Præsentation og praktisk anvendelse af PROC GLMSELECT

Størrelse: px
Starte visningen fra side:

Download "Præsentation og praktisk anvendelse af PROC GLMSELECT"

Transkript

1 Præsentation og praktisk anvendelse af PROC GLMSELECT Kristina Birch, projektchef Copyright 2011 SAS Institute Inc. All rights reserved.

2 Præsentation og praktisk anvendelse af PROC GLMSELECT Abstract I mange praktiske tilfælde er udfordringen i statistisk modellering og/eller data mining ikke manglen på uafhængige variable, men snarere det omvendte: At der er hundredvis af inputvariable at vælge imellem. Analytikerens job er bl.a. at finde den bedste model, som indeholder en delmængde af inputvariable ud fra mere eller mindre veldefinerede kriterier. Denne demo præsenterer kort de metoder til model- og variabelselektion, der bruges i forbindelse med generelle lineære modeller, herunder udvidelser af de velkendte (i bl.a. proc reg og SAS Enterprise Miner ) metoder forward-, backward- og stepwise-variabelselektion. 2

3 Agenda Introduktion Generelle lineære modeller Kort præsentation af forward-, backward- og stepwiseselektionsmetoder Om PROC GLMSELECT To eksempler Ikke-parametrisk modellering ved brug af spline-effekter» Univariate- og multivariate-tilfælde Modelselektion for microarray data (genstrenge) 3

4 Introduktion Udfordringer for statistikeren Øget datamængde gør variabel- og modelselektion mere og mere vanskelig Data hentes fra transaktionssystemer ( real live data ) og ikke fra specifikt designede lukkede eksperimenter Kan ikke umiddelbart forklare sammenhæng mellem afhængig og uafhængig variabel intuitionen mistes Flere og flere avancerede metoder og modeller bliver tilgængelige og kan gøre estimation vanskeligere Hardware og software er ikke længere en begrænsning i forhold til estimation af modeller 4

5 Generelle lineære modeller Ingen SAS/STAT -demo uden formler En lineær model har følgende struktur Antagelser Da er 5

6 Selektionsmetoder Kendte selektionsmetoder fra PROC REG, PROC LOGISTIC, PROC GLM mv. incl. standard procedurer i SAS Enterprise Miner Forward Backward Stepwise All subsets 6

7 All subsets k

8 Stepwise selection Stop 8

9 Backward elimination Stop 9

10 PROC GLMSELECT Egenskaber Modelspecifikation Mulighed for forskellige typer parametrisering for klassifikationsvariable Understøtter alle grader af vekselvirkninger (crossed effects) og nestede effekter Understøtter hierarkier af effekter Understøtter partitionering af data (train, validation, testing ) Indeholder EFFECT statement til at generere» Spline effects» Polynomial effects» Multimember effects» Collection effects 10

11 PROC GLMSELECT Egenskaber Selektionskontrol Mulighed for forskellige metoder af effektselektion Muliggør udvælgelse blandt et højt antal af mulige effekter (titusinder) Indeholder individuel udvælgelse af niveauer for klassifikationsvariable Muliggør selektion på basis af en mængde af selektionskriterier Understøtter stopregler baseret på en mængde af modelevalueringskriterier Giver mulighed for leave-one-out - og k-fold validation 11

12 PROC GLMSELECT Egenskaber Display og output Danner grafisk illustration af selektionsprocessen Danner et outputdatasæt bestående af prædikterede variable og residualer Danner et outputdatasæt bestående af designmatricen Danner makrovariable, der indeholder de valgte modeller Supporterer parallel processing af BY-grupper Supporterer multiple SCORE statements 12

13 Om EFFECT statement Experimental in SAS/STAT 9.2 Muliggør konstruktion af en samling af kolonner i designmatricen hørende til modellen Disse refereres til som konstruerede effekter for at adskille dem fra almindelige effekter, som er givet ved én kontinuert eller én klassifikationsvariabel 13

14 Om EFFECT statement Experimental in SAS/STAT 9.2 Følgende EFFECT statements er til rådighed COLLECTION» En samling af effekter med flere frihedsgrader anses for én enhed i forhold til variabeludvælgelse MULTIMEMBER MM» En multimember -klassifikationseffekt, der er bestemt ud fra én eller flere klassifikationsvariable (eksempelvis teacher effect ) POLYNOMIAL POLY» En multivariatpolynomialeffekt i de specificerede variable SPLINE» Er en regressions-spline (dansk: liste) -effekt bestående af univariate spline-ekspansioner af én eller flere kontinuerte variable. Spline-effekten erstatter den originale variabel med et ekspanderet sæt af variable 14

15 Eksempel på brug af PROC GLMSELECT Eksempel 1 Ikke-parametrisk modellering med brug af spline-effekter Univariate- og multivariate-tilfælde 15

16 Eksempel på brug af PROC GLMSELECT Eksempel 2 Modelselektion for micro array data (genstrenge) 16

17 Copyright 2011 SAS Institute Inc. All rights reserved.

Demo af PROC GLIMMIX: Analyse af gentagne observationer

Demo af PROC GLIMMIX: Analyse af gentagne observationer Demo af PROC GLIMMIX: Analyse af gentagne observationer Kristina Birch, seniorkonsulent, PS Banking Agenda Uafhængige vs. afhængige observationer Analyse af uafhængige vs. afhængige observationer Lille

Læs mere

Introduktion til GLIMMIX

Introduktion til GLIMMIX Introduktion til GLIMMIX Af Jens Dick-Nielsen jens.dick-nielsen@haxholdt-company.com 21.08.2008 Proc GLIMMIX GLIMMIX kan bruges til modeller, hvor de enkelte observationer ikke nødvendigvis er uafhængige.

