Konfidens intervaller

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Starte visningen fra side:

Download "Konfidens intervaller"

Transkript

1 Kofides itervaller Kofides itervaller for: Kofides iterval for middelværdi, varias kedt Kofides iterval for middelværdi, varias ukedt Kofides iterval for adel Kofides iterval for varias Bestemmelse af stikprøve størrelse

2 Kofides itervaller Et kofides iterval er et iterval, der estimerer værdie af e ukedt populatios parameter. Kaldes også et iterval estimat. Samme med itervallet gives et mål for, hvor sikker ma er på, at de sade populatios parameter ligger i itervallet. Dette mål kaldes for kofides iveauet. Et pukt estimat estimerer værdie af e ukedt populatios parameter ved e ekelt værdi. For eksempel, sidste gag geemsitslø for HA X600. Et pukt estimat ideholder ikke meget iformatio om de faktiske værdi af μ. Et iterval estimat ideholder flere iformatioer, for eksempel: Vi er 95% sikre på, at itervallet [550,650] ideholde de sade middelværdi μ. Eller vi er 90% sikre på, at itervallet [599,601] ideholder de sade middelværdi μ.

3 Kofides iterval for middelværdie (år X er ormal fordelt eller stikprøve er stor) Da gælder følgede: E 95% kofides iterval for middelværdi P P μ μ μ ), ( ~ N X μ ±196.

4 Mellemregiger , , , ,96 / / 1.96 ) ,96) 1.96 ( + + P P P P P z P μ μ μ μ μ μ μ : at gælder,, X ~ N( Da ~ N(0,1) z hvor,

5 Kofides iterval for middelværdi f() % falder edefor itervallet Samplig Distributio of the Mea.5% μ % μ 95% falder idefor itervallet.5% μ % falder over itervallet Approksimativt 95% af af stikprøve middelværdiere ka ka forvetes at at falde idefor itervallet μ 196., μ Omvedt, cirka.5% ka ka forvetes at at være uder μ 196. og ka og.5% ka at forvetes at være over μ Så Så5% ka ka forvetes at at være udefor itervallet...

6 Kofides iterval for middelværdi f() * Samplig Distributio of the Mea 95%.5%.5% μ μ 196. μ * Approksimativt 95% 95% af af itervallere ±1.96 omrig stikprøve middelværdie ka ka forvetes at at ideholde de de faktiske værdi af af populatios middelværdie, μ. μ *5% *5% af af sådae itervaller omkrig stikprøve middelværdie ka ka forvetes ikke ikkeat at ikludere de de faktiske værdi af af populatios middelværdie.

7 Et (1- )100% kofides iterval for μ z Vi defierer som de z-værdi, hvor sadsylighede for at Z er højere ed dee værdi, er. Kaldes også fraktile eller de kritiske værdi. (1-)100% kaldes kofides iveauet. f(z) Stadard Normal z -1 0 Z fordelig 1 z ( 1 ) Pz > z / Pz z / P z z z ( 1 ) (1 ) 100% kofidesiterval: ± z

8 Kritiske værdier af z og kofides iveauer ( 1 ) z f(z) Stadard Normal Distributio z 0 Z 1 z ( 1 ) 3 4 5

9

10 Kofides iveau og bredde af kofides itervallet Når Når ma ma tager tager stikprøver fra fra de de samme samme populatio og og bruger bruger de de samme samme stikprøve størrelse, så såjo jo højere højere et et kofides iveau, iveau, jo jo bredere bredere et et kofides iterval. Stadard Normal Distributio Stadard Normal Distributio f(z) 0. f(z) Z Z % kofides iterval : ± % kofides iterval : ± 1.96

11 Stikprøve størrelse og bredde af kofides itervallet Når Når ma tager stikprøver fra fra de de samme populatio og og bruger det det samme kofides iveau, så såjo jo større stikprøve størrelse,, jo jo smallere et et kofides iterval. Samplig Distributio of the Mea Samplig Distributio of the Mea f() 0. f( ) % kofides iterval: 0 95% kofides iterval: 40

12 Eksempel på tavle

13 Kofides iterval for μ år er ukedt - t fordelige Hvis populatios stadard afvigelse,, ikke er kedt, erstattes med stikprøve stadard afvigelse, s. Hvis populatioe er X μ ormal, så er: t t fordelt med ( - 1) frihedsgrader. s ttfordelige fordelige er er e e familie familie af af klokke klokke formede formede og og symmetriske symmetriske fordeliger, fordeliger, e e for for hvert hvert ummer ummer af af frihedsgrader. frihedsgrader. De De forvetede forvetede værdi værdi (middelværdie) (middelværdie) er er For For df df >,, er er variase variase af af ttdf/(df-). df/(df-). Går Går mod mod 1, 1, år år frihedsgradere frihedsgradere stiger. stiger. ttfordelige fordelige er er fladere fladere og og har har tykkere tykkere haler haler ed ed stadard stadard ormal ormal fordelige. fordelige. ttfordelige fordelige går går mod mod stadard stadard ormal ormal fordelige, fordelige, år år frihedsgradere frihedsgradere stiger. stiger. 0 μ Stadard ormal t, df 0 t, df 10

14 Kofides iterval for μ år er ukedt - t fordelige Et Et (1-)100% kofides iterval for for μ år år er er ukedt (og (og ma atager e e ormal fordelt populatio): ± t s hvor t er i t -1 er værdie i t fordelige med -1 frihedsgraders, hvor sadsylighede for for at at t t er er højere ed ed dee værdi, er er..

15 t Fordelige df t t t 0.05 t t f(t) t D istributio : df10 Areal 0.10 Areal 0.10 } } -.8 } t.8 } Areal 0.05 Arela 0.05 Når Når er er ukedt ukedt (og (og populatioe er er ormal ormal fordelt), fordelt), bruges brugest t fordelige med med -1-1 frihedsgrader. For For store store frihedsgrader ka kat t fordelige approksimeres ved ved e e stadard ormal ormal fordelig.

16 Eksempel 6- E E aktie aalytiker vil vil estimere de de geemsitlige gevist på påe e bestemt aktie. E E stikprøve på på15 dage giver e e geemsitlig gevist på 10.37% og og e e stadard afvigelse på pås 3.5%. Atag e e ormal populatio og og giv giv et et 95% kofides iterval for for de de geemsitlige gevist på pådee aktie. df t t t 0.05 t t De kritiske værdi af t for df ( -1) (15-1) 14 og et højre halet areal på 0.05 er: t Kofides itervallet er: s ± t ± ± , [ ]

17 Kofides iterval for populatios adele, p, for store stikprøver Estimatore af populatios adele, p, er stikprøve adele, pˆ. Hvis stikprøve størrelse er stor, så er pˆ approksimativ ormal fordelt, med E( pˆ) p og pq V( pˆ), hvor q(1- p). Når populatio adele er ukedt, bruges de estimerede værdi, pˆ. E stikprøve er stor ok, år både p og q er større ed 5. Et (1-)100% kofides iterval for populatios adele, p, er givet ved: ˆ ˆ p± ˆ z pq hvor stikprøve adele, pˆ, er lig med atallet af succes'er i stikprøve,, divideret med atallet af forsøg (stikprøve størrelse),, og qˆ 1-pˆ.

