Hypotese test. Repetition fra sidst Hypoteser Test af middelværdi Test af andel Test af varians Type 1 og type 2 fejl Signifikansniveau

Størrelse: px
Starte visningen fra side:

Download "Hypotese test. Repetition fra sidst Hypoteser Test af middelværdi Test af andel Test af varians Type 1 og type 2 fejl Signifikansniveau"

Transkript

1 ypotese test Repetition fra sidst ypoteser Test af middelværdi Test af andel Test af varians Type 1 og type fejl Signifikansniveau

2 Konfidens intervaller Et konfidens interval er et interval, der estimerer værdien af en ukendt populations parameter. Kaldes også et interval estimat. Sammen med intervallet gives et mål for, hvor sikker man er på, at den sande populations parameter ligger i intervallet. Dette mål kaldes for konfidens niveauet. Et punkt estimat estimerer værdien af en ukendt populations parameter ved en enkelt værdi. For eksempel, gennemsnitsløn for A X=6. Et punkt estimat indeholder ikke meget information om den faktiske værdi af µ. Et interval estimat indeholder flere informationer, for eksempel: Vi er 95% sikre på, at intervallet [55,65] indeholde den sande middelværdi µ. Eller vi er 9% sikre på, at intervallet [599,61] indeholder den sande middelværdi µ.

3 Repetition fra sidst (1-α)1% konfidens interval for: Populations middelværdi µ, når X er normal fordelt (eller stikprøven er stor) og σ er kendt: σ x ± z n α Populations middelværdi µ, når X er normal fordelt og σ er ukendt: For populations andelen p: x ± t α s n pˆ ± z α pq ˆ ˆ n 3

4 (1-α)1% konfidens interval for: Populations variansen σ²: Beregning af stikprøve størrelse: ( n ) s 1, ( n 1 ) s χ χ α α 1 Mindste stikprøve størrelse, når µ estimeres : z α σ n = B hvor B er den maksimale grænse for, hvor langt estimatet må ligge fra den sande middelværdi (med konfidens niveau α). For populations andelen er den givet ved: z α pq n = B vis p ukendt bruges p =.5, da det giver den største stikprøve størrelse (og er altså et konservativt gæt). 4

5 ypoteser og hypotesetest. En hypotese er et udsagn om nogle karakteristika af en variabel eller mængde af variable, for eksempel: Er middelværdien af de A studerendes vægt lig med 7 kilo? I en hypotesetest testes værdier, der er opstillet i en hypotese, ved at sammenligne med værdier beregnet fra data. For eksempel kan gennemsnittet af en stikprøve af jeres vægte beregnes til 68 kilo. Er det (signifikant) forskellig fra 7? Det er forskellig fra 7, men kan vi derfra konkludere, at det ikke bare skyldes tilfældig variation, afhængig af eksempelvis stikprøvestørrelsen? En hypotesetest består af 5 elementer: antagelser, hypoteser, test størrelse, p- værdi og beslutning/konklusion. 5

6 Antagelser Type af data: Se på om det er diskrete eller kontinuerte data Populations fordeling: Se på hvilken fordeling populationen har. Stikprøve: vilken metode er brugt til at indsamle data. Skal være en simpel stikprøve i de test vi bruger. Stikprøve størrelse: vor stor er den stikprøve vi har til at beregne test størrelsen? 6

7 ypoteser Nul hypotesen Er sand indtil vi statistisk har bevist, at den er falsk. Den alternative hypotese : En påstand om en parameter. situationer, der ikke er dækket af. 1 : En påstand om alle Nul hypotesen er sand indtil det modsatte er bevist. : µ = 5 1 : µ 5 : µ 5 1 : µ < 5 : µ 5 1 : µ > 5 : 1 : : p.5 1 : p =.5 p.5 : p <.5 : p.5 1 p >.5 7

8 O.J. Simpson en analogi fra den virkelige verden O. J. Simpson er anklaget for mordet sin eks og dennes kæreste. Nul hypotesen: an er uskyldig Alternativ hypotese: an er skyldig For at O. J. skal kunne dømmes skyldig, skal anklagerne bevise, at han er skyldig beyond any reasonable doubt O. J. skal ikke bevise, at han er uskyldig. Vi kan forkaste nul hypotesen, hvis han findes skyldig, men hvis nul hypotesen ikke forkastes, har vi ikke bevist, at han er uskyldig blot, at der ikke er beviser nok til at finde ham skyldig. (Note: an blev erklæret ikke skyldig!!) 8

9 Test størrelsen Test størrelsen beregnes fra stikprøve data og bruges til at vurdere nul hypotesen. Den indeholder typisk et punkt estimat for den parameter, der indgår i nul hypotesen for eksempel gennemsnittet som punkt estimat for middelværdien. Selve fremgangsmåden for hypotese test er ens fra test til test, uanset data type, fordelings type og stikprøve størrelse. Men formlen for test størrelsen varierer afhængigt af disse ting. 9

10 P-værdi P-værdien af en test, er sandsynligheden for at observere en teststørrelse mindst så ekstrem som den beregnede/observerede værdi, når nul hypotesen er sand. Der gælder følgende for p-værdier: 1. Når p-værdien <.1 er resultatet meget signifikant.. Når p-værdien er mellem.1 og.5 er resultatet signifikant. 3. Nå p-værdien er mellem.5 og.1 er resultatet marginalt signifikant. 4. Når p-værdien er større end.1, er resultatet ikke signifikant. 1

11 P-værdi, fortsat Det vil altså sige når nul hypotesen er falsk, er p-værdien meget lille og når nul hypotesen er sand, vil p-værdien være stor (større end for eksempel.5). Vi accepterer/beviser aldrig, at nul hypotesen er sand. vis vi ikke kan forkaste nul hypotesen, siger vi, at der ikke er nok beviser til at forkaste den. vis vi forkaster nul hypotesen, kan vi konkludere, at der er beviser nok til at sige, at den alternative hypotese er sand. 11

12 Konklusion/beslutnings regel En beslutningsregel for en hypotese test, er en regel for under hvilke betingelse nul hypotesen kan forkastes. Betragt : µ=1. Beslutnings reglen kan her være at forkaste, når stikprøve gennemsnittet er udenfor intervallet [95, 15]. Typisk bruges dog p-værdien for testen. Så en beslutningsregel er for eksempel at forkaste, når p-værdien er mindre end.5. vor lille man vælger p-værdien, afhænger af hvilke konsekvenser beslutningen om at forkaste har. vis det er et spørgsmål om liv eller død, for eksempel i medicinske forsøg, vælges p-værdien meget lille. Men hvis det bare er at teste om et folketingsparti er større end et andet, kan man godt vælge p-værdien større. 1

13 Test af middelværdi Antagelse: Test af µ, X kvantitativ variabel og n>3. ypoteser: 1 : µ = µ : µ µ Stikprøve fordeling af X når er sand er approksimativ normal med middelværdi µ og standard afvigelse σ n µ x Teststørrelse: Z = X µ σ n 13

