Integration i flere Variable. Steen Markvorsen Institut for Matematik, DTU

Størrelse: px
Starte visningen fra side:

Download "Integration i flere Variable. Steen Markvorsen Institut for Matematik, DTU"

Transkript

1 Integration i flere Variable Steen Markvorsen Institut for Matematik, DTU 13. februar 2007

2 2

3 Indhold 1 Introduktion Hvad er et punkt og hvordan ser vi det? Approksimerende summer og eksakte integraler Dobbeltsummer, dobbeltintegraler, etc Kurveintegraler Hvad er en kurve? Motivering af kurveintegralet Det tangentielle kurveintegral Fladeintegraler Hvad er en flade? Motivering af fladeintegralet Omdrejningsflader Det ortogonale fladeintegral, fluen Planintegraler Hvad er et område i planen? Rumintegraler Hvad er et rumligt område? Motivering af rumintegralet Omdrejningslegemer Massemidtpunkter Hvad er et massemidtpunkt? Hvad er et kraftmoment? Inertimomenter Hvad er et inertimoment? Vektorfelter og deres flowkurver Hvad er et vektorfelt? Flowkurver for et vektorfelt

4 4 INDHOLD 9 Divergens og Gauss sætning Hvad er divergensen af et vektorfelt? Motivering af divergensen: Volumen-ekspansion Gauss divergens-sætning Rotation og Stokes sætning Hvad er rotationen af et vektorfelt? Stokes sætning En bro mellem divergens og rotation Fladen, randen, og normal-vektorfeltet Tubulære skaller og en afstandsfunktion Integration i skallen The Wall - Væggen Integration langs væggen Bevis for Stokes sætning Hvordan bruges Integrator5? Eksempel: Beregning af et rumintegral over en massiv kasse

5 Kapitel 1 Introduktion Denne note handler om parameterfremstillinger for kurver, flader og rumlige områder og om integration af funktioner på sådanne geometriske objekter. Formålet er primært at opstille og motivere de generelle definitioner og beregninger af henholdsvis kurve- flade- og rum-integraler. Udgangspunktet er Talor s grænseformel (til 1. orden) for de koordinatfunktioner, der benttes til parameterfremstillingerne for kurverne, fladerne og de rumlige områder. Parameterfremstillingerne betragtes under ét som vektorfunktioner dvs. vektorafbildninger fra de simplest mulige parameterområder (simple delmængder af enten R, R 2, eller R 3 ) ind i rummet, dvs. ind i R 3. For fladerne benttes således altid et rektangulært parameterområde i R 2 ; og for de rumlige områder benttes altid et retvinklet kasseformet parameterområde i R 3. De punktvis lineariserede vektorfunktioner benttes til konstruktion af de såkaldte Jacobifunktioner. Jacobifunktionen for en given parameterfremstilling måler hvor meget parameterområdet lokalt deformeres når det udsættes for den tilhørende afbildning. Det er Jacobi-funktionerne der således giver direkte anledning til approksimerende sumformler for den totale længde, det totale areal og det totale volumen af henholdsvis kurver, flader og rumlige områder. Og det er disse summer, der på naturlig måde motiverer og illustrerer de generelle beregningsudtrk for kurve- flade- og rum-integralerne. Undervejs introduceres Integrator5. Det er en pakke med Maple procedurer, som er udviklet specielt med henblik på eksempelbaseret visuel læring af de indledende integrationsbegreber og deres mangfoldige anvendelser. Vi giver eksempler på, hvordan integration i flere variable anvendes til beregning og forståelse af massemidtpunkter, inertimomenter, kraftmomenter, etc. Flowkurverne for et givet vektorfelt i rummet kan findes og visualiseres med Integrator5. De vigtige begreber divergens og rotation for et vektorfelt fremtræder derved som naturlige størrelser til beskrivelsen af den bevægelse i rummet, der har et givet vektorfelt som hastighedsfelt. Til sidst i noten benttes de gennemgåede metoder og resultater til at præsentere to klassiske perler indenfor flervariabel global analse: Gauss sætning og Stokes sætning for vektorfelter i rummet. Hermed rettes en stor tak til Kurt Munk Andersen og Karsten Schmidt for konstruktive kommentarer og forslag til tidligere versioner af denne note. 5

6 6 KAPITEL 1. INTRODUKTION 1.1 Hvad er et punkt og hvordan ser vi det? Figur 1.1: To detaljer fra Skolen i Athen af Raphael. Se Euclid og Pthagoras i referencen [Mac]. Med henblik på at kunne lokalisere en begivenhed eller et sted p 1 i rummet beskriver vi sædvanligvis stedet med 3 koordinater ( 1, 1, 1 ). Det kan selvsagt kun lade sig gøre hvis vi har et koordinatsstem til rådighed i rummet. Med et passende valgt fast koordinatsstem bliver det muligt at analsere flere punkters beliggenhed i forhold til hinanden. Når koordinaterne for punkterne alle refererer til ét og samme sædvanlige retvinklede (,,)-koordinatsstem kan vi f.eks. udtrkke afstanden d(p 1, p 2 ) mellem to givne punkter p 1 og p 2 ved det velkendte Pthagoræiske udtrk: d(p 1, p 2 ) = ( 1 2 ) 2 + ( 1 2 ) 2 + ( 1 2 ) Figur 1.2: Et punkt og to rette linjestkker i rummet med et sædvanligt retvinklet koordinatsstem. Punktets koordinater med hensn til det viste koordinatsstem er (,,) = ( 1 2, 1, 1 2 ). Det ene linjestkke har konstant -koordinat 1 mens det andet har konstant -koordinat 1 2.

7 1.2. APPROKSIMERENDE SUMMER OG EKSAKTE INTEGRALER 7 Bemærkning 1.1. Som illustreret i Figur 1.2 kan det være en fordel at vise punkter og kurver i rummet i passende fede versioner, således at særligt vigtige punkter optræder som små kugler og kurver figurerer som tuber. Meningen er selvsagt den, at det så tpisk bliver en del lettere at se den indbrdes beliggenhed og de relative størrelser af de geometriske objekter. At visualisere på denne måde hvad der foregår er en af de primære intensioner med Integrator5. Som nævnt er øvelsen her imidlertid ikke blot at visualiere de geometriske objekter, men først og fremmest at motivere og opstille det unikke værktøj, der kan besvare spørgsmål som: Hvor lang er den kurve? Hvor stort er det område i planen? Hvad vejer det fladestkke? Hvad er rumfanget af det område i rummet? Hvad er energi-optaget på det solfangertag i løbet af i dag? Hvor meget deformeres det legeme, når det flder langs det vektorfelt? Det værktøj, den metode, der kan besvare disse spørgsmål, hedder integration. Rumfanget af et givet område i rummet, f.eks. en massiv kugle, kan bgges helt naturligt op af standardelementer med simplest mulig kasseformet geometri, ligesom Lego-klodser. Et standard-element har meget simpel længde, areal og volumen. Men resultatet af bggeriet kan kun blive en grov tilnærmelse til kuglen. Hvis vi imidlertid bgger den samme kugle med 1000 gange flere klodser, der hver for sig har 1000 gange mindre rumfang, er det klart, at den ønskede kugle derved kan tilnærmes meget bedre - dog måske ikke nødvendigvis 1000 gange bedre; og det er stadig (i princippet) en simpel sag at lægge alle klodsernes rumfang sammen. Det giver dermed også en meget bedre værdi for rumfanget af kuglen. Når først dette er klart, så er ønsket selvfølgelig at gå til grænsen og lade antallet af standard-klodser gå imod uendelig samtidig med at alle klodserne bliver tilsvarende mindre. Men hvordan lægger vi uendelig mange uendelig små rumfang sammen? Og går det virkelig godt? Integralbegrebet giver præcise anvisninger og overraskende positive svar på begge disse spørgsmål. Vi antder i det følgende afsnit hvilke formelle overvejelser, der ligger bag den succes og tager dernæst straks i de næste kapitler fat på at bruge integrationsteknikken til bestemmelse af længder, arealer, rumfang, etc. 1.2 Approksimerende summer og eksakte integraler På den reelle u-akse betragter vi en fast valgt kontinuert reel funktion f (u) på intervallet [0,1]. For et givet helt tal n > 0 gør vi nu følgende. Først deles intervallet [0,1] i n lige store delintervaller, som derved hver får længden δ u = n 1. Delintervallernes venstre endepunkter har u koordinaterne: u 1 = 0, u 2 = 1 n, u 3 = 2 n, u 4 = 3 n,..., u n 1 = n 2 n, u n = n 1 n Det vil sige, at det i te intervals venstre endepunkt har u koordinaten u i = (i 1) 1 n = (i 1)δ u, hvor i = 1,2,3,...,n 1,n. Opgave 1.2. Bemærk, at hvis vi forøger antallet af delintervaller n med 1, og nu ønsker en deling af [0, 1] i n + 1 lige store delintervaller, så vil alle de tidligere placerede n venstre endepunkter i intervallet [0,1] skulle flttes lidt (pånær u 1 ) for at give plads til det ekstra delinterval. Hvor meget?.

8 8 KAPITEL 1. INTRODUKTION For et fast antal, n,betragter vi nu funktionsværdien af f i hvert af delintervallernes venstre endepunkter, altså de n værdier f (0), f ( 1 n ), f ( 2 n ), f ( 3 n 1 n ),..., f ( n ). Summen af disse værdier vil sædvanligvis afhænge meget af antallet n af funktionsværdier, men hvis vi først dividerer hver enkelt funktionsværdi med n får vi følgende vægtede sum af funktionsværdierne: I( f,n,[0,1]) = i=n ( f (i 1) 1 ) 1 i=n i=1 n n = i=1 f ((i 1)δ u ) δ u = i=n f (u i ) δ u. (1.1) i=1 Udtrkket helt til højre i ovenstående ligning antder, at vi er på vej til at rekonstruere integralet af f (u) over intervallet [0,1] idet vi groft sagt og groft skrevet har: i=n 1 i=1 0 og δ u du når n. Opgave 1.3. Vis, at den vægtede sum af funktionsværdierne af f i ligning (1.1) er begrænset af f s største værdi og af f s mindste værdi i intervallet [0,1]. Den vægtede sum er ikke blot begrænset for alle n, men har også en grænseværdi for n gående imod uendelig; det er den grænseværdi vi kalder integralet af f (u) over intervallet [0,1] og skriver således: 1 lim I( f,n,[0,1]) = f (u)du. n 0 Hvis vi bentter den samme strategi med en deling af det generelle interval [a,b] på u-aksen i n lige store delintervaller, har vi tilsvarende: Sætning 1.4. Lad f (u) betegne en kontinuert funktion på intervallet [a,b]. For ethvert n inddeles intervallet i n lige store delintervaller, hver med længden δ u = (b a)/n. Disse delintervallers venstre endepunkter har så koordinaterne u i = a + (i 1)δ u for i = 1,2,3,...,n 1,n. Lad I( f,n,[a,b]) betegne følgende sum: I( f,n,[a,b]) = = = i=n i=1 i=n i=1 ( f a + (i 1) b a ) ( ) b a n n f (a + (i 1)δ u ) δ u i=n f (u i ) δ u. i=1 (1.2) Så gælder b lim I( f,n,[a,b]) = f (u)du. n a

9 1.2. APPROKSIMERENDE SUMMER OG EKSAKTE INTEGRALER 9 Summer af tpen I( f,n,[a,b]) vil vi derfor i det følgende kalde integralsummer. Bemærk, at det helt afgørende i sætningen er, at der faktisk eksisterer en grænseværdi for integralsummerne når blot f (u) er kontinuert på intervallet [a,b]. Opgave 1.5. Lad f (u) = 3u, u [0,1]. Så er I( f,n,[0,1]) = i=n i=1 ( 3(i 1) 1 ) 1 n n Bent Maple først til at beregne denne sum som funktion af n og dernæst til at eftervise sætning 1.4 i dette konkrete tilfælde, dvs. 1 lim I( f,n,[0,1]) = f (u)du = 3 n u Figur 1.3: Output fra kommandoen leftbo i student-pakken i Maple brugt på funktionen f (u) = 1+ u + u 2. Figuren viser areal-repræsentationen af integralsummen I( f,n,[ 1,1]) i opgave 1.6 med n = 20 delintervaller i intervallet [a, b] = [ 1, 1]. De 20 addender i summen er repræsenteret ved rektangulære søjler med den fælles bredde (b a)/20 = 1/10 og højder givet ved værdierne af funktionen f (u) = 1 + u + u 2 i delintervallernes venstre endepunkter. Opgave 1.6. Lad f (u) = 1 + u + u 2, u [ 1,1]. Så er ( I( f,n,[ 1,1]) = = i=n i=1 i=n i=1 ( (i 1) 2 ) ( (i 1) 2 ) ) 2 2 n n n ( 8 + 4n + 2n 2 16i 4in + 8i 2 ) n 3. (1.3)

