Personlig stemmeafgivning

Størrelse: px
Starte visningen fra side:

Download "Personlig stemmeafgivning"

Transkript

1 Ib Michelsen X 2 -test 1 Personlig stemmeafgivning Efter valget i har man udspurgt en mindre del af de deltagende, om de har stemt personligt. Man har svar fra 1131 mænd (hvoraf 54 % har stemt personligt - ifølge eget udsagn) og 928 kvinder (hvoraf 52 % har stemt personligt - ifølge eget udsagn). Hvis alle husker rigtigt og alle er sanddru og alle personer er udvalgt helt tilfældigt, kan vi betragte svarene som en stikprøve som kan give et billede af, hvorledes hele vælgerbefolkningen har stemt. Dette billede kan være mere eller mindre rigtigt. I teorien kan man sagtens tænke sig, at der i stikprøven har været 54 %, selvom næsten ingen mænd i hele populationen har stemt personligt: Tilfældigvis (og uheldigvis) er der bare udvalgt en delgruppe, som ikke er repræsentativ for hele populationen. Ofte gives der nogenlunde gode beskrivelser af populationen ved hjælp af stikprøver; dog er nøjagtigheden af målingerne tit overvurderet. Men en gang i mellem vil stikprøver være misvisende på grund af tilfældigheder. Valg 2005: Faktiske tal (fra stikprøven) Køn Personlig stemme Ikke personlig stemme I alt Frekvens Mand ,54 Kvinde ,52 I alt ,53 Der er en mindre men dog klar forskel på de to køn i stikprøven: vi vil teste hypotesen (påstanden): H 0 : Der er ingen forskel på mænds og kvinders tilbøjelighed til at stemme personligt I stikprøven er der en forskel på de to frekvenser, men det vi vil udtale os om, er ikke stikprøvens, men populationens frekvenser. Og som tidligere nævnt: Principielt kan vi aldrig vide, hvordan frekvenserne er i populationen. Men vi kan lave en model, hvor vi går ud fra H 0. Vi kan i denne beregne (eller eksperimentere) os frem til, hvad der vil ske, hvis man lavede sådan en stikprøve uendeligt mange gange (eller i hvert fald et meget stort antal gange.) Hvis H 0 gælder, kan vi beregne en fælles frekvens for mænd og kvinder. Det bliver i dette tilfælde 0,53 (eller 53 %.) For vor stikprøve kan vi nu beregne en teststørrelse, der fortæller 1 Se

2 Ib Michelsen X 2 -test 2 hvor langt udfaldet i stikprøven er fra det forventede udfald (idet vi forudsætter at nulhypotesen er sand.) Vi deler nu alle udfald i to dele: en med små afvigelser og en med store afvigelser. Vi sætter grænsen mellem små og store således, at kun 5 % af udfaldene vil være store (hvis man tænkte sig, at stikprøven blev udtaget uendeligt mange gange.) Hvis vi i vor stikprøve har en lille afvigelse ræsonneres: Nulhypotesen H 0 accepteres. At stikprøven er lidt anderledes end det forventede skyldes (nok) bare tilfældigheder. At acceptere betyder ikke, at man tror, at hypotesen er 100 % rigtig, men at man indtil videre ikke ved bedre. Derimod: Hvis vi i stikprøven har en stor afvigelse ræsonneres: Nulhypotesen H 0 forkastes. At afvigelsen er så stor er usandsynligt: det sker kun 5 ud af 100 gange. Vi tror ikke på det usandsynlige. Vi tror ikke på at meget sjældne begivenheder rammer netop os. Men da det trods alt sker 5 ud af 100 gange, vil vi sommetider bedømme hypoteser forkert. Det kunne vi hindre ved at forlange en større afvigelse, så vi fx kun tog fejl 1 ud af 100 gange. Ulempen er, at så bliver vi nødt til at acceptere mange forkerte hypoteser, som ellers kunne afvises. Valg 2005: Forventede tal (hvis nulhypotesen er sand) Køn Personlig stemme Ikke personlig stemme I alt Frekvens Mand 598,18 532, ,53 Kvinde 490,82 437, ,53 I alt ,53 Med tallene fra forrige tabel beregnes en frekvens for dem, der stemmer personligt uden hensyn til køn: f = ( )/( ) = 1089/2059 = 0,53 Med denne frekvens beregnes fx det forventede antal mænd, der stemmer personligt som m p =1131 0,53=598,18 Tilsvarende kunne det forventede antal kvinder beregnes; de sidste 3 tal findes dog nemmest, når man husker, at både række- og søjlesummer stadig skal være de samme som før. For hvert af de 4 realiserede tal, vil vi beregne afstanden mellem faktisk (fak) og forventet værdi (fv) ifølge denne formel: ( fak fv)2 Afvigelse= fv Adderes afvigelserne fås teststørrelsen X Χ = ( fak fv)2 fv Denne størrelse er et tal knyttet til vores stikprøve. Men da udtrækningen af stikprøven beror på tilfældigheder fås der ikke altid samme teststørrelse for hver stikprøve selvom populationen er den samme. Teststørrelsen er en stokastisk variabel. Den realiserede værdi

3 Ib Michelsen X 2 -test 3 af teststørrelsen skal sammenlignes med alle de mulige resultater fra uendeligt mange (teoretiske) stikprøver baseret på samme hypotese. Disse følger en kendt Χ 2 fordeling. Med denne afgøres om den samlede afvigelse er stor eller lille. Valg 2005: Beregning af afvigelser Køn Personlig stemme Ikke personlig stemme I alt Mand 0,13 0,15 0,28 Kvinde 0,16 0,18 0,34 I alt 0,29 0,32 0,61 Den først afvigelse beregnes som: Afvigelse= ( ,18)2 =0,13 598,18 Tilsvarende for de tre andre. Teststørrelsen Χ =0,61 En forudsætning for testen er, at alle forventede størrelser er mindst 5. En anden ting er, at der er forskellige Χ 2 fordelinger : Vi beregner eller tæller, hvor mange tal i tabellen, der kan bestemmes, før resten er givet. Det er antallet af frihedsgrader (eng.: degrees of freedom eller df). I denne opgave er der 1 frihedsgrad. I denne opgavetype med r rækker og s søjler kan antallet af frihedsgrader beregnes som (r-1)(s-1). I GeoGebra kan vi med sandsynlighedslommeregneren finde sandsynligheden for, at en afvigelse er mindre end den fundne afvigelse: Her er sandsynligheden = 56,5 %. Det vil sige, at teststørrelsen befinder sig mellem de små afvigelser; sandsynligheden for at få en større teststørrelse er 100 % -56,5 %; dvs. 43,5 %. Det sidste tal kaldes p-værdien og først når p-værdien er under 5 % forkastes hypotesen (når vi arbejder med signifikansniveauet 5 %.) Den teststørrelse, der får os til at forkaste hypotesen, kaldes den kritiske værdi. Den afhænger derfor af signifikansniveauet. Er det 5 %, vil den kritiske værdi være 3,84, da P ( X 3,84)=0,95 og P ( X >3,84)=0,05 (Jævnfør også tabellen i Bilag 2.) Konklusionen er, at nulhypotesen accepteres.