14 Beregning af p-værdi Når er sand, er fordelingen af Z approksimativt standard normal fordelt (dvs. normal fordelt med middelværdi og standard afvigelse 1). P-værdien er sandsynligheden for at observere en test størrelse mindst så ekstrem som den observerede, givet at er sand. I formler: p( Z > beregnet z værdi). I praksis: I tabellen for standard normalfordelingen aflæses sandsynligheden ud fra værdien af z-værdien og ganges med, da det er i begge sider af fordelingen. Dvs. skal ganges med, da vi både ser på værdier der er mindre end og større end middelværdien opgivet i. Meget nemmere at se ved hjælp af et eksempel: 14

15 Eksempel : µ = 3 1: µm 3 Stikprøve: n = 5 x = 31.5 σ = 5 P-værdi: p = p( z >,1) = p( z >,1) =.17 =.34 Lille p-værdi, så forkastes. Fordeling: Test størrelse: Z = =, µ =3 x=8.5 x=

16 Sandsynligheden for Z-værdien Z=-,1 Z=,1 16

17 Summe opgave : µ = 3 1: µm 3 : µ = 3 1: µm 3 Stikprøve: n = x = 31.5 σ = 5 Stikprøve: n = 1 x = 31.5 σ = 5 Beregn værdien af test størrelsen og p-værdien. Beregn værdien af test størrelsen og p-værdien 17

18 Relation til konfidens intervaller σ x± 1.96 = 31.5 ± 1.96 n 5 5 Middelværdi under 95% konfidens interval omkring observeret middelværdi µ = x =

19 vorfor = i nul hypotesen : µ µ : µ = µ 1 : µ > µ skrives i det følgende som : 1 : µ > µ Grunden til dette er, at man på denne måde "lader tvivlen komme til gode". Desuden er vi kun interesseret i, om µ er større ( eller mindre, hvis < ) end en givet værdi, ikke hvor meget den evt. er mindre. 19

20 øjresidet test Antagelse: Test af µ, X kvantitativ variabel og n>3. ypoteser: 1 : µ = µ : µ > µ Stikprøve fordeling af X når er sand er approksimativ normal med middelværdi µ og standard afvigelse σ n Teststørrelse: X µ Z = σ n P-værdien: p( Z > beregnet z værdi)

21 Eksempel højresidet test : µ = 3 1: µ > 3 Stikprøve: n = 5 x = 31.5 σ = 5 P-værdi: p = p( z >,1) =.17 Lille p-værdi, så forkastes Z=,1.17 Test størrelse: Fordeling: Z = =, µ =3 x=

22 Venstresidet test Antagelse: Test af µ, X kvantitativ variabel og n>3. ypoteser: 1 : µ = µ : µ < µ Stikprøve fordeling af X når er sand er approksimativ normal med middelværdi µ og standard afvigelse σ n Teststørrelse: Z = X µ σ n P-værdien: p( Z < beregnet z værdi)

23 Eksempel venstresidet test : µ = 3 1: µ < 3 Stikprøve: n = 5 x = 31.5 σ = 5 Test størrelse: P-værdi: p = p( z <,1) = 1.17 Stor p-værdi, så forkastes ikke Fordeling: Z=,1 Z = =, µ =3 x=31.5 3

24 Test af middelværdi for ukendt varians Antagelse: Test af µ, X normalfordelt variabel og σ² ukendt (estimeret ved s²). ypoteser: 1 : µ = µ : µ µ Teststørrelse t er t-fordelt med (n-1) frihedsgrader: X s µ t = n P-værdien: p( t > beregnet t værdi) kan ikke beregnes ved tabel opslag. Venstre og højre sidet test efter samme princip som før. 4

25 Eksempel : µ = 3 1: µm 3 Stikprøve: n = 5 x = 31.5 s = 5 Test størrelse: = =,1 5 5 Svært at slå op i tabel. Ligger mellem.5 og.1. P-værdi: p = p( t >,1) = p( t >,1) =. =.4 Lille p-værdi, så forkastes. Fordeling:.8 t x=8.5 µ =3 x=31.5 5

26 Test af en andel Antagelse: Test af populations andel p, når np>5 og n(1-p)>5. ypoteser: pˆ 1 : p = p : p p Stikprøve fordeling af når er sand er approksimativ normal med middelværdi og standard afvigelse p 1 p ) / n Teststørrelse: p Z = ) / n P-værdien: p( Z > beregnet z værdi) p pˆ (1 p p ( øjresidet og venstresidet test efter samme princip som før. 6

27 Test af variansen Antagelse: Test af populations variansen σ², X normal fordelt. ypoteser: 1 : σ : σ = σ σ Teststørrelse: ( n 1) s χ = σ ( χ fordelt med (n -1) frihedsgrader) P-værdi: p( Χ² > beregnet Χ² værdi) kan ikke beregnes ved tabel opslag. øjresidet og venstresidet test efter samme princip som før. 7

28 Signifikans niveau Signifikans niveauet α er et tal, således at forkastes, hvis p-værdien er mindre end α. Konklusion Er normalvis.5 eller.1. Vælges før analysen foretages. P-værdi 1 vis man tester på signifikans niveau.5, svarer det til en z-værdi på 1.96 i en to-sidet test (hvorfor?) og i en højresidet test (hvorfor?). P<.5 Forkast Accepter Normal ses dog på p-værdien i stedet, da de i de fleste tilfælde ikke er smart at have en standard procedure for om man forkaster eller ej. P>.5 Forkast ikke Accepter ikke 8

29 Eksempel - igen : µ = 3 1: µm 3 Stikprøve: n = 5 x = 31.5 s = 5 I stedet for p-værdi, vælges signifikans niveau α, for eksempel α=,5. Slå op i t-tabellen med 49 frihedsgrader under,5, da det er en -sidet test. Test størrelse: t = =,1 5 5 Svært at slå op i tabel. Ligger mellem.5 og.1. t-værdien er cirka lig med.1. Da,1 er større end,1, forkastes. vis t=-,1 skulle vi have sagt, da -,1 er mindre end -.1, forkastes. 9

30 Eksempel højresidet test : µ = 3 1: µ > 3 Stikprøve: n = 5 x = 31.5 σ = 5 Test størrelse: I stedet for p-værdi, vælges signifikans niveau α, for eksempel α=,5. Slå op i z-tabellen under,5 da det er en 1-sidet test. z-værdien er cirka lig med 1,645. Da,1 er større end 1.645, forkastes. Z = =,1 3

31 Test af varians - eksempel 31

32 Type 1 og type fejl Type 1 fejl: forkastes, når den er sand. Type fejl: forkastes ikke, selvom den er falsk. Signifikans niveauet α er sandsynligheden for at begå en type 1 fejl. Sandsynligheden for at begå en type fejl betegnes β Sandsynligheden for type 1 og type fejl er inverst relaterede, dvs. når den ene stiger, så falder den anden, så man kan ikke vælge begge to så lavt som muligt. Typisk vælger med at fastsætte sandsynligheden for type 1 fejl, så man ikke begår store fejl. For eksempel hvis er, at en eller anden medicin er skadelig, er det bedre at være sikker på, at man ikke forkaster selvom den er sand, end at være sikker på, at man ikke forkaster den, selvom den er falsk. I O.J. Simpson sagen er der nok sket en type fejl ;-) Beslutning Forkast Forkast ikke Sand tilstand af sand Type 1 fejl Korrekt beslutning falsk Korrekt beslutning Type fejl 3