10 10 KAPITEL 1. INTRODUKTION Bent igen Maple til at beregne denne sum som funktion af n og dernæst til at eftervise 1 lim I( f,n,[ 1,1]) = ( 1 + u + u 2 ) du = 8 n 1 3. (1.4) Bevis uden brug af Maple, at der gælder følgende om størrelsen af de del-summer, der (pånær faktorer, der kan sættes udenfor tegnet) optræder i det sidste udtrk for I( f,n,[ 1,1]) i ligning (1.3): i=n i=1 i=n i=1 i=n i=1 i=n i=1 i=n i=1 i=n i=1 ( ) 1 = 1 n 2 n 3 ( n ) n 3 = 1 n ( n 2 ) = 1 n 3 ( i n 3 ) ( ) in n 3 ( i 2 ) n 3 = n + 1 2n 2 = n + 1 2n = 2n2 + 3n + 1 6n 2 Find grænseværdien for hver af disse summer for n og eftervis derved igen, at ligning (1.4) er korrekt. 1.3 Dobbeltsummer, dobbeltintegraler, etc. For funktioner af to variable har vi tilsvarende Sætning 1.7. Lad f (u,v) betegne en kontinuert reel funktion på et rektangel [a,b] [c,d] i (u,v)- planen. Intervallet [a,b] deles i n lige store delintervaller og intervallet [c,d] deles i m lige store delintervaller. Så har hvert u-delinterval længden δ u = (b a)/n og hvert v-delinterval har længden δ v = (d c)/m. Tilsvarende bliver delepunkternes koordinater i (u,v)-parameterområdet (som jo er rektanglet [a,b] [c,d] i R 2 ): (u 1,v 1 ) = (a,c), (u 1,v j ) = (a,c + ( j 1)δ v ), (u i,v 1 ) = (a + (i 1)δ u,c), (u i,v j ) = (a + (i 1)δ u,c + ( j 1)δ v ),... (u n,v m ) = (a + (n 1)δ u,c + (m 1)δ v ). (1.5)

11 1.3. DOBBELTSUMMER, DOBBELTINTEGRALER, ETC. 11 Lad nu II( f,n,m,[a,b] [c,d]) betegne følgende dobbeltsum: II( f,n,m,[a,b] [c,d]) ( i=n ( = f = = j=m j=1 j=m j=1 j=m j=1 i=1 ( i=n i=1 a + (i 1) b a n, c + ( j 1)d c m f (a + (i 1)δ u, c + ( j 1)δ v ) δ u ) δ v ( i=n f ( ) ) u i, v j δu δ v. i=1 ) ( b a n ) ) ( ) d c m (1.6) Så gælder ( ) lim lim II( f,n,m,[a,b] [c,d]) = n m d ( b c a ) f (u,v)du dv. (1.7) Summer af tpen II( f, n, m,[a, b] [c, d]) vil vi kalde dobbelt integralsummer. Opgave 1.8. Lad f (u,v) = uv 2 for u [0,1] og v [ 1,1]. Bestem for ethvert n og m værdien af II( f,n,m,[0,1] [ 1,1]). Brug Maple. Eftervis sætning 1.7, dvs. ligning (1.7) i dette konkrete tilfælde. Opgave 1.9. Overvej, om det er vigtigt at summere, integrere, og finde grænseværdier i netop den rækkefølge, som anvises med parenteserne i ligning (1.7) eller om de kan ombttes vilkårligt. Efterprøv på eksemplet i opgave 1.8. Opgave Formulér den sætning, som generaliserer de to foregående sætninger, dvs. sætning 1.4 og sætning 1.7, til funktioner f (u, v, w) af 3 variable (u, v, w) [a, b] [c, d] [h, l] idet hvert af de tre intervaller først inddeles i henholdsvis n, m, og q lige store delintervaller. Check din sætning på funktionen f (u,v,w) = uvw på samme måde som i Opgaverne 1.5 og 1.6.

12 12 KAPITEL 1. INTRODUKTION Figur 1.4: Volumen-repræsentation af integralsummen II( f,10,10,[0,1] [0,1]) for funktionen f (u,v) = uv. De 100 addender i summen er repræsenteret ved søjler med samme kvadratiske tværsnit og med højder, som er givet ved de respektive værdier af funktionen f (u,v) = uv i (u,v)-kvadratets delepunkter. Histogrammer som dette kan konstrueres med Maple s indbggede kommando matriplot.

13 Kapitel 2 Kurveintegraler 2.1 Hvad er en kurve? En parametriseret kurve K r i rummet er givet ved en parameterfremstilling således: K r : r(u) = ((u),(u),(u)) R 3, u [a,b]. (2.1) Eksempel 2.1. Figur 2.1 viser tre forskellige parametriseringer af det rette linjestkke fra (0, 2, 1 2 ) til (0,2, 2 1 ). (Figur 2.2 viser tilsvarende to forskellige parametriseringer af en cirkel med radius 1 og centrum i (0, 0, 0). Figur 2.3 viser tilsvarende 2 forskellige parametriseringer af en skruelinje.) Figur 2.1: Linjestkket fra (0, 2, 1 2 ) til (0, 2, 1 2 ) er her parametriseret på 3 forskellige måder: r 1(u) = ( 0,2u, 1 2), u [ 1, 1]; r2 (u) = ( 0, 2u 3, 1 2), u [ 1,1], og r3 (u) = ( 0, 2sin( π 2 u), 1 2), u [ 1, 1]. Markeringerne på de enkelte linjestkker stammer fra den inddeling af det fælles parameterinterval [ 1, 1] som består af 20 lige store delintervaller. Bemærk, at længden af de tre kurver klart er den samme, selv om parametriseringerne er ret forskellige. Vi antager her og i det følgende, at de tre koordinatfunktioner (u), (u) og (u) i parameterfremstillingerne er pæne funktioner af u vi antager simplethen, at de kan differentieres vilkårligt mange gange, således at de specielt har kontinuerte afledede (u), (u) og (u) i intervallet [a,b]. Så har vi også, at r (u) = (u) 2 + (u) 2 + (u) 2 (2.2) 13

14 14 KAPITEL 2. KURVEINTEGRALER er en kontinuert funktion i intervallet [a, b]. Specielt kan denne funktion derfor integreres over intervallet, og det har vi om lidt brug for i Definition 2.7 nedenfor. Definition 2.2. En parameterfremstilling r(u) for en kurve K r - som i (2.1) - siges at være en regulær parameterfremstilling hvis følgende betingelse er opfldt: r (u) 0 for alle u [a,b]. (2.3) Opgave 2.3. Hvilke af parameterfremstillingerne i figurerne 2.1, 2.2, 2.3, og 2.4 er regulære? Bemærkning 2.4. En parametriseret kurve er andet og mere end blot billedmængden (punktmængden) r([a, b]), idet selve parametriseringen eksempelvis kan foreskrive at dele af punktmængden skal gennemløbes flere gange, se eksempel 2.12 nedenfor. Man kan gerne tænke på intervallet [a, b] som en retlinet elastik i hvile. Vektor-afbildningen r deformerer elastikken (ind i rummet) ved at bøje, strække eller komprimere elastikken. En lokal strækning gør selvfølgelig elastikken lokalt længere, mens en lokal komprimering gør elastikken lokalt kortere. Et første naturligt spørgsmål er derfor hvor lang hele elastikken er efter brug af afbildningen r. Kurveintegralet indføres blandt andet med henblik på at finde den totale længde af den deformerede kurve i rummet. Vi kan ligeledes forestille os, at den parametriserede kurve selv er masseløs, men at den til gengæld efter deformationen med r farves med en maling på en sådan måde at massetætheden af malingen langs med kurven (i gram pr. centimeter, f.eks.) er givet som en funktion f af stedet (,,) i rummet altså sådan at massetætheden af malingen på stedet r(u) er f (r(u)). Opgaven er da at finde den totale masse af den deformerede og farvelagte parametriserede kurve. Bemærk, at med lidt fantasi kan vi endda gerne tillade, at massetætheden f antager negative værdier. Disse forestillinger skal naturligvis kun hjælpe os til at få en passende intuitiv forståelse af de indførte begreber; vi skal senere se adskillige andre tolkninger og brug af kurveintegralet. Figur 2.2: En cirkel i (,)-planen er her parametriseret på 2 forskellige måder: r 1 (u) = (cos(πu), sin(πu), 0), u [ 1, 1], og r 2 (u) = ( cos(πu 3 ), sin(πu 3 ), 0 ), u [ 1, 1]. Markeringerne s- tammer fra den inddeling af parameterintervallet [ 1, 1] som består af 20 lige store delintervaller. Længden af cirklen er 2π - uafhængig af parametriseringen.

15 2.1. HVAD ER EN KURVE? 15 Figur 2.3: En skruelinje i rummet. Se eksempel 2.5. Eksempel 2.5. Skruelinjen i Figur 2.3 er igen præsenteret med 2 forskellige parametriseringer: r 1 (u) = ( cos(2πu), sin(2πu), π 5 u), u [ 1, 1], og r 2 (u) = ( cos(2πu 3 ), sin(2πu 3 ), π 5 u3), u [ 1, 1]. Markeringerne stammer fra den inddeling af parameterintervallet [ 1, 1] som består af 40 lige store delintervaller. Kurverne er igen klart lige lange (se opgave 2.16) Figur 2.4: En knude. Se eksempel 2.6 Eksempel 2.6. Knuden i Figur 2.4 har den noget komplicerede parameterfremstilling r(u) = ( 1 3 cos(u) 1 15 cos(5u) sin(2u), 1 3 sin(u) 1 15 sin(5u) 1 2 cos(2u), 1 3 cos(3u)), hvor u [ π,π]. Definition 2.7. Lad f (,,) betegne en kontinuert funktion på R 3. Kurveintegralet af funktionen f over en parametriseret kurve K r defineres ved K r f dµ = b a f (r(u)) Jacobi r (u)du, hvor (2.4)

16 16 KAPITEL 2. KURVEINTEGRALER Figur 2.5: Carl Gustav Jakob Jacobi ( ). Se [Mac]. Jacobi r (u) = r (u) (2.5) betegner længden af tangentvektoren r (u) til kurven på stedet r(u). Læg mærke til, at det smbol, der står på venstre siden af lighedstegnet i (2.4), kun er et smbol for kurveintegralet. Det integral vi skal regne ud står på højre side og det kan lade sig gøre at integrere, fordi både f, r og r er kontinuerte, således at integranden er kontinuert. Hvis vi indsætter r(u) = ((u),(u),(u)) i udtrkket for kurveintegralet får vi: K r f dµ = b a f ((u),(u),(u)) (u) 2 + (u) 2 + (u) 2 du. (2.6) Bemærkning 2.8. Parameterfremstillingen (2.1) for kurven er regulær hvis parameterfremstillingens Jacobi-funktion er positiv: Jacobi r (u) > 0 for alle u i det givne interval [a,b]. Eksempel 2.9. Givet funktionen f (,, ) = 7 og et parametriseret cirkelstkke C r : r(u) = ((u),(u),(u)) = (cos(u), sin(u), 0), u [ π 2,π]. Kurveintegralet af f over C r er C r f dµ = = = π π/2 π π/2 π π/2 f ((u),(u),(u)) (u) 2 + (u) 2 + (u) 2 du 7cos(u) ( sin(u)) 2 + (cos(u)) 2 du 7cos(u) du = 7. Som nævnt, og som vi vil godtgøre nedenfor - i afsnittet Motivering af kurveintegralet - kan kurveintegraler benttes til at finde længder af parametriserede kurver og til at finde den totale masse af parametriserede kurver med givne massetætheder. Hvis massetætheden er konstant 1 fås længden (man kan finde længden af en sådan kurve ved at veje den):