4 Ib Michelsen X 2 -test 4 Bilag 1: Grafisk illustration af forskellige sandsynligheder i GeoGebra

5 Ib Michelsen X 2 -test 5 Bilag 2: p-værdier

6 Ib Michelsen X 2 -test 6 Bilag 3: GeoGebra

7 Ib Michelsen X 2 -test 7 Bilag 4: Ordliste stikprøve population repræsentativ en del af en population den mængde, vi vil udtale os om (endelig eller uendelig, nutidig eller fremtidig) ligner nogenlunde teste undersøge om en påstand er rigtig hypotesen nulhypotesen H 0 accepteres en formodning eller påstand, der skal undersøges en hypotese, hvor en parameter antages at have en kendt værdi eller som her: at frekvensen for kvinder og mænd er ens. Nulhypotesen betegnes: H 0. hvis afvigelsen fra det forventede er lille H 0 forkastes hvis afvigelsen fra det forventede er usandsynlig stor, fx så stor at det kun vil ske i 5 % af alle tilfælde (eller evt. 1 % eller 0,1 %) observationer både stikprøver og populationer kan beskrives ved hjælp af observationerne, det være sig alder, køn eller om man stemmer personligt observationssæt er mængden af observationer hyppighed er antallet af en bestemt type observation observationssættets størrelse = n er antallet af observationer i observationssættet eller summen af hyppigheder frekvens er hyppighed/n; frekvensen kan skrives som, decimalbrøk eller procent kumulerede frekvenser er den brøkdel af observationerne, der er mindre end eller lig med en given størrelse stokastiske eksperimenter er eksperimenter med et tilfældigt udfald som fx terningekast (med udfaldsrummet U={plat, krone}.) sandsynlighed er et mål for den forventede frekvens af et udfald eller en delmængde af udfald ved et bestemt eksperiment stokastisk variabel er en funktion af et stokastisk eksperiments udfald; det kunne være antal plat ved 10 terningekast eller som her: den beregnede afvigelse mellem de forventede og de faktiske værdier i tabellerne; funktionsværdien betegnes X P ( X t)= p læses: sandsynligheden 2 for at den stokastiske variabel er mindre end eller lig med t er p (som er et tal i intervallet [0, 1].) Χ 2 fordeling en samling funktioner, der for frihedsgraderne 1,2,3, kan angive P ( X t), hvor X er den stokastiske variabel, der måler afvigelserne i vort eksempel p-værdien P ( X >t) eller 1,00 P( X t) 2 (eng.) probability

8 Ib Michelsen X 2 -test 8 signifikansniveau den kritiske værdi er den procentdel af udfaldene, der anses som usandsynlige ; her fx valgt som de 5 % mest ekstreme er så grænsen mellem de sandsynlige og de usandsynlige udfald; den afhænger naturligvis af hvilket signifikansniveau der er valgt

Hypotesetest. Altså vores formodning eller påstand om tingens tilstand. Alternativ hypotese (hvis vores påstand er forkert) H a : 0

Hypotesetest. Altså vores formodning eller påstand om tingens tilstand. Alternativ hypotese (hvis vores påstand er forkert) H a : 0 Hypotesetest Hypotesetest generelt Ingredienserne i en hypotesetest: Statistisk model, f.eks. X 1,,X n uafhængige fra bestemt fordeling. Parameter med estimat. Nulhypotese, f.eks. at antager en bestemt

Læs mere

Teoretisk Statistik, 2. december 2003. Sammenligning af poissonfordelinger

Teoretisk Statistik, 2. december 2003. Sammenligning af poissonfordelinger Uge 49 I Teoretisk Statistik, 2. december 2003 Sammenligning af poissonfordelinger o Generel teori o Sammenligning af to poissonfordelinger o Eksempel Opsummering om multinomialfordelinger Fishers eksakte

Læs mere

Statistik. Deskriptiv statistik, normalfordeling og test. Karsten Juul

Statistik. Deskriptiv statistik, normalfordeling og test. Karsten Juul Statistik Deskriptiv statistik, normalfordeling og test Karsten Juul Intervalhyppigheder En elevgruppe på et gymnasium har spurgt 100 tilfældigt valgte elever på gymnasiet om hvor lang tid det tager dem

Læs mere

At træffe sine valg i en usikker verden - eller den statistiske modellerings rolle.

At træffe sine valg i en usikker verden - eller den statistiske modellerings rolle. At træffe sine valg i en usikker verden - eller den statistiske modellerings rolle. Af E. Susanne Christensen. Lektor i statistik. Institut for Matematiske Fag. Aalborg Universitet. I mange tilfælde og

Læs mere

Vejledende besvarelse

Vejledende besvarelse Ib Michelsen Svar: stx B 29. maj 2013 Side 1 1. Udfyld tabellen Vejledende besvarelse Givet funktionen f (x)=4 5 x beregnes f(2) f (2)=4 5 2 =4 25=100 Den udfyldte tabel er derfor: x 0 1 2 f(x) 4 20 100

Læs mere

Hvad er meningen? Et forløb om opinionsundersøgelser

Hvad er meningen? Et forløb om opinionsundersøgelser Hvad er meningen? Et forløb om opinionsundersøgelser Jette Rygaard Poulsen, Frederikshavn Gymnasium og HF-kursus Hans Vestergaard, Frederikshavn Gymnasium og HF-kursus Søren Lundbye-Christensen, AAU 17-10-2004

Læs mere

χ 2 test Formål med noten... 2 Goodness of fit metoden (GOF)... 2 1) Eksempel 1 er stikprøven repræsentativ for køn? (1 frihedsgrad)...

χ 2 test Formål med noten... 2 Goodness of fit metoden (GOF)... 2 1) Eksempel 1 er stikprøven repræsentativ for køn? (1 frihedsgrad)... χ Indhold Formål med noten... Goodness of fit metoden (GOF)... 1) Eksempel 1 er stikprøven repræsentativ for køn? (1 frihedsgrad)... ) χ -fordelingerne (fordelingsfunktionernes egenskaber)... 6 3) χ -

Læs mere

Schweynoch, 2003. Se eventuelt http://www.mathematik.uni-kassel.de/~fathom/projekt.htm.