18 Eksempel 6-4 Hvor Hvor stor stor e e adel har har udeladske firmaer af af det det amerikaske marked for for et et eller eller adet produkt. E E stikprøve på på100 forbrugere udtages og og af af disse disse bruger det det udeladske produkt; reste bruger det det amerikaske produkt. Giv Giv et et 95% 95% kofides iterval for for adele af af brugere af af udeladske produkter. p$ pq $$ 034)(. 066) ± z 034. ± ± ( 196. )( ) ± [ 0. 47, ]

19 Kofides iterval for populatios variase: Chi i ade (χ ) fordelige Stikprøve variase, s², er e cetral estimator for populatios variase ². Kofides itervaller for populatios variase baseres på χ fordelige. χ fordelige er sadsyligheds fordelige for e sum af uafhægige kvadrerede stadard ormal fordelte stokastiske variable. Middelværdie er lig med atallet af frihedsgrade, E(X)df Variase er lig med to gage atallet af frihedsgrader, V(X)df

20 χ fordelige E χ fordelt stokastisk variabel ka ikke være egativ, så de er begræset af 0 til vestre. Fordelige er højre skæv. Fordelige går mod ormal fordelige, år atallet af frihedsgrader vokser. Hvis stikprøve er taget fra e ormal fordelig, f ( χ ) Chi-Square Distributio: df10, df30, df df df df χ så er de stokastisk e variabel : χ ( 1) s χ fordelt med ( -1) frihedsgra der.

21 Sadsyligheder i χ fordelige Areal i højre hale Areal i vestre hale df

22 Kofides iterval for populatios variase Et (1-)100% kofides iterval for populatios variase * (hvis populatioe er ormal fordelt) er givet som: ( ) s 1, ( 1 ) s χ χ 1 hvor er fraktile i χ fordelige og χ χ 1 er 1 fraktile. * * Note: Note: Fordi Fordi χ χ fordelige fordelige er er skæv, skæv, er er kofides kofides itervallet itervallet for for populatios populatios variase variase ikke ikke symmetrisk. symmetrisk.

23 Eksempel 6-5 E E maskie fylder kaffekader (med (med kaffe kaffe ;-) ;-) Hvis Hvis det det geemsitlige idhold er er forskellig fra fra hvad hvad det det skal skal være, ka ka maskie justeres. Hvis Hvis variase er er for for høj, høj, skal skal maskie sedes til til reparatio. E E stikprøve på på30 30 kader giver giver et et estimat på påss 18,540. Giv Giv et et 95% 95% kofides iterval for for populatios variase,.. ( ), ( ) 1 s 1 s ( )18540, ( ) χ χ [ 11765, 33604]

24 Eksempel Areal i højre hale df Chi-Square Distributio: df f(χ ) χ χ χ

25 Bestemmelse af stikprøve størrelse Midste stikprøve størrelse,år μ estimeres: z B hvor B er de maksimale græse for, hvor lagt estimatet må ligge fra de sade middelværdi (med kofides iveau). For populatios adele er de givet ved: z pq B Hvis p ukedt bruges p 0.5, da det giver de største stikprøve størrelse(og er altså et koservativt gæt).

26 Eksempel 6-6 Hvor Hvor mage pege bruger e e perso geemsitligt på pået et ferie ferie sted? sted? Skal Skal bestemmes idefor plus, plus, mius $10, med med 95% 95% sikkerhed. Fra Fra tidligere udersøgelser ved ved ma ma at at populatio stadard deviatio is is $400. Hvor Hvor stor stor skal skal stikprøve midst være? z B (. 196)( 400)

27 Eksempel 6-7 Hvor Hvor mage folk folk i i e e give idkomst klasse er er iteresseret i i e e bestemt bil? bil? Skal Skal bestemmes idefor plus plus mius med med 99% 99% sikkerhed. Gæt Gæt på påat at p er er omkrig Hvad er er de de midste stikprøve størrelse? z pq B (. )(. )

Stikprøvefordelinger og konfidensintervaller

Stikprøvefordelinger og konfidensintervaller Stikprøvefordeliger og kofidesitervaller Stikprøvefordelige for middelværdi De Cetrale Græseværdi Sætig Egeskaber Ved Estimatore Kofidesitervaller t-fordelige Estimator og estimat E stikprøve statistik

Læs mere

Dagens program. Estimation: Kapitel Eksempler på middelrette og/eller konsistente estimator (de sidste fra sidste forelæsning)

Dagens program. Estimation: Kapitel Eksempler på middelrette og/eller konsistente estimator (de sidste fra sidste forelæsning) Dages program Estimatio: Kapitel 9.4-9.7 Eksempler på middelrette og/eller kosistete estimator (de sidste fra sidste forelæsig) Ko desiterval for store datasæt kap. 9.4 Ko desiterval for små datasæt kap.

Læs mere

Definition: Normalfordelingen. siges at være normalfordelt med middelværdi µ og varians σ 2, hvor µ og σ er reelle tal og σ > 0.

Definition: Normalfordelingen. siges at være normalfordelt med middelværdi µ og varians σ 2, hvor µ og σ er reelle tal og σ > 0. Repetitio: Normalfordelige Ladmåliges fejlteori Lektio Trasformatio af stokastiske variable - kkb@math.aau.dk http://people.math.aau.dk/ kkb/udervisig/lf13 Istitut for Matematiske Fag Aalborg Uiversitet

Læs mere

Indholdsfortegnelse Generelt Diskrete stokastiske variable: Kontinuerte stokastiske variable: Regneregler for stokastiske variable

Indholdsfortegnelse Generelt Diskrete stokastiske variable: Kontinuerte stokastiske variable: Regneregler for stokastiske variable Idholdsfortegelse Geerelt:...3 Stokastisk variabel:...3 Tæthedsfuktio/sadsylighedsfuktio for stokastisk variabel:...3 Fordeligsfuktio/sumfuktio for stokastisk variabel:...3 Middelværdi:...4 Geemsit:...4

Læs mere

hvor i er observationsnummeret, som løber fra 1 til stikprøvestørrelsen n, X i

hvor i er observationsnummeret, som løber fra 1 til stikprøvestørrelsen n, X i Normalfordeliger For at e stokastisk variabel X ka være ormalfordelt, skal X agive værdie af e eller ade målig, f.eks. tid, lægde, vægt, beløb osv. Notatioe er: Xi ~ N( μ, σ hvor i er observatiosummeret,

Læs mere

Statistik Lektion 8. Parrede test Test for forskel i andele Test for ens varians Gensyn med flyskræk!

