Statistikkompendium. Statistik

Størrelse: px
Starte visningen fra side:

Download "Statistikkompendium. Statistik"

Transkript

1 Statistik

2 INTRODUKTION TIL STATISTIK Statistik er analyse af indsamlet data. Det vil sige, at man bearbejder et datamateriale, som i matematik næsten altid er tal. Derved får man et samlet overblik over talmaterialet. Rundt omkring i samfundet bliver statistik meget ofte brugt som baggrund for forskellige beslutninger. Derfor er statistik også en vigtig del af matematik i skolen. Introduktionsopgave Alberte dyrker gymnastik i gymnastikforeningen De muntre badutspringere. I tabellen nedenfor kan man se, hvor gamle de 50 medlemmer i foreningen er.

3 Gennemgang af opgave Tal, som er grundlag for en statistik, kalder man for observationer. Observationerne i opgaven ovenfor er alderen på medlemmerne i gymnastikforeningen. Alle observationer udgør tilsammen et observationssæt. Statistik er ligesom en værktøjskasse. Der findes rigtig mange måder at bearbejde observationerne på. Så hvis man skal arbejde rigtigt med statistik, skal man både vide hvordan og hvornår, man skal bruge det forskellige værktøj. Det er jo heller ikke nok at have en værktøjskasse med super godt værktøj, hvis man tror, man skal bruge skruetrækkeren til at banke søm i med vel? Herunder gennemgåes det vigtigste værktøj, som du næsten altid vil få brug for i folkeskolematematik. Hvornår værktøjet skal bruges, må du lære gennem træning. Denne statistiske værktøjskasse som du gerne skulle have, når du er færdig med denne gennemgang af statistik, er i øvrigt grundlag for meget af den statistisk, som findes i matematik på højere niveau. Den statistiske værktøjskasse Typetallet o Typetallet er det tal, som er typisk for observationssættet. Det vil sige den observation, som forekommer flest gange i observationssættet. Hvad er typetallet her? Se note 1 Yderligere gennemgang af typetal kan ses på De ekstra sider bagerst. Gennemsnittet o Gennemsnittet eller middeltallet er det tal, som man får, hvis man lægger alle observationer sammen og dividerer dette tal med antallet af observationer. Hvad er gennemsnittet her? Se note 2 Yderligere gennemgang af gennemsnit kan ses på De ekstra sider bagerst. Medianen o Den observation, som står i midten, hvis man stiller observationerne op i rækkefølge med de mindste tal først. Hvis der er et lige antal observationer, så der ikke er et tal i midten, tager du normalt tallet til venstre for midten. Hvad er medianen her? Se note 3 Yderligere gennemgang af median kan ses på De ekstra sider bagerst. Udvidet viden: Medianen hedder også 2 kvartil eller 0,50-kvartil. Det er fordi, det er her, de første 50% af observationerne ligger indenfor, hvis observationerne sættes i rækkefølge med de mindste først. 1 Typetallet er 22 2 Gennemsnittet er 23 3 Medianen er 22

4 Indenfor 0,25-kvartilen, 1. kvartil eller nedre kvartil ligger 25% af de første observationer, hvis observationerne sættes i rækkefølge med de mindste først. Indenfor 0,75-kvartilen, 3. kvartil eller øvre kvartil ligger 75% af observationerne, hvis observationerne sættes i rækkefølge med de mindste først. Hvad er 0,25-kvartilen? Note 4 Hvad er 0,75-kvartilen? Note 5 Størsteværdi o Den største observation i observationssættet. NB. Det er ikke det største antal gange en observation forekommer! Hvad er størsteværdien her? Note 6 Mindsteværdi o Den mindste observation i observationssættet. NB. Det er ikke det mindste antal gange en observation forekommer! Hvad er mindsteværdien her? Note 7 Variationsbredden o Variationsbredden er forskellen på den største og den mindste observation i sættet. Variationsbredden finder man ved at trække størsteværdien og mindsteværdien fra hinanden. Hvad er variationsbredden her? Note 8 Hyppighed - h(x) o Hyppigheden angiver, hvor ofte (hyppigt) de forskellige observationer forekommer. Det er altså antallet af gange, en observation forekommer. o Normalt angiver man hyppigheden med h(x) Det letteste er at sætte observationerne ind i et skema, som ses nedenfor. Udfyld resten af hyppighedskolonnen i skemaet nedenfor. Observationer h(x) f(x) H(x) F(x) % 6 12% % 10 20% ,25-kvartilen er ,75-kvartilen er 24 6 Størsteværdien er 27 7 Mindsteværdien er 19 8 Variationsbredden er 8

5 Summeret hyppighed - H(x) o Den summede hyppighed er hyppighederne lagt sammen med de foregående hyppigheder. Dvs. at den summerede hyppighed for 21 er hyppigheden for 19, 20 og 21 lagt sammen. Den summerede hyppighed skrives H(x) Skriv resten af de summerede hyppigheder ind i skemaet ovenfor. Frekvens - f(x) o Den hyppighed observationen kommer med i forhold til det samlede antal observationer. Det vil sige hyppighed divideret med antallet af observationer. Dette vil give et resultat i form af en brøk eller decimaltal. Vil man have resultatet i procent, skal man gange med 100. Frekvens kan enten være i procent, brøk eller decimaltal. Det bestemmer du selv! Det vil sige, at 10%, 10 1 eller 0,10 er det samme resultat på forskellige måde. Skriv resten af frekvenserne ind i skemaet. Summeret frekvens - F(x) o Er ligesom ved summeret hyppighed, men her er det bare frekvenserne, som skal lægges sammen. Skriv resten af de summerede frekvenser ind i skemaet. GRUPPEREDE OG IKKE-GRUPPEREDE OBSERVATIONER I nogle tilfælde kan det være en fordel at dele observationerne ind i grupper. F.eks. hvis man skulle lave en statistik over en skoleklasse med 25 elever, som springer længdespring i en idrætstime. Højest sandsynlig vil man få 25 forskellige resultater med en hyppighed på 1. Det giver os ikke et så meget bedre overblik over tallene. Derfor vil man ofte se, at tallene bliver inddelt i grupper. F.eks. 0-1 meter, 1 til 2 meter osv. Disse grupper kalder man i statistik for intervaller. Ovenfor er der lavet statistik på baggrund af ugrupperede observationer, hvor observationerne altså ikke er inddelt i intervaller. Nedenfor vil vi bruge de samme observationer som ovenfor, men nu vil vi lave intervaller, som vi samler observationerne i. Grupperede observationer Intervaller o Hvis man har mange uens observationer, kan man inddele oplysningerne i grupper, som også kaldes intervaller. o Ved grupperede observationer vil man normalt ikke kunne finde hverken typetal, størsteværdi, mindsteværdi og variationsbredde, fordi man ofte ikke kender de enkelte observationer, men kun har observationerne samlet i et hyppighedsskema. I nogle sammenhænge kan man dog snakke om et typeinterval, som er det interval, hvor der er flest observationer. Man kan også finde et gennemsnit og kvartilerne, men man gør det normalt på en lidt anden måde ved grupperede observationer.