Schweynoch, 2003. Se eventuelt http://www.mathematik.uni-kassel.de/~fathom/projekt.htm. Projekt 8.5 Hypotesetest med anvendelse af t-test (Dette materiale har været anvendt som forberedelsesmateriale til den skriftlige prøve 01 for netforsøget) Indhold Indledning... 1 χ -test... Numeriske

Læs mere

Regneregler for middelværdier M(X+Y) = M X +M Y. Spredning varians og standardafvigelse. 1 n VAR(X) Y = a + bx VAR(Y) = VAR(a+bX) = b²var(x)

Regneregler for middelværdier M(X+Y) = M X +M Y. Spredning varians og standardafvigelse. 1 n VAR(X) Y = a + bx VAR(Y) = VAR(a+bX) = b²var(x) Formelsamlingen 1 Regneregler for middelværdier M(a + bx) a + bm X M(X+Y) M X +M Y Spredning varians og standardafvigelse VAR(X) 1 n n i1 ( X i - M x ) 2 Y a + bx VAR(Y) VAR(a+bX) b²var(x) 2 Kovariansen

Læs mere

Program. t-test Hypoteser, teststørrelser og p-værdier. Hormonkonc.: statistisk model og konfidensinterval. Hormonkoncentration: data

Program. t-test Hypoteser, teststørrelser og p-værdier. Hormonkonc.: statistisk model og konfidensinterval. Hormonkoncentration: data Faculty of Life Sciences Program t-test Hypoteser, teststørrelser og p-værdier Claus Ekstrøm E-mail: ekstrom@life.ku.dk Resumé og hængepartier fra sidst. Eksempel: effekt af foder på hormonkoncentration

Læs mere

Skriv punkternes koordinater i regnearket, og brug værktøjet To variabel regressionsanalyse.

Skriv punkternes koordinater i regnearket, og brug værktøjet To variabel regressionsanalyse. Opdateret 28. maj 2014. MD Ofte brugte kommandoer i Geogebra. Generelle Punktet navngives A Geogebra navngiver punktet Funktionen navngives f Funktionen navngives af Geogebra Punktet på grafen for f med

Læs mere

Statistik. Kvartiler og middeltal defineres forskelligt ved grupperede observationer og ved ikke grupperede observationer.

Statistik. Kvartiler og middeltal defineres forskelligt ved grupperede observationer og ved ikke grupperede observationer. Statistik Formålet... 1 Mindsteværdi... 1 Størsteværdi... 1 Ikke grupperede observationer... 2 Median og kvartiler defineres ved ikke grupperede observationer således:... 2 Middeltal defineres ved ikke

Læs mere

Sandsynligheder. Mængder Hændelser Sandsynligheder Regler for sandsynligheder

Sandsynligheder. Mængder Hændelser Sandsynligheder Regler for sandsynligheder Sandsynligheder Mængder Hændelser Sandsynligheder Regler for sandsynligheder Sandsynligheder En sandsynlighed er et kvantitativt mål for usikkerhed et mål der udtrykker styrken af vores tro på forekomsten

Læs mere

Spørgeskemaundersøgelser og databehandling

Spørgeskemaundersøgelser og databehandling DASG. Nye veje i statistik og sandsynlighedsregning. side 1 af 12 Spørgeskemaundersøgelser og databehandling Disse noter er udarbejdet i forbindelse med et tværfagligt samarbejde mellem matematik og samfundsfag

Læs mere

{ } { } {( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )}

{ } { } {( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )} Stokastisk eksperiment Et stokastisk eksperiment er et eksperiment, hvor vi fornuftigvis ikke på forhånd kan have en formodning om resultatet af eksperimentet. Til gengæld kan vi prøve at sige noget om,

Læs mere

Forelæsning 9: Inferens for andele (kapitel 10)

Forelæsning 9: Inferens for andele (kapitel 10) Kursus 02402 Introduktion til Statistik Forelæsning 9: Inferens for andele (kapitel 10) Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800

Læs mere

Fagligt samspil mellem Ma-B og SA-A Lisbeth Basballe, Mariagerfjord Gymnasium og Marianne Kesselhahn, Egedal Gymnasium og HF

Fagligt samspil mellem Ma-B og SA-A Lisbeth Basballe, Mariagerfjord Gymnasium og Marianne Kesselhahn, Egedal Gymnasium og HF Fagligt samspil mellem Ma-B og SA-A Lisbeth Basballe, Mariagerfjord Gymnasium og Marianne Kesselhahn, Egedal Gymnasium og HF Vi ønskede at planlægge og afprøve et undervisningsforløb, hvor anvendelse af

Læs mere

Temaopgave i statistik for

Temaopgave i statistik for Temaopgave i statistik for matematik B og A Indhold Opgave 1. Kast med 12 terninger 20 gange i praksis... 3 Opgave 2. Kast med 12 terninger teoretisk... 4 Opgave 3. Kast med 12 terninger 20 gange simulering...

Læs mere

Tænk på a og b som to n 1 matricer. a 1 a 2 a n. For hvert i = 1,..., n har vi y i = x i β + u i.

Tænk på a og b som to n 1 matricer. a 1 a 2 a n. For hvert i = 1,..., n har vi y i = x i β + u i. Repetition af vektor-regning Økonometri: Lektion 3 Matrix-formulering Fordelingsantagelse Hypotesetest Antag vi har to n-dimensionelle (søjle)vektorer a 1 b 1 a 2 a =. og b = b 2. a n b n Tænk på a og

Læs mere

Stikprøver, binomialtest og chi^2 test er nogle af de punkter som denne note kommer ind på. Det er et supplement til Vejen til Matematik

Stikprøver, binomialtest og chi^2 test er nogle af de punkter som denne note kommer ind på. Det er et supplement til Vejen til Matematik Hypotesetest s og spørgeskemaer Stikprøver, binomialtest og chi^2 test er nogle af de punkter som denne note kommer ind på. Det er et supplement til Vejen til Matematik Kumuleret sandsynlighed 0.9 0.8

Læs mere

Simulering af stokastiske fænomener med Excel

Simulering af stokastiske fænomener med Excel Simulering af stokastiske fænomener med Excel John Andersen, Læreruddannelsen i Aarhus, VIA Det kan være en ret krævende læreproces at udvikle fornemmelse for mange begreber fra sandsynlighedsregningen

Læs mere

Statistisk beskrivelse og test

Statistisk beskrivelse og test Statistisk beskrivelse og test 005 Karsten Juul Kapitel 1. Intervalhyppigheder Afsnit 1.1: Histogram En elevgruppe på et gymnasium har spurgt 100 tilfældigt valgte elever på gymnasiet om hvor lang tid