17 2.1. HVAD ER EN KURVE? 17 Definition Længden af den parametriserede kurve K r : r(u) = ((u),(u),(u)), u [a,b] defineres som kurveintegralet L(K r ) = 1dµ = K r Eksempel Det parametriserede cirkelstkke C r : r(u) = (cos(u), sin(u), 0), u [ π 2,π] b a r (u) du. (2.7) har længden L(C r ) = 1dµ = C r = = π π/2 π π/2 π π/2 (u) 2 + (u) 2 + (u) 2 du ( sin(u)) 2 + (cos(u)) 2 du 1 du = 3π 2. Eksempel Den parametriserede kurve C r : r(u) = (cos(u), sin(u), 0), u [ π 2,7π] har længden L( C r ) = 15π 2 svarende til at parametriseringen lægger det lange interval flere gange rundt på enhedscirklen! Eksempel Den parametriserede skruelinje har længden K r : r(u) = (cos(u), sin(u), u), u [ 2π,2π] L(K r ) = 1dµ = K r = = 2π 2π 2π 2π 2π 2π (u) 2 + (u) 2 + (u) 2 du ( sin(u)) 2 + (cos(u)) du 2 du = 4π 2. Definition Parameterfremstillingen i (2.1) for kurven K r siges at være en-entdig hvis der for alle u 1 [a,b] og for alle u 2 [a,b] gælder følgende: u 1 u 2 medfører at r(u 1 ) r(u 2 ). (2.8)

18 18 KAPITEL 2. KURVEINTEGRALER Opgave Hvilke af parameterfremstillingerne i Figurerne 2.1, 2.2, og 2.3, henholdsvis i eksemplerne 2.11, 2.12, og 2.13, er en-entdige? Opgave Vis, at Definition 2.10 giver samme længde for de tre parametriseringer af linjestkket i Figur 2.1, samme længde af de to cirkelstkker i Figur 2.2 og samme længde af de to skruelinjer i Figur 2.3. Opgave Find længden (med 3 decimaler) af knuden i Figur 2.4. Opgave Find regulære, en-entdige parameterfremstillinger af linjestkket (Figur 2.1), cirklen (Figur 2.2), og skruelinjen (Figur 2.3), således at alle har parameterintervallet [0,π]. 2.2 Motivering af kurveintegralet Hvis vi deler intervallet [a,b] i n lige store dele, så har hvert delinterval længden δ u = (b a)/n og delepunkternes koordinater i [a,b] bliver: u 1 = a, u 2 = u 1 + δ u = a + δ u, u 3 = u 2 + δ u = a + 2δ u, u 4 = u 3 + δ u = a + 3δ u,... b = u n + δ u = a + nδ u. Med hver af disse fast valgte værdier af u i som udviklingspunkt kan vi Talorudvikle hver af de 3 koordinat-funktioner for r(u) = ((u), (u), (u)) til første orden med tilhørende epsilonfunktioner: (u) = (u i ) + (u i )(u u i ) + ε (u u i ) u u i (u) = (u i ) + (u i )(u u i ) + ε (u u i ) u u i (u) = (u i ) + (u i )(u u i ) + ε (u u i ) u u i. Disse Talor udviklinger kan vi samle og udtrkke med vektor-notation således: (2.9) (2.10) r(u) = r(u i ) + r (u i ) (u u i ) + ε i (u u i ) ρ i, (2.11) hvor vi bruger den korte skrivemåde ρ i = u u i = (u u i ) 2 for afstanden mellem den variable værdi u og den faste værdi u i i parameterintervallet. Desuden gælder ε i (u u i ) = (ε (u u i ), ε (u u i ), ε (u u i )) (0,0,0) = 0 for u u i. Hvert del-interval [u i,u i +δ u ] afbildes på kurve-stkket r(u), u [u i,u i +δ u ], og dette kurvestkke kan vi approksimere med den lineære del af udtrkket i (2.11), som fås ved at fjerne ε i -bidraget fra højre side i (2.11): r appi (u) = r(u i ) + r (u i ) (u u i ), u [u i,u i + δ u ]. (2.12) Se Figurerne 2.6 og 2.7 hvor de approksimerende linjestkker er vist for en parametriseret cirkel for to forskellige parametriseringer og for forskellige værdier af n. Det i te linjestkke har pr. definition kontakt med kurven i sit ene endepunkt. Det kalder vi kontaktpunktet for linjestkket.

19 2.2. MOTIVERING AF KURVEINTEGRALET 19 Længde Hvert enkelt af de i alt n approksimerende linjestkker har en længde, se Figur 2.6. Længden af det i te linjestkke er ifølge (2.12) L i = r appi (u i + δ u ) r appi (u i ) = r (u i ) δ u. (2.13) Summen af disse n længder er (for store værdier af n) klart en god approksimation til længden af kurven, således at vi kan skrive L app (n) = n i=1 L i = n i=1 r (u i ) δ u, (2.14) Da ovenstående sum er en integralsum (se afsnit 1.2) for den kontinuerte funktion r (u) over intervallet [a,b], opnås i grænsen, hvor n går imod uendelig: L app (n) L = b a r (u) du for n. (2.15) Vi har dermed motiveret definitionen af længden af en kurve som angivet ovenfor, nemlig som kurveintegralet af den konstante funktion 1 over den parametriserede kurve. Figur 2.6: Kurven r(u) = (cos(2πu), sin(2πu), 0), u [ 1,1], med henholdsvis 5, 10 og 20 approksimerende linjestkker. Det er rimeligt at definere længden af kurven som den totale længde af de approksimerende linjestkker i den grænse hvor antallet af linjestkker går mod uendelig. Figurerne er del af output fra Integrator5-kommandoen kurveintappro. Se i afsnit 11 hvordan Integrator5- pakken downloades og anvendes. Masse Hvis vi antager, at hvert enkelt linjestkke i (2.12) tildeles en konstant massetæthed givet ved værdien af funktionen f (,,) i linjestkkets kontaktpunkt med kurven, så får vi massen af det i te linjestkke: M i = f ((u i ),(u i ),(u i )) r (u i ) δ u = f (r(u i )) r (u i ) δ u.

20 20 KAPITEL 2. KURVEINTEGRALER Figur 2.7: Kurven r(u) = ( cos(2πu 3 ), sin(2πu 3 ), 0 ), u [ 1,1], med henholdsvis 30, 60 og 100 approksimerende linjestkker. Det er stadig rimeligt at definere længden af kurven som den totale længde af de approksimerende linjestkker i den grænse hvor antallet af approksimerende linjestkker går mod uendelig. Figurerne er igen del af output fra kurveintappro - nu anvendt på den ne parameterfremstilling. Den totale masse af hele sstemet af linjestkker er derfor følgende, som er en god approksimation til massen af hele kurven, når kurven tildeles massetætheden f (r(u)) på stedet r(u) : M app (n) = n i=1 M i = n f (r(u i )) r (u i ) δ u. (2.16) i=1 Dette er igen en integralsum, men nu for den kontinuerte funktion f (r(u)) r (u) over intervallet [a,b]. Vi får altså i grænsen, hvor n går mod uendelig: M app (n) M = b a f (r(u)) r (u) du for n. (2.17) Dermed har vi motiveret definitionen af massen af en kurve med massetætheden f (r(u)) (for så vidt denne funktion er positiv i [a, b]) og dermed den generelle definition af kurveintegralet, Definition Det tangentielle kurveintegral Lad V(,, ) være et vektorfelt i rummet (se eventuelt afsnit 8.1). Det tangentielle kurveintegral af V(,,) langs en given parametriseret kurve K r er kurveintegralet af projektionen (med fortegn) af V(r(u)) på kurvens tangent repræsenteret ved r (u). Integranden f i kurveintegralet er altså i dette tilfælde givet ved skalarproduktet (prikproduktet) f (r(u)) = V(r(u)) e(u), hvor e(u) er defineret ved e(u) = { r (u)/ r (u) hvis r (u) 0 0 hvis r (u) = 0.

21 2.3. DET TANGENTIELLE KURVEINTEGRAL 21 Bemærk, at så har vi for alle u: e(u) r (u) = r (u). Det tangentielle kurveintegral Tan(V,K r ) af V langs K r er derfor relativt simpelt at udregne - vi behøver faktisk ikke først at finde Jacobi r (u), altså længden af r (u) : Tan(V,K r ) = V e dµ K r = = = b a b a b a (V(r(u)) e(u)) Jacobi r (u)du V(r(u)) (e(u) r (u) ) du V(r(u)) r (u) du. (2.18) Bemærkning Tilsvarende kan man definere det ortogonale kurveintegral Ort(V,K r ) af V langs K r ved at projicere V(r(u)) vinkelret ind på den plan i rummet, som selv står vinkelret på r (u) og dernæst finde kurveintegralet af længden af den projektion (som funktion af u). Bemærkning Bemærk, at den sidste integrand i (2.18) er kontinuert når V(,,) og r (u) er kontinuerte selv om det ikke umiddelbart fremgår af definitionen (vektorfeltet e(u) er jo ikke nødvendigvis kontinuert - medmindre r(u) er en regulær parameterfremstilling). Eksempel Lad V(,,) = (0,,). Vi ønsker at bestemme det tangentielle kurveintegral af V langs følgende parametriserede stkke af en skruelinje Ved at indsætte i (2.18) fås K r : r(u) = (cos(u), sin(u), u), u [0, π 2 ]. Tan(V,K r ) = = = π/2 0 π/2 0 π/2 0 V(r(u)) r (u)du (0,u,sin(u)) ( sin(u),cos(u),1)du (ucos(u) + sin(u))du = [usin(u)] π/2 0 = π 2 Opgave Lad V(,,) = (0,,). Bestem både det tangentielle og det ortogonale kurveintegral af V langs følgende parametriserede stkke af en cirkel K r : r(u) = (cos(u), sin(u), 0), u [0, π 2 ]. Brug Maple til beregningerne: Hent og brug kurveint-kommandoen fra Integrator5-pakken. Se i afsnit 11 hvordan pakken kan downloades og anvendes til formålet..

22 22 KAPITEL 2. KURVEINTEGRALER Figur 2.8: Skruelinjen r(u) = ( cos(u), sin(u), 1 10 u), u [ 2π,2π] og vektorfeltet V(,,) = (, ( + ), 2) antdet langs skruelinjen. Figuren er en del af output fra Integrator5-kommandoen tangkurveint.

23 Kapitel 3 Fladeintegraler 3.1 Hvad er en flade? En parametriseret flade i rummet er givet ved en parameterfremstilling F r : r(u,v) = ((u,v),(u,v),(u,v)) R 3, u [a,b], v [c,d]. (3.1) Definition 3.1. Lad f (,,) betegne en kontinuert funktion på R 3. Fladeintegralet af funktionen f over den parametriserede flade F r defineres ved d b f dµ = f (r(u,v)) Jacobi r (u,v)dudv, (3.2) F r c a hvor Jacobi r (u,v) = r u(u,v) r v(u,v) (3.3) er arealet af det parallelogram, der på stedet r(u,v) udspændes af de to tangentvektorer r u(u,v) og r v(u,v) til de respektive koordinatkurver igennem punktet r(u,v) på fladen. Definition 3.2. Parameterfremstillingen (3.1) siges at være en regulær parameterfremstilling hvis der gælder følgende: Jacobi r (u,v) > 0 for alle u [a,b], v [c,d]. (3.4) Definition 3.3. Som for parametriserede kurver siges parameterfremstillingen i (3.1) at være en-entdig hvis forskellige punkter i definitionsmængden afbildes i forskellige punkter i billedmængden. Definition 3.4. Arealet af den parametriserede flade F r : r(u,v) = ((u,v),(u,v),(u,v)), u [a,b], v [c,d] defineres som fladeintegralet af den konstante funktion 1: d b A(F r ) = 1dµ = Jacobi r (u,v)dudv, (3.5) F r c a 23