6 o Ofte ser man, at der er firkantede parenteser omkring intervallerne [ og ] Disse parenteser angiver, om tallet er med eller ej. Hvis parentesen vender ind mod tallet, er tallet med. Vender parentesen væk fra tallet, betyder det, at tallet ikke er med, men tallene op til tallet er med. Eks. I intervallet [2;4[ er tallet 2 med og så er tallene op til 4 også med, men tallet 4 er ikke med. Det vil sige 3, osv. er med. Så man kan sige fra og med 2 til og ikke med 4. o Udfyld resten af skemaet nedenfor. Intervaller h(x) f(x) H(x) F(x) % Gennemsnit o Hvis man skal finde gennemsnittet af observationer, som er inddelt i intervaller, hvor man ikke kan finde tilbage til de oprindelige observationer, skal man i første omgang finde intervalmidtpunktet. Det vil sige, man finder den midterste værdi i intervallet. Eks. hvis intervallet går fra 0 til 10, så er midtpunktet 5. Man finder intervalmidtpunktet, fordi man ikke ved hvordan observationerne fordeler sig i intervallet. Derfor går man udfra, at observationerne fordeler sig jævnt omkring midten af intervallet. Hvis man havde kendt observationerne, ville man lægge dem sammen og så til sidst dividere med det samlede antal. Faktisk gør man lidt det samme, når man har observationerne i intervaller. Dog er det lettere at gange intervalmidtpunkterne. Eks. hvis intervalmidtpunktet er 5 og hyppigheden af intervallet er 3, så svarer det til, at man har observationerne 5, 5 og 5. Derfor er det lettere at sige 5 gange 3 end De tal, som man får ud for de enkelte intervaller, lægger man sammen og dividerer med antallet af observationer (ikke antallet af intervaller). Find gennemsnittet her og sammenlign med tidligere gennemsnit. Se note 9 9 Gennemsnittet er her 22,7. Dette gennemsnit er en lille smule mere upræcist, fordi vi nu ikke går udfra de oprindelige observationer, men bruger de oplysninger, vi har i skemaet.

7 DIAGRAMMER Det er ikke alle diagramtyper, som bruges ved både grupperede og ikke-grupperede observationer. Nedenfor kan du se, hvornår de forskellige diagramtyper bruges. Diagrammer til ikke-grupperede observationer o Hvis det er observationer, som ikke er inddelt i intervaller, vil man normalt bruge følgende diagrammer: Pindediagram o Eks Ofte bliver der brugt mange navne om et diagram, som dette. Nogen kalder det stolpediagram, andre søjlediagram. Der findes ikke en entydig definition på, hvad der er pinde, stolpe- og søjlediagrammer. Man skal dog lægge mærke til, at under hver pind er der kun et tal. Her 12, 13, 14 og 15. Cirkeldiagram o Eks Trappediagram o Hvis man vil lave et trappediagram, er det normalt lettest at bruge den summerede frekvens som udgangspunkt. o Eks.

8 Dette trappediagram er taget fra Formelsamling for matematik niveau C, B, og A i uddannelsen til højere handelseksamen Læg mærke til at kvartilerne er indtegnet. Tegn et af hvert diagramtype ud fra oplysningerne i opgaven om gymnastikforeningen. Diagrammer til grupperede observationer o I forbindelse med oplysninger, som er sat i intervaller, vil man normalt bruge følgende diagrammer. Søjlediagrammer o Eks. Dette søjlediagram er taget fra Formelsamling for matematik niveau C, B, og A i uddannelsen til højere handelseksamen Ligesom beskrevet i forbindelse med pindediagrammet, er der ikke nogen fast regel for, hvad der er søjle- og stolpediagrammer. Dog kalder man det kun enten søjle- eller stolpediagram og ikke pindediagram. Det skyldes at det er vigtigt at søjlerne hænger sammen og ikke står som pinde med luft i mellem. Bemærk at søjlen går mellem to tal. F.eks. fra 1 til 2. Det vil sige at i intervallet fra 1 til 2 er der to observationer, hvis man aflæser søjlediagrammet ovenfor. Sumkurver o Hvis man vil lave en sumkurve er det normalt lettest at bruge den summerede frekvens som udgangspunkt. o Eks.

9 Denne sumkurve er taget fra Formelsamling for matematik niveau C, B, og A i uddannelsen til højere handelseksamen Læg mærke til at kvartilerne er indtegnet. Ved de ikke-grupperede observationer kunne vi finde medianer og kvartiler ved at kigge på observationssættet eller skemaet. Det er ikke så let ved de grupperede observationer. Her er man nødt til at aflæse på grafen. På grafen ovenfor er 0,50-kvartilen som også er medianen ca. 2,6 osv. Tegn et af hvert diagram ud fra oplysningerne i opgaven om gymnastikforeningen.

10 DE E K S T R A S I D E R GRAFISK FREMSTILLING AF BEGREBERNE I STATISTIK. Vi vil her gå ud fra et eksempel, hvor en klasse med syv drenge skal lave noget statistik omkring højde. Derfor stilles alle eleverne op på en række efter højde med den mindste først. Observationssættet består altså her af de 7 højder. TYPETALLET Det første de gerne vil finde ud af er typetallet. Typetallet er den observation, som forekommer flest gange. I eksemplet med drengene, er der 3 drenge, der er lige højde. Observationen, som kunne være 160 cm., forekommer altså her tre gange, mens højden på de andre drenge kun forekommer 1 gang hver, da de har forskellig højde.

11 GENNEMSNIT Evt. kan I prøve i klasse at findes jeres typetal (højde), men det næste må I ikke lave i klassen på den måde, det er vist her! Vi skal nemlig til at kigge på gennemsnit. Hvis vi i meget bogstavelig forstand skal finde gennemsnittet af drengene, tager vi nu et meget skrap kniv frem. Holder kniven i samme højde, samtidig med man går hen langs med rækken. Der sorte streg viser højden kniven holdes i. Der sker ikke noget med de 5 første elever. De to første er noget lavere end den højde kniven er i, mens de 3 midterste drenge lige nøjagtig har samme højde som kniven og ikke kommer til skade. Desværre er de to sidste elever ikke så heldige. Den 6. elev mister sit hår og den 7. mister hoved fra næsen og opad! Hvis vi har holdt kniven i den rigtig højde og har lavet det rigtige gennemsnit, vil det være sådan, at den mængde luft, der var mellem kniven og hoved på de første elever, svarer til den mængde, som vi har skåret af på de sidste elever. Endnu en gang må man sige: Det er bedre at være lille og kvik end stor og doven MEDIANEN Det sidste vi skal kigge på er medianen. Medianen er den midterste observation når eleverne er stillet op i rækkefølge. Hvis der er et lige antal observationer og derfor ingen observation i midten, vælger man normalt den observation, som er til venstre for midten.