Læs mere

Et matematikeksperiment: Bjørn Felsager, Haslev Gymnasium & HF

Et matematikeksperiment: Bjørn Felsager, Haslev Gymnasium & HF Sammenligning af to måleserier En af de mest grundlæggende problemstillinger i statistik består i at undersøge om to forskellige måleserier er signifikant forskellige eller om forskellen på de to serier

Læs mere

Bilag til Statistik i løb : Statistik og Microsoft Excel tastevejledning / af Lars Bo Kristensen

Bilag til Statistik i løb : Statistik og Microsoft Excel tastevejledning / af Lars Bo Kristensen Bilag til Statistik i løb : Statistik og Microsoft Excel tastevejledning / af Lars Bo Kristensen Microsoft Excel har en del standard anvendelsesmuligheder i forhold til den beskrivende statistik og statistisk

Læs mere

Nanostatistik: sandsynligheder Kursushjemmeside: http://www.imf.au.dk/ kurser/nanostatistik/

Nanostatistik: sandsynligheder Kursushjemmeside: http://www.imf.au.dk/ kurser/nanostatistik/ Nanostatistik: sandsynligheder Kursushjemmeside: http://www.imf.au.dk/ kurser/nanostatistik/ JLJ Nanostatistik: sandsynlighederkursushjemmeside:http://www.imf.au.dk/kurser/nanostatistik/ p. 1/16 Højder

Læs mere

Rockwool Fondens Forskningsenhed og SFI Det Nationale Forskningscenter for Velfærd

Rockwool Fondens Forskningsenhed og SFI Det Nationale Forskningscenter for Velfærd September 2009 Notat Rockwool Fondens Forskningsenhed og SFI Det Nationale Forskningscenter for Velfærd Risikoen for at flygtninge og indvandrere sættes ud af deres bolig Flygtninge og indvandrere lever

Læs mere

Statistik er at behandle en stor mængde af tal, så de bliver lettere at overskue og forstå.

Statistik er at behandle en stor mængde af tal, så de bliver lettere at overskue og forstå. Statistik er at behandle en stor mængde af tal, så de bliver lettere at overskue og forstå. Hvis man fx samler de karakterer, der er givet til en eksamen i én stor bunke (se herunder), kan det være svært

Læs mere

Taldata 1. Chancer gennem eksperimenter

Taldata 1. Chancer gennem eksperimenter Taldata 1. Chancer gennem eksperimenter Indhold 1. Kast med to terninger 2. Et pindediagram 3. Sumtabel 4. Median og kvartiler 5. Et trappediagram 6. Gennemsnit 7. En statistik 8. Anvendelse af edb 9.

Læs mere

Statistik. Ib Michelsen

Statistik. Ib Michelsen Statistik Ib Michelsen Ikast 2007 Forsidebilledet Collage (IM) med hjælp fra Danmarks statistik, Volsted Plantage Jagtkonsortium og Kriminalforsorgen Version 1.0 incl. Sandsynlighed 15-5-2008 Indholdsfortegnelse

Læs mere

Statistik II Lektion 3. Logistisk Regression Kategoriske og Kontinuerte Forklarende Variable

Statistik II Lektion 3. Logistisk Regression Kategoriske og Kontinuerte Forklarende Variable Statistik II Lektion 3 Logistisk Regression Kategoriske og Kontinuerte Forklarende Variable Setup: To binære variable X og Y. Statistisk model: Konsekvens: Logistisk regression: 2 binære var. e e X Y P

Læs mere

Økonometri: Lektion 4. Multipel Lineær Regression: F -test, justeret R 2 og aymptotiske resultater

Økonometri: Lektion 4. Multipel Lineær Regression: F -test, justeret R 2 og aymptotiske resultater Økonometri: Lektion 4 Multipel Lineær Regression: F -test, justeret R 2 og aymptotiske resultater 1 / 35 Hypotesetest for én parameter Antag vi har model y = β 0 + β 1 x 2 + β 2 x 2 + + β k x k + u. Vi

Læs mere

Kønsproportion og familiemønstre.

Kønsproportion og familiemønstre. Københavns Universitet Afdeling for Anvendt Matematik og Statistik Projektopgave forår 2005 Kønsproportion og familiemønstre. Matematik 2SS Inge Henningsen februar 2005 Indledning I denne opgave undersøges,

Læs mere

Dagens program. Afsnit 1.1-1.3 Eksperimenter med usikkerhed Sandsynlighedsmodel - Udfaldsrum - Hændelser - Sandsynligheder Eksempler

Dagens program. Afsnit 1.1-1.3 Eksperimenter med usikkerhed Sandsynlighedsmodel - Udfaldsrum - Hændelser - Sandsynligheder Eksempler Dagens program Afsnit 1.1-1.3 Eksperimenter med usikkerhed Sandsynlighedsmodel - Udfaldsrum - Hændelser - Sandsynligheder Eksempler 1 Sandsynlighedsmodel Kvantitative Metoder 1 - Efterår 2006 Eksperiment

Læs mere

Grupperede observationer et eksempel. (begreber fra MatC genopfriskes og varians og spredning indføres)

Grupperede observationer et eksempel. (begreber fra MatC genopfriskes og varians og spredning indføres) Grupperede observationer et eksempel. (begreber fra MatC genopfriskes og varians og spredning indføres) Til Gribskovløbet 006 gennemførte 118 kvinder 1,4 km distancen. Fordelingen af kvindernes løbstider

Læs mere

KURSUSMATERIALE TIL DET NYE STATISTIKPENSUM

KURSUSMATERIALE TIL DET NYE STATISTIKPENSUM KURSUSMATERIALE TIL DET NYE STATISTIKPENSUM Det foreliggende udkast til kursusmateriale er lagt ud til orientering for kollegerne med henblik på at indhente kommentarer til materialet. Sammen med Susanne

Læs mere

Opgave 6. Opgave 7. Peter Harremoës Matematik A med hjælpemidler 26 maj 2015. a) Se Bilag 2! b) Variablen n isoleres. L = 2 z 1 α. L = 2 z 1 α L = n =

Opgave 6. Opgave 7. Peter Harremoës Matematik A med hjælpemidler 26 maj 2015. a) Se Bilag 2! b) Variablen n isoleres. L = 2 z 1 α. L = 2 z 1 α L = n = Opgave 6 a) Se Bilag 2! b) Variablen n isoleres ( L = 2 z 1 α 2 ) 2 L = 2 z 1 α 2 L = 2 z 1 α 2 n = ( ˆp (1 ˆp) n ˆp (1 ˆp) n ˆp (1 ˆp) ( n ( ˆp (1 ˆp) ) 1/2 ) 2 L 2 z 1 α 2 n ) 1/2 Opgave 7 n = 4ˆp (1