Læs mere

Estimering og anvendelse af modeller ved brug af PROC MODEL

Estimering og anvendelse af modeller ved brug af PROC MODEL Estimering og anvendelse af modeller ved brug af PROC MODEL Anders Ebert-Petersen Business Advisor Risk Intelligence Agenda 1. Indledning 2. Overordnet information om PROC MODEL 3. Eksempel med anvendelse

Læs mere

Skriftlig eksamen Science statistik- ST501

Skriftlig eksamen Science statistik- ST501 SYDDANSK UNIVERSITET INSTITUT FOR MATEMATIK OG DATALOGI Skriftlig eksamen Science statistik- ST501 Torsdag den 21. januar Opgavesættet består af 5 opgaver, med i alt 13 delspørgsmål, som vægtes ligeligt.

Læs mere

Moderne SAS-programmering på webben med SAS Studio. Georg Morsing SAS Institute

Moderne SAS-programmering på webben med SAS Studio. Georg Morsing SAS Institute Moderne SAS-programmering på webben med SAS Studio Georg Morsing SAS Institute SAS-programmering med SAS Display Manager 1985 2015 Den nye SAS program editor i SAS Enterprise Guide August 2010 SAS Enterprise

Læs mere

Opsamling Modeltyper: Tabelanalyse Logistisk regression Generaliserede lineære modeller Log-lineære modeller

Opsamling Modeltyper: Tabelanalyse Logistisk regression Generaliserede lineære modeller Log-lineære modeller Opsamling Modeltyper: Tabelanalyse Logistisk regression Binær respons og kategorisk eller kontinuerte forklarende variable. Generaliserede lineære modeller Normalfordelt respons og kategoriske forklarende

Læs mere

PROC TRANSPOSE. SAS-tabellen - hensigtsmæssig lagring af data. Copyright 2011 SAS Institute Inc. All rights reserved.

PROC TRANSPOSE. SAS-tabellen - hensigtsmæssig lagring af data. Copyright 2011 SAS Institute Inc. All rights reserved. PROC TRANSPOSE SAS-tabellen - hensigtsmæssig lagring af data Copyright 2011 SAS Institute Inc. All rights reserved. Transponerede tabeller Brede eller smalle? Hvad: Brede tabeller har mange kolonner med

Læs mere

Nye testteknikker fra ISTQB - direkte fra hylderne. Ole Chr. Hansen

Nye testteknikker fra ISTQB - direkte fra hylderne. Ole Chr. Hansen Nye testteknikker fra ISTQB - direkte fra hylderne Ole Chr. Hansen TestExpo 29. Januar 2015 Præsentation Ole Chr. Hansen Managing Consultant Fellow SogetiLabs Global Innovation Team Blog - http://ochansen.blogspot.com

Læs mere

Tips og tricks til Proc Means. Per Andersen

Tips og tricks til Proc Means. Per Andersen Tips og tricks til Proc Means Capgemini gruppen Grundlagt 1967 i Paris, startet i Danmark 1984 Omsætning på verdensplan i 2008 8,7 milliader euro 91.600 medarbejdere på verdensplan, heraf 300 i Danmark

Læs mere

Tips og tricks til Proc Means. Per Andersen Senior IM Consultant Dong Energy, Group IT, Trading IT, Analytics

Tips og tricks til Proc Means. Per Andersen Senior IM Consultant Dong Energy, Group IT, Trading IT, Analytics Tips og tricks til Proc Means Per Andersen Senior IM Consultant Dong Energy, Group IT, Trading IT, Analytics ENERGI I FORANDRING Marts 2012 DONG Energy er en af Nordeuropas førende energikoncerner med

Læs mere

Statistik II 4. Lektion. Logistisk regression

Statistik II 4. Lektion. Logistisk regression Statistik II 4. Lektion Logistisk regression Logistisk regression: Motivation Generelt setup: Dikotom(binær) afhængig variabel Kontinuerte og kategoriske forklarende variable (som i lineær reg.) Eksempel:

Læs mere

Fagårsplan 10/11 Fag: Matematik Klasse: 7.ABC Lærer: Henrik Stillits. Fagområde/ emne

Fagårsplan 10/11 Fag: Matematik Klasse: 7.ABC Lærer: Henrik Stillits. Fagområde/ emne Fagårsplan 10/11 Fag: Matematik Klasse: 7.ABC Lærer: Henrik Stillits. Fagområde/ emne Matematiske færdigheder Grundlæggende færdigheder - plus, minus, gange, division (hele tal, decimaltal og brøker) Identificer

Læs mere

Net Lift Modelling. Peter Steffensen, Senior Principal Consultant. Copyright 2011 SAS Institute Inc. All rights reserved.

