Program. 1. Repetition: konfidens-intervaller. 2. Hypotese test, type I og type II fejl, signifikansniveau, styrke, en- og to-sidede test.

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Starte visningen fra side:

Download "Program. 1. Repetition: konfidens-intervaller. 2. Hypotese test, type I og type II fejl, signifikansniveau, styrke, en- og to-sidede test."

Transkript

1 Program 1. Repetition: konfidens-intervaller. 2. Hypotese test, type I og type II fejl, signifikansniveau, styrke, en- og to-sidede test. 1/19

2 Konfidensinterval for µ (σ kendt) Estimat ˆµ = X bedste bud på værdien af µ. Et interval af plausible bud på µ kan dannes som [ X a, X + a] a vælges så intervallet indeholder µ med en kendt sandsynlighed. 95 % konfidensinterval (a = 1.96σ/ n 2 standard error): [ X 1.96σ/ n, X σ/ n] NB: X 1.96 σ n µ X σ n X µ 1.96 σ n Dvs. estimationsfejl X µ mindre end 1.96σ/ n med sandsynlighed 95%. 2/19

3 Eksempel En stikprøve med n = 75 og x = 0.31 udtages, hvor standardafvigelsen σ = er kendt. Udregning af 95 % konfidensinterval: 1.96 σ n = = Dvs. konfidensinterval [ , ] = [0.3097, ] og X µ < med sandsynlighed 95 %. Antag vi er tilfreds med X µ < med sandsynlighed 95 %. Udregning af passende stikprøvestørrelse m: = m m = m = 35 3/19

4 Konfidensintervaller 1. Konfidensinterval for middelværdi, hvor varians er kendt: [ x z α/2 σ n, x + z α/2 σ n ] 2. Konfidensinterval for middelværdi, hvor varians er ukendt: [ ] s s x t α/2, x + t n α/2 n 3. Konfidensinterval for varians: [ (n 1)s 2, χ 2 α/2 ] (n 1)s2 χ 2 1 α/2 4/19

5 Hypotese test: illustration udfra check af mønt Kast med mønt 50 gange. X antal plat. Sandsynlighed for plat: p. Hypotese H 0 : p = 0.5 (mod alternativ p 0.5). Forkastelsesområde: F = [0, 17] [33, 50] Acceptområde: A = [18, 32]. Fejl af type I: X F (forkast) når p = 0.5 Fejl af type II: X A (accept) når p 0.5 Ensidet forkastelsesområde: F = [31, 50]. 5/19

6 Type I og type II fejl H 0 sand H 0 falsk Accept H 0 korrekt afgørelse type II fejl Forkast H 0 type I fejl korrekt afgørelse Signifikansniveau α: sandsynlighed for type I fejl. β: sandsynlighed for type II fejl. Styrke 1 β: sandsynlighed for forkastelse når H 0 falsk. Optimalt: lille α og lille β (stor styrke 1 β) NB for en given stikprøve størrelse n kan vi ikke formindske α uden samtidig at øge β og omvendt. 6/19

7 Hypotese test: test af hypotese vedr. µ (σ kendt) Hypotese H 0 : µ = 68, H 1 : µ 68, σ = 3.6 kendt og n = 36. Accept hvis X i A = [67, 69] og forkast hvis X i F =], 67[ ]69, [. Antag µ = 70: α = P(type I) = P( X 67) + P( X > 69) = β = P(type II) = P(67 X 69) = /19

8 Hypotese test: test af hypotese vedr. µ (σ kendt) Bemærk: 67 X Z = X / Hvis vi ønsker α = 5% skal vi forkaste hvis Z 1.96 eller Z (det samme som X 66.8 = σ/ n eller X 69.2 = σ/ n, σ = 3.6 n = 36) Dvs. med udgangspunkt i Z og α = 5% er F =], 1.96] [1.96, [ og A =] 1.96, 1.96[. 8/19

9 Eksempel: beregning af styrke Antag µ rent faktisk er 70 hvorved X N(70, σ 2 /n). Da er Z = X 68 σ/ n N og ( ) n (70 68) σ, 1 = N(3.33, 1) (ikke N(0, 1)) 1 β = 1 P( 1.96 < Z < 1.96) = P(Z 5.29) + P(Z 1.37) = 91.5% Dvs. stærkt test (stor sandsynlighed for at forkaste) under alternativ µ = 70. Bemærk: større n betyder mindre varians for X og at fordelingen for Z forskydes væk fra 0. 9/19

