014 Uge Emne Faglige mål Trinmål Materialer/ systemer 33 Årsprøven i matematik Årsplan 9. klasse matematik 2013-2014 33 Årsprøven i matematik Årsprøve og rettevejledledning 34-35 36 og løbe nde Talmængder og regnemetoder Mundtlig matematik 37 Fordybelses uge 38-39 Procent - Gennemgå

Læs mere

Kapitel 2 Tal og variable

Kapitel 2 Tal og variable Tal og variable Uden tal ingen matematik - matematik handler om tal og anvendelse af tal. Matematik beskæftiger sig ikke udelukkende med konkrete problemer fra andre fag, og de konkrete tal fra andre fagområder

Læs mere

Selam Friskole Fagplan for Matematik

Selam Friskole Fagplan for Matematik Selam Friskole Fagplan for Matematik Formål Formålet med undervisningen er, at eleverne udvikler matematiske kompetencer og opnår viden og kunnen således, at de bliver i stand til at begå sig hensigtsmæssigt

Læs mere

Kommentarer til den ægyptiske beregning Kommentarer til den ægyptiske beregning... 5

Kommentarer til den ægyptiske beregning Kommentarer til den ægyptiske beregning... 5 Hvad er matematik? C, i-bog ISBN 978 87 7066 499 8 Projekter: Kapitel - Projektet er delt i to små projekter, der kan laves uafhængigt af hinanden. Der afsættes fx - timer til vejledning med efterfølgende

Læs mere

Årsplan 8. klasse matematik 2013-2014 Uge Emne Faglige mål Trinmål Materialer/ systemer 33 og løbende

Årsplan 8. klasse matematik 2013-2014 Uge Emne Faglige mål Trinmål Materialer/ systemer 33 og løbende Årsplan 8. klasse matematik 2013-2014 33 løbende 33-34 løbende Løbende Problemregning ( faglig læsning) Mundtlig matematik (forberede oplæg til 6. klasse) - flere forskellige trinmål Ben, formelsamlingen,

Læs mere

Årsplan 9. klasse matematik 2014-2015 Uge Emne Faglige mål Trinmål Materialer/ systemer 33-34

Årsplan 9. klasse matematik 2014-2015 Uge Emne Faglige mål Trinmål Materialer/ systemer 33-34 Årsplan 9. klasse matematik 2014-2015 33-34 Årsprøve og rettevejledledning 34-36 Årsprøven i matematik Talmængder og regnemetoder 37 Fordybelses uge 38-39 40 Termins-prøve 41 Studieturen 42 Efterårsferie

Læs mere

Evaluering af matematik undervisning

Evaluering af matematik undervisning Evaluering af matematik undervisning Udarbejdet af Khaled Zaher, matematiklærer 6-9 klasse og Boushra Chami, matematiklærer 2-5 klasse Matematiske kompetencer. Fællesmål efter 3.klasse indgå i dialog om

Læs mere

Algebra INTRO. I kapitlet arbejdes med følgende centrale matematiske begreber:

Algebra INTRO. I kapitlet arbejdes med følgende centrale matematiske begreber: INTRO Kapitlet sætter fokus på algebra, som er den del af matematikkens sprog, hvor vi anvender variable. Algebra indgår i flere af bogens kapitler, men hensigten med dette kapitel er, at eleverne udvikler

Læs mere

Indhold. Indledning 7 Læsevejledning 9

Indhold. Indledning 7 Læsevejledning 9 Indhold Indledning 7 Læsevejledning 9 1 Hvad er åbne opgaver? 13 2 Hvorfor arbejde med åbne opgaver? 17 3 Udfordringer i arbejdet med åbne opgaver 19 4 En ny didaktisk kontrakt 21 5 Et par eksempler 23

Læs mere

Geogebra Begynder Ku rsus

Geogebra Begynder Ku rsus Navn: Klasse: Matematik Opgave Kompendium Geogebra Begynder Ku rsus Kompendiet indeholder: Mål side længder Mål areal Mål vinkler Vinkelhalveringslinje Indskrevne cirkel Midt normal Omskrevne cirkel Trekant

Læs mere

Når eleverne skal opdage betydningen af koefficienterne i udtrykket:

Når eleverne skal opdage betydningen af koefficienterne i udtrykket: Den rette linje og parablen GeoGebra er tænkt som et dynamisk geometriprogram, som både kan anvendes til euklidisk og analytisk geometri Eksempel Tegn linjen med ligningen: Indtast ligningen i Input-feltet.

Læs mere

gl. Matematik A Studentereksamen Torsdag den 22. maj 2014 kl gl-1stx141-mat/a

gl. Matematik A Studentereksamen Torsdag den 22. maj 2014 kl gl-1stx141-mat/a gl. Matematik A Studentereksamen gl-1st141-mat/a-05014 Torsdag den. maj 014 kl. 9.00-14.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål. Delprøven

Læs mere

Grønland. Matematik A. Højere teknisk eksamen

Grønland. Matematik A. Højere teknisk eksamen Grønland Matematik A Højere teknisk eksamen Onsdag den 12. maj 2010 kl. 9.00-14.00 Matematik A Prøvens varighed er 5 timer. Alle hjælpemidler er tilladt. Ved valgopgaver må kun det anførte antal afleveres

Læs mere

8.1 Lav en ordbog med tegninger og/eller definitioner af de geometriske begreber:

8.1 Lav en ordbog med tegninger og/eller definitioner af de geometriske begreber: 8. 8.1 Lav en ordbog med tegninger og/eller definitioner af de geometriske begreber: Kvadrat Rektangel Parallelogram Trapez Ligebenet trekant Ligesidet trekant Retvinklet trekant Rombe Polygon Ellipse

Læs mere

MaxiMat og de forenklede Fælles mål

MaxiMat og de forenklede Fælles mål MaxiMat og de forenklede Fælles mål Dette er en oversigt over hvilke læringsmål de enkelte forløb indeholder. Ikke alle forløb er udarbejdet endnu, men i skemaet kan man se alle læringsmålene også de,

Læs mere