Statistik Lektion 8. Parrede test Test for forskel i andele Test for ens varians Gensyn med flyskræk! Statistik Lektio 8 Parrede test Test for forskel i adele Test for es varias Gesy med flyskræk! Afhægige og uafhægige stikprøver Ved e uafhægig stikprøve udtages e stikprøve fra hver gruppe.. Mæd og kviders

Læs mere

Test i to populationer. Hypotesetest for parrede observationer Test for ens varians Gensyn med flyskræk!

Test i to populationer. Hypotesetest for parrede observationer Test for ens varians Gensyn med flyskræk! Test i to populatioer Hypotesetest for parrede observatioer Test for es varias Gesy med flyskræk! Afhægige og uafhægige stikprøver Ved e uafhægig stikprøve udtages e stikprøve fra hver gruppe.. Mæd og

Læs mere

Diskrete og kontinuerte stokastiske variable

Diskrete og kontinuerte stokastiske variable Diskrete og kotiuerte stokastiske variable Beroulli Biomial fordelig Negativ biomial fordelig Hypergeometrisk fordelig Poisso fordelig Kotiuerte stokastiske variable Uiform fordelig Ekspoetial fordelig

Læs mere

Statistik Lektion 7. Hypotesetest og kritiske værdier Type I og Type II fejl Styrken af en test Sammenligning af to populationer

Statistik Lektion 7. Hypotesetest og kritiske værdier Type I og Type II fejl Styrken af en test Sammenligning af to populationer Statistik Lektio 7 Hpotesetest og kritiske værdier Tpe I og Tpe II fejl Strke af e test Sammeligig af to populatioer 1 Tri I e Hpotesetest E hpotesetest består af 5 elemeter: I. Atagelser Primært hvilke

Læs mere

Løsninger til kapitel 7

Løsninger til kapitel 7 Løsiger til kapitel 7 Opgave 7.1 a) HpoStat giver resultatet: Pop. varias er ukedt, me 30, så Normalf. bruges approksimativt = 54,400 s 1.069,90 = 00,000 0,95 49,868 58,93 Dette betder, at med 95% sikkerhed

Læs mere

Hypotese test. Repetition fra sidst Hypoteser Test af middelværdi Test af andel Test af varians Type 1 og type 2 fejl Signifikansniveau

Hypotese test. Repetition fra sidst Hypoteser Test af middelværdi Test af andel Test af varians Type 1 og type 2 fejl Signifikansniveau ypotese test Repetition fra sidst ypoteser Test af middelværdi Test af andel Test af varians Type 1 og type fejl Signifikansniveau Konfidens intervaller Et konfidens interval er et interval, der estimerer

Læs mere

Estimation ved momentmetoden. Estimation af middelværdiparameter

Estimation ved momentmetoden. Estimation af middelværdiparameter Statistik og Sadsylighedsregig 1 STAT kapitel 4.2 4.3 Susae Ditlevse Istitut for Matematiske Fag Email: susae@math.ku.dk http://math.ku.dk/ susae Estimatio ved mometmetode Idimellem ka det være svært (eller

Læs mere

Sammenligning af to grupper

Sammenligning af to grupper Sammeligig af to gruer Reetitio, heruder om kritiske værdier Sammeligig af to gruer Sammeligig af to middelværdier Sammeligig af to adele Sammeligig af to variaser yoteser og hyotesetest. E hyotese er

Læs mere

Generelle lineære modeller

Generelle lineære modeller Geerelle lieære modeller Regressiosmodeller med é uafhægig itervalskala variabel: Y e eller flere uafhægige variable: X,..,X k De betigede fordelig af Y givet X,..,X k atages at være ormal med e middelværdi,

Læs mere

Statistik 8. gang 1 KONFIDENSINTERVALLER. Konfidensintervaller: kapitel 11. Valg og test af fordelingsfunktion

Statistik 8. gang 1 KONFIDENSINTERVALLER. Konfidensintervaller: kapitel 11. Valg og test af fordelingsfunktion Statistik 8. gag 1 KONIDENSINTERVALLER Kofidesitervaller: kapitel 11 Valg og test af fordeligsfuktio Statistik 8. gag 11. KONIDENS INTERVALLER Et kofides iterval udtrykker itervallet hvori de rigtige værdi

Læs mere

Opsamling. Lidt om det hele..!

Opsamling. Lidt om det hele..! Opsamlig Lidt om det hele..! Kursus oversigt Hvad har vi været igeem: Deskriptiv statistik Sadsyligheder Stokastiske variable diskrete og kotiuerte Fordeliger Estimatio Test Iferes Sammeligig af middelværdier

Læs mere

29. januar Epidemiologi og biostatistik Forelæsning 2 Uge 1, torsdag 2. februar 2006 Michael Væth, Afdeling for Biostatistik.

29. januar Epidemiologi og biostatistik Forelæsning 2 Uge 1, torsdag 2. februar 2006 Michael Væth, Afdeling for Biostatistik. Epidemiologi og biostatistik Forelæsig Uge 1, torsdag. februar 006 ichael Væth, Afdelig for Biostatistik. Sammeligig af to middelværdier sikkerhedsitervaller statistisk test Sammeligig af to proportioer

Læs mere

Motivation. En tegning

Motivation. En tegning Motivatio Scatter-plot at det mådelige salg mod det måedlige reklamebudget. R: plot(salg ~ budget, data = salg) Økoometri Lektio Simpel Lieær Regressio salg 400 450 500 550 20 25 30 35 40 45 50 budget

Læs mere

9. Binomialfordelingen

9. Binomialfordelingen 9. Biomialfordelige 9.. Gekedelse Hvert forsøg ka ku resultere i to mulige udfald; succes og fiasko. I modsætig til poissofordelige er atallet af forsøg edeligt. 9.. Model X : Stokastisk variabel, der

Læs mere

24. januar Epidemiologi og biostatistik. Forelæsning 1 Uge 1, tirsdag. Niels Trolle Andersen, Afdelingen for Biostatistik.