10 Styrkefunktion H 0 : µ = 68 forkastes hvis Z mindre end eller større end β(µ) er styrken når middelværdi er µ. Plot af styrke: styrke n=36 n= mu 10/19

11 Relation til konfidensinterval Betragt hypotesen H 0 : µ = µ 0 mod alternativet µ µ 0 hvor µ 0 er en specifik værdi. Det to-sidede test med signifikansniveau 5 % accepterer hvis 1.96 X µ 0 σ/ n 1.96 X 1.96 σ n µ 0 X σ n Dvs. H 0 accepteres for alle værdier µ 0 der ligger i 95 % konfidensintervallet [ X 1.96 σ n, X σ n ] 95 % konfidensinterval: alle værdier af µ 0 som accepteres af et to-sidet test med signifikansniveau 5 % 11/19

12 Eksempel (fortsat) Hvis H 0 : µ = 30, x = 0.31 fås z = / 75 = dvs. test med signifikansniveau 5 % forkaster. Dette kunne ses direkte af 95 % konfidensinterval, som 0.30 ligger udenfor. 12/19

13 En-sidet test Betragt H 0 : µ = µ 0. Sommetider er et en-sidet alternativ µ < µ 0 eller µ > µ 0 relevant. Ex forbrugerstyrelsen ønsker at teste at middelindholdet af sukker pr. pakke er mindst 1 kg. Hvad er den relevante H 0 og alternative hypotese? Alternativ µ < µ 0 : da er små værdier af kritiske. Z = X µ 0 σ/ n Test med signifikansniveau 5 % fås hvis vi forkaster når Z < 1.64 (5 % fraktil for N(0, 1)). 13/19

14 Hvad er stærkest konklusion: accept eller forkast? Som oftest designes test så sandsynlighed for type I fejl (fejl når der forkastes) er lille (f.eks. 5 %). Omvendt har man ofte ikke styr på sandsynlighed for type II fejl (fejl ved accept). Derfor er forkast en stærk konklusion, mens accept nemt kan svare til en type II fejl. Accept = hypotese kan ikke forkastes på baggrund af de foreliggende data. 14/19

15 t-test for hypotese vedr. µ (σ ukendt) H 0 : µ = µ 0, H 1 : µ µ 0. Store eller små værdier af kritiske. T = X µ 0 S/ n Test med signifikansniveau 5 % hvis vi forkaster når T < t eller T > t 0.975, hvor antallet af frihedsgrader er n 1. Udregnes i SPSS via Analyze Compare means One-sample T-Test og vælge værdien for µ 0 (bemærk: kun to-sidet test). 15/19

16 Eksempel Målinger af ph: 7.01, 7.00, 7.10, 6.97, 7.00, 7.03, 7.01, 7.01, 6.98, 7.08 (n = 10) H 0 : µ = 7, H 1 : µ 7 Teststørrelsen skal vurderes i t(9) fordeling. t = x µ 0 s/ n = / 10 = 1.80 t (9) = 2.26 og t (9) = 2.26 dvs. accept. 16/19

17 p-værdi Test for H 0 : µ = µ 0 (σ kendt) med signifikansniveau 5 % forkaster når Z mindre end eller større end Der skelnes ikke mellem f.eks. z = 1.97 og z = 3.4 selvom sidstnævnte synes meget mere kritisk. p-værdi er et mål for hvor kritisk/usædvanlig en observeret test størrelse er: p-værdi = ssh for at observere noget ligeså eller mere kritisk Ex Med to-sidet test og z = 1.97 fås p = P(Z < 1.97) + P(Z > 1.97) = 4.9%. Hypotese forkastes hvis p-værdien er mindre end signifikansniveauet α. 17/19

18 Eksempel Observeret værdi t = p = P(T 1.80) + P(T 1.80) = 11% hvor T er t(9)-fordelt. Med t = 2.28 fås p = P(T 2.28) + P(T 2.28) = 4.9% (dvs. ikke voldsom stærk evidens mod hypotese) Med t = 3.4 fås p = P(T 3.4) + P(T 3.4) = 0.8% (dvs. stærk evidens mod hypotese) 18/19