Statistik med GeoGebra

Statistik med GeoGebra Statistik med GeoGebra Hayati Balo, AAMS, marts 2012 1 Observationssæt Det talmateriale, som man gerne vil undersøge, kaldes et observationssæt. Det talsæt som fremgår i tabel 5.1 kan indsættes i GeoGebra

Læs mere

Lektion 9 Statistik enkeltobservationer

Lektion 9 Statistik enkeltobservationer Lektion 9 Statistik enkeltobservationer Middelværdi med mere Hyppigheds- og frekvens-tabeller Diagrammer Hvilket diagram er bedst? Boxplot Lektion 9 Side 1 Når man skal holde styr på mange oplysninger,

Læs mere

Statistik er at behandle en stor mængde af tal, så de bliver lettere at overskue og forstå.

Statistik er at behandle en stor mængde af tal, så de bliver lettere at overskue og forstå. Statistik er at behandle en stor mængde af tal, så de bliver lettere at overskue og forstå. Hvis man fx samler de karakterer, der er givet til en eksamen i én stor bunke (se herunder), kan det være svært

Læs mere

Deskriptiv statistik. Version 2.1. Noterne er et supplement til Vejen til matematik AB1. Henrik S. Hansen, Sct. Knuds Gymnasium

Deskriptiv statistik. Version 2.1. Noterne er et supplement til Vejen til matematik AB1. Henrik S. Hansen, Sct. Knuds Gymnasium Deskriptiv (beskrivende) statistik er den disciplin, der trækker de væsentligste oplysninger ud af et ofte uoverskueligt materiale. Det sker f.eks. ved at konstruere forskellige deskriptorer, d.v.s. regnestørrelser,

Læs mere

Statistik. Kvartiler og middeltal defineres forskelligt ved grupperede observationer og ved ikke grupperede observationer.

Statistik. Kvartiler og middeltal defineres forskelligt ved grupperede observationer og ved ikke grupperede observationer. Statistik Formålet... 1 Mindsteværdi... 1 Størsteværdi... 1 Ikke grupperede observationer... 2 Median og kvartiler defineres ved ikke grupperede observationer således:... 2 Middeltal defineres ved ikke

Læs mere

Statistik. Peter Sørensen: Statistik og sandsynlighed Side 1

Statistik. Peter Sørensen: Statistik og sandsynlighed Side 1 Statistik Formålet... 1 Mindsteværdi... 1 Størsteværdi... 1 Ikke grupperede observationer... 2 Median og kvartiler defineres ved ikke grupperede observationer således:... 2 Middeltal defineres ved ikke

Læs mere

Afstand fra et punkt til en linje

Afstand fra et punkt til en linje Afstand fra et punkt til en linje Frank Villa 6. oktober 2014 Dette dokument er en del af MatBog.dk 2008-2012. IT Teaching Tools. ISBN-13: 978-87-92775-00-9. Se yderligere betingelser for brug her. Indhold

Læs mere

Matematik. på Åbent VUC. Trin 2 Xtra eksempler. Trigonometri, boksplot, potensfunktioner, to ligninger med to ubekendte

Matematik. på Åbent VUC. Trin 2 Xtra eksempler. Trigonometri, boksplot, potensfunktioner, to ligninger med to ubekendte Matematik på Åbent VUC Trin Xtra eksempler Trigonometri, boksplot, potensfunktioner, to ligninger med to ubekendte Trigonometri Sinus og cosinus Til alle vinkler hører der to tal, som kaldes cosinus og

Læs mere

Variabel- sammenhænge

Variabel- sammenhænge Variabel- sammenhænge Udgave 2 2009 Karsten Juul Dette hæfte kan bruges som start på undervisningen i variabelsammenhænge for stx og hf. Hæftet er en introduktion til at kunne behandle to sammenhængende

Læs mere

Statistik. Peter Sørensen: Statistik og sandsynlighed Side 1

Statistik. Peter Sørensen: Statistik og sandsynlighed Side 1 Statistik Formålet... 1 Mindsteværdi... 1 Størsteværdi... 1 Ikke grupperede observationer... 2 Median og kvartiler defineres ved ikke grupperede observationer således:... 2 Middeltal defineres ved ikke

Læs mere

Huskeliste Printark. U4 Tastetider U5 Hvor hurtigt regner du? E4 Begreber og fagord - Statistik. Materialer. Mobiltelefon Stopur

Huskeliste Printark. U4 Tastetider U5 Hvor hurtigt regner du? E4 Begreber og fagord - Statistik. Materialer. Mobiltelefon Stopur Statistik - Lærervejledning Om kapitlet I dette kapitel om statistik skal eleverne arbejde med statistik og lære at indsamle, beskrive, bearbejde og præsentere store mængder af tal og data. I kapitlet

Læs mere

Arealer under grafer

Arealer under grafer HJ/marts 2013 1 Arealer under grafer 1 Arealer og bestemt integral Som bekendt kan vi bruge integralregning til at beregne arealer under grafer. Helt præcist har vi denne sætning. Sætning 1 (Analysens

Læs mere

Brøkregning. Navn: Klasse: Matematik Opgave Kompendium. Opgaver: 24 Ekstra: 5 Point:

Brøkregning. Navn: Klasse: Matematik Opgave Kompendium. Opgaver: 24 Ekstra: 5 Point: Navn: Klasse: Matematik Opgave Kompendium Brøkregning Følgende gennemgås: Brøk typer Forlængning Forkortning Addition Subtraktion Blandede tal Multiplikation Division Heltal & Brøk Brøk & decimal & Procent

Læs mere

Arbejdsplan generel Tema 4: Statistik

Arbejdsplan generel Tema 4: Statistik Arbejdsplan generel Tema 4: Statistik Formål: Eleverne skal få kendskab til og kunne forklare forskellige begreber inden for det statistiske emne. Der bliver alene arbejdet med enkelobservationer. Grupperede

Læs mere

Opgavesæt 12 21/01-2009. Laura Pettrine Madsen Uden hjælpemidler. skitse af grafen for f(x).