24. januar Epidemiologi og biostatistik. Forelæsning 1 Uge 1, tirsdag. Niels Trolle Andersen, Afdelingen for Biostatistik. Epidemiologi og biostatistik. Forelæsig Uge, tirsdag. Niels Trolle Aderse, Afdelige for Biostatistik. Geerelt om kurset: - Formål - Forelæsiger - Øvelser - Forelæsigsoter - Bøger - EpiBasic: http://www.biostat.au.dk/teachig/software

Læs mere

Sætning: Middelværdi og varians for linearkombinationer. Lad X 1,X 2,...,X n være stokastiske variable. Da gælder. Var ( a 0 + a 1 X a n X n

Sætning: Middelværdi og varians for linearkombinationer. Lad X 1,X 2,...,X n være stokastiske variable. Da gælder. Var ( a 0 + a 1 X a n X n Ladmåliges fejlteori Lektio 3 Estimatio af σ Dobbeltmåliger Geometrisk ivellemet Lieariserig - rw@math.aau.dk Istitut for Matematiske Fag Aalborg Uiversitet Repetitio: Middelværdi og Varias Sætig: Middelværdi

Læs mere

Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab

Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab Statistik ved Bachelor-uddaelse i folkesudhedsvideskab Græseværdisætiger Det hadler om geemsit Statistikere elsker geemsit Det er oplagt e god ide at tage geemsit. Hvis jeg f.eks skal gætte på vægte af

Læs mere

antal gange krone sker i første n kast = n

antal gange krone sker i første n kast = n 1 Uge 15 Teoretisk Statistik, 5. april 004 1. Store tals lov Eksempel: møtkast Koverges i sadsylighed Tchebychevs ulighed Sætig: Store tals lov. De cetrale græseværdisætig 3. Approksimatio af sadsyligheder

Læs mere

Mikroøkonomi, matematik og statistik Eksamenshjemmeopgave 14. 20. december 2007

Mikroøkonomi, matematik og statistik Eksamenshjemmeopgave 14. 20. december 2007 Mikroøkoomi, matematik og statistik Eksameshjemmeopgave 14. 20. december 2007 Helle Buzel, Tom Egsted og Michael H.J. Stæhr 14. december 2007 R E T N I N G S L I N I E R F O R E K S A M E N S H J E M M

Læs mere

13. februar Resumé: En statistisk analyse resulterer ofte i : Et estimat ˆ θ med en tilhørende se( ˆ θ )

13. februar Resumé: En statistisk analyse resulterer ofte i : Et estimat ˆ θ med en tilhørende se( ˆ θ ) 3. februar 003 Epidemiologi og biostatistik. Uge, torag d. 3. februar 003 Morte Frydeberg, Istitut for Biostatistik. Type og type fejl Nogle specielle metoder: Test i RxC tabeller Test i x tabeller Fishers

Læs mere

Hypotesetest. Hypotesetest og kritiske værdier Type 1 og Type 2 fejl Styrken af en test Sammenligning af to populationer

Hypotesetest. Hypotesetest og kritiske værdier Type 1 og Type 2 fejl Styrken af en test Sammenligning af to populationer Hypoteetet Hypoteetet og kritike værdier Type og Type fejl Styrke af e tet Sammeligig af to populatioer Kofideiterval for σ tore tikprøver. Hvi X følger e χ -fordelig med frihedgrader, dv. X~χ (), gælder

Læs mere

Simpel Lineær Regression. Opsplitning af variationen Determinations koefficient Variansanalyse F-test Model-kontrol

Simpel Lineær Regression. Opsplitning af variationen Determinations koefficient Variansanalyse F-test Model-kontrol Simpel Lieær Regressio Opsplitig af variatioe Determiatios koefficiet Variasaalse F-test Model-kotrol Opbgig af statistisk model Specificer model Ligiger og atagelser Estimer parametre Modelkotrol Er modelle

Læs mere

Matematisk Modellering 1 Hjælpeark

Matematisk Modellering 1 Hjælpeark Matematisk Modellerig Hjælpeark Kaare B. Mikkelse 2005090 3. september 2007 Idhold Formler 2 2 Aalyse af k ormalfordelte prøver 2 2. Modelcheck............................................ 2 2.2 Test af

Læs mere

30. august Epidemiologi og biostatistik. Forelæsning 3 Uge 2, torsdag d. 8. september 2005 Michael Væth, Afdeling for Biostatistik.

30. august Epidemiologi og biostatistik. Forelæsning 3 Uge 2, torsdag d. 8. september 2005 Michael Væth, Afdeling for Biostatistik. 30. august 005 Epidemiologi og biostatistik. Forelæsig 3 Uge, torag d. 8. september 005 Michael Væth, Afdelig for Biostatistik. Mere om kategoriske data Test for uafhægighed I RxC tabeller Test for uafhægighed

Læs mere

STATISTIKNOTER Simple normalfordelingsmodeller

STATISTIKNOTER Simple normalfordelingsmodeller STATISTIKNOTER Simple ormalfordeligsmodeller Jørge Larse IMFUFA Roskilde Uiversitetsceter Februar 1999 IMFUFA, Roskilde Uiversitetsceter, Postboks 260, DK-4000 Roskilde. Jørge Larse: STATISTIKNOTER: Simple

Læs mere

Statistiske test. Efteråret 2010 Jens Friis, AAU. Hjemmeside :

Statistiske test. Efteråret 2010 Jens Friis, AAU. Hjemmeside : Statistiske test Efteråret 00 Jes Friis, AAU Hjemmeside : http://akaaudk/jfj Kotiuerte fordeliger Defiitio: Tæthedsfuktio E sadsylighedstæthedsfuktio på R er e itegrabel fuktio f : R [0; [ hvor f d = Defiitio:

Læs mere

Konfidensintervaller og Hypotesetest

Konfidensintervaller og Hypotesetest Konfidensintervaller og Hypotesetest Konfidensinterval for andele χ -fordelingen og konfidensinterval for variansen Hypoteseteori Hypotesetest af middelværdi, varians og andele Repetition fra sidst: Konfidensintervaller

Læs mere

Oversigt. 1 Fordelingen for gennemsnittet t-fordelingen. 3 Den statistiske sprogbrug og formelle ramme

Oversigt. 1 Fordelingen for gennemsnittet t-fordelingen. 3 Den statistiske sprogbrug og formelle ramme Itroduktio til Statistik Forelæsig 4: Kofidesiterval for middelværdi (og spredig) Peder Bacher DTU Compute, Dyamiske Systemer Bygig 303B, Rum 009 Damarks Tekiske Uiversitet 2800 Lygby Damark e-mail: pbac@dtu.dk

Læs mere

Program. Populationer og stikprøver. Praktiske oplysninger. Eksempel vaccine mod miltbrand hos får. Praktiske oplysninger

Program. Populationer og stikprøver. Praktiske oplysninger. Eksempel vaccine mod miltbrand hos får. Praktiske oplysninger Faculty of Life Scieces Program Populatioer og stikprøver Claus Ekstrøm E-mail: ekstrom@life.ku.dk Praktiske oplysiger Populatioer og stikprøver Data Datatyper Visualiserig Cetrum og spredig af e fordelig

Læs mere

Forelæsning 8: Inferens for varianser (kap 9)

Forelæsning 8: Inferens for varianser (kap 9) Kursus 02402 Introduktion til Statistik Forelæsning 8: Inferens for varianser (kap 9) Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800 Lyngby

Læs mere

Økonometri 1. Definition og motivation. Definition og motivation. Dagens program. Den multiple regressionsmodel 15. februar 2006

Økonometri 1. Definition og motivation. Definition og motivation. Dagens program. Den multiple regressionsmodel 15. februar 2006 Dages program Økoometri De multiple regressiosmodel 5. februar 006 Emet for dee forelæsig er de multiple regressiosmodel (Wooldridge kap 3.-3.3+appedix E.-E.) Defiitio og motivatio Fortolkig af parametree

Læs mere

Vejledende opgavebesvarelser

Vejledende opgavebesvarelser Vejledede opgavebesvarelser 1. Atal hæder er lig med K(52,5), altså 2598960. Ved brug af multiplikatiospricippet ka atal hæder med 3 ruder og 2 spar udreges som K(13, 3) K(13, 2), hvilket giver 22308.