19 Hvilke tests kan man lave? Vi har idag set to tests for middelværdi µ = µ 0 : z-test når σ kendt, t-test når σ ukendt. Der findes også tests for varians, dvs H 0 : σ = σ 0 (afsnit 10.13), og tests med to stikprøver H 0 : µ 1 = µ 2 (afsnit 10.8) eller H 0 : σ 1 = σ 2 (afsnit 10.13). 19/19

Konfidensinterval for µ (σ kendt)

Konfidensinterval for µ (σ kendt) Program 1. Repetition: konfidens-intervaller. 2. Hypotese test 3. Type I og type II fejl, p-værdi 4. En og to-sidede tests 5. Test for middelværdi (kendt varians) 6. Test for middelværdi (ukendt varians)

Læs mere

Program: 1. Repetition: fordeling af observatorer X, S 2 og t. 2. Konfidens-intervaller, hypotese test, type I og type II fejl, styrke.

Program: 1. Repetition: fordeling af observatorer X, S 2 og t. 2. Konfidens-intervaller, hypotese test, type I og type II fejl, styrke. Program: 1. Repetition: fordeling af observatorer X, S 2 og t. 2. Konfidens-intervaller, hypotese test, type I og type II fejl, styrke. 1/23 Opsummering af fordelinger X 1. Kendt σ: Z = X µ σ/ n N(0,1)

Læs mere

Modul 5: Test for én stikprøve

Modul 5: Test for én stikprøve Forskningsenheden for Statistik ST01: Elementær Statistik Bent Jørgensen Modul 5: Test for én stikprøve 5.1 Test for middelværdi................................. 1 5.1.1 t-fordelingen.................................

Læs mere

Forelæsning 8: Inferens for varianser (kap 9)

Forelæsning 8: Inferens for varianser (kap 9) Kursus 02402 Introduktion til Statistik Forelæsning 8: Inferens for varianser (kap 9) Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800 Lyngby

Læs mere

Hypotese test. Repetition fra sidst Hypoteser Test af middelværdi Test af andel Test af varians Type 1 og type 2 fejl Signifikansniveau

Hypotese test. Repetition fra sidst Hypoteser Test af middelværdi Test af andel Test af varians Type 1 og type 2 fejl Signifikansniveau ypotese test Repetition fra sidst ypoteser Test af middelværdi Test af andel Test af varians Type 1 og type fejl Signifikansniveau Konfidens intervaller Et konfidens interval er et interval, der estimerer

Læs mere

Kursus 02402 Introduktion til Statistik. Forelæsning 7: Kapitel 7 og 8: Statistik for to gennemsnit, (7.7-7.8,8.1-8.5) Per Bruun Brockhoff

Kursus 02402 Introduktion til Statistik. Forelæsning 7: Kapitel 7 og 8: Statistik for to gennemsnit, (7.7-7.8,8.1-8.5) Per Bruun Brockhoff Kursus 02402 Introduktion til Statistik Forelæsning 7: Kapitel 7 og 8: Statistik for to gennemsnit, (7.7-7.8,8.1-8.5) Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks

Læs mere

Forelæsning 6: Kapitel 7: Hypotesetest for gennemsnit (one-sample setup). 7.4-7.6

Forelæsning 6: Kapitel 7: Hypotesetest for gennemsnit (one-sample setup). 7.4-7.6 Kursus 02402 Introduktion til Statistik Forelæsning 6: Kapitel 7: Hypotesetest for gennemsnit (one-sample setup). 7.4-7.6 Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220

Læs mere

PhD-kursus i Basal Biostatistik, efterår 2006 Dag 2, onsdag den 13. september 2006

PhD-kursus i Basal Biostatistik, efterår 2006 Dag 2, onsdag den 13. september 2006 PhD-kursus i Basal Biostatistik, efterår 2006 Dag 2, onsdag den 13. september 2006 I dag: To stikprøver fra en normalfordeling, ikke-parametriske metoder og beregning af stikprøvestørrelse Eksempel: Fiskeolie

Læs mere

Note til styrkefunktionen

Note til styrkefunktionen Teoretisk Statistik. årsprøve Note til styrkefunktionen Først er det vigtigt at gøre sig klart, at når man laver statistiske test, så kan man begå to forskellige typer af fejl: Type fejl: At forkaste H