33 vordan α og β afhænger af hinanden For forskellige n og et bestemt µ 33

34 Beregning af β (for en venstre sidet test) Se på følgende hypoteser: : µ 1 1 : µ < 1 Lad σ = 5, α = 5%, og n = 1. Vi vil beregne β når µ = µ 1 = 998. Se næste slide Figuren viser fordelingen af x-streg når µ = µ = 1, og når µ = µ 1 = 998. Bemærk at vil blive forkastet, når x- streg er mindre end den kritiske værdi givet ved (x-streg) crit = µ -z α σ/ n = / 1 = Omvendt, vil ikke blive forkastet, når x-steg er større end (x-streg) crit. 34

35 Beregning af β 35

36 Beregning af β Når µ = µ 1 = 998, så er β sandsynligheden for ikke at forkaste, så den er P{(x-streg > (x-streg) crit }. Når µ = µ 1, så vil x-streg følge en normal fordeling med middelværdi µ 1 og standard afvigelse = σ/ n, så: X 1 = P Z > crit µ β = P( Z > 1.18/.5) = P( Z σ / n =.91 >.36) Power af en test, er sandsynligheden for at den falske nul hypotese bliver opdaget af testen. Power af testen = 1 β= 1.91 =

37 Opgaver Kapitel 6: 41, 47, 53, 55, 59, 61, 63. Kapitel 7: 1, 3, 7, 17, 37,

Konfidensintervaller og Hypotesetest

Konfidensintervaller og Hypotesetest Konfidensintervaller og Hypotesetest Konfidensinterval for andele χ -fordelingen og konfidensinterval for variansen Hypoteseteori Hypotesetest af middelværdi, varians og andele Repetition fra sidst: Konfidensintervaller

Læs mere

Konfidensinterval for µ (σ kendt)

Konfidensinterval for µ (σ kendt) Program 1. Repetition: konfidens-intervaller. 2. Hypotese test 3. Type I og type II fejl, p-værdi 4. En og to-sidede tests 5. Test for middelværdi (kendt varians) 6. Test for middelværdi (ukendt varians)

Læs mere

Modul 5: Test for én stikprøve

Modul 5: Test for én stikprøve Forskningsenheden for Statistik ST01: Elementær Statistik Bent Jørgensen Modul 5: Test for én stikprøve 5.1 Test for middelværdi................................. 1 5.1.1 t-fordelingen.................................

Læs mere

Program. 1. Repetition: konfidens-intervaller. 2. Hypotese test, type I og type II fejl, signifikansniveau, styrke, en- og to-sidede test.

Program. 1. Repetition: konfidens-intervaller. 2. Hypotese test, type I og type II fejl, signifikansniveau, styrke, en- og to-sidede test. Program 1. Repetition: konfidens-intervaller. 2. Hypotese test, type I og type II fejl, signifikansniveau, styrke, en- og to-sidede test. 1/19 Konfidensinterval for µ (σ kendt) Estimat ˆµ = X bedste bud

Læs mere

Forelæsning 8: Inferens for varianser (kap 9)

Forelæsning 8: Inferens for varianser (kap 9) Kursus 02402 Introduktion til Statistik Forelæsning 8: Inferens for varianser (kap 9) Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800 Lyngby

Læs mere

Kursus 02402 Introduktion til Statistik. Forelæsning 7: Kapitel 7 og 8: Statistik for to gennemsnit, (7.7-7.8,8.1-8.5) Per Bruun Brockhoff

Kursus 02402 Introduktion til Statistik. Forelæsning 7: Kapitel 7 og 8: Statistik for to gennemsnit, (7.7-7.8,8.1-8.5) Per Bruun Brockhoff Kursus 02402 Introduktion til Statistik Forelæsning 7: Kapitel 7 og 8: Statistik for to gennemsnit, (7.7-7.8,8.1-8.5) Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks

Læs mere

Forelæsning 6: Kapitel 7: Hypotesetest for gennemsnit (one-sample setup). 7.4-7.6

Forelæsning 6: Kapitel 7: Hypotesetest for gennemsnit (one-sample setup). 7.4-7.6 Kursus 02402 Introduktion til Statistik Forelæsning 6: Kapitel 7: Hypotesetest for gennemsnit (one-sample setup). 7.4-7.6 Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220

Læs mere

PhD-kursus i Basal Biostatistik, efterår 2006 Dag 2, onsdag den 13. september 2006

PhD-kursus i Basal Biostatistik, efterår 2006 Dag 2, onsdag den 13. september 2006 PhD-kursus i Basal Biostatistik, efterår 2006 Dag 2, onsdag den 13. september 2006 I dag: To stikprøver fra en normalfordeling, ikke-parametriske metoder og beregning af stikprøvestørrelse Eksempel: Fiskeolie

Læs mere

Note til styrkefunktionen

Note til styrkefunktionen Teoretisk Statistik. årsprøve Note til styrkefunktionen Først er det vigtigt at gøre sig klart, at når man laver statistiske test, så kan man begå to forskellige typer af fejl: Type fejl: At forkaste H

Læs mere

Signifikanstestet. usædvanlig godt godt

Signifikanstestet. usædvanlig godt godt Signifikanstestet Fordeling af rygevaner som 45-årig og senere selvrapporteret helbred som 51-årig blandt tilfældigt udvalgte mænd i Københavns Amt i 1987. helbred som 51 årig rygevaner som 45 årig Total

Læs mere

Hypotesetest. Altså vores formodning eller påstand om tingens tilstand. Alternativ hypotese (hvis vores påstand er forkert) H a : 0

Hypotesetest. Altså vores formodning eller påstand om tingens tilstand. Alternativ hypotese (hvis vores påstand er forkert) H a : 0 Hypotesetest Hypotesetest generelt Ingredienserne i en hypotesetest: Statistisk model, f.eks. X 1,,X n uafhængige fra bestemt fordeling. Parameter med estimat. Nulhypotese, f.eks. at antager en bestemt

Læs mere

Chi-i-anden Test. Repetition Goodness of Fit Uafhængighed i Kontingenstabeller

Chi-i-anden Test. Repetition Goodness of Fit Uafhængighed i Kontingenstabeller Chi-i-anden Test Repetition Goodness of Fit Uafhængighed i Kontingenstabeller Chi-i-anden Test Chi-i-anden test omhandler data, der har form af antal eller frekvenser. Antag, at n observationer kan inddeles

Læs mere

Vejledende besvarelser til opgaver i kapitel 14

Vejledende besvarelser til opgaver i kapitel 14 Vejledende besvarelser til opgaver i kapitel 14 Opgave 1 a) Det første trin i opstillingen af en hypotesetest er at formulere to hypoteser, hvoraf den ene støtter den teori vi vil teste, mens den anden

Læs mere

Anvendt Statistik Lektion 6. Kontingenstabeller χ 2 -test [ki-i-anden-test]

Anvendt Statistik Lektion 6. Kontingenstabeller χ 2 -test [ki-i-anden-test] Anvendt Statistik Lektion 6 Kontingenstabeller χ 2 -test [ki-i-anden-test] 1 Kontingenstabel Formål: Illustrere/finde sammenhænge mellem to kategoriske variable Opbygning: En celle for hver kombination

Læs mere

Konfidens intervaller

Konfidens intervaller Kofides itervaller Kofides itervaller for: Kofides iterval for middelværdi, varias kedt Kofides iterval for middelværdi, varias ukedt Kofides iterval for adel Kofides iterval for varias Bestemmelse af

Læs mere

Hvis α vælges meget lavt, bliver β meget stor. Typisk vælges α = 0.01 eller 0.05

Hvis α vælges meget lavt, bliver β meget stor. Typisk vælges α = 0.01 eller 0.05 Statistik 7. gang 9. HYPOTESE TEST Hypotesetest ved 6 trins raket! : Trin : Formuler hypotese Spørgsmål der ønskes testet vha. data H : Nul hypotese Formuleres som en ligheds hændelse H eller H A : Alternativ

Læs mere

Module 12: Mere om variansanalyse

Module 12: Mere om variansanalyse Mathematical Statistics ST06: Linear Models Bent Jørgensen og Pia Larsen Module 2: Mere om variansanalyse 2. Parreded observationer................................ 2.2 Faktor med 2 niveauer (0- variabel)........................