Net Lift Modelling. Peter Steffensen, Senior Principal Consultant. Copyright 2011 SAS Institute Inc. All rights reserved. Net Lift Modelling Peter Steffensen, Senior Principal Consultant Copyright 2011 SAS Institute Inc. All rights reserved. Net Lift Baggrund Customer Intelligence-modellering Kampagne: Påvirkning af kunde

Læs mere

Additiv model teori og praktiske erfaringer

Additiv model teori og praktiske erfaringer make connections share ideas be inspired Additiv model teori og praktiske erfaringer Kaare Brandt Petersen Forretningschef, ph.d., SAS Institute Agenda Hvad er en additiv model? Forudsætninger Fortolkning

Læs mere

Data-analyse og datalogi

Data-analyse og datalogi Det Naturvidenskabelige Fakultet Data-analyse og datalogi Studiepraktik 2014 Kristoffer Stensbo-Smidt Datalogisk Institut 23. oktober 2014 Dias 1/15 Hvorfor bruge tid på dataanalyse?! Alle virksomheder

Læs mere

En introduktion til SAS Risk Dimensions 5.2

En introduktion til SAS Risk Dimensions 5.2 En introduktion til SAS Risk Dimensions 5.2 Anders Ebert-Petersen, Principal Consultant Copyright 2011 SAS Institute Inc. All rights reserved. Agenda 1. Indledning 2. Relevante procedurer og konfiguration

Læs mere

Anvendt Statistik Lektion 9. Variansanalyse (ANOVA)

Anvendt Statistik Lektion 9. Variansanalyse (ANOVA) Anvendt Statistik Lektion 9 Variansanalyse (ANOVA) 1 Undersøge sammenhæng Undersøge sammenhænge mellem kategoriske variable: χ 2 -test i kontingenstabeller Undersøge sammenhæng mellem kontinuerte variable:

Læs mere

Simpel Lineær Regression

Simpel Lineær Regression Simpel Lineær Regression Mål: Forklare variablen y vha. variablen x. Fx forklare Salg (y) vha. Reklamebudget (x). Vi antager at sammenhængen mellem y og x er beskrevet ved y = β 0 + β 1 x + u. y: Afhængige

Læs mere

Note om Monte Carlo eksperimenter

Note om Monte Carlo eksperimenter Note om Monte Carlo eksperimenter Mette Ejrnæs og Hans Christian Kongsted Økonomisk Institut, Københavns Universitet 9. september 003 Denne note er skrevet til kurset Økonometri på. årsprøve af polit-studiet.

Læs mere

Kvantitative Metoder 1 - Forår 2007. Dagens program

Kvantitative Metoder 1 - Forår 2007. Dagens program Dagens program Kapitel 7 Introduktion til statistik Organisering af data Diskrete variabler Kontinuerte variabler Beskrivende statistik Fraktiler Gennemsnit Empirisk varians og spredning Empirisk korrelationkoe

Læs mere

Skriftlig Eksamen Kombinatorik, sandsynlighed og randomiserede algoritmer (DM528)

Skriftlig Eksamen Kombinatorik, sandsynlighed og randomiserede algoritmer (DM528) Skriftlig Eksamen Kombinatorik, sandsynlighed og randomiserede algoritmer (DM58) Institut for Matematik & Datalogi Syddansk Universitet Torsdag den 7 Januar 010, kl. 9 13 Alle sædvanlige hjælpemidler (lærebøger,

Læs mere

Anvendt Statistik Lektion 9. Variansanalyse (ANOVA)

Anvendt Statistik Lektion 9. Variansanalyse (ANOVA) Anvendt Statistik Lektion 9 Variansanalyse (ANOVA) 1 Undersøge sammenhæng Undersøge sammenhænge mellem kategoriske variable: χ 2 -test i kontingenstabeller Undersøge sammenhæng mellem kontinuerte variable:

Læs mere

Statistik II Lektion 3. Logistisk Regression Kategoriske og Kontinuerte Forklarende Variable

Statistik II Lektion 3. Logistisk Regression Kategoriske og Kontinuerte Forklarende Variable Statistik II Lektion 3 Logistisk Regression Kategoriske og Kontinuerte Forklarende Variable Setup: To binære variable X og Y. Statistisk model: Konsekvens: Logistisk regression: 2 binære var. e e X Y P

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni, 2015 Institution VUC Fredericia Uddannelse Fag og niveau Lærer(e) Hold Matematik C Nst 16A Oversigt

Læs mere

Confounding. Mads Kamper-Jørgensen, lektor, maka@sund.ku.dk. Afdeling for Social Medicin, Institut for Folkesundhedsvidenskab

Confounding. Mads Kamper-Jørgensen, lektor, maka@sund.ku.dk. Afdeling for Social Medicin, Institut for Folkesundhedsvidenskab Afdeling for Social medicin Confounding Mads Kamper-Jørgensen, lektor, maka@sund.ku.dk Afdeling for Social Medicin, Institut for Folkesundhedsvidenskab It og sundhed l 28. maj 2015 l Dias nummer 1 Sidste

Læs mere

β 2 : forskel i skæring polymer 1 og 2. β 3 forskel i skæring polymer 1 og 3.