Læs mere

Anvendt Statistik Lektion 4. Hypotesetest generelt Test for middelværdi Test for andele

Anvendt Statistik Lektion 4. Hypotesetest generelt Test for middelværdi Test for andele Anvendt Statistik Lektion 4 Hypotesetest generelt Test for middelværdi Test for andele Hypoteser og Test Hypotese I statistik er en hypotese en påstand om en populationsparameter. Typisk en påstand om

Læs mere

Konfidensintervaller og Hypotesetest

Konfidensintervaller og Hypotesetest Konfidensintervaller og Hypotesetest Konfidensinterval for andele χ -fordelingen og konfidensinterval for variansen Hypoteseteori Hypotesetest af middelværdi, varians og andele Repetition fra sidst: Konfidensintervaller

Læs mere

Normalfordelingen. Statistik og Sandsynlighedsregning 2

Normalfordelingen. Statistik og Sandsynlighedsregning 2 Normalfordelingen Statistik og Sandsynlighedsregning 2 Repetition og eksamen Erfaringsmæssigt er normalfordelingen velegnet til at beskrive variationen i mange variable, blandt andet tilfældige fejl på

Læs mere

men nu er Z N((µ 1 µ 0 ) n/σ, 1)!! Forkaster hvis X 191 eller X 209 eller

men nu er Z N((µ 1 µ 0 ) n/σ, 1)!! Forkaster hvis X 191 eller X 209 eller Type I og type II fejl Type I fejl: forkast når hypotese sand. α = signifikansniveau= P(type I fejl) Program (8.15-10): Hvis vi forkaster når Z < 2.58 eller Z > 2.58 er α = P(Z < 2.58) + P(Z > 2.58) =

Læs mere

Ensidet variansanalyse

Ensidet variansanalyse Ensidet variansanalyse Sammenligning af grupper Helle Sørensen E-mail: helle@math.ku.dk StatBK (Uge 47, mandag) Ensidet ANOVA 1 / 18 Program I dag: Sammenligning af middelværdier Sammenligning af spredninger

Læs mere

Program. Ensidet variansanalyse Sammenligning af grupper. Statistisk model og hypotese. Eksempel: Aldersfordeling i hjertestudie

Program. Ensidet variansanalyse Sammenligning af grupper. Statistisk model og hypotese. Eksempel: Aldersfordeling i hjertestudie Program Ensidet variansanalyse Sammenligning af grupper Helle Sørensen E-mail: helle@math.ku.dk I dag: Sammenligning af middelværdier Sammenligning af spredninger Parvise sammenligninger To eksempler:

Læs mere

Program: 1. Repetition: p-værdi 2. Simpel lineær regression. 1/19

Program: 1. Repetition: p-værdi 2. Simpel lineær regression. 1/19 Program: 1. Repetition: p-værdi 2. Simpel lineær regression. 1/19 For test med signifikansniveau α: p < α forkast H 0 2/19 p-værdi Betragt tilfældet med test for H 0 : µ = µ 0 (σ kendt). Idé: jo større

Læs mere

Vejledende besvarelser til opgaver i kapitel 14

Vejledende besvarelser til opgaver i kapitel 14 Vejledende besvarelser til opgaver i kapitel 14 Opgave 1 a) Det første trin i opstillingen af en hypotesetest er at formulere to hypoteser, hvoraf den ene støtter den teori vi vil teste, mens den anden

Læs mere

Vi kalder nu antal prøverør blandt de 20, hvor der ikke ses vækst for X.

Vi kalder nu antal prøverør blandt de 20, hvor der ikke ses vækst for X. Opgave I I en undersøgelse af et potentielt antibiotikum har man dyrket en kultur af en bestemt mikroorganisme og tilført prøver af organismen til 20 prøverør med et vækstmedium og samtidig har man tilført

Læs mere

Anvendt Statistik Lektion 6. Kontingenstabeller χ 2 -test [ki-i-anden-test]

Anvendt Statistik Lektion 6. Kontingenstabeller χ 2 -test [ki-i-anden-test] Anvendt Statistik Lektion 6 Kontingenstabeller χ 2 -test [ki-i-anden-test] 1 Kontingenstabel Formål: Illustrere/finde sammenhænge mellem to kategoriske variable Opbygning: En celle for hver kombination

Læs mere

Hypotesetest. Altså vores formodning eller påstand om tingens tilstand. Alternativ hypotese (hvis vores påstand er forkert) H a : 0