24 24 KAPITEL 3. FLADEINTEGRALER 3.2 Motivering af fladeintegralet Hvis vi ligesom for kurveintegralet deler begge intervallerne [a,b] og [c,d] i henholdsvis n og m lige store dele, så har hvert u-delinterval længden δ u = (b a)/n og hvert v-delinterval har længden δ v = (d c)/m. Tilsvarende bliver delepunkternes koordinater i (u,v)-parameterområdet (som jo er rektanglet [a,b] [c,d] i R 2 ) - jvf. afsnit 1.3: (u 1,v 1 ) = (a,c), (u 1,v j ) = (a,c + ( j 1)δ v ), (u i,v 1 ) = (a + (i 1)δ u,c), (u i,v j ) = (a + (i 1)δ u,c + ( j 1)δ v ),... (b,d) = (a + nδ u,c + mδ v ). Med hvert af disse faste punkter (u i,v j ) som udviklingspunkt kan vi nu som før Talorudvikle hver af de 3 koordinat-funktioner for r(u,v) = ((u,v),(u,v),(u,v)) til første orden med tilhørende epsilon-funktioner: (3.6) r(u,v) = r(u i,v j ) +r u(u i,v j ) (u u i ) +r v(u i,v j ) (v v j ) +ρ i j ε i j (u u i,v v i ), (3.7) hvor u [u i, u i + δ u ], v [ v j, v j + δ v ]. Her betegner ρi j = (u u i ) 2 + (v v j ) 2 afstanden mellem det variable punkt (u,v) og det faste udviklingspunkt (u i,v j ) i parameterområdet. Der gælder her, at ε i j (u u i,v v j ) (0,0,0) = 0 for (u u i,v v j ) (0,0). Hvert delrektangel [u i,u i + δ u ] [v j,v j + δ v ] afbildes på flade-stkket r(u,v), u [u i,u i + δ u ],v [v j,v j + δ v ] og dette fladestkke kan vi approksimere med den lineære del af udtrkket i (3.7), som fås ved at fjerne ε i j -bidraget fra højre side i (3.7): r appi j (u,v) = r(u i,v j ) + r u(u i,v j ) (u u i ) + r v(u i,v j ) (v v j ), (3.8) hvor u og v stadig gennemløber del-intervallerne u [u i, u i + δ u ], v [ v j, v j + δ v ]. Disse lineære approksimationer er parallelogrammer, som udspændes af de to tangentvektorer r u(u i,v j ) δ u og r v(u i,v j ) δ v. Se Figur 3.1 hvor de approksimerende parallelogrammer er vist for en parametrisering af en kegleflade. Areal Hvert enkelt af de ialt n m approksimerende parallelogrammer har et areal. Arealet af det (i, j) te parallelogram er længden af krdsproduktet af de to vektorer, der udspænder det pågældende parallelogram: A i j = (r u(u i,v j ) δ u ) (r v(u i,v j ) δ v ) = Jacobi r (u i,v j ) δ u δ v. (3.9)

25 3.2. MOTIVERING AF FLADEINTEGRALET 25 Opgave 3.5. Bevis denne påstand: Arealet af et parallelogram er længden af krdsproduktet af de to vektorer, der udspænder parallelogrammet. Summen af disse ialt nm arealer er klart en god approksimation til arealet af hele fladestkket, således at vi har A app (n,m) = m n j=1 i=1 A i j = m n j=1 i=1 Jacobi r (u i,v j ) δ u δ v. (3.10) Da ovenstående sum er en dobbelt integralsum for den kontinuerte funktion Jacobi r (u,v) over parameter-rektanglet [a,b] [c,d] får vi i grænsen, hvor n og m begge går mod uendelig (se afsnit 1.3): A app (n,m) A = d b c a Jacobi r (u,v)dudv for n, m. (3.11) Dette er begrundelsen for definitionen af arealet af en parametriseret flade som angivet ovenfor, nemlig som fladeintegralet af den konstante funktion 1. Figur 3.1: Kegle-fladen er givet ved parameterfremstillingen r(u, v) = (u cos(v), u sin(v), u), u [ 1,1], v [ π,π]. Et sstem af koordinatkurver på fladen er vist til venstre og de tilsvarende arealapproksimerende parallelogrammer er vist til højre. Figurerne er del af output fra Integrator5- kommandoen fladeint. Opgave 3.6. Vis, at den givne parameterfremstilling i Figur 3.1 hverken er regulær eller enentdig. Overvej, om der findes en regulær parameterfremstilling for keglefladen. Opgave 3.7. Hvorfor er de approksimerende parallelogrammer på den øvre halvdel af keglefladen i Figur 3.1 mindre end de tilsvarende parallelogrammer (med samme afstand til toppunktet) på den nedre halvdel? Opgave 3.8. Vis, at de approksimerende parallelogrammer i Figur 3.2 alle er kvadrater.

26 26 KAPITEL 3. FLADEINTEGRALER Figur 3.2: Denne vindelflade er givet ved parameterfremstillingen r(u, v) = (sinh(u) cos(v), sinh(u) sin(v), v). Figuren er del af output fra Integrator5-kommandoen fladeint og viser en approksimation af fladen med parallelogrammer, som faktisk alle er kvadrater af forskellig størrelse. Se opgave 3.8. Masse Hvis vi nu antager, at hvert enkelt parallelogram i (3.8) tildeles en konstant massetæthed givet ved værdien af funktionen f (,, ) i parallelogrammets kontaktpunkt med fladen, så får vi massen af det (i, j) te parallelogram : M i j = f ((u i,v j ),(u i,v j ),(u i,v j )) Jacobi r (u i,v j ) δ u δ v = f (r(u i,v j )) Jacobi r (u i,v j ) δ u δ v. Den totale masse af hele sstemet af parallelogrammer er derfor følgende, som er en god approksimation til massen af hele fladen når denne gives massetætheden f (r(u, v)) i punktet r(u, v). M app (n,m) = m n j=1 i=1 M i j = m n j=1 i=1 f (r(u i,v j )) Jacobi r (u i,v j ) δ u δ v. (3.12) Dette er en dobbelt integralsum for den kontinuerte funktion f (r(u,v)) Jacobi r (u,v) over parameter-rektanglet [a,b] [c,d]. Vi får altså i grænsen, hvor n og m går mod uendelig: M app (n,m) M = d b c a f (r(u,v))jacobi r (u,v)dudv for n, m. (3.13) Dermed har vi motiveret definitionen af massen af en parametriseret flade med massetætheden f (r(u,v)) og dermed også den generelle definition af fladeintegralet, Definition 3.1.

27 3.3. OMDREJNINGSFLADER Omdrejningsflader Omdrejningsflader er de specielle flader, der fremkommer ved at dreje en plan kurve omkring en ret linje (omdrejningsaksen) som også ligger i samme plan. Kurven kaldes en profil-kurve eller en frembringer-kurve. Det antages, at profilkurven ikke skærer omdrejningsaksen. Profilkurven vælges tpisk i (, )-planen og drejes om -aksen i et (,, )-koordinatsstem. Profil-kurven kan så repræsenteres ved en parameterfremstilling således: G r : r(u) = (g(u),0,h(u)) R 3, u [a,b], (3.14) hvor g(u) > 0 og h(u) er givne funktioner af parameteren u. Den omdrejningsflade, der fremkommer ved at dreje G r en hel gang omkring -aksen har derfor parameterfremstillingen: FG r : r(u,v) = (g(u)cos(v),g(u)sin(v),h(u)) R 3, u [a,b], v [ π,π]. (3.15) Figur 3.3: Omdrejnings-fladen her er givet ved parameterfremstillingen r(u, v) = (g(u)cos(v),g(u)sin(v),h(u)), u [ π,π], v [ π,π], hvor g(u) = sin(u) og h(u) = u. Figurerne er del af output fra fladeint. Opgave 3.9. Vis, at Jacobifunktionen Jacobi r (u,v) for parameterfremstillingen r(u,v) for den generelle omdrejningsflade FG r i (3.15) er givet ved Jacobi r (u,v) = g(u) (h (u)) 2 + (g (u)) 2. (3.16) 3.4 Det ortogonale fladeintegral, fluen Lad V(,,) være et vektorfelt i rummet. Det ortogonale fladeintegral - også kaldet fluen af V(,,) gennem en given parametriseret flade F r er fladeintegralet af projektionen (med fortegn) af V(r(u, v)) på fladens normal repræsenteret ved den enhedsvektor, der er proportional med krdsproduktet r u(u,v) r v(u,v) (hvor dette er forskelligt fra 0). Integranden f i fladeintegralet er da givet ved skalarproduktet (prikproduktet) f (r(u,v)) = V(r(u,v)) n F (u,v),

28 28 KAPITEL 3. FLADEINTEGRALER Figur 3.4: Denne torus er omdrejningsfladen givet ved parameterfremstillingen r(u, v) = (g(u)cos(v),g(u)sin(v),h(u)), u [ π,π], v [ π,π], hvor nu g(u) = 2 + cos(u) og h(u) = sin(u). Figurerne er del af output fra fladeint. hvor n F (u,v) er defineret ved { r n F (u,v) = u(u,v) r v(u,v)/ r u(u,v) r v(u,v) hvis r u(u,v) r v(u,v) 0 0 hvis r u(u,v) r v(u,v) = 0 Fluen af V gennem F r i retningen n F er derfor relativt simpel at udregne - vi behøver ikke først at finde længden af r u(u,v) r v(u,v) (jævnfør omformningen af det tangentielle kurveintegral): Flu(V,F r ) = V n F dµ F r = = = d b c a d b c a d b c a (V(r(u,v)) n F (u,v)) Jacobi r (u,v)dudv (V(r(u,v)) n F (u,v)) r u(u,v) r v(u,v) dudv V(r(u,v)) (r u(u,v) r v(u,v))dudv. (3.17) Bemærkning Tilsvarende kan man definere det tangentielle fladeintegral Tan(V,F r ) af V over fladen F r ved at projicere V(r(u,v)) vinkelret ind på tangentplanen til F r (udspændt af r u(u,v) og r v(u,v) i punktet r(u,v)) og dernæst finde fladeintegralet af længden af denne projektion (som funktion af (u,v)). Bemærkning Bemærk igen, at den sidste integrand i (3.17) er kontinuert og dermed integrabel, selv om det ikke umiddelbart fremgår af definitionen, idet vektorfeltet n F (u,v) ikke nødvendigvis er kontinuert - medmindre r(u,v) er en regulær parameterfremstilling. Opgave Vis, at parameterfremstillingen i Figur 3.5 hverken er regulær eller en-entdig. Find en regulær og en-entdig parameterfremstilling for kalotten. Vis, at arealet af kalotten er uafhængigt af de valgte parameterfremstillinger. Bestem det tangentielle fladeintegral for vektorfeltet V(,, ) = (0, 0, ) langs kuglekalotten.

29 3.4. DET ORTOGONALE FLADEINTEGRAL, FLUXEN 29 Figur 3.5: Denne kalot af en kugleflade er givet ved parameterfremstillingen r(u, v) = (sin(u)cos(v),sin(u)sin(v),cos(u)), u [0, π 3 ], v [ π,π]. Vektorfeltet er givet ved V(,,) = (0,0,). Et sstem af koordinatkurver på fladen er vist til højre sammen med vektorfeltet evalueret i koordinatkurvernes skæringspunkter. Figurerne er en del af output fra fluint-kommandoen anvendt på den givne parameterfremstilling og det givne vektorfelt. Opgave Et solfangertag har form som grafen for funktionen f (,) = 1 over det kvadratiske område (,) [ 1,1] [ 1,1] i (,)-planen i et sædvanligt retvinklet (,,)- koordinatsstem i rummet. Se Figur 3.6 til venstre. Lad os lidt simplificerende antage, at Solen stråler fra en skfri himmel ind på solfangertaget til et givet tidspunkt t langs det enhedsvektorfelt i rummet, som til tiden t er parallelt med vektoren V = V(t) = (0, cos(t), sin(t)) hvor t [0,π]. Solen står altså op til tiden t = 0 og sender lige på det tidspunkt vandrette stråler parallelt med -aksen i retningen (0, 1,0). Midt på dagen, til tiden t = π 2 er strålerne lodrette og parallelle med -aksen i retningen (0,0, 1). Til tiden t = π går solen ned, men lige før det sker, sender den (næsten) vandrette stråler parallelt med -aksen i retningen (0,1,0). Den energi solfangeren optager pr. arealenhed og pr. tidsenhed på et givet sted antages at være lig med prikproduktet V n mellem Solstråle-vektorfeltet V og tagfladens indadrettede enhedsnormalvektor n på stedet. Bemærk, at det indadrettede normalfelt n ikke nødvendigvis er lig med n F, som jo afhænger af den valgte parametrisering af taget. Spørgsmål A: 1. Begrund antagelsen om, at energioptaget er lig med prikproduktet V n, og bemærk, at energioptag selvsagt kun kan finde sted hvor omtalte prikprodukt er positiv. 2. Hvad er solfangerens energioptag pr. tidsenhed på et givet tidspunkt, t, på dagen? 3. Hvad er solfangerens totale energioptag på en dag?