Læs mere

Dansk. Oversigt. 1 Fordelingen for gennemsnittet t-fordelingen. 2 Konfidensintervallet for µ Eksempel. 3 Den statistiske sprogbrug og formelle ramme

Dansk. Oversigt. 1 Fordelingen for gennemsnittet t-fordelingen. 2 Konfidensintervallet for µ Eksempel. 3 Den statistiske sprogbrug og formelle ramme Itroduktio til Statistik enote 3: Kofidesitervaller for é gruppe/stikprøve Egelsk Forelæsig 4: Kofidesiterval for middelværdi (og spredig) Peder Bacher DTU Compute, Dyamiske Systemer Bygig 303B, Rum 009

Læs mere

Konfidensinterval for µ (σ kendt)

Konfidensinterval for µ (σ kendt) Program 1. Repetition: konfidens-intervaller. 2. Hypotese test 3. Type I og type II fejl, p-værdi 4. En og to-sidede tests 5. Test for middelværdi (kendt varians) 6. Test for middelværdi (ukendt varians)

Læs mere

ORDEN OG UDVALG: KUNSTEN AT TÆLLE KOMBINATORIK N H

ORDEN OG UDVALG: KUNSTEN AT TÆLLE KOMBINATORIK N H ORDEN OG UDVALG: UNSTEN AT TÆLLE OMBINATORI Edeligt symmetrisk sadsylighedsfelt I et edeligt symmetrisk sadsylighedsfelt ( P ) U, ka sadsylighede for e give hædelse H, hvor altså H U, som bekedt bereges

Læs mere

Gamle eksamensopgaver. Diskret Matematik med Anvendelser (DM72) & Diskrete Strukturer(DM504)

Gamle eksamensopgaver. Diskret Matematik med Anvendelser (DM72) & Diskrete Strukturer(DM504) Gamle eksamesopgaver Diskret Matematik med Avedelser (DM72) & Diskrete Strukturer(DM504) Istitut for Matematik& Datalogi Syddask Uiversitet, Odese Alle sædvalige hjælpemidler(lærebøger, otater etc.), samt

Læs mere

Sandsynlighedsregning og statistisk

Sandsynlighedsregning og statistisk Sadsylighedsregig og statistisk J. C. F. Gauss 777 855) Peter Haremoës Niels Brock 2. april 23 Idledig Dette hæfte er lavet som supplemet til 2. udgave af boge Mat B. Der er lagt vægt på at give e bedre

Læs mere

Program. Statistisk inferens En enkelt stikprøve og lineær regression Stat. modeller, estimation og konfidensintervaller. Fordeling af gennemsnit

Program. Statistisk inferens En enkelt stikprøve og lineær regression Stat. modeller, estimation og konfidensintervaller. Fordeling af gennemsnit Faculty of Life Sciece Program Statitik ifere E ekelt tikprøve og lieær regreio Stat. modeller, etimatio og kofideitervaller Clau Ektrøm E-mail: ektrom@life.ku.dk Fordelig af geemit Statitik ifere for

Læs mere

STATISTISKE GRUNDBEGREBER

STATISTISKE GRUNDBEGREBER MOGENS ODDERSHEDE LARSEN STATISTISKE GRUNDBEGREBER med avedelse af TI 89 og Excel 8 5 9 6 3 0 Histogram for ph 6,9 7, 7,3 7,5 7,7 7,9 ph. udgave 0 FORORD Der er i dee bog søgt at give letlæst og askuelig

Læs mere

Spørgsmål 3 (5 %) Bestem sandsynligheden for at et tilfældigt valgt vindue har en fejl ved listerne, når man ved at der er fejl i glasset.

Spørgsmål 3 (5 %) Bestem sandsynligheden for at et tilfældigt valgt vindue har en fejl ved listerne, når man ved at der er fejl i glasset. STATISTIK Skriftlig evaluerig, 3. semester, madag de 30. auar 006 kl. 9.00-3.00. Alle hælpemidler er tilladt. Opgaveløsige forsyes med av og CPR-r. OPGAVE Ved e produktio af viduer er der mulighed for,

Læs mere

Estimation og test i normalfordelingen

Estimation og test i normalfordelingen af Birger Stjerholm Made Samfudlitteratur 07 Etimatio og tet i ormalfordelige Dee tekt ideholder et overblik over ogle grudlæggede pricipper for etimatio og tet i ormalfordelige i hyppigt forekommede ituatioer:

Læs mere

DATV: Introduktion til optimering og operationsanalyse, 2007. Bin Packing Problemet

DATV: Introduktion til optimering og operationsanalyse, 2007. Bin Packing Problemet DATV: Itroduktio til optimerig og operatiosaalyse, 2007 Bi Packig Problemet David Pisiger, Projektopgave 2 Dette er de ade obligatoriske projektopgave på kurset DATV: Itroduktio til optimerig og operatiosaalyse.

Læs mere

Oversigt. Kursus 02402/02323 Introducerende Statistik. Forelæsning 12: Inferens for andele. Klaus K. Andersen og Per Bruun Brockhoff

Oversigt. Kursus 02402/02323 Introducerende Statistik. Forelæsning 12: Inferens for andele. Klaus K. Andersen og Per Bruun Brockhoff Kursus 02402/02323 Itroducerede Statistik Forelæsig 12: Iferes for adele Klaus K. Aderse og Per Bruu Brockhoff DTU Compute, Statistik og Dataaalyse Damarks Tekiske Uiversitet 2800 Lygby Damark e-mail:

Læs mere

Vejledende besvarelser til opgaver i kapitel 15

Vejledende besvarelser til opgaver i kapitel 15 Vejledede besvarelser til opgaver i apitel 5 Opgave a) De teststatistier, ma aveder til at teste om to middelværdier er es, består af et estimat på forselle mellem middelværdiere,, divideret med et udtry

Læs mere

Program. 1. Repetition: konfidens-intervaller. 2. Hypotese test, type I og type II fejl, signifikansniveau, styrke, en- og to-sidede test.