Hypotesetest. Altså vores formodning eller påstand om tingens tilstand. Alternativ hypotese (hvis vores påstand er forkert) H a : 0 Hypotesetest Hypotesetest generelt Ingredienserne i en hypotesetest: Statistisk model, f.eks. X 1,,X n uafhængige fra bestemt fordeling. Parameter med estimat. Nulhypotese, f.eks. at antager en bestemt

Læs mere

Chi-i-anden Test. Repetition Goodness of Fit Uafhængighed i Kontingenstabeller

Chi-i-anden Test. Repetition Goodness of Fit Uafhængighed i Kontingenstabeller Chi-i-anden Test Repetition Goodness of Fit Uafhængighed i Kontingenstabeller Chi-i-anden Test Chi-i-anden test omhandler data, der har form af antal eller frekvenser. Antag, at n observationer kan inddeles

Læs mere

Afsnit E1 Konfidensinterval for middelværdi i normalfordeling med kendt standardafvigelse

Afsnit E1 Konfidensinterval for middelværdi i normalfordeling med kendt standardafvigelse Afsnit 8.3 - E1 Konfidensinterval for middelværdi i normalfordeling med kendt standardafvigelse Først skal normalfordelingen lige defineres i Maple, så vi kan benytte den i vores udregninger. Dette gøres

Læs mere

da er X 1 + X 2 N(µ 1 + µ 2,σ1 2 + σ2) Hvis X 1,...,X n er uafhængige og X r N(µ,σ 2 ), da er X = 1 n (X 1 +... + X n ) N(µ, σ2

da er X 1 + X 2 N(µ 1 + µ 2,σ1 2 + σ2) Hvis X 1,...,X n er uafhængige og X r N(µ,σ 2 ), da er X = 1 n (X 1 +... + X n ) N(µ, σ2 Statistik og Sandsynlighedsregning IH kapitel Overheads til forelæsninger, onsdag 5. uge Resultater om normalfordeling X N(µ,σ ). N har tæthed ϕ µ,σ (x) = exp (x µ) πσ σ EX = µ, Var(X) = σ X µ N(0,) σ

Læs mere

Reminder: Hypotesetest for én parameter. Økonometri: Lektion 4. F -test Justeret R 2 Aymptotiske resultater. En god model

Reminder: Hypotesetest for én parameter. Økonometri: Lektion 4. F -test Justeret R 2 Aymptotiske resultater. En god model Reminder: Hypotesetest for én parameter Antag vi har model Økonometri: Lektion 4 F -test Justeret R 2 Aymptotiske resultater y = β 0 + β 1 x 2 + β 2 x 2 + + β k x k + u. Vi ønsker at teste hypotesen H

Læs mere

Module 12: Mere om variansanalyse

Module 12: Mere om variansanalyse Mathematical Statistics ST06: Linear Models Bent Jørgensen og Pia Larsen Module 2: Mere om variansanalyse 2. Parreded observationer................................ 2.2 Faktor med 2 niveauer (0- variabel)........................

Læs mere

c) For, er, hvorefter. Forklar.

c) For, er, hvorefter. Forklar. 1 af 13 MATEMATIK B hhx Udskriv siden FACITLISTE TIL KAPITEL 7 ØVELSER ØVELSE 1 c) ØVELSE 2 og. Forklar. c) For, er, hvorefter. Forklar. ØVELSE 3 c) ØVELSE 4 90 % konfidensinterval: 99 % konfidensinterval:

Læs mere

Økonometri 1. Inferens i den lineære regressionsmodel 25. september 2006. Oversigt: De næste forelæsninger

Økonometri 1. Inferens i den lineære regressionsmodel 25. september 2006. Oversigt: De næste forelæsninger Oversigt: De næste forelæsninger Økonometri Inferens i den lineære regressionsmodel 5. september 006 Statistisk inferens: hvorledes man med udgangspunkt i en statistisk model kan drage konklusioner på

Læs mere

3.600 kg og den gennemsnitlige fødselsvægt kg i stikprøven.