Læs mere

Statistik noter - Efterår 2009 Keller - Statistics for management and economics

Statistik noter - Efterår 2009 Keller - Statistics for management and economics Statistik noter - Efterår 2009 Keller - Statistics for management and economics Jonas Sveistrup Hansen - stud.merc.it 22. september 2009 1 Indhold 1 Begrebsliste 3 2 Forelæsning 1 - kap. 1-3 3 2.1 Kelvin

Læs mere

STUDENTEREKSAMEN MATHIT PRØVESÆT MAJ 2007 2010 MATEMATIK A-NIVEAU. MATHIT Prøvesæt 2010. Kl. 09.00 14.00 STXA-MATHIT

STUDENTEREKSAMEN MATHIT PRØVESÆT MAJ 2007 2010 MATEMATIK A-NIVEAU. MATHIT Prøvesæt 2010. Kl. 09.00 14.00 STXA-MATHIT STUDENTEREKSAMEN MATHIT PRØVESÆT MAJ 007 010 MATEMATIK A-NIVEAU MATHIT Prøvesæt 010 Kl. 09.00 14.00 STXA-MATHIT Opgavesættet er delt i to dele. Delprøve 1: timer med autoriseret formelsamling Delprøve

Læs mere

Skolesektionen på www.ballerup.dk

Skolesektionen på www.ballerup.dk Skolesektionen på www.ballerup.dk Louise Callisen Dyhr (ldyh) Marie Louise Gottlieb Frederiksen (mgfr) Janus Askø Madsen (jaam) Nanna Petersen (nshy) Antal tegn: 28319 Afleveringsdato: 21. maj 2014 1 Indledning...

Læs mere

Peter Harremoës Matematik A med hjælpemidler 16. december 2013. M = S 1 + a = a + b a b a = b 1. b 1 a = b 1. a = b 1. b 1 a = b

Peter Harremoës Matematik A med hjælpemidler 16. december 2013. M = S 1 + a = a + b a b a = b 1. b 1 a = b 1. a = b 1. b 1 a = b stk. Peter Harremoës Matematik A med hjælpemidler 16. december 2013 Opagve 6 Variables a isoleres: M = S 1 + a = a + b b a b a = b 1 ( ) 1 b 1 a = b 1 a = b 1 1 b 1 a = b Hvis b = 1, så gælder ligningen

Læs mere

Aktivitetsmappe for introkurset til Naturvidenskabeligt grundforløb 2008

Aktivitetsmappe for introkurset til Naturvidenskabeligt grundforløb 2008 Den eksperimentelle metode i statistik Den naturvidenskabelige metode er i fokus efter gymnasiereformen. Det starter med naturvidenskabeligt grundforløb: Aktivitetsmappe for introkurset til Naturvidenskabeligt

Læs mere

I. Deskriptiv analyse af kroppens proportioner

I. Deskriptiv analyse af kroppens proportioner Projektet er delt i to, og man kan vælge kun at gennemføre den ene del. Man kan vælge selv at frembringe data, fx gennem et samarbejde med idræt eller biologi, eller man kan anvende de foreliggende data,

Læs mere

Kapitel 4 Sandsynlighed og statistiske modeller

Kapitel 4 Sandsynlighed og statistiske modeller Kapitel 4 Sandsynlighed og statistiske modeller Peter Tibert Stoltze stat@peterstoltze.dk Elementær statistik F2011 1 Indledning 2 Sandsynlighed i binomialfordelingen 3 Normalfordelingen 4 Modelkontrol

Læs mere

Statikstik II 2. Lektion. Lidt sandsynlighedsregning Lidt mere om signifikanstest Logistisk regression

Statikstik II 2. Lektion. Lidt sandsynlighedsregning Lidt mere om signifikanstest Logistisk regression Statikstik II 2. Lektion Lidt sandsynlighedsregning Lidt mere om signifikanstest Logistisk regression Sandsynlighedsregningsrepetition Antag at Svar kan være Ja og Nej. Sandsynligheden for at Svar Ja skrives

Læs mere

Statistik i GeoGebra

Statistik i GeoGebra Statistik i GeoGebra Peter Harremoës 13. maj 2015 Jeg vil her beskrive hvordan man kan lave forskellige statistiske analyser ved hjælp af GeoGebra 4.2.60.0. De statistiske analyser svarer til pensum Matematik

Læs mere

matx.dk Undersøgelsesdesign Statistik Dennis Pipenbring

matx.dk Undersøgelsesdesign Statistik Dennis Pipenbring matx.dk Undersøgelsesdesign Statistik Dennis Pipenbring 7. april 2011 Indhold 1 Undersøgelsesdesign 5 1.1 Kausalitet............................. 5 1.2 Validitet og bias......................... 6 1.3

Læs mere

Løs nu opgaverne i a) brug alt materialet her samt evt. regnearkene i Fronter som hjælp.

Løs nu opgaverne i a) brug alt materialet her samt evt. regnearkene i Fronter som hjælp. Udarbejdet af Thomas Jensen og Morten Overgård Nielsen Indhold Introduktion til materialet. s. 2 Introduktion til chi i anden test. s. 4 Et eksempel hastighed og ulykker på motorveje s. 8 Sådan udregnes

Læs mere

Statistik med TI-Nspire CAS version 3.2. Bjørn Felsager September 2012. [Fjerde udgave]

Statistik med TI-Nspire CAS version 3.2. Bjørn Felsager September 2012. [Fjerde udgave] Statistik med TI-Nspire CAS version 3.2 Bjørn Felsager September 2012 [Fjerde udgave] Indholdsfortegnelse Forord Beskrivende statistik 1 Grundlæggende TI-Nspire CAS-teknikker... 4 1.2 Lister og regneark...

Læs mere

Statistik II 4. Lektion. Logistisk regression

Statistik II 4. Lektion. Logistisk regression Statistik II 4. Lektion Logistisk regression Logistisk regression: Motivation Generelt setup: Dikotom(binær) afhængig variabel Kontinuerte og kategoriske forklarende variable (som i lineær reg.) Eksempel:

Læs mere

Evaluering af unges brug af alkohol social pejling april 2013

Evaluering af unges brug af alkohol social pejling april 2013 Evaluering af unges brug af alkohol social pejling april 213 83 respondenter har gennemført undersøgelsen. Respondenternes baggrund På figur 1 kan det ses at de fleste respondenter har været henholdsvis

Læs mere

ÅRSPLAN MATEMATIK 5.KLASSE

ÅRSPLAN MATEMATIK 5.KLASSE ÅRSPLAN MATEMATIK 5.KLASSE Matematiklærerens tænkebobler illustrerer, at matematikundervisning ikke udelukkende handler om opgaver, men om en (lige!) blanding af: Kompetencer Indhold Arbejdsmåder CENTRALE