Læs mere

Ensidet eller tosidet alternativ. Hypoteser. tosidet alternativ. nul hypotese testes mod en alternativ hypotese

Ensidet eller tosidet alternativ. Hypoteser. tosidet alternativ. nul hypotese testes mod en alternativ hypotese Kursus 02402 Introduktion til Statistik Forelæsning 6: Kapitel 7: Hypotesetest for gennemsnit (one-sample setup). 7.4-7.6 Per Bruun Brockhoff DTU Compute, Statistik Bygning 305/324 Danmarks Tekniske Universitet

Læs mere

Anvendt Statistik Lektion 4. Hypotesetest generelt Test for middelværdi Test for andele

Anvendt Statistik Lektion 4. Hypotesetest generelt Test for middelværdi Test for andele Anvendt Statistik Lektion 4 Hypotesetest generelt Test for middelværdi Test for andele Hypoteser og Test Hypotese I statistik er en hypotese en påstand om en populationsparameter. Typisk en påstand om

Læs mere

Modul 7: Eksempler. 7.1 Beskrivende dataanalyse. 7.1.1 Diagrammer. Bent Jørgensen. Forskningsenheden for Statistik ST501: Science Statistik

Modul 7: Eksempler. 7.1 Beskrivende dataanalyse. 7.1.1 Diagrammer. Bent Jørgensen. Forskningsenheden for Statistik ST501: Science Statistik Forskningsenheden for Statistik ST501: Science Statistik Bent Jørgensen Modul 7: Eksempler 7.1 Beskrivende dataanalyse............................... 1 7.1.1 Diagrammer.................................

Læs mere

Vi kalder nu antal prøverør blandt de 20, hvor der ikke ses vækst for X.

Vi kalder nu antal prøverør blandt de 20, hvor der ikke ses vækst for X. Opgave I I en undersøgelse af et potentielt antibiotikum har man dyrket en kultur af en bestemt mikroorganisme og tilført prøver af organismen til 20 prøverør med et vækstmedium og samtidig har man tilført

Læs mere

Program. Modelkontrol og prædiktion. Multiple sammenligninger. Opgave 5.2: fosforkoncentration

Program. Modelkontrol og prædiktion. Multiple sammenligninger. Opgave 5.2: fosforkoncentration Faculty of Life Sciences Program Modelkontrol og prædiktion Claus Ekstrøm E-mail: ekstrom@life.ku.dk Test af hypotese i ensidet variansanalyse F -tests og F -fordelingen. Multiple sammenligninger. Bonferroni-korrektion

Læs mere

SENIORKURSUS STATA OG BIOSTATISTIK

SENIORKURSUS STATA OG BIOSTATISTIK SENIORKURSUS STATA OG BIOSTATISTIK Aarhus Universitet juni 011 Genopfriskning af statistik Basale tankegange og begreber (i dag) Sammenligninger (i morgen) Sammenhænge (i overmorgen) Brug af programpakken

Læs mere

Økonometri 1. Inferens i den lineære regressionsmodel 25. september 2006. Oversigt: De næste forelæsninger

Økonometri 1. Inferens i den lineære regressionsmodel 25. september 2006. Oversigt: De næste forelæsninger Oversigt: De næste forelæsninger Økonometri Inferens i den lineære regressionsmodel 5. september 006 Statistisk inferens: hvorledes man med udgangspunkt i en statistisk model kan drage konklusioner på

Læs mere

Statistik og Sandsynlighedsregning 2

Statistik og Sandsynlighedsregning 2 Statistik og Sandsynlighedsregning 2 Den flerdimensionale normalfordeling, fordeling af ( X,SSD) Helle Sørensen Uge 9, mandag SaSt2 (Uge 9, mandag) Flerdim. N, ford. af ( X,SSD) 1 / 16 Program Resultaterne

Læs mere

Trivsel og fravær i folkeskolen

Trivsel og fravær i folkeskolen Trivsel og fravær i folkeskolen Sammenfatning De årlige trivselsmålinger i folkeskolen måler elevernes trivsel på fire forskellige områder: faglig trivsel, social trivsel, støtte og inspiration og ro og

Læs mere

Kvantitative Metoder 1 - Forår 2007

Kvantitative Metoder 1 - Forår 2007 Dagens program Afsnit 3.3-3.5 Varians Eksempel: Forventet nytte Kovarians og korrelation Middelværdi og varians af summer af stokastiske variabler Eksempel: Porteføljevalg 1 Beskrivelse af fordelinger

Læs mere

Ensidet variansanalyse

Ensidet variansanalyse Ensidet variansanalyse Sammenligning af grupper Helle Sørensen E-mail: helle@math.ku.dk StatBK (Uge 47, mandag) Ensidet ANOVA 1 / 18 Program I dag: Sammenligning af middelværdier Sammenligning af spredninger

Læs mere

ØVELSER Statistik, Logistikøkonom Lektion 6: Hypotesetest 1

ØVELSER Statistik, Logistikøkonom Lektion 6: Hypotesetest 1 ! ØVELSER Statistik, Logistikøkonom Lektion 6: Hypotesetest 1 Eksempel 1 TEST AF MIDDELVÆRDI FRA ÉN STIKPRØVE (ukendt varians) En producent af tyggegummi påstår at en pakke tyggegummi i gennemsnit vejer

Læs mere

Program. Ensidet variansanalyse Sammenligning af grupper. Statistisk model og hypotese. Eksempel: Aldersfordeling i hjertestudie

Program. Ensidet variansanalyse Sammenligning af grupper. Statistisk model og hypotese. Eksempel: Aldersfordeling i hjertestudie Program Ensidet variansanalyse Sammenligning af grupper Helle Sørensen E-mail: helle@math.ku.dk I dag: Sammenligning af middelværdier Sammenligning af spredninger Parvise sammenligninger To eksempler:

Læs mere

Module 2: Beskrivende Statistik

Module 2: Beskrivende Statistik Forskningsenheden for Statistik ST01: Elementær Statistik Bent Jørgensen og Hans Chr. Petersen Module 2: Beskrivende Statistik 2.1 Histogrammer og søjlediagrammer......................... 1 2.2 Sammenfatning