β 2 : forskel i skæring polymer 1 og 2. β 3 forskel i skæring polymer 1 og 3. Program suspended 200 250 300 350 400 1 2 3 6.5 7.0 7.5 8.0 8.5 9.0 1. kategoriske variable - kodning som indikator variable. 2. model selektion, R 2, F-test samt eksempler. ph Model: forskellig skæring

Læs mere

Demonstration af SAS Activity-Based Management v7.1

Demonstration af SAS Activity-Based Management v7.1 Demonstration af SAS Activity-Based Management v7.1 Chefkonsulent Martin Ravnholt, SAS Institute Copyright 2011 SAS Institute Inc. All rights reserved. Hvad vil jeg tale om den næste time? Nyeste modellerings-

Læs mere

Introduktion til SPSS

Introduktion til SPSS Introduktion til SPSS Øvelserne på dette statistikkursus skal gennemføres ved hjælp af det såkaldte SPSS program. Det er erfaringsmæssigt sådan, at man i forbindelse af øvelserne på statistikkurser bruger

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj 2015 Institution VUC Vest, Stormgade 47, 6700 Esbjerg Uddannelse HF net-undervisning, HFe Fag og niveau

Læs mere

Adgangsgivende eksamen (udeladt kategori: Matematisk student med matematik på niveau A)

Adgangsgivende eksamen (udeladt kategori: Matematisk student med matematik på niveau A) Økonometri 1 Forår 2003 Ugeseddel 13 Program for øvelserne: Gruppearbejde Opsamling af gruppearbejdet og introduktion af SAS SAS-øvelser i computerkælderen Øvelsesopgave 6: Hvem består første årsprøve

Læs mere

Højkvalitetsdata: Dokumentation, videndeling mv.

Højkvalitetsdata: Dokumentation, videndeling mv. Styregruppen for Højkvalitetsdata 23. juli 2008 Dokumentationsvejledning Højkvalitetsdata: Dokumentation, videndeling mv. Styregruppen for højkvalitetsdata består af: Hans Hummelgaard (fmd.) (akf og medlem

Læs mere

Oversigt over Forenklede Fælles Mål i forbindelse med kapitlerne i MULTI. Modellering

Oversigt over Forenklede Fælles Mål i forbindelse med kapitlerne i MULTI. Modellering MULTI 7 Forenklede Fælles Mål Oversigt over Forenklede Fælles Mål i forbindelse med kapitlerne i MULTI Kapitel 1 Læs og skriv matematik Eleven kan kommunikere mundtligt og skriftligt med og om matematik

Læs mere

Epidemiologi og biostatistik. Uge 3, torsdag. Erik Parner, Afdeling for Biostatistik. Eksempel: Systolisk blodtryk

Epidemiologi og biostatistik. Uge 3, torsdag. Erik Parner, Afdeling for Biostatistik. Eksempel: Systolisk blodtryk Eksempel: Systolisk blodtryk Udgangspunkt: Vi ønsker at prædiktere det systoliske blodtryk hos en gruppe af personer. Epidemiologi og biostatistik. Uge, torsdag. Erik Parner, Afdeling for Biostatistik.

Læs mere

Fordele og ulemper ved latent klasseanalyse

Fordele og ulemper ved latent klasseanalyse Fordele og ulemper ved Institut for Erhvervsstudier, Aalborg Universitet Disposition Hvad er (klassisk)? Eksempel på anvendelse Senere udviklinger Eksemplet fortsat Fordele og ulemper ved latent klasseanalyse

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-Juni 2013 Institution VUC Vest Esbjerg Afdeling, Eksamens nr. 582 / Skolenummer 561 248 Uddannelse Fag

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin August 2015 April 2016 Institution VUC Vest, Esbjerg afdeling Uddannelse Fag og niveau Lærer(e) Hold Hf Netundervisning

Læs mere

12. september Epidemiologi og biostatistik. Forelæsning 4 Uge 3, torsdag. Niels Trolle Andersen, Afdelingen for Biostatistik. Regressionsanalyse

12. september Epidemiologi og biostatistik. Forelæsning 4 Uge 3, torsdag. Niels Trolle Andersen, Afdelingen for Biostatistik. Regressionsanalyse . september 5 Epidemiologi og biostatistik. Forelæsning Uge, torsdag. Niels Trolle Andersen, Afdelingen for Biostatistik. Lineær regressionsanalyse - Simpel lineær regression - Multipel lineær regression

Læs mere

MPH specialmodul Epidemiologi og Biostatistik

MPH specialmodul Epidemiologi og Biostatistik MPH specialmodul Epidemiologi og Biostatistik Kvantitative udfaldsvariable 23. maj 2011 www.biostat.ku.dk/~sr/mphspec11 Susanne Rosthøj (Per Kragh Andersen) 1 Kapitelhenvisninger Andersen & Skovgaard:

Læs mere

Statistik og skalavalidering. Opgave 1

Statistik og skalavalidering. Opgave 1 Statistik og skalavalidering Opgave 1 Opgavens formål: Denne opgave har, ligesom det vil være tilfældet for de fleste andre øvelsesopgaver på dette kursus, flere forskellige formål. For det første et praktisk/teknisk