Læs mere

Statistik (deskriptiv)

Statistik (deskriptiv) Statistik (deskriptiv) Ikke-grupperede data For at behandle ikke-grupperede data i TI, skal data tastes ind i en liste. Dette kan gøres ved brug af List, hvis ikon er nr. 5 fra venstre på værktøjsbjælken

Læs mere

Kvantitative metoder, teori og praksis

Kvantitative metoder, teori og praksis Kvantitative metoder, teori og praksis Kvantitative metoder Målet med de kvantitative metoder Forskellige typer kvantitative metoder Styrker og svagheder Repræsentativitet og udtræksperioder Det gode spørgeskema

Læs mere

Vejledning til Gym18-pakken

Vejledning til Gym18-pakken Vejledning til Gym18-pakken Copyright Maplesoft 2014 Vejledning til Gym18-pakken Contents 1 Vejledning i brug af Gym18-pakken... 1 1.1 Installation... 1 2 Deskriptiv statistik... 2 2.1 Ikke-grupperede

Læs mere

Projekt 8.3 Hvordan undersøges om et talmateriale normalfordelt?

Projekt 8.3 Hvordan undersøges om et talmateriale normalfordelt? Projekt 8.3 Hvordan undersøges om et talmateriale normalfordelt? Projektet drejer sig om at udvikle en metode, til at undersøge om et givet talmateriale med rimelighed kan siges at være normalfordelt.

Læs mere

F I N N H. K R I S T I A N S E N KUGLE SIMULATIONER MÅLSCORE I HÅNDBOLD G Y L D E N D A L

F I N N H. K R I S T I A N S E N KUGLE SIMULATIONER MÅLSCORE I HÅNDBOLD G Y L D E N D A L RÆSONNEMENT & 1BE V I S F I N N H. K R I S T I A N S E N GNING 2 EGNEARK KUGLE 5 MÅLING SIMULATIONER 3 G Y L D E N D A L MÅLSCORE I HÅNDBOLD Faglige mål: Håndtere simple modeller til beskrivelse af sammenhænge

Læs mere

Matematik B. Højere handelseksamen

Matematik B. Højere handelseksamen Matematik B Højere handelseksamen hh11-mat/b-70501 Mandag den 7. maj 01 kl. 9.00-1.00 Matematik B Prøven består af to delprøver. Delprøven uden hjælpemidler består af opgave 1 til 5 med i alt 5 spørgsmål.

Læs mere

Løsninger til eksamensopgaver på B-niveau 2015

Løsninger til eksamensopgaver på B-niveau 2015 Løsninger til eksamensopgaver på B-niveau 2015 22. maj 2015: Delprøven UDEN hjælpemidler Opgave 1: Ligningen løses ved at isolere x i det åbne udsagn: 4 x 7 81 4 x 88 88 x 22 4 Opgave 2: y 87 0,45 x Det

Læs mere

Ib Michelsen Vejledende løsning stxb 101 1

Ib Michelsen Vejledende løsning stxb 101 1 Ib Michelsen Vejledende løsning stxb 101 1 Opgave 1 Løs ligningen: 3(2 x+1)=4 x+9 Løsning 3(2 x+1)=4 x+9 6 x+3=4 x+9 6 x+3 3=4 x+9 3 6 x=4 x+6 6x 4 x=4 x+6 4 x 2 x=6 2 x 2 = 6 2 x=3 Opgave 2 P(3,1) er

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Sommer 2015 Institution Campus vejle Uddannelse Fag og niveau Lærer(e) Hold HHX Matematik B (Valghold) PEJE

Læs mere

2. Ved et roulettespil kan man vinde 0,10,100, 500 og 1000 kr. Sandsynligheden for gevinsterne ses af følgende skema:

2. Ved et roulettespil kan man vinde 0,10,100, 500 og 1000 kr. Sandsynligheden for gevinsterne ses af følgende skema: Der er hjælp til opgaver med # og facit på side 6 1. Et eksperiment kan beskrives med følgende skema: u 1 2 3 4 5 P(u) 0,3 0,2 0,1 0,2 x Bestem x og sandsynligheden for at udfaldet er et lige tal.. 2.

Læs mere

Matematik B. Højere handelseksamen

Matematik B. Højere handelseksamen Matematik B Højere handelseksamen hh123-mat/b-17122012 Mandag den 17. december 2012 kl. 9.00-13.00 Prøven består af to delprøver. Delprøven uden hjælpemidler består af opgave 1 til 5 med i alt 5 spørgsmål.

Læs mere

Påskemåling - Detektor. 23. mar 2015

Påskemåling - Detektor. 23. mar 2015 t Påskemåling - Detektor 0 DR. mar 0 AARHUS COPENHAGEN MALMÖ OSLO SAIGON STAVANGER VIENNA INDHOLDSFORTEGNELSE. Frekvenser.... Kryds med alder.... Kryds med køn.... Kryds med Partivalg.... Om Undersøgelsen...

Læs mere

Løsningsforslag til Stokastik 1.-10. klasse

Løsningsforslag til Stokastik 1.-10. klasse 1 Løsningsforslag til Stokastik 1.-10. klasse Bemærk, at vi benytter betegnelsen øvelser som en meget bred betegnelse. Derfor er der også nogle af vores øvelser, der nærmer sig kategorien undersøgelser,

Læs mere

Kursusindhold: X i : tilfældig værdi af ite eksperiment. Antag X i kun antager værdierne 1, 2,..., M.

Kursusindhold: X i : tilfældig værdi af ite eksperiment. Antag X i kun antager værdierne 1, 2,..., M. Kursusindhold: Produkt og marked - matematiske og statistiske metoder Rasmus Waagepetersen Institut for Matematiske Fag Aalborg Universitet February 9, 2015 Sandsynlighedsregning og lagerstyring Normalfordelingen

Læs mere

Noter til Statistik. Lisbeth Tavs Gregersen. 1. udgave

Noter til Statistik. Lisbeth Tavs Gregersen. 1. udgave Noter til Statistik Lisbeth Tavs Gregersen 1. udgave 1 Indhold 1 Intro 3 1.1 HF Bekendtgørelsen........................ 3 1.2 Deskriptiv statistik......................... 3 2 Ikke-grupperet Talmateriale

Læs mere

Matematik B. Højere handelseksamen. Mandag den 15. december 2014 kl. 9.00-13.00. hhx143-mat/b-15122014

Matematik B. Højere handelseksamen. Mandag den 15. december 2014 kl. 9.00-13.00. hhx143-mat/b-15122014 Matematik B Højere handelseksamen hhx143-mat/b-15122014 Mandag den 15. december 2014 kl. 9.00-13.00 Matematik B Prøven består af to delprøver. Delprøven uden hjælpemidler består af opgave 1 til 5 med i