Opgavesæt 12 21/01-2009. Laura Pettrine Madsen Uden hjælpemidler. skitse af grafen for f(x). Uden hjælpemidler Opgave 8.00 Funktionen f(x) er bestemt ved skitse af grafen for f(x). f ( x) = x 3 4x. På figuren ses en Grafen skærer førsteaksen i punkterne P(,0), O(0,0) og Q(,0). Sammen med førsteaksen

Læs mere

VIA læreruddannelsen Silkeborg. WordMat kompendium

VIA læreruddannelsen Silkeborg. WordMat kompendium VIA læreruddannelsen Silkeborg WordMat kompendium Bolette Fisker Olesen 25-11-2015 Indholdsfortegnelse Ligning... 2 Løs ligning... 2 WordMat som lommeregner... 4 Geometri... 4 Trekanter... 4 Funktioner...

Læs mere

T A L K U N N E N. Datasæt i samspil. Krydstabeller Grafer Mærketal. INFA Matematik - 1999. Allan C

T A L K U N N E N. Datasæt i samspil. Krydstabeller Grafer Mærketal. INFA Matematik - 1999. Allan C T A L K U N N E N 3 Allan C Allan C.. Malmberg Datasæt i samspil Krydstabeller Grafer Mærketal INFA-Matematik: Informatik i matematikundervisningen Et delprojekt under INFA: Informatik i skolens fag Et

Læs mere

Tal, funktioner og grænseværdi

Tal, funktioner og grænseværdi Tal, funktioner og grænseværdi Skriv færdig-eksempler der kan udgøre en væsentlig del af et forløb der skal give indsigt vedrørende begrebet grænseværdi og nogle nødvendige forudsætninger om tal og funktioner

Læs mere

Den bedste dåse, en optimeringsopgave

Den bedste dåse, en optimeringsopgave bksp-20-15e Side 1 af 7 Den bedste dåse, en optimeringsopgave Mange praktiske anvendelser af matematik drejer sig om at optimere en variabel ved at vælge en passende kombination af andre variable. Det

Læs mere

Projekt 4.8. Kerners henfald (Excel)

Projekt 4.8. Kerners henfald (Excel) Projekt.8. Kerners henfald (Excel) Når radioaktive kerner henfalder under udsendelse af stråling, sker henfaldet I følge kvantemekanikken helt spontant, dvs. rent tilfældigt uden nogen påviselig årsag.

Læs mere

brikkerne til regning & matematik statistik preben bernitt

brikkerne til regning & matematik statistik preben bernitt brikkerne til regning & matematik statistik 2+ preben bernitt brikkerne til regning & matematik statistik 2+ 1. udgave som E-bog ISBN: 978-87-92488-33-6 2009 by bernitt-matematik.dk Kopiering af denne

Læs mere

Løsninger til kapitel 1

Løsninger til kapitel 1 Opgave. a) observation hyppighed frekvens kum. frekvens 2,25,25 3,875,325 2 3,875,5 3 3,875,6875 4,625,75 5,625,825 6,,825 7 2,25,9375 8,,9375 9,625, Frekvenser illustreres i et pindediagram,2,8,6,4,2,,8,6,4,2

Læs mere

Matematik B. Højere handelseksamen. 1. Delprøve, uden hjælpemidler. Mandag den 19. december 2011. kl. 9.00-13.00

Matematik B. Højere handelseksamen. 1. Delprøve, uden hjælpemidler. Mandag den 19. december 2011. kl. 9.00-13.00 Matematik B Højere handelseksamen 1. Delprøve, uden hjælpemidler kl. 9.00-10.00 hhx113-mat/b-19122011 Mandag den 19. december 2011 kl. 9.00-13.00 Matematik B Prøven uden hjælpemidler Prøvens varighed er

Læs mere

Vejledning til Photofiltre nr.166 Side 1 Lave små grafik knapper i Photofiltre

Vejledning til Photofiltre nr.166 Side 1 Lave små grafik knapper i Photofiltre Side 1 Photofiltre er jo først og fremmest et fotoredigeringsprogram. MEN det er også udmærket til at lave grafik med. F.eks. disse knapper er hurtig og nemme at lave. Her er der sat en hvid trekant med

Læs mere

Module 2: Beskrivende Statistik

Module 2: Beskrivende Statistik Forskningsenheden for Statistik ST01: Elementær Statistik Bent Jørgensen og Hans Chr. Petersen Module 2: Beskrivende Statistik 2.1 Histogrammer og søjlediagrammer......................... 1 2.2 Sammenfatning

Læs mere

Formelsamling Matematik C

Formelsamling Matematik C Formelsamling Matematik C Ib Michelsen Ikast 2011 Ligedannede trekanter Hvis to trekanter er ensvinklede har de proportionale sider (dvs. alle siderne i den ene er forstørrelser af siderne i den anden

Læs mere

Noter til Statistik. Lisbeth Tavs Gregersen. 1. udgave

Noter til Statistik. Lisbeth Tavs Gregersen. 1. udgave Noter til Statistik Lisbeth Tavs Gregersen 1. udgave 1 Indhold 1 Intro 3 1.1 HF Bekendtgørelsen........................ 3 1.2 Deskriptiv statistik......................... 3 2 Ikke-grupperet Talmateriale

Læs mere

Middelværdi med mere... 76 Hyppighed og frekvens... 77 Diagrammer... 78 Hvilket diagram er bedst?... 80 Grupperede observationer...

Middelværdi med mere... 76 Hyppighed og frekvens... 77 Diagrammer... 78 Hvilket diagram er bedst?... 80 Grupperede observationer... Statistik Middelværdi med mere... 76 Hyppighed og frekvens... 77 Diagrammer... 78 Hvilket diagram er bedst?... 80 Grupperede observationer... 81 Statistik Side 75 Når man skal holde styr på mange oplysninger,

Læs mere

Opgave 1 Alle tallene er reelle tal, så opgaven er at finde den mindste talmængde, som resultaterne tilhører.

Opgave 1 Alle tallene er reelle tal, så opgaven er at finde den mindste talmængde, som resultaterne tilhører. Opgave 1 Alle tallene er reelle tal, så opgaven er at finde den mindste talmængde, som resultaterne tilhører. A. Q B. R (sidelængden er 5, som er irrational) C. Q Opgave 2 A. 19 = 1 19 24 = 2 3 3 36 =

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Termin hvori undervisningen afsluttes: Maj-juni, 14. Denne

Læs mere

for gymnasiet og hf 2016 Karsten Juul

for gymnasiet og hf 2016 Karsten Juul for gymnasiet og hf 75 50 5 016 Karsten Juul Statistik for gymnasiet og hf Ä 016 Karsten Juul 4/1-016 Nyeste version af dette håfte kan downloades fra http://mat1.dk/noter.htm HÅftet mç benyttes i undervisningen

Læs mere

statistik og sandsynlighed

statistik og sandsynlighed brikkerne til regning & matematik statistik og sandsynlighed trin 2 preben bernitt brikkerne statistik og sandsynlighed 2 1. udgave som E-bog ISBN: 978-87-92488-20-6 2004 by bernitt-matematik.dk Kopiering

Læs mere

Taldata 1. Chancer gennem eksperimenter

Taldata 1. Chancer gennem eksperimenter Taldata 1. Chancer gennem eksperimenter Indhold 1. Kast med to terninger 2. Et pindediagram 3. Sumtabel 4. Median og kvartiler 5. Et trappediagram 6. Gennemsnit 7. En statistik 8. Anvendelse af edb 9.