Program. 1. Repetition: konfidens-intervaller. 2. Hypotese test, type I og type II fejl, signifikansniveau, styrke, en- og to-sidede test. Program 1. Repetition: konfidens-intervaller. 2. Hypotese test, type I og type II fejl, signifikansniveau, styrke, en- og to-sidede test. 1/19 Konfidensinterval for µ (σ kendt) Estimat ˆµ = X bedste bud

Læs mere

Modul 5: Test for én stikprøve

Modul 5: Test for én stikprøve Forskningsenheden for Statistik ST01: Elementær Statistik Bent Jørgensen Modul 5: Test for én stikprøve 5.1 Test for middelværdi................................. 1 5.1.1 t-fordelingen.................................

Læs mere

Kvantitative metoder 2

Kvantitative metoder 2 Dages program Kvatitative metoder De multiple regressiosmodel 6. februar 007 Emet for dee forelæsig er de multiple regressiosmodel (Wooldridge kap 3.- 3.+appedix E.) Defiitio og motivatio Fortolkig af

Læs mere

Sandsynlighedsregning 9. forelæsning Bo Friis Nielsen

Sandsynlighedsregning 9. forelæsning Bo Friis Nielsen Dages eer afsit 5.3 og 5.4 Siultae kotiuerte fordeliger P(X dx,y dy = f(x,ydxdy Sadsylighedsregig 9. forelæsig Bo Friis Nielse Mateatik og Coputer Sciece Daarks Tekiske Uiversitet 8 Kgs. Lygby Daark Eail:

Læs mere

Begreber og definitioner

Begreber og definitioner Begreber og defiitioer Daske husstades forbrug på de medierelaterede udgiftsposter stiger og udgør i 2012*) 11,3 % af husstadees samlede forbrug mod 5,5 % i 1994. For husstade med de laveste idkomster

Læs mere

Morten Frydenberg version dato:

Morten Frydenberg version dato: Morte Frdeberg versio dato: 4--4 Itroduktio til kurset Statistik Forelæsig Morte Frdeberg, Sektio for Biostatistik af Biostatistik dele af. semester kurset. Statistiske modeller Biomialfordelige Normalfordelige

Læs mere

Stikprøver og stikprøve fordelinger. Stikprøver Estimatorer og estimater Stikprøve fordelinger Egenskaber ved estimatorer Frihedsgrader

Stikprøver og stikprøve fordelinger. Stikprøver Estimatorer og estimater Stikprøve fordelinger Egenskaber ved estimatorer Frihedsgrader Stikprøver og stikprøve fordelinger Stikprøver Estimatorer og estimater Stikprøve fordelinger Egenskaber ved estimatorer Frihedsgrader Statistik Statistisk Inferens: Prediktere og forekaste værdier af

Læs mere

Renteformlen. Erik Vestergaard

Renteformlen. Erik Vestergaard Reteformle Erik Vestergaard 2 Erik Vestergaard www.matematikfysik.dk Erik Vestergaard, 2010. Billeder: Forside: istock.com/ilbusca Side 4: istock.com/adresrimagig Desude ege illustratioer. Erik Vestergaard

Læs mere

Statistik og Sandsynlighedsregning 2

Statistik og Sandsynlighedsregning 2 Statistik og Sandsynlighedsregning 2 Den flerdimensionale normalfordeling, fordeling af ( X,SSD) Helle Sørensen Uge 9, mandag SaSt2 (Uge 9, mandag) Flerdim. N, ford. af ( X,SSD) 1 / 16 Program Resultaterne

Læs mere

x-klasserne Gammel Hellerup Gymnasium

x-klasserne Gammel Hellerup Gymnasium SANDSYNLIGHEDSREGNING OG KOMBINATORIK x-klassere Gammel Hellerup Gymasium Idholdsfortegelse SANDSYNLIGHEDSREGNING... 3 SANDSYNLIGHEDSFELT... 3 DE STORE TALS LOV... 4 Sadsyligheder og frekveser:... 4 STOKASTISK

Læs mere

Elementær Matematik. Polynomier

Elementær Matematik. Polynomier Elemetær Matematik Polyomier Ole Witt-Hase 2008 Køge Gymasium Idhold 1. Geerelle polyomier...1 2. Divisio med hele tal....1 3. Polyomiers divisio...2 4. Polyomiers rødder....4 5. Bestemmelse af røddere

Læs mere

Introduktion til Statistik

Introduktion til Statistik Itroduktio til Statistik 4. udgave Susae Ditlevse og Helle Sørese Susae Ditlevse, susae@math.ku.dk Helle Sørese, helle@math.ku.dk Istitut for Matematiske Fag Købehavs Uiversitet Uiversitetsparke 5 2100

Læs mere

Teoretisk Statistik, 9. februar Beskrivende statistik

Teoretisk Statistik, 9. februar Beskrivende statistik Uge 7 I Teoretisk Statistik, 9 februar 004 Beskrivede statistik Kategoriserede variable 3 Kvatitative variable 4 Fraktiler for ugrupperede observatioer 5 Fraktiler for grupperede observatioer 6 Beliggeheds-

Læs mere

Kapitel 10 KALIBRERING AF STRØMNINGSMODEL

Kapitel 10 KALIBRERING AF STRØMNINGSMODEL Kapitel 0 KALIBRERING AF STRØMNINGSMODEL Torbe Obel Soeborg Hydrologisk afdelig, GEUS Nøglebegreber: Kalibrerigsprotokol, observatiosdata, kalibrerigskriterier, idetificerbarhed, etydighed, parameterestimatio,

Læs mere

Scorer FCK "for mange" mål i det sidste kvarter?