Læs mere

Program dag 2 (11. april 2011)

Program dag 2 (11. april 2011) Program dag 2 (11. april 2011) Dag 2: 1) Hvordan kan man bearbejde data; 2) Undersøgelse af datamaterialet; 3) Forskellige typer statistik; 4) Indledende dataundersøgelser; 5) Hvad kan man sige om sammenhænge;

Læs mere

Flere og flere forsikrer sig mod ledighed

Flere og flere forsikrer sig mod ledighed Flere og flere forsikrer sig mod ledighed Næsten 100.000 danskere har tegnet en lønsikring som tillæg til dagpengene især vellønnede forsikrer sig. Samtidig mener næsten hver anden, at lønsikringen øger

Læs mere

Sociologi, 2. semester Københavns Universitet Forår 2013

Sociologi, 2. semester Københavns Universitet Forår 2013 Indholdsfortegnelse 1. Problem og motivation: Bolig og ulighed i byen (1052, 852), (1040, 840), (1027, 827), (1105, 905)... 3 1.1 Teoretiske hypoteser... 4 2. Teoretisk udgangspunkt: Et steds betydning

Læs mere

18. december 2013 Mat B eksamen med hjælpemidler Peter Harremoës. P = 100 x 0.6 y 0.4 1000 = 100 x 0.6 y 0.4 10 = x 0.6 y 0.4 10 y 0.4 = x 0.

18. december 2013 Mat B eksamen med hjælpemidler Peter Harremoës. P = 100 x 0.6 y 0.4 1000 = 100 x 0.6 y 0.4 10 = x 0.6 y 0.4 10 y 0.4 = x 0. Opgave 6 Vi sætter P = 1000 og isolerer x i ligningen Se Bilag 2! P = 100 x 0.6 y 0.4 1000 = 100 x 0.6 y 0.4 10 = x 0.6 y 0.4 10 y 0.4 = x 0.6 ( 10 y 0.4 )1 /0.6 = x 10 1 /0.6 y 0.4 /0.6 = x x = 10 5 /3

Læs mere

Projekt 1 Spørgeskemaanalyse af Bedst på Nettet

Projekt 1 Spørgeskemaanalyse af Bedst på Nettet Projekt 1 Spørgeskemaanalyse af Bedst på Nettet D.29/2 2012 Udarbejdet af: Katrine Ahle Warming Nielsen Jannie Jeppesen Schmøde Sara Lorenzen A) Kritik af spørgeskema Set ud fra en kritisk vinkel af spørgeskemaet

Læs mere

Iteration af et endomorft kryptosystem. Substitutions-permutations-net (SPN) og inversion. Eksklusiv disjunktion og dens egenskaber

Iteration af et endomorft kryptosystem. Substitutions-permutations-net (SPN) og inversion. Eksklusiv disjunktion og dens egenskaber Produktsystemer, substitutions-permutations-net samt lineær og differentiel kryptoanalyse Kryptologi, fredag den 10. februar 2006 Nils Andersen (Stinson 3., afsnit 2.7 3.4 samt side 95) Produkt af kryptosystemer

Læs mere

Matematik C. Højere forberedelseseksamen. Skriftlig prøve (3 timer) Fredag den 11. december 2009 kl. 9.00-12.00 2HF093-MAC

Matematik C. Højere forberedelseseksamen. Skriftlig prøve (3 timer) Fredag den 11. december 2009 kl. 9.00-12.00 2HF093-MAC Matematik C Højere forberedelseseksamen Skriftlig prøve (3 timer) 2HF093-MAC Fredag den 11. december 2009 kl. 9.00-12.00 Opgavesættet består af 8 opgaver med i alt 14 spørgsmål. De 14 spørgsmål indgår

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin 2. juni 2014 Institution Kolding HF og VUC, Ålegården 2, 6000 Kolding (tovholder) VUC Vest, Stormgade 47,

Læs mere

Gennemsnit og normalfordeling illustreret med terningkast, simulering og SLUMP()

Gennemsnit og normalfordeling illustreret med terningkast, simulering og SLUMP() Gennemsnit og normalfordeling illustreret med terningkast, simulering og SLUMP() John Andersen, Læreruddannelsen i Aarhus, VIA Et kast med 10 terninger gav følgende udfald Fig. 1 Result of rolling 10 dices

Læs mere

Simpsons Paradoks. Et emnearbejde om årsag og sammenhæng i kvantitative undersøgelser. Inge Henningsen

Simpsons Paradoks. Et emnearbejde om årsag og sammenhæng i kvantitative undersøgelser. Inge Henningsen Simpsons Paradoks Et emnearbejde om årsag og sammenhæng i kvantitative undersøgelser Afdeling for Anvendt Matematik og Statistik Københavns Universitet 1 Simpsons Paradoks -Et emnearbejde om årsag og sammenhæng

Læs mere

STATISTIKNOTER Simple binomialfordelingsmodeller

STATISTIKNOTER Simple binomialfordelingsmodeller STATISTIKNOTER Simple binomialfordelingsmodeller Jørgen Larsen IMFUFA Roskilde Universitetscenter Februar 1999 IMFUFA, Roskilde Universitetscenter, Postboks 260, DK-4000 Roskilde. Jørgen Larsen: STATISTIKNOTER:

Læs mere

Lektion 9s Statistik - supplerende eksempler

Lektion 9s Statistik - supplerende eksempler Lektion 9s Statistik - supplerende eksempler Middelværdi for grupperede observationer... Summeret frekvens og sumkurver... Indekstal... Lektion 9s Side 1 Grupperede observationer Hvis man stiller et spørgsmål,

Læs mere

Matematik A Terminsprøve Digital prøve med adgang til internettet Torsdag den 21. marts 2013 kl. 09.00-14.00 112362.indd 1 20/03/12 07.