Læs mere

Kursusoversigt for juli 2007 januar 2008

Kursusoversigt for juli 2007 januar 2008 Matcher dine kompetencer din rolle og dine opgaver Kursusoversigt for juli 2007 januar 2008 MERE KURSUS FOR FÆRRE PENGE Vores ekspertundervisere er kvalificerede instruktører, der arbejder som SAS konsulenter,

Læs mere

Logistisk regression og prædiktion

Logistisk regression og prædiktion Faculty of Health Sciences Introduktion Logistisk regression og prædiktion 16. Maj 2012 Julie Forman Biostatistisk Afdeling, Københavns Universitet Hvad er en god diagnostisk model? En model med god overensstemmelse

Læs mere

Agenda. Kort om YouSee. Udfordringer & Vision. Setup & Dataflow. Dynamikken i løsningen. Resultater og femtiden

Agenda. Kort om YouSee. Udfordringer & Vision. Setup & Dataflow. Dynamikken i løsningen. Resultater og femtiden Agenda Kort om YouSee Udfordringer & Vision Setup & Dataflow Dynamikken i løsningen Resultater og femtiden Agenda Kort om YouSee Udfordringer & Vision Setup & Dataflow Dynamikken i løsningen Resultater

Læs mere

Variansanalyse i SAS. Institut for Matematiske Fag December 2007

Variansanalyse i SAS. Institut for Matematiske Fag December 2007 Københavns Universitet Statistik for Biokemikere Det naturvidenskabelige fakultet Institut for Matematiske Fag December 2007 Variansanalyse i SAS 2 Tosidet variansanalyse Residualplot Tosidet variansanalyse

Læs mere

Data mining er ikke længere nice to have men need to have

Data mining er ikke længere nice to have men need to have mining er ikke længere nice to have men need to have Af Frank Bjergø Agenda Introduktion Hvad er mining og hvordan fungerer det? Eksempler på i Telco mining Hvilke forretningsområder er i gang Hvem er

Læs mere

Statistik Lektion 1. Introduktion Grundlæggende statistiske begreber Deskriptiv statistik

Statistik Lektion 1. Introduktion Grundlæggende statistiske begreber Deskriptiv statistik Statistik Lektion 1 Introduktion Grundlæggende statistiske begreber Deskriptiv statistik Introduktion Kursusholder: Kasper K. Berthelsen Opbygning: Kurset består af 5 blokke En blok består af: To normale

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Juni, 2014 Institution Vid Gymnasier Uddannelse Fag og niveau Lærer(e) Hold hhx Matematik A Hasse Rasmussen

Læs mere

01017 Diskret Matematik E12 Alle bokse fra logikdelens slides

01017 Diskret Matematik E12 Alle bokse fra logikdelens slides 01017 Diskret Matematik E12 Alle bokse fra logikdelens slides Thomas Bolander 1 Udsagnslogik 1.1 Formler og sandhedstildelinger symbol står for ikke eller og ( A And) hvis... så... hvis og kun hvis...

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Sommer 2015 Institution 414 Københavns VUC Uddannelse Fag og niveau Lærer(e) Hold 2hf Mat C Trine Eliasen

Læs mere

16. marts P NP. Essentielle spørgsmål: NP P? Et problem Q kaldes NP -fuldstændigt 1 Q NP 2 R NP : R pol Q. Resume sidste gang

16. marts P NP. Essentielle spørgsmål: NP P? Et problem Q kaldes NP -fuldstændigt 1 Q NP 2 R NP : R pol Q. Resume sidste gang 16. marts Resume sidste gang Abstrakt problem konkret instans afgørlighedsproblem Effektiv kodning (pol. relateret til binær kodning) Sprog L : mængden af instanser for et afgørlighedsproblem hvor svaret

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Termin maj-juni 10/11 Institution Favrskov Gymnasium Uddannelse Fag og niveau Lærer Hold stx Matematik C Trille Hertz Quist 1.c mac Oversigt over gennemførte undervisningsforløb

Læs mere

Module 4: Ensidig variansanalyse

Module 4: Ensidig variansanalyse Module 4: Ensidig variansanalyse 4.1 Analyse af én stikprøve................. 1 4.1.1 Estimation.................... 3 4.1.2 Modelkontrol................... 4 4.1.3 Hypotesetest................... 6 4.2

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin maj-juni, 12/13 Institution International Business College Fredericia-Middelfart Uddannelse Fag og niveau

Læs mere

Operationelle risici (OR) og systemiske virkninger behov for (bayesianske) neurale netværksmodeller?