3.600 kg og den gennemsnitlige fødselsvægt kg i stikprøven. PhD-kursus i Basal Biostatistik, efterår 2006 Dag 1, onsdag den 6. september 2006 Eksempel: Sammenhæng mellem moderens alder og fødselsvægt I dag: Introduktion til statistik gennem analyse af en stikprøve

Læs mere

02402 Løsning til testquiz02402f (Test VI)

02402 Løsning til testquiz02402f (Test VI) 02402 Løsning til testquiz02402f (Test VI) Spørgsmål 4. En ejendomsmægler ønsker at undersøge om hans kunder får mindre end hvad de har forlangt, når de sælger deres bolig. Han har regisreret følgende:

Læs mere

Tema. Dagens tema: Indfør centrale statistiske begreber.

Tema. Dagens tema: Indfør centrale statistiske begreber. Tema Dagens tema: Indfør centrale statistiske begreber. Model og modelkontrol Estimation af parametre. Fordeling. Hypotese og test. Teststørrelse. konfidensintervaller Vi tager udgangspunkt i Ex. 3.1 i

Læs mere

Kapitel 3 Centraltendens og spredning

Kapitel 3 Centraltendens og spredning Kapitel 3 Centraltendens og spredning Peter Tibert Stoltze stat@peterstoltze.dk Elementær statistik F2011 1 Indledning 2 Centraltendens 3 Spredning 4 Praktisk beregning 5 Fraktiler 6 Opsamling 1 Indledning

Læs mere

Signifikanstestet. usædvanlig godt godt

Signifikanstestet. usædvanlig godt godt Signifikanstestet Fordeling af rygevaner som 45-årig og senere selvrapporteret helbred som 51-årig blandt tilfældigt udvalgte mænd i Københavns Amt i 1987. helbred som 51 årig rygevaner som 45 årig Total

Læs mere

Program. Modelkontrol og prædiktion. Multiple sammenligninger. Opgave 5.2: fosforkoncentration

Program. Modelkontrol og prædiktion. Multiple sammenligninger. Opgave 5.2: fosforkoncentration Faculty of Life Sciences Program Modelkontrol og prædiktion Claus Ekstrøm E-mail: ekstrom@life.ku.dk Test af hypotese i ensidet variansanalyse F -tests og F -fordelingen. Multiple sammenligninger. Bonferroni-korrektion

Læs mere

To-sidet variansanalyse

To-sidet variansanalyse Program 1. To-sidet variansanalyse 2. Hierarkisk princip 3. Tre (og flere) sidet variansanalyse 4. Variansanalyse med blocking 5. Flersidet variansanalyse med tilfældige faktorer 6. En oversigtsslide til

Læs mere

Nanostatistik: Middelværdi og varians

Nanostatistik: Middelværdi og varians Nanostatistik: Middelværdi og varians JLJ Nanostatistik: Middelværdi og varians p. 1/28 Repetition Stokastisk variabel: funktion fra udfaldsrum over i de hele tal eller over i de reelle tal Ex: Ω = alle

Læs mere

Dagens Temaer. Test for lineær regression. Test for lineær regression - via proc glm. k normalfordelte obs. rækker i proc glm. p. 1/??

Dagens Temaer. Test for lineær regression. Test for lineær regression - via proc glm. k normalfordelte obs. rækker i proc glm. p. 1/?? Dagens Temaer k normalfordelte obs. rækker i proc glm. Test for lineær regression Test for lineær regression - via proc glm p. 1/?? Proc glm Vi indlæser data i datasættet stress, der har to variable: areal,

Læs mere

k UAFHÆNGIGE grupper F-test Oversigt 1 Intro eksempel 2 Model og hypotese 3 Beregning - variationsopspaltning og ANOVA tabellen

k UAFHÆNGIGE grupper F-test Oversigt 1 Intro eksempel 2 Model og hypotese 3 Beregning - variationsopspaltning og ANOVA tabellen Introduktion til Statistik Forelæsning 10: Envejs variansanalyse, ANOVA Peder Bacher DTU Compute, Dynamiske Systemer Bygning 303B, Rum 017 Danmarks Tekniske Universitet 2800 Lyngby Danmark e-mail: pbac@dtu.dk

Læs mere

Uge 48 II Teoretisk Statistik 27. november 2003. Numerisk modelkontrol af diskrete fordelinger: intro