30 30 KAPITEL 3. FLADEINTEGRALER Spørgsmål B: Antag, at solfangertaget roteres π/2 omkring -aksen, således at tagrggen bliver parallel med -aksen. Hvad er den roterede solfangers totale energioptag på en dag? Spørgsmål C: Antag, at den oprindelige solfanger kun roteres henholdsvis π/6, π/4, og π/3 omkring - aksen, således at tagrggens vinkel i forhold til -aksen bliver skiftevis netop disse vinkler. Hvad er de roterede solfangeres totale energioptag på en dag? Figur 3.6: Solfangertagene i opgaverne 3.13, 3.14, og 3.15 henholdsvis. Opgave Samme spørgsmål (A, B, og C) som i opgave 3.13 men nu for det tag, der har form som grafen for f (,) = 1 2 over det kvadratiske område (,) [ 1,1] [ 1,1] i (,)-planen, se Figur 3.6 i midten. Opgave Samme spørgsmål (spørgsmål A) som i opgave 3.13 men for det tag, der har form som grafen for funktionen f (,) = over cirkelskiven med radius 1 og centrum i (0,0) i (,)-planen, se Figur 3.6 til højre.

31 Kapitel 4 Planintegraler v u Figur 4.1: Dette område i planen er givet ved følgende parameterfremstilling, der repræsenterer polære koordinater i planen: r(u,v) = (ucos(v), usin(v)), u [0,1], v [ π,π]. Figurerne er del af output fra planintappro-kommandoen. Parameterrektanglet ses til venstre. Den deformeres og afbildes (ved brug af r) på det plane område i midten. Til højre er antdet placeringen og størrelsen (pånær en faktor 4) af de til det givne net hørende approksimerende parallelogrammer (her: rektangler). 4.1 Hvad er et område i planen? Et plant område kan betragtes som en flade, der ligger helt i en plan, f.eks. i (,)-planen. Planintegraler er derfor fladeintegraler. Specifikt har vi derfor også direkte følgende motiverede definitioner: Et parametriseret område i planen er givet ved en parameterfremstilling P r : r(u,v) = ((u,v),(u,v)) R 2, u [a,b], v [c,d]. (4.1) Definition 4.1. Lad f (,) betegne en kontinuert funktion på R 2. Planintegralet af funktionen f over det parametriserede område P r defineres ved d b f dµ = f (r(u,v)) Jacobi r (u,v)dudv, (4.2) P r c a 31

32 32 KAPITEL 4. PLANINTEGRALER hvor Jacobi r (u,v) = r u(u,v) r v(u,v) sin(θ(u,v)) (4.3) er arealet af det parallelogram i planen, der på stedet r(u, v) udspændes af de to tangentvektorer r u(u,v) og r v(u,v) til de respektive koordinatkurver igennem punktet r(u,v) i planen (funktionen θ(u,v) [0,π] betegner vinklen mellem disse tangentvektorer). Figur 4.2: Parabelkoordinater. Dette område i planen er givet ved parameterfremstillingen r(u, v) = (uv, 1 2 (u2 v 2 )), u [ 1,1], v [0,1]. Figuren til højre antder igen et sstem af areal-approksimerende parallelogrammer. Figurerne er del af output fra planintappro-kommandoen. Figur 4.3: Elliptiske koordinater. Dette område er givet ved parameterfremstillingen r(u, v) = (cosh(u) cos(v), sinh(u) sin(v)), u [0, 1], v [ π, π]. Figurerne er del af output fra planintapprokommandoen. Definition 4.2. Parameterfremstillingen (4.1) siges at være en regulær parameterfremstilling for det plane område hvis der gælder følgende: Jacobi r (u,v) > 0 for alle u [a,b], v [c,d]. (4.4) Definition 4.3. Som for parametriserede flader siges parameterfremstillingen i (4.1) at være en-entdig hvis forskellige punkter i definitionsmængden afbildes i forskellige punkter i billedmængden i planen.

33 4.1. HVAD ER ET OMRÅDE I PLANEN? 33 Opgave 4.4. Vis, at Jacobi r (u,v) (i (4.4)) også kan findes som den numeriske værdi af determinanten af den matri, der som søjler har koordinaterne for de to vektorer r u(u,v) og r v(u,v).

34 34 KAPITEL 4. PLANINTEGRALER

35 Kapitel 5 Rumintegraler 5.1 Hvad er et rumligt område? Et parametriseret rumligt område er på samme måde som kurver og flader givet ved en parameterfremstilling, nu med følgende form Ω r : r(u,v,w) = ((u,v,w),(u,v,w),(u,v,w)) R 3, u [a,b], v [c,d], w [h,l]. (5.1) Definition 5.1. Lad f (,,) betegne en kontinuert funktion på R 3. Rumintegralet af funktionen f over det parametriserede rumlige område Ω r defineres ved Ω r f dµ = l d b h c a f (r(u,v,w)) Jacobi r (u,v,w)dudvdw, hvor (5.2) Jacobi r (u,v,w) = [r u(u,v,w), r v(u,v,w), r w(u,v,w)] = (r u(u,v,w) r v(u,v,w)) r w(u,v,w) er volumenet (her beregnet som et rumprodukt) af det parallelepipedum, der på stedet r(u, v, w) udspændes af de tre koordinatkurve-tangentvektorer r u(u,v,w), r v(u,v,w) og r w(u,v,w). Opgave 5.2. Vis, at Jacobi r (u,v,w) også kan findes som den numeriske værdi af determinanten af den matri, der som søjler har koordinaterne for de tre vektorer r u(u,v,w), r v(u,v,w) og r w(u,v,w). Bemærkning 5.3. Parameterfremstillingen i (5.1) kaldes en regulær parameterfremstilling hvis Jacobi r (u,v,w) > 0 for alle u [a,b], v [c,d], w [h,l]. Definition 5.4. Som for kurver og flader vil vi kalde parameterfremstillingen i (5.1) en-entdig hvis forskellige punkter i definitionsmængden afbildes i forskellige punkter i billedmængden. Definition 5.5. Volumenet af det rumlige område Ω r : r(u,v,w) = ((u,v,w),(u,v,w),(u,v,w)), u [a,b], v [c,d], w [h,l] 35 (5.3)

36 36 KAPITEL 5. RUMINTEGRALER defineres som rumintegralet af den konstante funktion 1: Vol(Ω r ) = 1dµ = Ω r l d b h c a Jacobi r (u,v,w)dudvdw. (5.4) Figur 5.1: Billeder af det rumlige område givet ved parameterfremstillingen r(u, v, w) = (uvcos(w),uvsin(w), 1 2 (u2 v 2 )), u [ 1 2,1], v [ 1 2,1], w [π,2π]. Figurerne viser to sstemer af volumen-approksimerende parallellepipida. Figurerne er del af output fra rumint-kommandoen. Opgave 5.6. Vis, at parameterfremstillingen i Figur 5.1 er regulær og en-entdig. w u v Figur 5.2: Det rumlige område i Figur 5.1 opnås ved at vektorafbildningen r deformerer (u, v, w)- parameterkassen (til venstre) ind i (,, )-rummet (som vist til højre). Forskriften for deformationen er netop givet ved parameterfremstillingen r(u,v,w) = (uvcos(w),uvsin(w), 1 2 (u2 v 2 )), u [ 1 2,1], v [ 1 2,1], w [π,2π].

37 5.2. MOTIVERING AF RUMINTEGRALET Motivering af rumintegralet Intervallerne [a,b], [c,d] og [h,l] inddeles i henholdsvis n, m og q lige store dele. Så har hvert u-delinterval længden δ u = (b a)/n, hvert v-delinterval har længden δ v = (d c)/m og hvert w-interval har længden δ w = (l h)/q. Tilsvarende bliver delepunkternes koordinater i (u,v,w)- parameterområdet (som her er det retvinklede kasse-område [a,b] [c,d] [h,k] i R 3, se Figur 5.2): (u 1,v 1,w 1 ) = (a,c,h),... (u i,v j,w k ) = (a + (i 1)δ u,c + ( j 1)δ v,h + (k 1)δ w ),... (b,d,l) = (a + nδ u,c + mδ v,h + qδ w ). (5.5) Med hvert af disse faste punkter (u i,v j,w k ) som udviklingspunkt kan vi igen Talor-udvikle hver af de 3 koordinat-funktioner for r(u,v,w) = ((u,v,w),(u,v,w),(u,v,w)) til første orden og med tilhørende epsilon-funktioner: r(u,v,w) = r(u i,v j,w k ) +r u(u i,v j,w k ) (u u i ) +r v(u i,v j,w k ) (v v j ) +r w(u i,v j,w k ) (w w k ) +ρ i jk ε i jk (u u i,v v j,w w k ), (5.6) hvor u [u i, u i + δ u ], v [ v j, v j + δ v ], w [ w j, w j + δ w ]. Afstanden mellem det variable punkt (u,v,w) og det faste punkt (u i,v j,w k ) i parameterområdet betegnes med ρ i jk og vi har som før ε i jk (u u i,v v j,w w k ) 0 for (u u i,v v j,w w k ) (0,0,0). Hvert parameter-delområde eller delkasse [u i,u i + δ u ] [v j,v j + δ v ] [w k,w k + δ w ] afbildes på det rumlige billed-område r(u,v,w), u [u i,u i + δ u ],v [v j,v j + δ v ],w [w k,w k + δ w ] i billedrummet og dette område kan vi approksimere med den lineære del af udtrkket i (5.6), som fås ved at fjerne ε i jk -bidraget fra højre side i (5.6): r appi jk (u,v,w) = r(u i,v j,w k ) +r u(u i,v j,w k ) (u u i ) +r v(u i,v j,w k ) (v v j ) +r w(u i,v j,w k ) (w w k ), (5.7) hvor vi stadig har at u [u i, u i + δ u ], v [ v j, v j + δ v ], w [ w j, w j + δ w ]. Disse lineære rumlige approksimationer er parallelepipeda, som udspændes af de tre tangentvektorer r u(u i,v j,w k ) δ u, r v(u i,v j,w k ) δ v og r w(u i,v j,w k ) δ w.

38 38 KAPITEL 5. RUMINTEGRALER Volumen Hvert enkelt af de ialt n m q approksimerende parallelepipeda har et volumen. Volumenet af det (i, j, k) te parallelepipedum er den numeriske værdi af rumproduktet af de tre vektorer, der udspænder det pågældende parallelepipedum: Vol i jk = [r u(u i,v j,w k ) δ u ),(r v(u i,v j,w k ) δ v ),(r w(u i,v j,w k ) δ w )] = Jacobi r (u i,v j,w k ) δ u δ v δ w. (5.8) Opgave 5.7. Bevis denne påstand: Volumenet af et parallelepipedum er den numeriske værdi af rumproduktet af de tre udspændende vektorer. Summen af de ialt nmq volumener er en god approksimation til volumenet af hele det rumlige område, således at vi har Vol app (n,m,q) = q m n k=1 j=1 i=1 q m n k=1 j=1 i=1 = Vol i jk Jacobi r (u i,v j,w k ) δ u δ v δ w. (5.9) Da ovenstående sum er en tredobbelt integralsum for den kontinuerte funktion Jacobi r (u,v,w) over parameter-kassen [a,b] [c,d] [h,l] får vi i grænsen, hvor n, m og q alle går mod uendelig: Vol app (n,m,q) Vol = l d b h c a Jacobi r (u,v,w)dudvdw for n, m, q. (5.10) Dette er begrundelsen for definitionen af volumenet af et parametriseret område i rummet som angivet ovenfor, nemlig som rumintegralet af den konstante funktion 1. Figur 5.3: Dette rumlige område er defineret ved hjælp af såkaldte Mawell-Clinderkoordinater. Parameterfremstillingen for området er følgende: r(u, v, w) = (1+u+ep(u) cos(v), v+ep(u) sin(v), w), u [ 1 4, 1 4 ], v [ π,π], w [ 1,1]. Til højre er vist et sstem af approksimerende parallelepipeda (pånær en faktor 8). Figurerne er konstruerede med rumintappro-kommandoen.

Integration i flere Variable. Steen Markvorsen Institut for Matematik, DTU

Integration i flere Variable. Steen Markvorsen Institut for Matematik, DTU Integration i flere Variable Steen Markvorsen Institut for Matematik, DTU 20. februar 2008 2 Indhold 1 Introduktion 5 1.1 Hvad handler det om?................................ 6 1.2 Approksimerende summer

Læs mere

Integration i flere Variable. Steen Markvorsen Institut for Matematik, DTU

Integration i flere Variable. Steen Markvorsen Institut for Matematik, DTU Integration i flere Variable Steen Markvorsen Institut for Matematik, DTU 14. februar 2006 2 Indhold 1 Introduktion 5 1.1 Hvad er et punkt og hvordan ser vi det?...................... 6 1.2 Summer og integraler................................