Scorer FCK for mange mål i det sidste kvarter? Uge 7 I Teoretsk Statstk, 9. aprl 2004. Hvor er v? Hvor var v: opstllg af statstske modeller Hvor skal v he: tro om estmato og test 2. Eksempel: FCK Estmato (tutvt) Test Maksmum lkelhood estmato Scorer

Læs mere

STATISTISKE GRUNDBEGREBER

STATISTISKE GRUNDBEGREBER MOGENS ODDERSHEDE LARSEN STATISTISKE GRUNDBEGREBER 18 15 1 9 6 3 0 Histogram for ph 6,9 7,1 7,3 7,5 7,7 7,9 ph 13 udgave 013 FORORD Der er i dee bog søgt at give letlæst og askuelig fremstillig af de statistiske

Læs mere

Økonometri 1. Inferens i den lineære regressionsmodel 29. september Økonometri 1: F7 1

Økonometri 1. Inferens i den lineære regressionsmodel 29. september Økonometri 1: F7 1 Økoometri 1 Iferes i de lieære regressiosmodel 9. september 006 Økoometri 1: F7 1 Dages program Opsamlig af hemmeopgave om Mote Carlo eksperimeter Mere om hypotesetest: Ekelt lieær restriktio på koefficieter

Læs mere

Program. Ensidet variansanalyse Normalfordelingen. Antibiotika og nedbrydning af organisk materiale. Tegninger

Program. Ensidet variansanalyse Normalfordelingen. Antibiotika og nedbrydning af organisk materiale. Tegninger Faculty of Life Scieces Program Esidet variasaalyse Normalfordelige Claus Ekstrøm E-mail: ekstrom@life.ku.dk Esidet variasaalyse (oe-way ANOVA) Hvilke type data? Hvad er problemstillige? Variatio mellem

Læs mere

Økonometri 1. Definition og motivation. Definition og motivation. Dagens program. Den multiple regressionsmodel 21. september 2005

Økonometri 1. Definition og motivation. Definition og motivation. Dagens program. Den multiple regressionsmodel 21. september 2005 Dages program Økoometr De multple regressosmodel. september 005 Emet for dee forelæsg er de multple regressosmodel (Wooldrdge kap 3.-3.3+appedx E.-E.) Defto og motvato Fortolkg af parametree de multple

Læs mere

STATISTISKE GRUNDBEGREBER

STATISTISKE GRUNDBEGREBER MOGENS ODDERSHEDE LARSEN STATISTISKE GRUNDBEGREBER 18 15 1 9 6 3 0 Histogram for ph 6,9 7,1 7,3 7,5 7,7 7,9 ph 17. udgave 016 FORORD Der er i dee bog søgt at give letlæst og askuelig fremstillig af de

Læs mere

Sandsynlighedsregning

Sandsynlighedsregning Sadsylighedsregig E ote om sadsylighedsregig. Via basal sadsylighedsregig gøres læsere klar til forstå biomialfordelige. Herik S. Hase, Sct. Kud Versio 5.0 Opgaver til hæftet ka hetes her. PDF Facit til

Læs mere

Chi-i-anden Test. Repetition Goodness of Fit Uafhængighed i Kontingenstabeller

Chi-i-anden Test. Repetition Goodness of Fit Uafhængighed i Kontingenstabeller Chi-i-anden Test Repetition Goodness of Fit Uafhængighed i Kontingenstabeller Chi-i-anden Test Chi-i-anden test omhandler data, der har form af antal eller frekvenser. Antag, at n observationer kan inddeles

Læs mere

Kapitel 3 Centraltendens og spredning

Kapitel 3 Centraltendens og spredning Kapitel 3 Centraltendens og spredning Peter Tibert Stoltze stat@peterstoltze.dk Elementær statistik F2011 1 Indledning 2 Centraltendens 3 Spredning 4 Praktisk beregning 5 Fraktiler 6 Opsamling 1 Indledning

Læs mere

Uge 40 I Teoretisk Statistik, 30. september 2003

Uge 40 I Teoretisk Statistik, 30. september 2003 Uge 40 Teoretis tatisti, 30. september 003 Esidet variasaalyse Model, otatio, hypotese og hælpehypotese Test af hælpehypotese Opdaterig af variasestimat Test af hypotese om es middelværdier Variasaalysesema

Læs mere

Normalfordelingen og Stikprøvefordelinger

Normalfordelingen og Stikprøvefordelinger Normalfordelingen og Stikprøvefordelinger Normalfordelingen Standard Normal Fordelingen Sandsynligheder for Normalfordelingen Transformation af Normalfordelte Stok.Var. Stikprøver og Stikprøvefordelinger

Læs mere

Tests for forskel i central tendens for data på ordinal- og intervalskala. Typer af statistiske test:

Tests for forskel i central tendens for data på ordinal- og intervalskala. Typer af statistiske test: Statistik for biologer 005-6, modul 7: Tests for forskel i cetral tedes for data på ordial- og itervalskala M7, slide M7, slide Typer af statistiske test: Parametrisk statistik: - Tester for forskel i

Læs mere

Statistik Lektion 8. Test for ens varians

Statistik Lektion 8. Test for ens varians Statitik Lektio 8 Tet for e varia ra tidligere Hvi populatioe er ormalfordelt med varia, å gælder ( ) S ~ χ hvor er tikprøve tørrele og S er tikprøvevariae. χ -fordelig med - frihedgrader χ Tet af Variae

Læs mere

Velkommen. Program. Statistik og Sandsynlighedsregning 2 Sandsynlighedstætheder og kontinuerte fordelinger på R. Praktiske ting og sager

Velkommen. Program. Statistik og Sandsynlighedsregning 2 Sandsynlighedstætheder og kontinuerte fordelinger på R. Praktiske ting og sager Program Statistik og Sadsylighedsregig 2 Sadsylighedstætheder og kotiuerte fordeliger på R Helle Sørese Uge 6, madag Velkomme I dag: Praktiske bemærkiger Hvad skal vi lave på SaSt2? Sadsylighedstætheder

Læs mere

Variabel- sammenhænge

Variabel- sammenhænge Variabel- sammenhænge Udgave 2 2009 Karsten Juul Dette hæfte kan bruges som start på undervisningen i variabelsammenhænge for stx og hf. Hæftet er en introduktion til at kunne behandle to sammenhængende

Læs mere

BILAG I PRODUKTRESUME

BILAG I PRODUKTRESUME BILAG I PRODUKTRESUME 1 1. LÆGEMIDLETS NAVN Nimerix pulver og solves til ijektiosvæske, opløsig i fyldt ijektiossprøjte Meigokokgruppe A, C, W-135 og Y kojugeret vaccie 2. KVALITATIV OG KVANTITATIV SAMMENSÆTNING

Læs mere

Projekt 2.3 Det gyldne snit og Fibonaccitallene

Projekt 2.3 Det gyldne snit og Fibonaccitallene Projekter: Kapitel Projekt.3 Det glde sit og Fiboaccitallee Forslag til hvorda klasses arbejde med projektet ka tilrettelægges: Forløbet:. Præsetatio af emet med vægt på det glde sit.. Grppere arbejder

Læs mere

Kvantitative Metoder 1 - Forår 2007

Kvantitative Metoder 1 - Forår 2007 Dagens program Afsnit 3.3-3.5 Varians Eksempel: Forventet nytte Kovarians og korrelation Middelværdi og varians af summer af stokastiske variabler Eksempel: Porteføljevalg 1 Beskrivelse af fordelinger

Læs mere

Dårligt arbejdsmiljø koster dyrt

Dårligt arbejdsmiljø koster dyrt Dårligt arbejdsmiljø F O A f a g o g a r b e j d e koster dyrt Hvad koster et dårligt arbejdsmiljø, og hvad ka vi gøre for at bedre forholdee for de asatte idefor Kost- og Servicesektore? Læs her om de

Læs mere

Modul 14: Goodness-of-fit test og krydstabelanalyse

Modul 14: Goodness-of-fit test og krydstabelanalyse Forskigsehede for Statistik ST01: Elemetær Statistik Bet Jørgese Modul 14: Goodess-of-fit test og krydstabelaalyse 14.1 Idledig....................................... 1 14.2 χ 2 -test i e r c krydstabel.............................