Læs mere

4. september 2003. π B = Lungefunktions data fra tirsdags Gennemsnit l/min

4. september 2003. π B = Lungefunktions data fra tirsdags Gennemsnit l/min Epidemiologi og biostatistik Uge, torsdag 28. august 2003 Morten Frydenberg, Institut for Biostatistik. og hoste estimation sikkerhedsintervaller antagelr Normalfordelingen Prædiktion Statistisk test (udfra

Læs mere

Kapitel 3 Centraltendens og spredning

Kapitel 3 Centraltendens og spredning Kapitel 3 Centraltendens og spredning Peter Tibert Stoltze stat@peterstoltze.dk Elementær statistik F2011 1 Indledning 2 Centraltendens 3 Spredning 4 Praktisk beregning 5 Fraktiler 6 Opsamling 1 Indledning

Læs mere

Reminder: Hypotesetest for én parameter. Økonometri: Lektion 4. F -test Justeret R 2 Aymptotiske resultater. En god model

Reminder: Hypotesetest for én parameter. Økonometri: Lektion 4. F -test Justeret R 2 Aymptotiske resultater. En god model Reminder: Hypotesetest for én parameter Antag vi har model Økonometri: Lektion 4 F -test Justeret R 2 Aymptotiske resultater y = β 0 + β 1 x 2 + β 2 x 2 + + β k x k + u. Vi ønsker at teste hypotesen H

Læs mere

Funktionalligninger - løsningsstrategier og opgaver

Funktionalligninger - løsningsstrategier og opgaver Funktionalligninger - løsningsstrategier og opgaver Altså er f (f (1)) = 1. På den måde fortsætter vi med at samle oplysninger om f og kombinerer dem også med tidligere oplysninger. Hvis vi indsætter =

Læs mere

En intro til radiologisk statistik

En intro til radiologisk statistik En intro til radiologisk statistik Erik Morre Pedersen Hypoteser og testning Statistisk signifikans 2 x 2 tabellen og lidt om ROC Inter- og intraobserver statistik Styrkeberegning Konklusion Litteratur

Læs mere

Statistik Lektion 1. Introduktion Grundlæggende statistiske begreber Deskriptiv statistik Sandsynlighedsregning

Statistik Lektion 1. Introduktion Grundlæggende statistiske begreber Deskriptiv statistik Sandsynlighedsregning Statistik Lektion 1 Introduktion Grundlæggende statistiske begreber Deskriptiv statistik Sandsynlighedsregning Introduktion Kasper K. Berthelsen, Inst f. Matematiske Fag Omfang: 8 Kursusgang I fremtiden

Læs mere

Tema. Dagens tema: Indfør centrale statistiske begreber.

Tema. Dagens tema: Indfør centrale statistiske begreber. Tema Dagens tema: Indfør centrale statistiske begreber. Model og modelkontrol Estimation af parametre. Fordeling. Hypotese og test. Teststørrelse. konfidensintervaller Vi tager udgangspunkt i Ex. 3.1 i

Læs mere

Privatansatte mænd bliver desuden noget hurtigere chef end kvinderne og forholdsvis flere ender i en chefstilling.

Privatansatte mænd bliver desuden noget hurtigere chef end kvinderne og forholdsvis flere ender i en chefstilling. Sammenligning af privatansatte kvinder og mænds løn Privatansatte kvindelige djøfere i stillinger uden ledelsesansvar har en løn der udgør ca. 96 procent af den løn deres mandlige kolleger får. I sammenligningen

Læs mere

Ligninger med reelle løsninger

Ligninger med reelle løsninger Ligninger med reelle løsninger, marts 2008, Kirsten Rosenkilde 1 Ligninger med reelle løsninger Når man løser ligninger, er der nogle standardmetoder som er vigtige at kende. Vurdering af antallet af løsninger

Læs mere

Logistisk Regression. Repetition Fortolkning af odds Test i logistisk regression

Logistisk Regression. Repetition Fortolkning af odds Test i logistisk regression Logistisk Regression Repetition Fortolkning af odds Test i logistisk regression Logisitks Regression: Repetition Y {0,} binær afhængig variabel X skala forklarende variabel π P( Y X x) Odds(Y X x) π /(-π

Læs mere

Introduktion til Statistik. Forelæsning 3: Kontinuerte fordelinger. Peder Bacher

Introduktion til Statistik. Forelæsning 3: Kontinuerte fordelinger. Peder Bacher Introduktion til Statistik Forelæsning 3: Kontinuerte fordelinger Peder Bacher DTU Compute, Dynamiske Systemer Bygning 303B, Rum 009 Danmarks Tekniske Universitet 2800 Lyngby Danmark e-mail: pbac@dtu.dk

Læs mere

Normalfordelingen. Statistik og Sandsynlighedsregning 2

Normalfordelingen. Statistik og Sandsynlighedsregning 2 Normalfordelingen Statistik og Sandsynlighedsregning 2 Repetition og eksamen Erfaringsmæssigt er normalfordelingen velegnet til at beskrive variationen i mange variable, blandt andet tilfældige fejl på

Læs mere

En Introduktion til SAS. Kapitel 6.

En Introduktion til SAS. Kapitel 6. En Introduktion til SAS. Kapitel 6. Inge Henningsen Afdeling for Statistik og Operationsanalyse Københavns Universitet Marts 2005 6. udgave Kapitel 6 Regressionsanalyse i SAS 6.1 Indledning Dette kapitel

Læs mere

Multipel Lineær Regression. Polynomiel regression Ikke-lineære modeller og transformation Multi-kolinearitet Auto-korrelation og Durbin-Watson test

Multipel Lineær Regression. Polynomiel regression Ikke-lineære modeller og transformation Multi-kolinearitet Auto-korrelation og Durbin-Watson test Multipel Lineær Regression Polynomiel regression Ikke-lineære modeller og transformation Multi-kolinearitet Auto-korrelation og Durbin-Watson test Multipel lineær regression x,x,,x k uafhængige variable

Læs mere

To-sidet varians analyse

To-sidet varians analyse To-sidet varians analyse Repetition En-sidet ANOVA Parvise sammenligninger, Tukey s test Model begrebet To-sidet ANOVA Tre-sidet ANOVA Blok design SPSS ANOVA - definition ANOVA (ANalysis Of VAriance),

Læs mere

k UAFHÆNGIGE grupper F-test Oversigt 1 Intro eksempel 2 Model og hypotese 3 Beregning - variationsopspaltning og ANOVA tabellen

k UAFHÆNGIGE grupper F-test Oversigt 1 Intro eksempel 2 Model og hypotese 3 Beregning - variationsopspaltning og ANOVA tabellen Introduktion til Statistik Forelæsning 10: Envejs variansanalyse, ANOVA Peder Bacher DTU Compute, Dynamiske Systemer Bygning 303B, Rum 017 Danmarks Tekniske Universitet 2800 Lyngby Danmark e-mail: pbac@dtu.dk

Læs mere

VIGTIGT! Kurset består af: 1. Forelæsninger. 2. Øvelser. 3. Litteraturlæsning

VIGTIGT! Kurset består af: 1. Forelæsninger. 2. Øvelser. 3. Litteraturlæsning Intro til statistik Rasmus F. Brøndum, Institut 17 (Matematik) Hjemmeside: people.math.aau.dk/~froberg 22 forelæsninger (hvor af jeg afholder de første 13) + det samme antal øvelsesgange. Hjælpelærer:

Læs mere

Statistik og Sandsynlighedsregning 2

Statistik og Sandsynlighedsregning 2 Statistik og Sandsynlighedsregning 2 Transformation af kontinuerte fordelinger på R, flerdimensionale kontinuerte fordelinger, mere om normalfordelingen Helle Sørensen Uge 7, onsdag SaSt2 (Uge 7, onsdag)

Læs mere

02402 Løsning til testquiz02402f (Test VI)

02402 Løsning til testquiz02402f (Test VI) 02402 Løsning til testquiz02402f (Test VI) Spørgsmål 4. En ejendomsmægler ønsker at undersøge om hans kunder får mindre end hvad de har forlangt, når de sælger deres bolig. Han har regisreret følgende:

Læs mere

Forelæsning 9: Inferens for andele (kapitel 10)

Forelæsning 9: Inferens for andele (kapitel 10) Kursus 02402 Introduktion til Statistik Forelæsning 9: Inferens for andele (kapitel 10) Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800

Læs mere

Økonometri 1. Interne evalueringer af forelæsninger. Kvalitative variabler. Dagens program. Dummyvariabler 21. oktober 2004

Økonometri 1. Interne evalueringer af forelæsninger. Kvalitative variabler. Dagens program. Dummyvariabler 21. oktober 2004 Dagens program Økonometri 1 Dummyvariabler 21. oktober 2004 Emnet for denne forelæsning er kvalitative egenskaber i den multiple regressionsmodel (Wooldridge kap. 7.1-7.6) Kvalitative variabler generelt

Læs mere

Nanostatistik: Middelværdi og varians

Nanostatistik: Middelværdi og varians Nanostatistik: Middelværdi og varians JLJ Nanostatistik: Middelværdi og varians p. 1/28 Repetition Stokastisk variabel: funktion fra udfaldsrum over i de hele tal eller over i de reelle tal Ex: Ω = alle

Læs mere

Tema. Model og modelkontrol ( Fx. en normalfordelt obs. række m. kendt varians) Estimation af parametre. Fordeling. Hypotese og test. Teststørrelse.

Tema. Model og modelkontrol ( Fx. en normalfordelt obs. række m. kendt varians) Estimation af parametre. Fordeling. Hypotese og test. Teststørrelse. Tema Model og modelkontrol ( Fx. en normalfordelt obs. række m. kendt varians) Estimation af parametre. Fordeling. (Fx. x. µ) Hypotese og test. Teststørrelse. (Fx. H 0 : µ = µ 0 ) konfidensintervaller

Læs mere

Hvad skal vi lave? Nulhypotese - alternativ. Teststatistik. Signifikansniveau

Hvad skal vi lave? Nulhypotese - alternativ. Teststatistik. Signifikansniveau Hvad skal vi lave? 1 Statistisk inferens: Hypotese og test Nulhypotese - alternativ. Teststatistik P-værdi Signifikansniveau 2 t-test for middelværdi Tosidet t-test for middelværdi Ensidet t-test for middelværdi

Læs mere

TALTEORI Wilsons sætning og Euler-Fermats sætning.

TALTEORI Wilsons sætning og Euler-Fermats sætning. Wilsons sætning og Euler-Fermats sætning, marts 2007, Kirsten Rosenkilde 1 TALTEORI Wilsons sætning og Euler-Fermats sætning. Disse noter forudsætter et grundlæggende kendskab til talteori som man kan

Læs mere

Oversigt. Kursus Introduktion til Statistik. Forelæsning 9: Inferens for andele (kapitel 10) Per Bruun Brockhoff

Oversigt. Kursus Introduktion til Statistik. Forelæsning 9: Inferens for andele (kapitel 10) Per Bruun Brockhoff Kursus 02402 Introduktion til Statistik Forelæsning 9: Inferens for andele (kapitel 10) Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800

Læs mere

Uge 48 II Teoretisk Statistik 27. november 2003. Numerisk modelkontrol af diskrete fordelinger: intro

Uge 48 II Teoretisk Statistik 27. november 2003. Numerisk modelkontrol af diskrete fordelinger: intro Uge 48 II Teoretisk Statistik 7. november 003 Numerisk modelkontrol af diskrete fordelinger: intro Eksempel: kvalitetskontrol Goodness-of-fit test: generel teori Endeligt udfaldsrum Udfaldsrum uden øvre

Læs mere

Kvantitative Metoder 1 - Forår 2007. Dagens program

Kvantitative Metoder 1 - Forår 2007. Dagens program Dagens program Hypoteser: kap: 10.1-10.2 Eksempler på Maximum likelihood analyser kap 9.10 Test Hypoteser kap. 10.1 Testprocedure kap 10.2 Teststørrelsen Testsandsynlighed 1 Estimationsmetoder Kvantitative

Læs mere

Normalfordelingen og Stikprøvefordelinger

Normalfordelingen og Stikprøvefordelinger Normalfordelingen og Stikprøvefordelinger Normalfordelingen Standard Normal Fordelingen Sandsynligheder for Normalfordelingen Transformation af Normalfordelte Stok.Var. Stikprøver og Stikprøvefordelinger

Læs mere

Program: 1. Repetition: p-værdi 2. Simpel lineær regression. 1/19

Program: 1. Repetition: p-værdi 2. Simpel lineær regression. 1/19 Program: 1. Repetition: p-værdi 2. Simpel lineær regression. 1/19 For test med signifikansniveau α: p < α forkast H 0 2/19 p-værdi Betragt tilfældet med test for H 0 : µ = µ 0 (σ kendt). Idé: jo større

Læs mere

c) For, er, hvorefter. Forklar.

c) For, er, hvorefter. Forklar. 1 af 13 MATEMATIK B hhx Udskriv siden FACITLISTE TIL KAPITEL 7 ØVELSER ØVELSE 1 c) ØVELSE 2 og. Forklar. c) For, er, hvorefter. Forklar. ØVELSE 3 c) ØVELSE 4 90 % konfidensinterval: 99 % konfidensinterval:

Læs mere

Program. Simpel og multipel lineær regression. I tirsdags: model og estimation. I tirsdags: Prædikterede værdier og residualer

Program. Simpel og multipel lineær regression. I tirsdags: model og estimation. I tirsdags: Prædikterede værdier og residualer Program Simpel og multipel lineær regression Helle Sørensen E-mail: helle@math.ku.dk Simpel LR: repetition, konfidensintervaller, test, prædiktionsintervaller, mm. Multipel LR: estimation, valg af model,

Læs mere

Grafteori, Kirsten Rosenkilde, september 2007 1. Grafteori

Grafteori, Kirsten Rosenkilde, september 2007 1. Grafteori Grafteori, Kirsten Rosenkilde, september 007 1 1 Grafteori Grafteori Dette er en kort introduktion til de vigtigste begreber i grafteori samt eksempler på opgavetyper inden for emnet. 1.1 Definition af

Læs mere

Løsning til eksaminen d. 14. december 2009

Løsning til eksaminen d. 14. december 2009 DTU Informatik 02402 Introduktion til Statistik 200-2-0 LFF/lff Løsning til eksaminen d. 4. december 2009 Referencer til Probability and Statistics for Engineers er angivet i rækkefølgen [8th edition,

Læs mere

Stikprøver og stikprøve fordelinger. Stikprøver Estimatorer og estimater Stikprøve fordelinger Egenskaber ved estimatorer Frihedsgrader

Stikprøver og stikprøve fordelinger. Stikprøver Estimatorer og estimater Stikprøve fordelinger Egenskaber ved estimatorer Frihedsgrader Stikprøver og stikprøve fordelinger Stikprøver Estimatorer og estimater Stikprøve fordelinger Egenskaber ved estimatorer Frihedsgrader Statistik Statistisk Inferens: Prediktere og forekaste værdier af

Læs mere

Dagens Temaer. Test for lineær regression. Test for lineær regression - via proc glm. k normalfordelte obs. rækker i proc glm. p. 1/??