Operationelle risici (OR) og systemiske virkninger behov for (bayesianske) neurale netværksmodeller? Operationelle risici (OR) og systemiske virkninger behov for (bayesianske) neurale netværksmodeller? Martin Falk Leisner RISK netværket RISK Conference 21. november 2016 Codanhus, København Introduktion

Læs mere

Text mining hos MAN Diesel

Text mining hos MAN Diesel Text mining hos MAN Diesel Stine Fangel, SAS Institute COPYRIGHT 2009, SAS INSTITUTE INC ALL RIGHTS RESERVED Hvad får du med fra dette indlæg? Eksempel på anvendelse af text og data mining Viden om, hvordan

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse 1 Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold maj-juni 06 Marie Kruses Skole Hf matematik C Lars Petersen

Læs mere

Måling og analyse af likviditetsrisiko ved anvendelse af SAS Risk Dimensions

Måling og analyse af likviditetsrisiko ved anvendelse af SAS Risk Dimensions Måling og analyse af likviditetsrisiko ved anvendelse af SAS Risk Dimensions Anders Ebert-Petersen, konsulent Copyright 2011 SAS Institute Inc. All rights reserved. Agenda 1. Indledning 2. Et overblik

Læs mere

Matematik - undervisningsplan

Matematik - undervisningsplan I 4. klasse starter man på andet forløb i matematik, der skal lede frem mod at eleverne kan opfylde fagets trinmål efter 6. klasse. Det er dermed det som undervisningen tilrettelægges ud fra og målsættes

Læs mere

Matematik. Matematiske kompetencer

Matematik. Matematiske kompetencer Matematiske kompetencer formulere sig skriftligt og mundtligt om matematiske påstande og spørgsmål og have blik for hvilke typer af svar, der kan forventes (tankegangskompetence) løse matematiske problemer

Læs mere

Anvendt Statistik Lektion 6. Kontingenstabeller χ 2 -test [ki-i-anden-test]

Anvendt Statistik Lektion 6. Kontingenstabeller χ 2 -test [ki-i-anden-test] Anvendt Statistik Lektion 6 Kontingenstabeller χ 2 -test [ki-i-anden-test] 1 Kontingenstabel Formål: Illustrere/finde sammenhænge mellem to kategoriske variable Opbygning: En celle for hver kombination

Læs mere

Oversigt. 1 Gennemgående eksempel: Højde og vægt. 2 Korrelation. 3 Regressionsanalyse (kap 11) 4 Mindste kvadraters metode

Oversigt. 1 Gennemgående eksempel: Højde og vægt. 2 Korrelation. 3 Regressionsanalyse (kap 11) 4 Mindste kvadraters metode Kursus 02402 Introduktion til Statistik Forelæsning 11: Kapitel 11: Regressionsanalyse Oversigt 1 Gennemgående eksempel: Højde og vægt 2 Korrelation 3 Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse

Læs mere

Program. Forsøgsplanlægning og tosidet variansanalyse. Eksempel: fuldstændigt randomiseret forsøg. Forsøgstyper

Program. Forsøgsplanlægning og tosidet variansanalyse. Eksempel: fuldstændigt randomiseret forsøg. Forsøgstyper Program Forsøgsplanlægning og tosidet variansanalyse Helle Sørensen E-mail: helle@math.ku.dk I formiddag: Forsøgstyper og forsøgsplanlægning Analyse af data fra fuldstændigt randomiseret blokforsøg: tosidet

Læs mere

Social network analysis

Social network analysis Social network analysis Dorthe Krogh, konsulent Charlotte Holm Friis, seniorkonsulent Copyright 2011 SAS Institute Inc. All rights reserved. Agenda Introduktion Hvad er et socialt netværk? Hvad er social

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Termin 2012-2014 Institution Favrskov Gymnasium Uddannelse Fag og niveau Lærer(e) Stx Matematik B Katrine Oxenbøll Petersen Hold 1d mab 2012-2013, 2d mab 2013-2014 Oversigt over

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 2013 Institution IBC Fredericia Middelfart afd. Uddannelse Fag og niveau Lærer(e) Hold HHX Matematik

Læs mere

Kvantitative Metoder 1 - Forår Dagens program

Kvantitative Metoder 1 - Forår Dagens program Dagens program Kapitel 8.1-8.3 Tilfældig stikprøve (Random Sampling) Likelihood Eksempler på likelihood funktioner Sufficiente statistikker Eksempler på sufficiente statistikker 1 Tilfældig stikprøve Kvantitative

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj / Juni 2013 Institution Campus Vejle Uddannelse Fag og niveau Lærer(e) Hold HHX Matematik B Lene Thygesen

Læs mere

www.saskurser.dk Praktisk information Tilmelding Du tilmelder dig telefonisk på 7028 2973 eller på:

www.saskurser.dk Praktisk information Tilmelding Du tilmelder dig telefonisk på 7028 2973 eller på: Praktisk information Kursussteder Kurserne afholdes i SAS Knowledge & Education Centre på følgende adresser: København - Købmagergade 7-9, 1150 København K Skanderborg - Kr. Kielbergsvej 3, 8660 Skanderborg

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin sommer 15 Institution VUC-vestegnen Uddannelse Fag og niveau Lærer(e) Hold Hf Matematik C Kofi Mensah 1maC05

Læs mere

Intelligent kontrol med SAS

Intelligent kontrol med SAS Intelligent kontrol med SAS Hvordan sikrer du dig gennemsigtighed i kontrollen? Business Development Manager Malene Haxholdt 19. april 2007 Agenda Kontrolopgaven Data mining og kontrol Hvad er data mining?