Læs mere

Formelsamling til statistik-del af metodekursus, 4. semester, lægevidenskab Version 3 (26/9-2011)

Formelsamling til statistik-del af metodekursus, 4. semester, lægevidenskab Version 3 (26/9-2011) Formelsamlig til statistik-el af metoekursus, 4. semester, lægevieskab Versio 3 (6/9-011) Kære læser Dee formelsamlig er lavet me ugagspukt i Meical Statistics, seco eitio af Betty R. Kirkwoo og A. C.

Læs mere

Projekt 4.8 De reelle tal og 1. hovedsætning om kontinuerte funktioner

Projekt 4.8 De reelle tal og 1. hovedsætning om kontinuerte funktioner Projekter: Kapitel 4 Projekt 48 De reelle tal og hovedsætig om kotiuerte fuktioer Projekt 48 De reelle tal og hovedsætig om kotiuerte fuktioer Kotiuitet og kotiuerte fuktioer Ord som kotiuert og kotiuerlig

Læs mere

Uge 48 II Teoretisk Statistik 27. november 2003. Numerisk modelkontrol af diskrete fordelinger: intro

Uge 48 II Teoretisk Statistik 27. november 2003. Numerisk modelkontrol af diskrete fordelinger: intro Uge 48 II Teoretisk Statistik 7. november 003 Numerisk modelkontrol af diskrete fordelinger: intro Eksempel: kvalitetskontrol Goodness-of-fit test: generel teori Endeligt udfaldsrum Udfaldsrum uden øvre

Læs mere

Asymptotisk optimalitet af MLE

Asymptotisk optimalitet af MLE Kapitel 4 Asymptotisk optimalitet af MLE Lad Y 1, Y 2,... være uafhægige, idetisk fordelte variable med værdier i et rum (Y,K). Vi har givet e model (ν θ ) θ Θ for fordelige af Y 1 (og dermed også for

Læs mere

6 Populære fordelinger

6 Populære fordelinger 6 Populære fordeliger I apitel 4 itroducerede vi stoastise variabler so e åde at repræsetere udfald af et esperiet på. De stoastise variabler ue være både disrete (fx terigslag) og otiuerte (fx vareægder).

Læs mere

STATISTISKE GRUNDBEGREBER

STATISTISKE GRUNDBEGREBER MOGENS ODDERSHEDE LARSEN STATISTISKE GRUNDBEGREBER 18 15 1 9 6 3 0 Histogram for ph 6,9 7,1 7,3 7,5 7,7 7,9 ph 14 udgave 014 FORORD Der er i dee bog søgt at give letlæst og askuelig fremstillig af de statistiske

Læs mere

Matematikkens mysterier - på et obligatorisk niveau. 7. Ligninger, polynomier og asymptoter

Matematikkens mysterier - på et obligatorisk niveau. 7. Ligninger, polynomier og asymptoter Matematikkes mysterier - på et obligatorisk iveau af Keeth Hase 7. Ligiger, polyomier og asymptoter Hvad er e asymotote? Og hvorda fides de? 7. Ligiger, polyomier og asymptoter Idhold 7.0 Idledig 7.1 Udsag

Læs mere

Skitse til notat om hvor de forskellige sandsynlighedsfordelinger kan tænkes at komme fra

Skitse til notat om hvor de forskellige sandsynlighedsfordelinger kan tænkes at komme fra E6 efterår 1999 Notat 8 Jørge Larse 12. oktober 1999 Skitse til otat om hvor de forskellige sadsylighedsfordeliger ka tækes at komme fra I statistik opererer ma i vid udstrækig med et lille atal»stadardfordeliger«.

Læs mere

Den flerdimensionale normalfordeling

Den flerdimensionale normalfordeling De flerdimesioale ormalfordelig Stokastiske vektorer Ved e stokastisk vektor skal vi forstå e vektor, hvor de ekelte kompoeter er sædvalige stokastiske variable. For de stokastiske vektor Y = Y,..., Y

Læs mere

Supplerende noter II til MM04

Supplerende noter II til MM04 Supplerede oter II til MM4 N.J. Nielse 1 Uiform koverges af følger af fuktioer Vi starter med følgede defiitio: Defiitio 1.1 Lad S være e vilkårlig mægde og (X, d et metrisk rum. E følge (f af fuktioer

Læs mere

VIGTIGT! Kurset består af: 1. Forelæsninger. 2. Øvelser. 3. Litteraturlæsning

VIGTIGT! Kurset består af: 1. Forelæsninger. 2. Øvelser. 3. Litteraturlæsning Intro til statistik Rasmus F. Brøndum, Institut 17 (Matematik) Hjemmeside: people.math.aau.dk/~froberg 22 forelæsninger (hvor af jeg afholder de første 13) + det samme antal øvelsesgange. Hjælpelærer:

Læs mere

og Fermats lille sætning

og Fermats lille sætning Projekter: Kaitel 0. Projekt 0. Modulo-regig, restklassegruer og Fermats lille sætig Projekt 0. Modulo-regig, restklassegruere ( { 0 }, ) og Fermats lille sætig Vi aveder moduloregig og restklasser mage

Læs mere

Viden Om Vind oftere, stop i tide

Viden Om Vind oftere, stop i tide Vide Om Vid oftere, stop i tide Spørgsmål og svar Idhold Risici og relevas 2 Steffe Aderse Sadsyligheder 5 Per Hedegård Spørgsmål til eksperte 7 Thomas Aderse Til 8 Rasmus Østergaard Pederse E sikker strategi

Læs mere

ESBILAC. - modermælkserstatning til hvalpe VEJLEDNING. www.kruuse.com

ESBILAC. - modermælkserstatning til hvalpe VEJLEDNING. www.kruuse.com ESBILAC - modermælkserstatig til hvalpe VEJLEDNING De bedste start på livet, e yfødt hvalp ka få, er aturligvis at stille si sult med si mors mælk. Modermælk ideholder alt, hvad de små har brug for af

Læs mere

Asymptotisk estimationsteori

Asymptotisk estimationsteori Kapitel 5 Asymptotisk estimatiosteori De fleste eksperimeter har e idbygget størrelse, som regel kaldet eller N. Dette repræseterer typisk atallet af foretage måliger, atallet af udersøgte idivider, atallet

Læs mere