Læs mere

Integration i flere Variable. Steen Markvorsen DTU Matematik

Integration i flere Variable. Steen Markvorsen DTU Matematik Integration i flere Variable Steen Markvorsen DTU Matematik 20. februar 2009 2 Indhold 1 Introduktion 5 1.1 Hvad handler det om?................................ 6 1.1.1 Rumfang-problemet............................

Læs mere

Kurve- og plan-integraler

Kurve- og plan-integraler enote 22 1 enote 22 Kurve- og plan-integraler Vi vil her med udgangspunkt i de metoder og resultater der er opstillet i enote 21 vise, hvordan Riemann-integralerne derfra kan benyttes til blandt andet

Læs mere

STEEN MARKVORSEN DTU MATEMATIK

STEEN MARKVORSEN DTU MATEMATIK STEEN MARKVORSEN DTU MATEMATIK 2 Indhold 1 Introduktion 5 1.1 Hvad handler det om?................................ 6 1.1.1 Rumfang-problemet............................ 6 1.2 Approksimerende summer og

Læs mere

Integration i flere Variable

Integration i flere Variable Integration i flere Variable Steen Markvorsen Institut for Matematik og Learning Lab DTU 28. januar 2005 2 Indhold Introduktion 5. Hvad er et punkt og hvordan ser vi det?...................... 6.2 Summer

Læs mere

Flade- og rum-integraler

Flade- og rum-integraler enote 25 1 enote 25 Flade- og rum-integraler Flade og rumintegraler opstilles her på stort set samme måde som kurve- og planintegralerne i enote 22, som derved sammen med den grundlæggende generelle indførelse

Læs mere

Arealer under grafer

Arealer under grafer HJ/marts 2013 1 Arealer under grafer 1 Arealer og bestemt integral Som bekendt kan vi bruge integralregning til at beregne arealer under grafer. Helt præcist har vi denne sætning. Sætning 1 (Analysens

Læs mere

Flade- og rum-integraler

Flade- og rum-integraler enote 23 1 enote 23 Flade- og rum-integraler Flade og rumintegraler opstilles her på stort set samme måde som kurve- og planintegralerne i enote 22, som derved sammen med den grundlæggende generelle indførelse

Læs mere

Vektorfelter langs kurver

Vektorfelter langs kurver enote 25 1 enote 25 Vektorfelter langs kurver I enote 24 dyrkes de indledende overvejelser om vektorfelter. I denne enote vil vi se på vektorfelternes værdier langs kurver og benytte metoder fra enote

Læs mere

Temaopgave: Parameterkurver Form: 6 timer med vejledning Januar 2010

Temaopgave: Parameterkurver Form: 6 timer med vejledning Januar 2010 Temaopgave: Parameterkurver Form: 6 timer med vejledning Januar 1 Parameterkurver Vi har tidligere set på en linjes parameterfremstilling, feks af typen: 1 OP = t +, hvor t R, og hvor OP er stedvektor

Læs mere

Afstand fra et punkt til en linje

Afstand fra et punkt til en linje Afstand fra et punkt til en linje Frank Villa 6. oktober 2014 Dette dokument er en del af MatBog.dk 2008-2012. IT Teaching Tools. ISBN-13: 978-87-92775-00-9. Se yderligere betingelser for brug her. Indhold

Læs mere

Delmængder af Rummet

Delmængder af Rummet Delmængder af Rummet Frank Nasser 11. juli 2011 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Indhold 1 Introduktion

Læs mere

Gauss divergenssætning

Gauss divergenssætning enote 26 1 enote 26 Gauss divergenssætning I denne enote vil vi bruge flowkurver for vektorfelter til at undersøge hvordan overfladen af et rumligt område deformeres ved flowet og dermed afspejler en tilsvarende

Læs mere

Funktionalligninger - løsningsstrategier og opgaver

Funktionalligninger - løsningsstrategier og opgaver Funktionalligninger - løsningsstrategier og opgaver Altså er f (f (1)) = 1. På den måde fortsætter vi med at samle oplysninger om f og kombinerer dem også med tidligere oplysninger. Hvis vi indsætter =

Læs mere

Kurver i planen og rummet

Kurver i planen og rummet Kurver i planen og rummet John Olsen 1 Indledning Dette sæt noter er forelæsningsnoter til foredraget Kurver i planen og rummet. Noterne er beregnet til at blive brugt sammen med foredraget. Afsnit 2 er

Læs mere

Variabel- sammenhænge

Variabel- sammenhænge Variabel- sammenhænge Udgave 2 2009 Karsten Juul Dette hæfte kan bruges som start på undervisningen i variabelsammenhænge for stx og hf. Hæftet er en introduktion til at kunne behandle to sammenhængende

Læs mere

Maj 2013 (alle opgaver og alle spørgsmål)

Maj 2013 (alle opgaver og alle spørgsmål) Maj 2013 (alle opgaver og alle spørgsmål) Alternativ besvarelse (med brug af Maple til beregninger, incl. pakker til VektorAnalyse2 og Integrator8). Jeg gider ikke håndregne i de simple spørgsmål! Her

Læs mere

OPGAVE 1 Det nedenstående klip er fra et Maple-ark hvor en reel funktion f (x, y) med definitionsmængden (x,y) x 2 + y 2 < 1 } bliver undersøgt:

OPGAVE 1 Det nedenstående klip er fra et Maple-ark hvor en reel funktion f (x, y) med definitionsmængden (x,y) x 2 + y 2 < 1 } bliver undersøgt: DANMARKS TEKNISKE UNIVERSITET Skriftlig prøve den 7. maj 00. Kursus Navn: Matematik (-timers prøve for forårssemesteret). Kursus nr. 0005 Tilladte hjælpemidler: Alle af DTU tilladte hjælpemidler må medbringes

Læs mere

Gradienter og tangentplaner

Gradienter og tangentplaner enote 16 1 enote 16 Gradienter og tangentplaner I denne enote vil vi fokusere lidt nærmere på den geometriske analyse og inspektion af funktioner af to variable. Vi vil især studere sammenhængen mellem

Læs mere

Projekt 10.1 Er der huller i Euklids argumentation? Et moderne aksiomsystem (især for A)

Projekt 10.1 Er der huller i Euklids argumentation? Et moderne aksiomsystem (især for A) Projekt 10.1 Er der huller i Euklids argumentation? Et moderne aksiomsystem (især for A) Indhold Introduktion... 2 Hilberts 16 aksiomer Et moderne, konsistent og fuldstændigt aksiomsystem for geometri...

Læs mere

Eksamen maj 2018, Matematik 1, DTU

Eksamen maj 2018, Matematik 1, DTU Eksamen maj 2018, Matematik 1, DTU NB: Nedenstående udregninger viser flere steder mere end én metode. Det er der IKKE tid til eksamen! Ligeledes er der ikke krav om eller tid til at illustrere med plots!

Læs mere

Maj 2015 (alle opgaver og alle spørgsmål)

Maj 2015 (alle opgaver og alle spørgsmål) Maj 2015 (alle opgaver og alle spørgsmål) Alternativ besvarelse (med brug af Maple til beregninger, incl. pakker til VektorAnalyse2 og Integrator8). Ved eksamen er der ikke tid til f.eks. at lave illustrationer,

Læs mere

Secret Sharing. Olav Geil Institut for Matematiske Fag Aalborg Universitet email: olav@math.aau.dk URL: http://www.math.aau.dk/ olav.

Secret Sharing. Olav Geil Institut for Matematiske Fag Aalborg Universitet email: olav@math.aau.dk URL: http://www.math.aau.dk/ olav. 1 Læsevejledning Secret Sharing Olav Geil Institut for Matematiske Fag Aalborg Universitet email: olav@math.aau.dk URL: http://www.math.aau.dk/ olav September 2006 Nærværende note er tænkt som et oplæg

Læs mere

Tal, funktioner og grænseværdi

Tal, funktioner og grænseværdi Tal, funktioner og grænseværdi Skriv færdig-eksempler der kan udgøre en væsentlig del af et forløb der skal give indsigt vedrørende begrebet grænseværdi og nogle nødvendige forudsætninger om tal og funktioner

Læs mere

Afstandsformlerne i Rummet

Afstandsformlerne i Rummet Afstandsformlerne i Rummet Frank Nasser 12. april 2011 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Bemærk:

Læs mere

Den bedste dåse, en optimeringsopgave

Den bedste dåse, en optimeringsopgave bksp-20-15e Side 1 af 7 Den bedste dåse, en optimeringsopgave Mange praktiske anvendelser af matematik drejer sig om at optimere en variabel ved at vælge en passende kombination af andre variable. Det

Læs mere

Løsning af præmie- og ekstraopgave

Løsning af præmie- og ekstraopgave 52 Læserbidrag Løsning af præmie- og ekstraopgave 23. årgang, nr. 1 Martin Wedel Jacobsen Både præmieopgaven og ekstraopgaven er specialtilfælde af en mere generel opgave: Hvor mange stykker kan en n-dimensionel

Læs mere

Forslag til løsning af Opgaver til analytisk geometri (side 338)

Forslag til løsning af Opgaver til analytisk geometri (side 338) Forslag til løsning af Opgaver til analytisk geometri (side 8) Opgave Linjerne har ligningerne: a : y x 9 b : x y 0 y x 8 c : x y 8 0 y x Der må gælde: a b, da Skæringspunkt mellem a og b:. Det betyder,

Læs mere

Funktioner af flere variable

Funktioner af flere variable Funktioner af flere variable Stud. Scient. Martin Sparre Københavns Universitet 23-10-2006 Definition 1 (Definition af en funktion af flere variable). En funktion af n variable defineret på en delmængde,

Læs mere

Eksamen maj 2019, Matematik 1, DTU

Eksamen maj 2019, Matematik 1, DTU Eksamen maj 2019, Matematik 1, DTU NB: Nedenstående udregninger viser flere steder mere end én metode. Det er der IKKE tid til eksamen! Ligeledes er der ikke krav om eller tid til at illustrere med plots.

Læs mere

Matematik A Vejledende opgaver 5 timers prøven

Matematik A Vejledende opgaver 5 timers prøven Højere Teknisk Eksamen 007 Matematik A Vejledende opgaver 5 timers prøven Undervisningsministeriet Prøvens varighed er 5 timer. Opgavebesvarelsen skal dokumenteres/begrundes. Opgavebesvarelsen skal udformes

Læs mere

Geometri med Geometer I

Geometri med Geometer I f Frans Kappel Øvre, Morsø Gymnasium Geometri med Geometer I Markeringspil: Klik på et objekt (punkt, linje, cirkel) for at markere det. Hvis du trykker Shift samtidig kan du markere flere objekter eller

Læs mere

Lektion 5 Det bestemte integral

Lektion 5 Det bestemte integral a f(x) dx = F (b) F (a) Lektion 5 Det bestemte integral Definition Integralregningens Middelværdisætning Integral- og Differentialregningens Hovedsætning Beregning af bestemte integraler Regneregler Areal

Læs mere

Epistel E2 Partiel differentiation

Epistel E2 Partiel differentiation Epistel E2 Partiel differentiation Benny Lautrup 19 februar 24 Funktioner af flere variable kan differentieres efter hver enkelt, med de øvrige variable fasthol Definitionen er f(x, y) x f(x, y) f(x +

Læs mere

Højere Teknisk Eksamen maj 2008. Matematik A. Forberedelsesmateriale til 5 timers skriftlig prøve NY ORDNING. Undervisningsministeriet

Højere Teknisk Eksamen maj 2008. Matematik A. Forberedelsesmateriale til 5 timers skriftlig prøve NY ORDNING. Undervisningsministeriet Højere Teknisk Eksamen maj 2008 HTX081-MAA Matematik A Forberedelsesmateriale til 5 timers skriftlig prøve NY ORDNING Undervisningsministeriet Fra onsdag den 28. maj til torsdag den 29. maj 2008 Forord

Læs mere

Om hvordan Google ordner websider

Om hvordan Google ordner websider Om hvordan Google ordner websider Hans Anton Salomonsen March 14, 2008 Man oplever ofte at man efter at have givet Google et par søgeord lynhurtigt får oplysning om at der er fundet et stort antal - måske

Læs mere

Optimale konstruktioner - når naturen former. Opgaver. Opgaver og links, der knytter sig til artiklen om topologioptimering

Optimale konstruktioner - når naturen former. Opgaver. Opgaver og links, der knytter sig til artiklen om topologioptimering Opgaver Opgaver og links, der knytter sig til artiklen om solsikke Opgave 1 Opgave 2 Opgaver og links, der knytter sig til artiklen om bobler Opgave 3 Opgave 4 Opgaver og links, der knytter sig til artiklen

Læs mere

TALTEORI Wilsons sætning og Euler-Fermats sætning.