Matematik A Terminsprøve Digital prøve med adgang til internettet Torsdag den 21. marts 2013 kl. 09.00-14.00 112362.indd 1 20/03/12 07. Matematik A Terminsprøve Digital prøve med adgang til internettet Torsdag den 21. marts 2013 kl. 09.00-14.00 112362.indd 1 20/03/12 07.54 Side 1 af 7 sider Opgavesættet er delt i to dele: Delprøve 1: 2

Læs mere

Fagårsplan 10/11 Fag: Matematik Klasse: 7.ABC Lærer: Henrik Stillits. Fagområde/ emne

Fagårsplan 10/11 Fag: Matematik Klasse: 7.ABC Lærer: Henrik Stillits. Fagområde/ emne Fagårsplan 10/11 Fag: Matematik Klasse: 7.ABC Lærer: Henrik Stillits. Fagområde/ emne Matematiske færdigheder Grundlæggende færdigheder - plus, minus, gange, division (hele tal, decimaltal og brøker) Identificer

Læs mere

Deskriptiv statistik

Deskriptiv statistik Deskriptiv statistik Billedet Collage (IM) med hjælp fra Danmarks Statistik, Volsted Plantage Jagtkonsortium og Kriminalforsorgen Version 1.7 incl. Sandsynlighed 16-3-2009 Editeret 18-1-2012 og 6-2-2012

Læs mere

Dig og din puls Lærervejleding

Dig og din puls Lærervejleding Dig og din puls Lærervejleding Indledning I det efterfølgende materiale beskrives et forløb til matematik C, hvori eleverne skal måle hvilepuls og arbejdspuls og beskrive observationerne matematisk. Materialet

Læs mere

Eksamen ved. Københavns Universitet i. Kvantitative forskningsmetoder. Det Samfundsvidenskabelige Fakultet

Eksamen ved. Københavns Universitet i. Kvantitative forskningsmetoder. Det Samfundsvidenskabelige Fakultet Eksamen ved Københavns Universitet i Kvantitative forskningsmetoder Det Samfundsvidenskabelige Fakultet 14. december 2011 Eksamensnummer: 5 14. december 2011 Side 1 af 6 1) Af boxplottet kan man aflæse,

Læs mere

Skriftlig Eksamen Diskret Matematik (DM528)

Skriftlig Eksamen Diskret Matematik (DM528) Skriftlig Eksamen Diskret Matematik (DM528) Institut for Matematik & Datalogi Syddansk Universitet Tirsdag den 20 Januar 2009, kl. 9 13 Alle sædvanlige hjælpemidler (lærebøger, notater etc.) samt brug

Læs mere

Matematik A. Højere handelseksamen

Matematik A. Højere handelseksamen Matematik A Højere handelseksamen hhx141-mat/a-305014 Fredag den 3. maj 014 kl. 9.00-14.00 Prøven består af to delprøver. Delprøven uden hjælpemidler består af opgave 1 til 5 med i alt 5 spørgsmål. Besvarelsen

Læs mere

Kursus i @Risk (stokastisk simulering) Øvelsesmanual

Kursus i @Risk (stokastisk simulering) Øvelsesmanual Kursus i @Risk (stokastisk simulering) Øvelsesmanual Hvorfor @Risk og dette kursus? Større og mere komplekse landbrugsbedrifter kræver gode beslutningsværktøjer. I traditionelle regneark regnes der på

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj 2015 Institution VUC Vest, Stormgade 47, 6700 Esbjerg Uddannelse HF net-undervisning, HFe Fag og niveau

Læs mere

Matematik B. Højere handelseksamen

Matematik B. Højere handelseksamen Matematik B Højere handelseksamen hhx132-mat/b-16082013 Fredag den 16. august 2013 kl. 9.00-13.00 Matematik B Prøven består af to delprøver. Delprøven uden hjælpemidler består af opgave 1 til 5 med i alt

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Sommer 2014 Institution Campus Vejle Uddannelse HHX Fag og niveau Matematik B ( Valghold ) Lærer(e) LSP (

Læs mere

Rente, lån og opsparing

Rente, lån og opsparing Rente, lån og opsparing Simpel rente og sammensat rente... 107 Nogle vigtige begreber omkring lån og opsparing... 109 Serielån... 110 Annuitetslån... 111 Opsparing... 115 Rente, lån og opsparing Side 106

Læs mere

Matematik B. Højere handelseksamen

Matematik B. Højere handelseksamen Matematik B Højere handelseksamen hh141-mat/b-23052014 Fredag den 23. maj 2014 kl. 9.00-13.00 Matematik B Prøven består af to delprøver. Delprøven uden hjælpemidler består af opgave 1 til 5 med i alt 5

Læs mere

At bruge sin dyrebare tid på frivilligt arbejde -En analyse af hvem der bruger mest tid på frivilligt arbejde og hvorfor?

At bruge sin dyrebare tid på frivilligt arbejde -En analyse af hvem der bruger mest tid på frivilligt arbejde og hvorfor? At bruge sin dyrebare tid på frivilligt arbejde -En analyse af hvem der bruger mest tid på frivilligt arbejde og hvorfor? Hans-Peter Qvist, Aalborg Universitet SDU, 5. juni, 2014 1 Baggrund Fra den empirisk

Læs mere

Matematik i Word. En manual til elever og andet godtfolk. Indhold med hurtig-links. Kom godt i gang med Word Matematik. At regne i Word Matematik

Matematik i Word. En manual til elever og andet godtfolk. Indhold med hurtig-links. Kom godt i gang med Word Matematik. At regne i Word Matematik Matematik i Word En manual til elever og andet godtfolk. Indhold med hurtig-links Kom godt i gang med Word Matematik At regne i Word Matematik Kom godt i gang med WordMat Opsætning, redigering og kommunikationsværdi

Læs mere

Projektopgave Observationer af stjerneskælv

Projektopgave Observationer af stjerneskælv Projektopgave Observationer af stjerneskælv Af: Mathias Brønd Christensen (20073504), Kristian Jerslev (20072494), Kristian Mads Egeris Nielsen (20072868) Indhold Formål...3 Teori...3 Hvorfor opstår der

Læs mere

LØN- OG PERSONALE- STATISTIKKEN 2012

LØN- OG PERSONALE- STATISTIKKEN 2012 Til Danske Ark Dokumenttype Rapport Dato Januar 2013 LØN- OG PERSONALE- STATISTIKKEN 2012 LØN- OG PERSONALESTATISTIKKEN 2012 INDHOLD 1. Indledning 1 2. De deltagende medarbejdere 2 3. Månedsløn og uddannelsesretning

Læs mere

Matematik C. Højere forberedelseseksamen

Matematik C. Højere forberedelseseksamen Matematik C Højere forberedelseseksamen 2hf132-MAT/C-29082013 Torsdag den 29. august 2013 kl. 9.00-12.00 Opgavesættet består af 7 opgaver med i alt 15 spørgsmål. De 15 spørgsmål indgår med lige vægt ved

Læs mere

Hvor kommer du fra? Hvordan kan vi bruge data fra projektet i undervisningssammenhæng?

Hvor kommer du fra? Hvordan kan vi bruge data fra projektet i undervisningssammenhæng? Hvor kommer du fra Hvordan kan vi bruge data fra projektet i undervisningssammenhæng Slutkonference ulaen på arhus Universitet, d. 31 marts 2014 Frank Grønlund Jørgensen Ph.d. i biologi fra U med fokus

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Termin hvori undervisningen afsluttes: maj-juni 2014 IBC-Kolding

Læs mere