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Sommer 2016 Institution Campus Vejle Uddannelse HHX Fag og niveau Matematik B ( Valghold ) Lærer(e) MIHY (Michael

Læs mere

Reelle tal. Symbolbehandlingskompetencen er central gennem arbejdet med hele kapitlet i elevernes arbejde med tal og regneregler.

Reelle tal. Symbolbehandlingskompetencen er central gennem arbejdet med hele kapitlet i elevernes arbejde med tal og regneregler. Det første kapitel i grundbogen til Kolorit i 9. klasse handler om de reelle tal. Første halvdel af kapitlet har karakter af at være opsamlende i forhold til, hvad eleverne har arbejdet med på tidligere

Læs mere

Bogstavregning. Formler... 46 Reduktion... 47 Ligninger... 48. Bogstavregning Side 45

Bogstavregning. Formler... 46 Reduktion... 47 Ligninger... 48. Bogstavregning Side 45 Bogstavregning Formler... 6 Reduktion... 7 Ligninger... 8 Bogstavregning Side I bogstavregning skal du kunne regne med bogstaver og skifte bogstaver ud med tal. Formler En formel er en slags regne-opskrift,

Læs mere

statistik og sandsynlighed

statistik og sandsynlighed brikkerne til regning & matematik statistik og sandsynlighed trin 2 preben bernitt brikkerne statistik og sandsynlighed 2 1. udgave som E-bog ISBN: 978-87-92488-20-6 2004 by bernitt-matematik.dk Kopiering

Læs mere

Konfirmand- og forældreaften 27. februar 2014, Hurup kirke Mattæus 14, 22 33

Konfirmand- og forældreaften 27. februar 2014, Hurup kirke Mattæus 14, 22 33 Konfirmand- og forældreaften 27. februar 2014, Hurup kirke Mattæus 14, 22 33 Genezaret sø er ikke større, end at man i klart dagslys kan se til land, ligegyldigt hvor man er på søen. Rundt om søen er der

Læs mere

APV og trivsel 2015. APV og trivsel 2015 1

APV og trivsel 2015. APV og trivsel 2015 1 APV og trivsel 2015 APV og trivsel 2015 1 APV og trivsel 2015 I efteråret 2015 skal alle arbejdspladser i Frederiksberg Kommune udarbejde en ny grundlæggende APV og gennemføre en trivselsundersøgelse.

Læs mere

Ved et folketingsvalg eller en folkeafstemning spørger man alle stemmeberettigede, og kun en del af dem stemmer.

Ved et folketingsvalg eller en folkeafstemning spørger man alle stemmeberettigede, og kun en del af dem stemmer. Matematik C (må anvendes på Ørestad Gymnasium) Statistik Statistik er bearbejdning af talmaterialer, der ofte indeholderstore mængder af tal. De indsamles og registreres i mange forskellige sammenhænge

Læs mere

Sæt ord pa sproget. Indhold. Mål. November 2012

Sæt ord pa sproget. Indhold. Mål. November 2012 Sæt ord pa sproget November 2012 Indhold Mål... 1 Baggrund... 1 Projektets mål... 1 Sammenhæng... 2 1 Beskrivelse af elevernes potentialer og barrierer... 2 2 Beskrivelse af basisviden og hverdagssprog...

Læs mere

Potens & Kvadratrod. Navn: Klasse: Matematik Opgave Kompendium. Opgaver: 22 Ekstra: 4 Point: Matematik / Potens & Kvadratrod

Potens & Kvadratrod. Navn: Klasse: Matematik Opgave Kompendium. Opgaver: 22 Ekstra: 4 Point: Matematik / Potens & Kvadratrod Navn: Klasse: Matematik Opgave Kompendium Potens & Kvadratrod Opgaver: Ekstra: Point: http://madsmatik.dk/ d.0-0-01 1/1 Potenser: Du har måske set udtrykket før eller måske 10 1. Begge to er det vi kalder

Læs mere

Antal timer 19 5 7 10 0 6 6 3 7 6 4 14 6 5 12 10 Køn k m k m m k m k m k k k m k k k

Antal timer 19 5 7 10 0 6 6 3 7 6 4 14 6 5 12 10 Køn k m k m m k m k m k k k m k k k Statistik 5 Statistik er en meget omfattende matematisk disciplin, og den anvendes i meget stor udstrækning i vores moderne samfund. Den handler om at analysere et (ofte meget stort) talmateriale. Det

Læs mere

Transskription af fokusgruppeinterview på Brårup Skole, Skive

Transskription af fokusgruppeinterview på Brårup Skole, Skive Bilag 4: Transskription af fokusgruppeinterview på Brårup Skole, Skive Tidspunkt for interview: Torsdag 19/3-2015, kl. 9.15. Interviewede: Respondent A (RA): 14-årig pige, 8. klasse. Respondent B (RB):

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj 2016 Institution Roskilde Handelsskole Uddannelse Fag og niveau Lærer(e) Hold Hhx Matematik B Kubilay

Læs mere

Conventus brugervejledning

Conventus brugervejledning Conventus brugervejledning I dette dokument finder du en vejledning til, hvad du som instruktør/træner i AVGIF kan finde af information i Conventus og hvilke værktøjer du har mulighed for at benytte. F.eks.

Læs mere

En hæklet havfruehale

En hæklet havfruehale En hæklet havfruehale Her finder du en gratis vejledning til, hvordan du kan hækle din egen havfruehale. Havfruehalen er designet af Maria Buck Jensen og du kan finde hjælp og flere billeder på. Maria

Læs mere

Matematik B. Højere handelseksamen

Matematik B. Højere handelseksamen Matematik B Højere handelseksamen hh121-mat/b-04062012 Mandag den 4. juni 2012 kl. 9.00-13.00 Prøven består af to delprøver. Delprøven uden hjælpemidler består af opgave 1 til 5 med i alt 5 spørgsmål.

Læs mere

Bilag 4: Transskription af interview med Ida

Bilag 4: Transskription af interview med Ida Bilag 4: Transskription af interview med Ida Interviewet indledes med, at der oplyses om, hvad projektet i grove træk handler om, anonymitet, og at Ida til enhver tid kan sige, hvis der er spørgsmål hun

Læs mere

Privatansatte mænd bliver desuden noget hurtigere chef end kvinderne og forholdsvis flere ender i en chefstilling.