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin 2. juni 2014 Institution Kolding HF og VUC, Ålegården 2, 6000 Kolding (tovholder) VUC Vest, Stormgade 47,

Læs mere

Dagens Temaer. Test for lineær regression. Test for lineær regression - via proc glm. k normalfordelte obs. rækker i proc glm. p. 1/??

Dagens Temaer. Test for lineær regression. Test for lineær regression - via proc glm. k normalfordelte obs. rækker i proc glm. p. 1/?? Dagens Temaer k normalfordelte obs. rækker i proc glm. Test for lineær regression Test for lineær regression - via proc glm p. 1/?? Proc glm Vi indlæser data i datasættet stress, der har to variable: areal,

Læs mere

Fokus på Forsyning. Datagrundlag og metode

Fokus på Forsyning. Datagrundlag og metode Fokus på Forsyning I notatet gennemgås datagrundlaget for brancheanalysen af forsyningssektoren sammen med variable, regressionsmodellen og tilhørende tests. Slutteligt sammenfattes analysens resultater

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj/juni 2010. Denne beskrivelse dækker efteråret 2011 og foråret 2012. Institution Roskilde Handelsskole

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Juni, 12/13 Institution VID Gymnasier Uddannelse Fag og niveau Lærer(e) Hold hhx Matematik C Hasse Rasmussen

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Termin hvori undervisningen afsluttes: maj-juni 14/15 IBC-Fredericia

Læs mere

Eleven kan handle med overblik i sammensatte situationer med matematik. Eleven kan anvende rationale tal og variable i beskrivelser og beregninger

Eleven kan handle med overblik i sammensatte situationer med matematik. Eleven kan anvende rationale tal og variable i beskrivelser og beregninger Kompetenceområde Efter klassetrin Efter 6. klassetrin Efter 9. klassetrin Matematiske kompetencer handle hensigtsmæssigt i situationer med handle med overblik i sammensatte situationer med handle med dømmekraft

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Juni, 12/13 Institution Grenaa Handelsskole Uddannelse Fag og niveau Lærer(e) Hold hhx Matematik C Ann Risvang

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Side 1 af 11 Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold maj-juni 06 Marie Kruses Skole stx matematik

Læs mere

SAS Forbrugsdisponering proaktiv tilgang til budgetopfølgning

SAS Forbrugsdisponering proaktiv tilgang til budgetopfølgning SAS Forbrugsdisponering proaktiv tilgang til budgetopfølgning Peter S. Poulsen, Ældrechef, Skanderborg Kommune Morten R. Petz, Konsulent, SAS Institute Copyright 2007, SAS Institute Inc. All rights reserved.

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Termin Efterår 2016 Institution Niels Brock Uddannelse Fag og niveau Lærer Hold HHX Matematik - Niveau B Peter Harremoës GSK hold: t16gymabu1o1 Oversigt over gennemførte undervisningsforløb

Læs mere

Kapitel 12 Variansanalyse

Kapitel 12 Variansanalyse Kapitel 12 Variansanalyse Peter Tibert Stoltze stat@peterstoltzedk Elementær statistik F2011 Version 7 april 2011 1 / 43 Indledning Sammenligning af middelværdien i to grupper indenfor en stikprøve kan

Læs mere

Kapitel 1 Statistiske grundbegreber

Kapitel 1 Statistiske grundbegreber Kapitel 1 Statistiske grundbegreber Peter Tibert Stoltze stat@peterstoltze.dk Elementær statistik F2011 1 Indledning 2 Population versus stikprøve 3 Variabeltyper og måleskalaer 4 Parametrisk versus ikke-parametrisk

Læs mere

Logistisk regression. Basal Statistik for medicinske PhD-studerende November 2008

Logistisk regression. Basal Statistik for medicinske PhD-studerende November 2008 Logistisk regression Basal Statistik for medicinske PhD-studerende November 2008 Bendix Carstensen Steno Diabetes Center, Gentofte & Biostatististisk afdeling, Københavns Universitet bxc@steno.dk www.biostat.ku.dk/~bxc

Læs mere

Skriftlig Eksamen ST501: Science Statistik Mandag den 11. juni 2007 kl. 15.00 18.00

Skriftlig Eksamen ST501: Science Statistik Mandag den 11. juni 2007 kl. 15.00 18.00 Skriftlig Eksamen ST501: Science Statistik Mandag den 11. juni 2007 kl. 15.00 18.00 Forskningsenheden for Statistik IMADA Syddansk Universitet Alle skriftlige hjælpemidler samt brug af lommeregner er tilladt.