Dagens Temaer. Test for lineær regression. Test for lineær regression - via proc glm. k normalfordelte obs. rækker i proc glm. p. 1/?? Dagens Temaer k normalfordelte obs. rækker i proc glm. Test for lineær regression Test for lineær regression - via proc glm p. 1/?? Proc glm Vi indlæser data i datasættet stress, der har to variable: areal,

Læs mere

Oversigt. 1 Eksempel. 2 Fordelingen for gennemsnittet t-fordelingen. 3 Konfidensintervallet for µ Eksempel

Oversigt. 1 Eksempel. 2 Fordelingen for gennemsnittet t-fordelingen. 3 Konfidensintervallet for µ Eksempel Kursus 02402/02323 Introducerende Statistik Forelæsning 4: Konfidensinterval for middelværdi (og spredning) Klaus K. Andersen og Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Danmarks Tekniske

Læs mere

Valgkampens og valgets matematik

Valgkampens og valgets matematik Ungdommens Naturvidenskabelige Forening: Valgkampens og valgets matematik Rune Stubager, ph.d., lektor, Institut for Statskundskab, Aarhus Universitet Disposition Meningsmålinger Hvorfor kan vi stole på

Læs mere

Maple 11 - Chi-i-anden test

Maple 11 - Chi-i-anden test Maple 11 - Chi-i-anden test Erik Vestergaard 2014 Indledning I dette dokument skal vi se hvordan Maple kan bruges til at løse opgaver indenfor χ 2 tests: χ 2 - Goodness of fit test samt χ 2 -uafhængighedstest.

Læs mere

Statistik vejledende læreplan og læringsmål, efteråret 2013 SmartLearning

Statistik vejledende læreplan og læringsmål, efteråret 2013 SmartLearning Side 1 af 6 Statistik vejledende læreplan og læringsmål, efteråret 2013 SmartLearning Litteratur: Kenneth Hansen & Charlotte Koldsø: Statistik I økonomisk perspektiv, Hans Reitzels Forlag 2012, 2. udgave,

Læs mere

Variabel- sammenhænge

Variabel- sammenhænge Variabel- sammenhænge Udgave 2 2009 Karsten Juul Dette hæfte kan bruges som start på undervisningen i variabelsammenhænge for stx og hf. Hæftet er en introduktion til at kunne behandle to sammenhængende

Læs mere

Anvendt Statistik Lektion 6. Kontingenstabeller χ 2- test [ki-i-anden-test]

Anvendt Statistik Lektion 6. Kontingenstabeller χ 2- test [ki-i-anden-test] Anvendt Statistik Lektion 6 Kontingenstabeller χ 2- test [ki-i-anden-test] Kontingenstabel Formål: Illustrere/finde sammenhænge mellem to kategoriske variable Opbygning: En celle for hver kombination af

Læs mere

Susanne Ditlevsen Institut for Matematiske Fag Email: susanne@math.ku.dk http://math.ku.dk/ susanne

Susanne Ditlevsen Institut for Matematiske Fag Email: susanne@math.ku.dk http://math.ku.dk/ susanne Statistik og Sandsynlighedsregning 1 Indledning til statistik, kap 2 i STAT Susanne Ditlevsen Institut for Matematiske Fag Email: susanne@math.ku.dk http://math.ku.dk/ susanne 5. undervisningsuge, onsdag

Læs mere

Produkt og marked - matematiske og statistiske metoder

Produkt og marked - matematiske og statistiske metoder Produkt og marked - matematiske og statistiske metoder Rasmus Waagepetersen Institut for Matematiske Fag Aalborg Universitet February 19, 2016 1/26 Kursusindhold: Sandsynlighedsregning og lagerstyring

Læs mere

Kapitel 7 Forskelle mellem centraltendenser

Kapitel 7 Forskelle mellem centraltendenser Kapitel 7 Forskelle mellem centraltendenser Peter Tibert Stoltze stat@peterstoltze.dk Elementær statistik F2011 1 / 29 Indledning 1. z-test for ukorrelerede data 2. t-test for ukorrelerede data med ens

Læs mere

15. december 2014 RLI STATISTISK ANALYSE AF BESTANDSDØDELIGHEDEN I LÆGERNES PENSIONSKASSE Denne rapport indeholder en analyse af bestandsdødeligheden i Lægernes Pensionskasse. Det undersøges om dødeligheden

Læs mere

Statistik i basketball

Statistik i basketball En note til opgaveskrivning jerome@falconbasket.dk 4. marts 200 Indledning I Falcon og andre klubber er der en del gymnasieelever, der på et tidspunkt i løbet af deres gymnasietid skal skrive en større

Læs mere

Læsevejledning til resultater på regionsplan

Læsevejledning til resultater på regionsplan Læsevejledning til resultater på regionsplan Indhold 1. Overblik... 2 2. Sammenligninger... 2 3. Hvad viser figuren?... 3 4. Hvad viser tabellerne?... 5 5. Eksempler på typiske spørgsmål til tabellerne...

Læs mere

Eks. 1: Kontinuert variabel som i princippet kan måles med uendelig præcision. tid, vægt,

Eks. 1: Kontinuert variabel som i princippet kan måles med uendelig præcision. tid, vægt, Statistik noter Indhold Datatyper... 2 Middelværdi og standardafvigelse... 2 Normalfordelingen og en stikprøve... 2 prædiktionsinteval... 3 Beregne andel mellem 2 værdier, eller over og unden en værdi

Læs mere

TALTEORI Wilsons sætning og Euler-Fermats sætning.

TALTEORI Wilsons sætning og Euler-Fermats sætning. Wilsons sætning og Euler-Fermats sætning, marts 2007, Kirsten Rosenkilde 1 TALTEORI Wilsons sætning og Euler-Fermats sætning. Disse noter forudsætter et grundlæggende kendskab til talteori som man kan

Læs mere

Modul 3: Kontinuerte stokastiske variable

Modul 3: Kontinuerte stokastiske variable Forskningsenheden for Statistik ST501: Science Statistik Bent Jørgensen Modul 3: Kontinuerte stokastiske variable 3.1 Kontinuerte stokastiske variable........................... 1 3.1.1 Tæthedsfunktion...............................