Privatansatte mænd bliver desuden noget hurtigere chef end kvinderne og forholdsvis flere ender i en chefstilling. Sammenligning af privatansatte kvinder og mænds løn Privatansatte kvindelige djøfere i stillinger uden ledelsesansvar har en løn der udgør ca. 96 procent af den løn deres mandlige kolleger får. I sammenligningen

Læs mere

Højere Handelseksamen Handelsskolernes enkeltfagsprøve 2005. Typeopgave 1. Matematik Niveau A. Delprøven uden hjælpemidler. Prøvens varighed: 1 time.

Højere Handelseksamen Handelsskolernes enkeltfagsprøve 2005. Typeopgave 1. Matematik Niveau A. Delprøven uden hjælpemidler. Prøvens varighed: 1 time. 054966 22/12/05 7:45 Side 1 Højere Handelseksamen Handelsskolernes enkeltfagsprøve 2005 05-A-1-U Typeopgave 1 Matematik Niveau A Delprøven uden hjælpemidler Prøvens varighed: 1 time. Dette opgavesæt består

Læs mere

https://www.uvm.dk/~/media/uvm/filer/udd/folke/pdf14/nov/141127_initiativer_til_videreudvikling _af_folkeskolens_proever.pdf

https://www.uvm.dk/~/media/uvm/filer/udd/folke/pdf14/nov/141127_initiativer_til_videreudvikling _af_folkeskolens_proever.pdf Digitalt prøvesæt Dette er et opgavesæt, som jeg har forsøgt at forestille mig, det kan se ud, hvis det skal leve op til ordene i det der er initiativ 3 i rækken af initiativer til videreudvikling af folkeskolens

Læs mere

Grafteori, Kirsten Rosenkilde, september 2007 1. Grafteori

Grafteori, Kirsten Rosenkilde, september 2007 1. Grafteori Grafteori, Kirsten Rosenkilde, september 007 1 1 Grafteori Grafteori Dette er en kort introduktion til de vigtigste begreber i grafteori samt eksempler på opgavetyper inden for emnet. 1.1 Definition af

Læs mere

Arbejdsmiljøgruppens problemløsning

Arbejdsmiljøgruppens problemløsning Arbejdsmiljøgruppens problemløsning En systematisk fremgangsmåde for en arbejdsmiljøgruppe til løsning af arbejdsmiljøproblemer Indledning Fase 1. Problemformulering Fase 2. Konsekvenser af problemet Fase

Læs mere

Formel- og tabelsamling

Formel- og tabelsamling Formel- og tabelsamling Folkeskolens afsluttende prøver i matematik Uddannelsesstyrelsens håndbogsserie 2005 Grundskolen Formel- og tabelsamling Folkeskolens afsluttende prøver i matematik Uddannelsesstyrelsens

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni, 2014 Institution Frederiksberg HF Uddannelse Fag og niveau Lærer(e) HF Matematik C Susanne Hansen

Læs mere

Projekt Guidet egenbeslutning og epilepsi. Refleksionsark. Tilpasset fra: Vibeke Zoffmann: Guidet Egen-Beslutning, 2004.

Projekt Guidet egenbeslutning og epilepsi. Refleksionsark. Tilpasset fra: Vibeke Zoffmann: Guidet Egen-Beslutning, 2004. Projekt Guidet egenbeslutning og epilepsi Refleksionsark Tilpasset fra: Vibeke Zoffmann: Guidet Egen-Beslutning, 2004. Label: Refleksionsark, der er udfyldt og drøftet 1. Samarbejdsaftale Markér 1a. Invitation

Læs mere

Areal. Et af de ældste skrifter om matematik, der findes, hedder Rhind Papyrus. NTRO

Areal. Et af de ældste skrifter om matematik, der findes, hedder Rhind Papyrus. NTRO Areal Et af de ældste skrifter om matematik, der findes, hedder Rhind Papyrus. NTRO Det stammer fra Egypten og er ca. 3650 år gammelt. I Rhind Papyrus findes optegnelser, der viser, hvordan egypterne beregnede

Læs mere

Gul serie: der, fik, vi, alle, lille, på, med, er, kan, jeg, ikke, du

Gul serie: der, fik, vi, alle, lille, på, med, er, kan, jeg, ikke, du Materialet består af 3 x 12 skridsikre gulvplader hver med ét af de 120 hyppige ord. Ordene er fordelt på tre serier Gul serie: der, fik, vi, alle, lille, på, med, er, kan, jeg, ikke, du Rød serie: mere,

Læs mere

LUP læsevejledning til regionsrapporter

LUP læsevejledning til regionsrapporter Indhold 1. Overblik... 2 2. Sammenligninger... 2 3. Hvad viser figuren?... 3 4. Hvad viser tabellerne?... 5 5. Eksempler på typiske spørgsmål til tabellerne... 6 Øvrigt materiale Baggrund og metode for

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Termin hvori undervisningen afsluttes: Maj-juni, 14. Denne

Læs mere

brøker basis+g brikkerne til regning & matematik preben bernitt

brøker basis+g brikkerne til regning & matematik preben bernitt brikkerne til regning & matematik brøker basis+g preben bernitt brikkerne til regning & matematik brøker G ISBN: 978-87-92488-04 06 2. udgave som E-bog 202 by bernitt-matematik.dk Denne bog er beskyttet

Læs mere

KORT GØRE/RØRE. Vejledning. Visuel (se) Auditiv (høre) Kinæstetisk (gøre) Taktil (røre)

KORT GØRE/RØRE. Vejledning. Visuel (se) Auditiv (høre) Kinæstetisk (gøre) Taktil (røre) GØRE/RØRE KORT Vejledning Denne vejledning beskriver øvelser til Gøre/røre kort. Øvelserne er udarbejdet til både de kinæstetisk, taktilt, auditivt og visuelt orienterede elever. Men brugeren opfordres

Læs mere

Til eleverne på Formatskolen

Til eleverne på Formatskolen Til eleverne på Formatskolen Nr. 94 Formatskolen har til næste skoleår fået 375.000 kroner ekstra af kommunen. I Skolebestyrelsen har vi udarbejdet 4 forslag til, hvordan pengene kan bruges. Da de fire

Læs mere

Læsevejledning til resultater på regionsplan

Læsevejledning til resultater på regionsplan Læsevejledning til resultater på regionsplan Indhold 1. Overblik... 2 2. Sammenligninger... 2 3. Hvad viser figuren?... 3 4. Hvad viser tabellerne?... 5 5. Eksempler på typiske spørgsmål til tabellerne...