TALTEORI Wilsons sætning og Euler-Fermats sætning. Wilsons sætning og Euler-Fermats sætning, marts 2007, Kirsten Rosenkilde 1 TALTEORI Wilsons sætning og Euler-Fermats sætning. Disse noter forudsætter et grundlæggende kendskab til talteori som man kan

Læs mere

Teknologi & Kommunikation

Teknologi & Kommunikation Side 1 af 6 Indledning Denne note omhandler den lineære funktion, hvis graf i et koordinatsystem er en ret linie. Funktionsbegrebet knytter to størrelser (x og y) sammen, disse to størrelser er afhængige

Læs mere

TALTEORI Wilsons sætning og Euler-Fermats sætning.

TALTEORI Wilsons sætning og Euler-Fermats sætning. Wilsons sætning og Euler-Fermats sætning, marts 2007, Kirsten Rosenkilde 1 TALTEORI Wilsons sætning og Euler-Fermats sætning. Disse noter forudsætter et grundlæggende kendskab til talteori som man kan

Læs mere

Matematik projekt 4. Eksponentiel udvikling. Casper Wandrup Andresen 2.F 16-01-2009. Underskrift:

Matematik projekt 4. Eksponentiel udvikling. Casper Wandrup Andresen 2.F 16-01-2009. Underskrift: Matematik projekt 4 Eksponentiel udvikling Casper Wandrup Andresen 2.F 16-01-2009 Underskrift: Teorien bag eksponentiel udvikling er som sådan meget enkel. Den har forskriften: B er vores begndelsesværdi

Læs mere

Polynomier et introforløb til TII

Polynomier et introforløb til TII Polynomier et introforløb til TII Formål At introducere polynomier af grad 0, 1, 2 samt højere, herunder grafer og rødder At behandle andengradspolynomiet og dets graf, parablen, med fokus på bl.a. toppunkt,

Læs mere

Miniprojekt 3: Fejlkorligerende køder Fejlkorrigerende koder

Miniprojekt 3: Fejlkorligerende køder Fejlkorrigerende koder Miniprojekt 3: Fejlkorligerende køder Fejlkorrigerende koder Denne note er skrevet med udgangspunkt i [, p 24-243, 249] Et videre studium kan eksempelvis tage udgangspunkt i [2] Eventuelle kommentarer

Læs mere

Dynamiske konstruktioner med et dynamisk geometriprogram En øvelsessamling

Dynamiske konstruktioner med et dynamisk geometriprogram En øvelsessamling Dynamiske konstruktioner med et dynamisk geometriprogram En øvelsessamling Disse opgaver er i sin tid udarbejdet til programmerne Geometer, og Geometrix. I dag er GeoGebra (af mange gode grunde, som jeg

Læs mere

FACITLISTE TIL KAPITEL 3 ØVELSER ØVELSE 1. a) Voksende. b) Voksende. c) Konstant. d) Aftagende ØVELSE 2. a) f aftagende i f voksende i

FACITLISTE TIL KAPITEL 3 ØVELSER ØVELSE 1. a) Voksende. b) Voksende. c) Konstant. d) Aftagende ØVELSE 2. a) f aftagende i f voksende i 1 af 41 MATEMATIK B hhx Udskriv siden FACITLISTE TIL KAPITEL 3 ØVELSER ØVELSE 1 Voksende Voksende Konstant Aftagende ØVELSE 2 f aftagende i f aftagende i f aftagende i f aftagende i ØVELSE 3 Hældningen

Læs mere

Analyse 1, Prøve 4. 25. juni 2009. r+1. Men vi har øjensynligt, at 2. r r+1

Analyse 1, Prøve 4. 25. juni 2009. r+1. Men vi har øjensynligt, at 2. r r+1 Analyse 1, Prøve 4 25. juni 29 Alle henvisninger til CB er henvisninger til Metriske Rum (1997, Christian Berg), alle henvisninger til TL er til Kalkulus (26, Tom Lindstrøm), og alle henvisninger til Opgaver

Læs mere

Matematik. på Åbent VUC. Trin 2 Xtra eksempler. Trigonometri, boksplot, potensfunktioner, to ligninger med to ubekendte

Matematik. på Åbent VUC. Trin 2 Xtra eksempler. Trigonometri, boksplot, potensfunktioner, to ligninger med to ubekendte Matematik på Åbent VUC Trin Xtra eksempler Trigonometri, boksplot, potensfunktioner, to ligninger med to ubekendte Trigonometri Sinus og cosinus Til alle vinkler hører der to tal, som kaldes cosinus og

Læs mere

Vejledende Matematik B

Vejledende Matematik B Vejledende Matematik B Prøvens varighed er 4 timer. Alle hjælpemidler er tilladt. Af opgaverne 8A, 8B, 8C og 8D skal kun to afleveres til bedømmelse. Hvis flere end to opgaver afleveres, bedømmes kun besvarelsen

Læs mere

Matematisk modellering og numeriske metoder. Lektion 18

Matematisk modellering og numeriske metoder. Lektion 18 Matematisk modellering numeriske metoder Lektion 18 Morten Grud Rasmussen 12. november, 2013 1 Numeriske metoder til førsteordens ODE er [Bens afsnit 21.1 side 898] 1.1 Euler-metoden Vi stiftede allerede

Læs mere

GEOMETRI-TØ, UGE 11. Opvarmningsopgave 2, [P] 6.1.1 (i,ii,iv). Udregn første fundamentalform af følgende flader

GEOMETRI-TØ, UGE 11. Opvarmningsopgave 2, [P] 6.1.1 (i,ii,iv). Udregn første fundamentalform af følgende flader GEOMETRI-TØ, UGE Hvis I falder over tryk- eller regne-fejl i nedenstående, må I meget gerne sende rettelser til fuglede@imf.au.dk. Opvarmningsopgave, [P] 5... Find parametriseringer af de kvadratiske flader

Læs mere

Opgave 1 Alle tallene er reelle tal, så opgaven er at finde den mindste talmængde, som resultaterne tilhører.

Opgave 1 Alle tallene er reelle tal, så opgaven er at finde den mindste talmængde, som resultaterne tilhører. Opgave 1 Alle tallene er reelle tal, så opgaven er at finde den mindste talmængde, som resultaterne tilhører. A. Q B. R (sidelængden er 5, som er irrational) C. Q Opgave 2 A. 19 = 1 19 24 = 2 3 3 36 =

Læs mere

i x-aksens retning, så fås ). Forskriften for g fås altså ved i forskriften for f at udskifte alle forekomster af x med x x 0

i x-aksens retning, så fås ). Forskriften for g fås altså ved i forskriften for f at udskifte alle forekomster af x med x x 0 BAndengradspolynomier Et polynomium er en funktion på formen f ( ) = an + an + a+ a, hvor ai R kaldes polynomiets koefficienter. Graden af et polynomium er lig med den højeste potens af, for hvilket den

Læs mere

Løsningsvejledning til eksamenssæt fra august 2008 udarbejdet af René Aagaard Larsen i Maple

Løsningsvejledning til eksamenssæt fra august 2008 udarbejdet af René Aagaard Larsen i Maple Løsningsvejledning til eksamenssæt fra august 2008 udarbejdet af René Aagaard Larsen i Maple Opgave 1 1a - Trigonometri I en trekant ABC får vi opgivet følgende: Vi skitserer trekanten i GeoGebra: Vi beregner

Læs mere

Reeksamen i Calculus Torsdag den 16. august 2012

Reeksamen i Calculus Torsdag den 16. august 2012 Reeksamen i Calculus Torsdag den 16. august 2012 Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet og Det Sundhedsvidenskabelige Fakultet Nærværende eksamenssæt består af 7 nummererede sider

Læs mere

DesignMat Uge 11 Vektorrum

DesignMat Uge 11 Vektorrum DesignMat Uge Vektorrum Preben Alsholm Forår 200 Vektorrum. Definition af vektorrum Definition af vektorrum Lad L betegne R eller C. Lad V være en ikke-tom mængde udstyret med en addition + og en multiplikation

Læs mere

Retningslinjer for bedømmelsen. Georg Mohr-Konkurrencen 2011 2. runde

Retningslinjer for bedømmelsen. Georg Mohr-Konkurrencen 2011 2. runde Retningslinjer for bedømmelsen. Georg Mohr-Konkurrencen 20 2. runde Det som skal vurderes i bedømmelsen af en besvarelse, er om deltageren har formået at analysere problemstillingen, kombinere de givne

Læs mere

Differentiation af Logaritmer

Differentiation af Logaritmer Differentiation af Logaritmer Frank Nasser 11. juli 2011 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Indhold

Læs mere

Areal. Et af de ældste skrifter om matematik, der findes, hedder Rhind Papyrus. NTRO

Areal. Et af de ældste skrifter om matematik, der findes, hedder Rhind Papyrus. NTRO Areal Et af de ældste skrifter om matematik, der findes, hedder Rhind Papyrus. NTRO Det stammer fra Egypten og er ca. 3650 år gammelt. I Rhind Papyrus findes optegnelser, der viser, hvordan egypterne beregnede

Læs mere

TALTEORI Primfaktoropløsning og divisorer.

TALTEORI Primfaktoropløsning og divisorer. Primfaktoropløsning og divisorer, oktober 2008, Kirsten Rosenkilde 1 TALTEORI Primfaktoropløsning og divisorer. Disse noter forudsætter et grundlæggende kendskab til talteori som man kan få i Marianne

Læs mere

Mat 1. 2-timersprøve den 13. maj 2017.

Mat 1. 2-timersprøve den 13. maj 2017. Mat. -timersprøve den. maj 7. JE.5.7 Opgave restart:with(plots): En funktion f af to reelle variable er for x, y s, givet ved f:=(x,y)-y/(x^+y^); f d x, y / y x Cy f(x,y); y x Cy Spørgsmål I x, y Kplanen

Læs mere

Funktioner af to variable

Funktioner af to variable enote 15 1 enote 15 Funktioner af to variable I denne og i de efterfølgende enoter vil vi udvide funktionsbegrebet til at omfatte reelle funktioner af flere variable; vi starter udvidelsen med 2 variable,

Læs mere

Matematik Eksamensprojekt

Matematik Eksamensprojekt Matematik Eksamensprojekt Casper Wandrup Andresen, 2.F I dette projekt arbejdes der bl.a. med parabler, vektorer, funktioner, sinus, cosinus, tangens, differentialregning, integralregning samt de øvrige/resterende

Læs mere

Forslag til løsning af Opgaver til ligningsløsning (side172)

Forslag til løsning af Opgaver til ligningsløsning (side172) Forslag til løsning af Opgaver til ligningsløsning (side17) Opgave 1 Hvis sønnens alder er x år, så er faderens alder x år. Der går x år, før sønnen når op på x år. Om x år har faderen en alder på: x x

Læs mere

Pendulbevægelse. Måling af svingningstid: Jacob Nielsen 1

Pendulbevægelse. Måling af svingningstid: Jacob Nielsen 1 Pendulbevægelse Jacob Nielsen 1 Figuren viser svingningstiden af et pendul i sekunder som funktion af udsvinget i grader. For udsving mindre end 20 grader er svingningstiden med god tilnærmelse konstant.

Læs mere

XII Vektorer i planen

XII Vektorer i planen Side 1 0101 Afsæt i et koordinatsystem vinklerne 135º og 20º og deres retningspunkter. 0102 Tegn i et koordinatsystem 4 forskellige repræsentanter for vektoren v = 5 3. 0103 Afsæt vektorerne p = 2, q =

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Aug.-Jun. 2011-2012 Institution Grenaa Tekniske Skole Uddannelse Fag og niveau Lærer(e) Hold HTX Matematik

Læs mere

Frank Villa. 15. juni 2012

Frank Villa. 15. juni 2012 2 er irrationel Frank Villa 15. juni 2012 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som aonnerer på MatBog.dk. Se yderligere etingelser for rug her. Indhold 1 Introduktion

Læs mere

Højere Handelseksamen Handelsskolernes enkeltfagsprøve 2005. Typeopgave 1. Matematik Niveau A. Delprøven uden hjælpemidler. Prøvens varighed: 1 time.