Læs mere

Statikstik II 2. Lektion. Lidt sandsynlighedsregning Lidt mere om signifikanstest Logistisk regression

Statikstik II 2. Lektion. Lidt sandsynlighedsregning Lidt mere om signifikanstest Logistisk regression Statikstik II 2. Lektion Lidt sandsynlighedsregning Lidt mere om signifikanstest Logistisk regression Sandsynlighedsregningsrepetition Antag at Svar kan være Ja og Nej. Sandsynligheden for at Svar Ja skrives

Læs mere

Automatiser dine redigeringer med Sony Vegas Pro Produktion Assistant Software

Automatiser dine redigeringer med Sony Vegas Pro Produktion Assistant Software Automatiser dine redigeringer med Sony Vegas Pro Produktion Assistant Software Gary Rebholz Ved siden af din viden og færdigheder med Vegas Pro software, der intet tilbyder dig mere produktivitetsforbedringer

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin December 2015 Institution Kolding HF og VUC, Kolding Åpark 16, 6000 Kolding Uddannelse HF net-undervisning,

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Januar-juni, 2013 Institution VUC Vejle Uddannelse Fag og niveau Lærer(e) Hold Hf Matematik C HUNI 2HF TmaCK13j

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Sommer 16 Institution VUC-vestegnen Uddannelse Fag og niveau Lærer(e) Hf Matematik C Nihal Günaydin Hold 1.P

Læs mere

Anvendt litteratur : Mat C v. Bregendal, Nitschky Schmidt og Vestergård, Systime 2005

Anvendt litteratur : Mat C v. Bregendal, Nitschky Schmidt og Vestergård, Systime 2005 Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin juni 2011 Institution Campus Bornholm Uddannelse Fag og niveau Lærer Hold Hhx Matematik C Peter Seide 1AB

Læs mere

En oversigt over udvalgte kontinuerte sandsynlighedsfordelinger

En oversigt over udvalgte kontinuerte sandsynlighedsfordelinger Institut for Økonomi Aarhus Universitet Statistik 1, Forår 2001 Allan Würtz 4. April, 2001 En oversigt over udvalgte kontinuerte sandsynlighedsfordelinger Uniform fordeling Benyttes som model for situationer,

Læs mere

Kvantitative metoder 2

Kvantitative metoder 2 Opgave fra sidst (Gauss-Markov teoremet) Kvantitative metoder Inferens i den lineære regressionsmodel 7. marts 007 Opgave: Vis at hvis M = I X X X X ( ' ) ' er M idempoten dvs der gælder gælder M = M '

Læs mere

BILAG 2 METODE OG FORSKNINGSDESIGN

BILAG 2 METODE OG FORSKNINGSDESIGN Til Undervisningsministeriet Dokumenttype Bilag Dato August 2014 BILAG 2 METODE OG FORSKNINGSDESIGN BILAG 2 FORSKNINGSDESIGN INDHOLD 1. Design- og metodebilag 1 1.1 Forskningsdesign 1 1.2 Analysemetoder

Læs mere

Ledelsesrapportering i nyt perspektiv Jyske Bank

Ledelsesrapportering i nyt perspektiv Jyske Bank Ledelsesrapportering i nyt perspektiv Jyske Bank 1 Jyske Bank Danmarks 3. største bank Netop fusioneret med BRF 120 Privatafdelinger 35 Erhvervsafdelinger, heraf 4 Erhvervscentre. 10 Private Banking centre

Læs mere

Kvantitative metoder 2

Kvantitative metoder 2 Kvantitative metoder 2 Inferens i den lineære regressionsmodel 7. marts 2007 regressionsmodel 1 Opgave fra sidst (Gauss-Markov teoremet) Opgave: Vis at hvis M = I X X X X 1 ( ' ) ' er M idempoten dvs der

Læs mere

Model. (m separate analyser). I vores eksempel er m = 2, n 1 = 13 (13 journalister) og

Model. (m separate analyser). I vores eksempel er m = 2, n 1 = 13 (13 journalister) og Model M 0 : X hi N(α h + β h t hi,σ 2 h ), h = 1,...,m, i = 1,...,n h. m separate regressionslinjer. Behandles som i afsnit 3.3. (m separate analyser). I vores eksempel er m = 2, n 1 = 13 (13 journalister)

Læs mere

Kapitel 12 Variansanalyse

Kapitel 12 Variansanalyse Kapitel 12 Variansanalyse Peter Tibert Stoltze stat@peterstoltzedk Elementær statistik F2011 Version 7 april 2011 1 Indledning 2 Ensidet variansanalyse 3 Blokforsøg 4 Vekselvirkning 1 Indledning 2 Ensidet

Læs mere

Løsning til øvelsesopgaver dag 4 spg 5-9

Løsning til øvelsesopgaver dag 4 spg 5-9 Løsning til øvelsesopgaver dag 4 spg 5-9 5: Den multiple model Vi tilføjer nu yderligere to variable til vores model : Køn og kolesterol SBP = a + b*age + c*chol + d*mand hvor mand er 1 for mænd, 0 for

Læs mere

Matematik for stx C-niveau

Matematik for stx C-niveau Thomas Jensen og Morten Overgård Nielsen Matematik for stx C-niveau Frydenlund Nu 2. reviderede, udvidede og ajourførte udgave Nu 2. reviderede, udvidede og ajourførte udgave Matema10k Matematik for stx

Læs mere

Program: 1. Repetition: p-værdi 2. Simpel lineær regression. 1/19

Program: 1. Repetition: p-værdi 2. Simpel lineær regression. 1/19 Program: 1. Repetition: p-værdi 2. Simpel lineær regression. 1/19 For test med signifikansniveau α: p < α forkast H 0 2/19 p-værdi Betragt tilfældet med test for H 0 : µ = µ 0 (σ kendt). Idé: jo større

Læs mere