Læs mere

Oversigt. Course 02402/02323 Introducerende Statistik. Forelæsning 3: Kontinuerte fordelinger. Per Bruun Brockhoff

Oversigt. Course 02402/02323 Introducerende Statistik. Forelæsning 3: Kontinuerte fordelinger. Per Bruun Brockhoff Course 242/2323 Introducerende Statistik Forelæsning 3: Kontinuerte fordelinger Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 22 Danmarks Tekniske Universitet 28 Lyngby Danmark

Læs mere

Forelæsning 5: Kapitel 7: Inferens for gennemsnit (One-sample setup)

Forelæsning 5: Kapitel 7: Inferens for gennemsnit (One-sample setup) Kursus 02402 Introduktion til Statistik Forelæsning 5: Kapitel 7: Inferens for gennemsnit (One-sample setup) Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske

Læs mere

Opgave 1 Alle tallene er reelle tal, så opgaven er at finde den mindste talmængde, som resultaterne tilhører.

Opgave 1 Alle tallene er reelle tal, så opgaven er at finde den mindste talmængde, som resultaterne tilhører. Opgave 1 Alle tallene er reelle tal, så opgaven er at finde den mindste talmængde, som resultaterne tilhører. A. Q B. R (sidelængden er 5, som er irrational) C. Q Opgave 2 A. 19 = 1 19 24 = 2 3 3 36 =

Læs mere

Modul 12: Exercises. 12.1 Sukkersygepatienters vægt

Modul 12: Exercises. 12.1 Sukkersygepatienters vægt Modul 12: Exercises 12.1 Sukkersygepatienters vægt............... 1 12.2 Newfoundlandske kvinders blodtryk.......... 4 12.3 Korrelationskoefficient.................. 6 12.4 Højde og vægt......................

Læs mere

LUP læsevejledning til regionsrapporter

LUP læsevejledning til regionsrapporter Indhold 1. Overblik... 2 2. Sammenligninger... 2 3. Hvad viser figuren?... 3 4. Hvad viser tabellerne?... 5 5. Eksempler på typiske spørgsmål til tabellerne... 6 Øvrigt materiale Baggrund og metode for

Læs mere

Statistikkompendium. Statistik

Statistikkompendium. Statistik Statistik INTRODUKTION TIL STATISTIK Statistik er analyse af indsamlet data. Det vil sige, at man bearbejder et datamateriale, som i matematik næsten altid er tal. Derved får man et samlet overblik over

Læs mere

Delmængder af Rummet

Delmængder af Rummet Delmængder af Rummet Frank Nasser 11. juli 2011 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Indhold 1 Introduktion

Læs mere

Danmarks Radio. 24. mar 2015

Danmarks Radio. 24. mar 2015 t Spørgsmål: Et flertal i Folketinget vil have en folkeafstemning om det danske EU-forbehold på retsområdet for at omdanne forbeholdet til en såkaldt tilvalgsordning. En tilvalgsordning vil betyde, at

Læs mere

En intro til radiologisk statistik. Erik Morre Pedersen

En intro til radiologisk statistik. Erik Morre Pedersen En intro til radiologisk statistik Erik Morre Pedersen Hypoteser og testning Statistisk signifikans 2 x 2 tabellen og lidt om ROC Inter- og intraobserver statistik Styrkeberegning Konklusion Litteratur

Læs mere

Besvarelser til øvelsesopgaver i uge 6

Besvarelser til øvelsesopgaver i uge 6 Besvarelser til øvelsesopgaver i uge 6 Opgave 7.46, side 228 (7ed 7.28, side 244 og 6ed: 7.28, side 240) Vi tænker os, at vi har data for emissionen {x 1, x 2,..., x n }, når det pågældende device er monteret.

Læs mere

TALTEORI Primfaktoropløsning og divisorer.

TALTEORI Primfaktoropløsning og divisorer. Primfaktoropløsning og divisorer, oktober 2008, Kirsten Rosenkilde 1 TALTEORI Primfaktoropløsning og divisorer. Disse noter forudsætter et grundlæggende kendskab til talteori som man kan få i Marianne

Læs mere

Logistisk Regression. Repetition Fortolkning af odds Test i logistisk regression

Logistisk Regression. Repetition Fortolkning af odds Test i logistisk regression Logistisk Regression Repetition Fortolkning af odds Test i logistisk regression Logistisk Regression: Definitioner For en binær (0/) variabel Y antager vi P(Y)p P(Y0)-p Eksempel: Bil til arbejde vs alder

Læs mere

Finde invers funktion til en 2-gradsfunktion - ved parallelforskydning. John V Petersen

Finde invers funktion til en 2-gradsfunktion - ved parallelforskydning. John V Petersen Finde invers funktion til en 2-gradsfunktion - ved parallelforskydning John V Petersen Finde invers funktion til en 2-gradsfunktion - ved parallelforskydning 2015 John V Petersen art-science-soul Indhold

Læs mere

Det Samfundsvidenskabelige Fakultetet Redegørelse for resultater fra UVM 2010

Det Samfundsvidenskabelige Fakultetet Redegørelse for resultater fra UVM 2010 Det Samfundsvidenskabelige Fakultetet Redegørelse for resultater fra UVM 2010 Side 1 af 49 Indholdsfortegnelse Indledning... 4 Analyseudvalg... 5 Analyseudvalgets repræsentativitet... 5 Køn... 5 Alder...

Læs mere

Skriftlig eksamen Science statistik- ST501

Skriftlig eksamen Science statistik- ST501 SYDDANSK UNIVERSITET INSTITUT FOR MATEMATIK OG DATALOGI Skriftlig eksamen Science statistik- ST501 Torsdag den 21. januar Opgavesættet består af 5 opgaver, med i alt 13 delspørgsmål, som vægtes ligeligt.

Læs mere

Normalfordelingen. Det centrale er gentagne målinger/observationer (en stikprøve), der kan beskrives ved den normale fordeling: 1 2πσ

Normalfordelingen. Det centrale er gentagne målinger/observationer (en stikprøve), der kan beskrives ved den normale fordeling: 1 2πσ Normalfordelingen Det centrale er gentagne målinger/observationer (en stikprøve), der kan beskrives ved den normale fordeling: f(x) = ( ) 1 exp (x µ)2 2πσ 2 σ 2 Frekvensen af observationer i intervallet

Læs mere

Resumé: En statistisk analyse resulterer ofte i : Et estimat θˆmed en tilhørende se

Resumé: En statistisk analyse resulterer ofte i : Et estimat θˆmed en tilhørende se Epidemiologi og biostatistik. Uge, torsdag 5. februar 00 Morten Frydenberg, Institut for Biostatistik. Type og type fejl Statistisk styrke Nogle speciale metoder: Normalfordelte data : t-test eksakte sikkerhedsintervaller

Læs mere

Basal statistik for sundhedsvidenskabelige forskere, forår 2015 Udleveret 3. marts, afleveres senest ved øvelserne i uge 13 (24.-25.

Basal statistik for sundhedsvidenskabelige forskere, forår 2015 Udleveret 3. marts, afleveres senest ved øvelserne i uge 13 (24.-25. Hjemmeopgave Basal statistik for sundhedsvidenskabelige forskere, forår 2015 Udleveret 3. marts, afleveres senest ved øvelserne i uge 13 (24.-25. marts) En stikprøve bestående af 65 mænd og 65 kvinder

Læs mere