Højere Handelseksamen Handelsskolernes enkeltfagsprøve 2005. Typeopgave 1. Matematik Niveau A. Delprøven uden hjælpemidler. Prøvens varighed: 1 time. 054966 22/12/05 7:45 Side 1 Højere Handelseksamen Handelsskolernes enkeltfagsprøve 2005 05-A-1-U Typeopgave 1 Matematik Niveau A Delprøven uden hjælpemidler Prøvens varighed: 1 time. Dette opgavesæt består

Læs mere

Vektorfelter. enote Vektorfelter

Vektorfelter. enote Vektorfelter enote 24 1 enote 24 Vektorfelter I enote 6 indføres og studeres vektorer i plan og rum. I enote 16 ser vi på gradienterne for funktioner f (x, y) af to variable. Et gradientvektorfelt for en funktion af

Læs mere

Finde invers funktion til en 2-gradsfunktion - ved parallelforskydning. John V Petersen

Finde invers funktion til en 2-gradsfunktion - ved parallelforskydning. John V Petersen Finde invers funktion til en 2-gradsfunktion - ved parallelforskydning John V Petersen Finde invers funktion til en 2-gradsfunktion - ved parallelforskydning 2015 John V Petersen art-science-soul Indhold

Læs mere

VEKTOR I RUMMET PROJEKT 1. Jacob Weng & Jeppe Boese. Matematik A & Programmering C. Avedøre-værket. Roskilde Tekniske Gymnasium 3.4. Fag.

VEKTOR I RUMMET PROJEKT 1. Jacob Weng & Jeppe Boese. Matematik A & Programmering C. Avedøre-værket. Roskilde Tekniske Gymnasium 3.4. Fag. VEKTOR I RUMMET PROJEKT 1 Fag Matematik A & Programmering C Tema Avedøre-værket Jacob Weng & Jeppe Boese Roskilde Tekniske Gymnasium 3.4 07-10-2010 1 Vektor i rummet INDLEDNING Projektet omhandler et af

Læs mere

Inverse funktioner. John V Petersen

Inverse funktioner. John V Petersen Inverse funktioner John V Petersen Indhold Indledning: Indledende eksempel. Grafen for en funktion. Og grafen for den inverse funktion.... 3 Afbildning, funktion og inverse funktion: forklaringer og definitioner...

Læs mere

Taxageometri og metriske rum

Taxageometri og metriske rum Taxageometri og metriske rum Douglas LaFontain og Troels Bak Andersen 8. oktober 2011 Målet med denne kursusdag er at introducere en ny geometri, der er forskellig fra vores sædvanlige Euklidiske plangeometri.

Læs mere

Andengradsligninger i to og tre variable

Andengradsligninger i to og tre variable enote 0 enote 0 Andengradsligninger i to og tre variable I denne enote vil vi igen beskæftige os med andengradspolynomierne i to og tre variable som også er behandlet og undersøgt med forskellige teknikker

Læs mere

MATEMATIK B-NIVEAU STX081-MAB

MATEMATIK B-NIVEAU STX081-MAB MATEMATIK B-NIVEAU STX081-MAB Delprøven uden hjælpemidler Opgave 1 Indsættes h = 2 og x = i (x + h) 2 h(h + 2x), så fås (x + h) 2 h(h + 2x) = ( + 2) 2 2(2 + 2 ) = 5 2 2 8 = 25 16 = 9 Hvis man i stedet

Læs mere

STEEN MARKVORSEN DTU COMPUTE 2016

STEEN MARKVORSEN DTU COMPUTE 2016 STEEN MARKVORSEN DTU COMPUTE 2016 2 Indhold 1 Regulære flader i rummet 5 1.1 Det sædvanlige koordinatsystem i rummet..................... 5 1.2 Graf-flader for funktioner af to variable......................

Læs mere

Lektion 6 Logaritmefunktioner

Lektion 6 Logaritmefunktioner Lektion 6 Logaritmefunktioner Den naturlige logaritmefunktion Andre logaritmefunktioner log() Regneregler Integration ln() =, ln(e) = ln(a b) = ln(a) + ln(b) ln(a r ) = r ln(a) d = ln + C En berømt grænseværdi

Læs mere

Induktion: fra naturlige tal til generaliseret skønhed Dan Saattrup Nielsen

Induktion: fra naturlige tal til generaliseret skønhed Dan Saattrup Nielsen 36 Induktion: fra naturlige tal til generaliseret skønhed Dan Saattrup Nielsen En artikel om induktion, hvordan er det overhovedet muligt? Det er jo trivielt! Bevis ved induktion er en af de ældste matematiske

Læs mere

Reelle tal. Symbolbehandlingskompetencen er central gennem arbejdet med hele kapitlet i elevernes arbejde med tal og regneregler.

Reelle tal. Symbolbehandlingskompetencen er central gennem arbejdet med hele kapitlet i elevernes arbejde med tal og regneregler. Det første kapitel i grundbogen til Kolorit i 9. klasse handler om de reelle tal. Første halvdel af kapitlet har karakter af at være opsamlende i forhold til, hvad eleverne har arbejdet med på tidligere

Læs mere

Bogstavregning. Formler... 46 Reduktion... 47 Ligninger... 48. Bogstavregning Side 45

Bogstavregning. Formler... 46 Reduktion... 47 Ligninger... 48. Bogstavregning Side 45 Bogstavregning Formler... 6 Reduktion... 7 Ligninger... 8 Bogstavregning Side I bogstavregning skal du kunne regne med bogstaver og skifte bogstaver ud med tal. Formler En formel er en slags regne-opskrift,

Læs mere

Vektorfunktioner. (Parameterkurver) x-klasserne Gammel Hellerup Gymnasium

Vektorfunktioner. (Parameterkurver) x-klasserne Gammel Hellerup Gymnasium Vektorfunktioner (Parameterkurver) x-klasserne Gammel Hellerup Gymnasium Indholdsfortegnelse VEKTORFUNKTIONER... Centrale begreber... Cirkler... 5 Epicykler... 7 Snurretoppen... 9 Ellipser... 1 Parabler...

Læs mere

Matematisk modellering og numeriske metoder. Lektion 13

Matematisk modellering og numeriske metoder. Lektion 13 Matematisk modellering og numeriske metoder Lektion 3 Morten Grud Rasmussen 9. november 25 Divergens af et vektorfelt [Sektion 9.8 og.7 i bogen, s. 43]. Definition af og og egenskaber for divergens Lad

Læs mere

VIA læreruddannelsen Silkeborg. WordMat kompendium

VIA læreruddannelsen Silkeborg. WordMat kompendium VIA læreruddannelsen Silkeborg WordMat kompendium Bolette Fisker Olesen 25-11-2015 Indholdsfortegnelse Ligning... 2 Løs ligning... 2 WordMat som lommeregner... 4 Geometri... 4 Trekanter... 4 Funktioner...

Læs mere

Matematik A. Studentereksamen. Forsøg med digitale eksamensopgaver med adgang til internettet

Matematik A. Studentereksamen. Forsøg med digitale eksamensopgaver med adgang til internettet Matematik A Studentereksamen Forsøg med digitale eksamensopgaver med adgang til internettet frs102-matn/a-12082010 Torsdag den 12. august 2010 kl. 09.00-14.00 Opgavesættet er delt i to dele. Delprøve

Læs mere

Andengradspolynomier

Andengradspolynomier Andengradspolynomier Teori og opgaver (hf tilvalg) Forskydning af grafer...... 2 Andengradspolynomiets graf (parablen)..... 5 Andengradsligninger. 10 Andengradsuligheder 13 Nyttige formler, beviser og

Læs mere

Fraktaler. Vejledning. Et snefnug

Fraktaler. Vejledning. Et snefnug Fraktaler Vejledning Denne note kan benyttes i gymnasieundervisningen i matematik i 1g, eventuelt efter gennemgangen af emnet logaritmer. Min hensigt har været at give en lille introduktion til en anderledes

Læs mere

Tilstandsligningen for ideale gasser

Tilstandsligningen for ideale gasser ilstandsligningen for ideale gasser /8 ilstandsligningen for ideale gasser Indhold. Udledning af tilstandsligningen.... Konsekvenser af tilstandsligningen...4 3. Eksempler og opgaver...5 4. Daltons lov...6

Læs mere

RUMGEOMETRI-programmet D3GEO til TI-82 og TI-83

RUMGEOMETRI-programmet D3GEO til TI-82 og TI-83 RUMGEOMETRI-programmet D3GEO til TI-8 og TI-83 Af Frans Morville. Programmet har menuer i to niveauer organiseret efter de oplysninger, der opgivet (kendte) og som skal bruges i beregninger. Overskrifterne

Læs mere

Statistikkompendium. Statistik

Statistikkompendium. Statistik Statistik INTRODUKTION TIL STATISTIK Statistik er analyse af indsamlet data. Det vil sige, at man bearbejder et datamateriale, som i matematik næsten altid er tal. Derved får man et samlet overblik over

Læs mere

Figur y. Nøgleord og begreber Tangentlinje for graf Tangentplan for graf

Figur y. Nøgleord og begreber Tangentlinje for graf Tangentplan for graf Oversigt [S] 2.7, 2.9, 11. Tangentlinje [S] 2.7 Derivatives Nøgleord og begreber Tangentlinje for graf Tangentplan for graf Figur y y = f(a) + f (a)( a) Test tangentplan Lineær approimation i en og flere

Læs mere

Læsevejledning til resultater på regionsplan

Læsevejledning til resultater på regionsplan Læsevejledning til resultater på regionsplan Indhold 1. Overblik... 2 2. Sammenligninger... 2 3. Hvad viser figuren?... 3 4. Hvad viser tabellerne?... 5 5. Eksempler på typiske spørgsmål til tabellerne...

Læs mere

Supplement til Matematik 1GB. Jan Philip Solovej

Supplement til Matematik 1GB. Jan Philip Solovej Supplement til Matematik 1GB Jan Philip Solovej ii c 2001 Jan Philip Solovej, Institut for Matematiske Fag, Københavns Universitet. Alle har tilladelse til at reproducere hele eller dele af dette materiale

Læs mere

Differentialregning Infinitesimalregning

Differentialregning Infinitesimalregning Udgave 2.1 Differentialregning Infinitesimalregning Noterne gennemgår begreberne differentialregning, og anskuer dette som et derligere redskab til vækst og funktioner. Noterne er supplement til kapitel

Læs mere

Inverse funktioner og Sektioner

Inverse funktioner og Sektioner Inverse funktioner og Sektioner Frank Nasser 15. april 2011 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Bemærk:

Læs mere

Tekst Notation og layout Redegørelse og dokumentation Figurer Konklusion

Tekst Notation og layout Redegørelse og dokumentation Figurer Konklusion 1 Indledning Dette afsnit omhandler første delprøve, den uden hjælpemidler. Dette afsnit bygger på vejledningen til lærerplanen og lærerplanen for matematik b-niveau, samt eksamensopgaverne fra 2014-2012,

Læs mere

Analytisk geometri. Et simpelt eksempel på dette er en ret linje. Som bekendt kan en ret linje skrives på formen

Analytisk geometri. Et simpelt eksempel på dette er en ret linje. Som bekendt kan en ret linje skrives på formen Analtisk geometri Mike Auerbach Odense 2015 Den klassiske geometri beskæftiger sig med alle mulige former for figurer: Linjer, trekanter, cirkler, parabler, ellipser osv. I den analtiske geometri lægger

Læs mere

Module 2: Beskrivende Statistik

Module 2: Beskrivende Statistik Forskningsenheden for Statistik ST01: Elementær Statistik Bent Jørgensen og Hans Chr. Petersen Module 2: Beskrivende Statistik 2.1 Histogrammer og søjlediagrammer......................... 1 2.2 Sammenfatning

Læs mere

Differential- regning

Differential- regning Differential- regning 1 del () (1) 006 Karsten Juul Indhold 1 Funktionsværdi, graf og tilvækst1 Differentialkvotient og tangent8 3 Formler for differentialkvotient16 4 Opgaver med tangent 5 Væksthastighed5

Læs mere

Den svingende streng

Den svingende streng Den svingende streng Stig Andur Pedersen October 2, 2009 Ufuldstændigt udkast. Abstract 1 I det 18. århundrede blev differential- og integralregningen, som var introduceret af Newton, Leibniz og mange

Læs mere