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin maj-juni 15/16 Institution Uddannelse Fag og niveau Lærer(e) Hold Haderslev Handelsskole hhx Matematik B Mogens

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Sommer 2010 Institution Vejle Handelsskole Uddannelse Fag og niveau HHX Matematik B Lærer(e) LSP ( Liselotte

Læs mere

Om hvordan Google ordner websider

Om hvordan Google ordner websider Om hvordan Google ordner websider Hans Anton Salomonsen March 14, 2008 Man oplever ofte at man efter at have givet Google et par søgeord lynhurtigt får oplysning om at der er fundet et stort antal - måske

Læs mere

Rediger eller opret institutionsmedarbejder på en ungdomsuddannelse

Rediger eller opret institutionsmedarbejder på en ungdomsuddannelse Rediger eller opret institutionsmedarbejder på en ungdomsuddannelse Institutionens brugeradministrator på Optagelse.dk kan oprette medarbejdere med forskellige roller og rettigheder. Når du opretter en

Læs mere

Gode råd om læsning i 3. klasse på Løjtegårdsskolen

Gode råd om læsning i 3. klasse på Løjtegårdsskolen Gode råd om læsning i 3. klasse på Løjtegårdsskolen Udarbejdet af læsevejlederne september 2014. Kære forælder. Dit barn er på nuværende tidspunkt sikkert rigtig dygtig til at læse. De første skoleår er

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Termin hvori undervisningen afsluttes: Maj-juni, 11. Denne

Læs mere

VEJLEDNING SPAMFILTERET. 1. Udgave, august 2015 Tilpasset FirstClass version 12.1, Dansk

VEJLEDNING SPAMFILTERET. 1. Udgave, august 2015 Tilpasset FirstClass version 12.1, Dansk VEJLEDNING SPAMFILTERET 1. Udgave, august 2015 Tilpasset FirstClass version 12.1, Dansk Udarbejdet af: Styrelsen for IT og Læring Vester Voldgade 123, 1552 København V Indholdsfortegnelse Vejledning -

Læs mere

Secret Sharing. Olav Geil Institut for Matematiske Fag Aalborg Universitet email: olav@math.aau.dk URL: http://www.math.aau.dk/ olav.

Secret Sharing. Olav Geil Institut for Matematiske Fag Aalborg Universitet email: olav@math.aau.dk URL: http://www.math.aau.dk/ olav. 1 Læsevejledning Secret Sharing Olav Geil Institut for Matematiske Fag Aalborg Universitet email: olav@math.aau.dk URL: http://www.math.aau.dk/ olav September 2006 Nærværende note er tænkt som et oplæg

Læs mere

Kapitel 3 Centraltendens og spredning

Kapitel 3 Centraltendens og spredning Kapitel 3 Centraltendens og spredning Peter Tibert Stoltze stat@peterstoltze.dk Elementær statistik F2011 1 Indledning 2 Centraltendens 3 Spredning 4 Praktisk beregning 5 Fraktiler 6 Opsamling 1 Indledning

Læs mere

Go On! 7. til 9. klasse

Go On! 7. til 9. klasse Go On! 7. til 9. klasse Fra skoleåret 2013 / 2014 Introduktion til linjer Alle er genier. Men hvis du dømmer en fisk på dens evne til at klatre i træer, vil den leve hele sit liv i den tro, at den er dum.

Læs mere

Undervisningsbeskrivelse for: 1mac16fs 0815 ma

Undervisningsbeskrivelse for: 1mac16fs 0815 ma Undervisningsbeskrivelse for: 1mac16fs 0815 ma Fag: Matematik C, 2HF Niveau: C Institution: HF og VUC Fredericia (607247) Hold: Matematik C fleks sommereksamen Termin: Juni 2016 Uddannelse: HF Lærer(e):

Læs mere

Jakob har brug for bare et sted hvor han bliver behandlet nogenlunde normalt!... Perspektiver på tweens, idræt, trivsel og forældreforventninger

Jakob har brug for bare et sted hvor han bliver behandlet nogenlunde normalt!... Perspektiver på tweens, idræt, trivsel og forældreforventninger Jakob har brug for bare et sted hvor han bliver behandlet nogenlunde normalt!... Perspektiver på tweens, idræt, trivsel og forældreforventninger Stjernerholdet Hvad er der på dagsordenen? De er stadig

Læs mere

statistik og sandsynlighed

statistik og sandsynlighed brikkerne til regning & matematik statistik og sandsynlighed trin 1 preben bernitt brikkerne statistik og sandsynlighed 1 1. udgave som E-bog ISBN: 978-87-92488-19-0 2004 by bernitt-matematik.dk Kopiering

Læs mere

Behandling af kvantitativ data 28.10.2013

Behandling af kvantitativ data 28.10.2013 Behandling af kvantitativ data 28.10.2013 I dag skal vi snakke om Kvantitativ metode i kort form Hvordan man kvalitetssikrer stikprøven Hvordan man kan kode og indtaste data Data på forskellig måleniveau

Læs mere

L: Præsenterer og spørger om han har nogle spørgsmål inden de går i gang. Det har han ikke.

L: Præsenterer og spørger om han har nogle spørgsmål inden de går i gang. Det har han ikke. Bilag 4 Transskription af Per Interviewere: Louise og Katariina L: Louise K: Katariina L: Præsenterer og spørger om han har nogle spørgsmål inden de går i gang. Det har han ikke. L: Vi vil gerne høre lidt

Læs mere

brikkerne til regning & matematik potenstal og rodtal F+E+D preben bernitt

brikkerne til regning & matematik potenstal og rodtal F+E+D preben bernitt brikkerne til regning & matematik potenstal og rodtal F+E+D preben bernitt brikkerne til regning & matematik potenstal og rodtal F ISBN: 978-87-92488-06-0 2. Udgave som E-bog 2010 by bernitt-matematik.dk

Læs mere

5. Statistik. Hayati Balo,AAMS. 1. Carstensen, Frandsen og Studsgaard, stx mat B2, systime

5. Statistik. Hayati Balo,AAMS. 1. Carstensen, Frandsen og Studsgaard, stx mat B2, systime 5. Statistik Hayati Balo,AAMS Følgende fremstilling er baseret på 1. Carstensen, Frandsen og Studsgaard, stx mat B2, systime 1. Ugrupperede Observationer Hvis der foreligger et antal målinger eller observationer

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni, 2015 Institution Frederiksberg HF Uddannelse Fag og niveau Lærer(e) HF Matematik C Kasper Jønsson

Læs mere

1hf Spørgsmål til mundtlig matematik eksamen sommer 2014

1hf Spørgsmål til mundtlig matematik eksamen sommer 2014 1. Procent og rente Vis, hvordan man beregner gennemsnitlig procentændring 2. Procent og rente Vis hvordan man beregner indekstal. 3. Procent og rente Vis, hvordan man kan beregne forskellige størrelser

Læs mere

En lille introduktion til WordMat og statistik.

En lille introduktion til WordMat og statistik. En lille introduktion til WordMat og statistik. WordMat er et gratis program som kan arbejde sammen med word 2007 og 2010. Man kan downloade programmet fra nettet. Se hvordan på linket: http://www.youtube.com/watch?v=rqsn8aakb-a

Læs mere

Matematik D. Almen voksenuddannelse. Skriftlig prøve. Fredag den 11. december 2015 kl. 9.00-13.00 AVU151-MAT/D. (4 timer)

Matematik D. Almen voksenuddannelse. Skriftlig prøve. Fredag den 11. december 2015 kl. 9.00-13.00 AVU151-MAT/D. (4 timer) Matematik D Almen voksenuddannelse Skriftlig prøve (4 timer) AVU151-MAT/D Fredag den 11. december 2015 kl. 9.00-13.00 Økonomi Matematik niveau D Skriftlig matematik Opgavesættet består af: Opgavehæfte

Læs mere

FÅ OVERBLIK OVER LØNNEN EXCEL FOR TILLIDSREPRÆSENTANTER DEL 4: FORMATERING AF REGNEARKET INFORMATIONSBOKS

FÅ OVERBLIK OVER LØNNEN EXCEL FOR TILLIDSREPRÆSENTANTER DEL 4: FORMATERING AF REGNEARKET INFORMATIONSBOKS FÅ OVERBLIK OVER LØNNEN Få overblik over lønnen Excel for tillidsrepræsentanter Del 4: Formatering af regnearket Trin 8: Justér visningen af tallene Nu er vi færdige med selve tal-beregningerne i Excel.

Læs mere

Procesorienteret. skrivning

Procesorienteret. skrivning Procesorienteret Dansk 84 skrivning Skriveprocessen kan være en hjælp til at tænke og samle sig, en erkendelsesform Når man skriver, hvad man tænker, finder man ud af hvad man mener I Norge har Stiftelsen

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni, 2016 Institution Frederiksberg HF Uddannelse Fag og niveau Lærer(e) HF Matematik C Kasper Jønsson

Læs mere

Trekanttypespil. 7 Trekanter. En trekant, hvor to af vinklerne er 90. En retvinklet trekant med siderne 3, 4, og 5. Kan ikke konstrueres.

Trekanttypespil. 7 Trekanter. En trekant, hvor to af vinklerne er 90. En retvinklet trekant med siderne 3, 4, og 5. Kan ikke konstrueres. .01 Trekanter Trekanttypespil En retvinklet trekant med siderne,, og. Kan ikke konstrueres. En trekant, hvor to af vinklerne er 90. En ligesidet trekant med siden. En spidsvinklet trekant hvor den ene

Læs mere

Basal statistik for sundhedsvidenskabelige forskere, forår 2015 Udleveret 3. marts, afleveres senest ved øvelserne i uge 13 (24.-25.

Basal statistik for sundhedsvidenskabelige forskere, forår 2015 Udleveret 3. marts, afleveres senest ved øvelserne i uge 13 (24.-25. Hjemmeopgave Basal statistik for sundhedsvidenskabelige forskere, forår 2015 Udleveret 3. marts, afleveres senest ved øvelserne i uge 13 (24.-25. marts) En stikprøve bestående af 65 mænd og 65 kvinder

Læs mere

Deskriptiv statistik

Deskriptiv statistik Deskriptiv statistik Billedet Collage (IM) med hjælp fra Danmarks Statistik, Volsted Plantage Jagtkonsortium og Kriminalforsorgen Version 1.7 incl. Sandsynlighed 16-3-2009 Editeret 18-1-2012 og 6-2-2012

Læs mere

Nogle emner fra. Deskriptiv Statistik. 2011 Karsten Juul

Nogle emner fra. Deskriptiv Statistik. 2011 Karsten Juul Nogle emner fra Deskriptiv Statistik 75 50 25 2011 Karsten Juul Indhold Hvad er deskriptiv statistik?... 1 UGRUPPEREDE OBSERVATIONER Hyppigheder... 1 Det samlede antal observationer... 1 Middeltallet...

Læs mere

Lynpetanque. DGI Petanque.

Lynpetanque. DGI Petanque. Lynpetanque DGI Petanque www.dgi.dk/petanque 1-2 træning Indledning Spillet hedder 1 2 træning, fordi man kan score 1 point ved indlæg og 2 point ved skud. Spillet er velegnet som træning i indlæg

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Termin hvori undervisningen afsluttes i maj/juni 2012. Denne beskrivelse dækker derfor efteråret 2011 og foråret

Læs mere

Hvad siger statistikken?

Hvad siger statistikken? Eleverne har tidligere (fx i Kolorit 7, matematik grundbog) arbejdet med især beskrivende statistik (deskriptiv statistik). I dette kapitel fokuseres i højere grad på, hvordan datamateriale kan tolkes

Læs mere

fsa 1 På indkøb 2 En redekasse 3 Mikaels løbeture 4 Brug af Facebook 5 En femkantblomst 6 Sumtrekanter Matematisk problemløsning

fsa 1 På indkøb 2 En redekasse 3 Mikaels løbeture 4 Brug af Facebook 5 En femkantblomst 6 Sumtrekanter Matematisk problemløsning fsa Folkeskolens Afgangsprøve Matematisk problemløsning Maj 2013 Et svarark er vedlagt som bilag til dette opgavesæt 1 På indkøb 2 En redekasse 3 Mikaels løbeture 4 Brug af Facebook 5 En femkantblomst

Læs mere

Når mor eller far er ulykkesskadet. når mor eller far er ulykkesskadet

Når mor eller far er ulykkesskadet. når mor eller far er ulykkesskadet Når mor eller far er ulykkesskadet når mor eller far er ulykkesskadet 2 Til mor og far Denne brochure er til børn mellem 6 og 10 år, som har en forælder, der er ulykkesskadet. Kan dit barn læse, kan det

Læs mere

(VIDENSKABSTEORI) STATISTIK (EKSPERIMENTELT ARBEJDE)

(VIDENSKABSTEORI) STATISTIK (EKSPERIMENTELT ARBEJDE) (VIDENSKABSTEORI) STATISTIK (EKSPERIMENTELT ARBEJDE) x-klasserne Gammel Hellerup Gymnasium Indholdsfortegnelse INDLEDNING... 3 DESKRIPTIV STATISTIK... 3 Eksempler inden for deskriptiv statistik... 12 Normalfordelingskurver...

Læs mere

Funktionalligninger - løsningsstrategier og opgaver

Funktionalligninger - løsningsstrategier og opgaver Funktionalligninger - løsningsstrategier og opgaver Altså er f (f (1)) = 1. På den måde fortsætter vi med at samle oplysninger om f og kombinerer dem også med tidligere oplysninger. Hvis vi indsætter =

Læs mere