Uge 48 II Teoretisk Statistik 27. november 2003. Numerisk modelkontrol af diskrete fordelinger: intro Uge 48 II Teoretisk Statistik 7. november 003 Numerisk modelkontrol af diskrete fordelinger: intro Eksempel: kvalitetskontrol Goodness-of-fit test: generel teori Endeligt udfaldsrum Udfaldsrum uden øvre

Læs mere

Statistik II 4. Lektion. Logistisk regression

Statistik II 4. Lektion. Logistisk regression Statistik II 4. Lektion Logistisk regression Logistisk regression: Motivation Generelt setup: Dikotom(binær) afhængig variabel Kontinuerte og kategoriske forklarende variable (som i lineær reg.) Eksempel:

Læs mere

Ensidet eller tosidet alternativ. Hypoteser. tosidet alternativ. nul hypotese testes mod en alternativ hypotese

Ensidet eller tosidet alternativ. Hypoteser. tosidet alternativ. nul hypotese testes mod en alternativ hypotese Kursus 02402 Introduktion til Statistik Forelæsning 6: Kapitel 7: Hypotesetest for gennemsnit (one-sample setup). 7.4-7.6 Per Bruun Brockhoff DTU Compute, Statistik Bygning 305/324 Danmarks Tekniske Universitet

Læs mere

Multipel Lineær Regression. Polynomiel regression Ikke-lineære modeller og transformation Multi-kolinearitet Auto-korrelation og Durbin-Watson test

Multipel Lineær Regression. Polynomiel regression Ikke-lineære modeller og transformation Multi-kolinearitet Auto-korrelation og Durbin-Watson test Multipel Lineær Regression Polynomiel regression Ikke-lineære modeller og transformation Multi-kolinearitet Auto-korrelation og Durbin-Watson test Multipel lineær regression x,x,,x k uafhængige variable

Læs mere

En intro til radiologisk statistik

En intro til radiologisk statistik En intro til radiologisk statistik Erik Morre Pedersen Hypoteser og testning Statistisk signifikans 2 x 2 tabellen og lidt om ROC Inter- og intraobserver statistik Styrkeberegning Konklusion Litteratur

Læs mere

Faculty of Health Sciences. Logistisk regression: Interaktion Kvantitative responsvariable

Faculty of Health Sciences. Logistisk regression: Interaktion Kvantitative responsvariable Faculty of Health Sciences Logistisk regression: Interaktion Kvantitative responsvariable Susanne Rosthøj Biostatistisk Afdeling Institut for Folkesundhedsvidenskab Københavns Universitet sr@biostat.ku.dk

Læs mere

Statistik og Sandsynlighedsregning 2

Statistik og Sandsynlighedsregning 2 Statistik og Sandsynlighedsregning 2 Den flerdimensionale normalfordeling, fordeling af ( X,SSD) Helle Sørensen Uge 9, mandag SaSt2 (Uge 9, mandag) Flerdim. N, ford. af ( X,SSD) 1 / 16 Program Resultaterne

Læs mere

ØVELSER Statistik, Logistikøkonom Lektion 6: Hypotesetest 1

ØVELSER Statistik, Logistikøkonom Lektion 6: Hypotesetest 1 ! ØVELSER Statistik, Logistikøkonom Lektion 6: Hypotesetest 1 Eksempel 1 TEST AF MIDDELVÆRDI FRA ÉN STIKPRØVE (ukendt varians) En producent af tyggegummi påstår at en pakke tyggegummi i gennemsnit vejer

Læs mere

Løsning eksamen d. 15. december 2008

Løsning eksamen d. 15. december 2008 Informatik - DTU 02402 Introduktion til Statistik 2010-2-01 LFF/lff Løsning eksamen d. 15. december 2008 Referencer til Probability and Statistics for Engineers er angivet i rækkefølgen [8th edition, 7th

Læs mere

4. september 2003. π B = Lungefunktions data fra tirsdags Gennemsnit l/min

4. september 2003. π B = Lungefunktions data fra tirsdags Gennemsnit l/min Epidemiologi og biostatistik Uge, torsdag 28. august 2003 Morten Frydenberg, Institut for Biostatistik. og hoste estimation sikkerhedsintervaller antagelr Normalfordelingen Prædiktion Statistisk test (udfra

Læs mere

Hvis α vælges meget lavt, bliver β meget stor. Typisk vælges α = 0.01 eller 0.05

Hvis α vælges meget lavt, bliver β meget stor. Typisk vælges α = 0.01 eller 0.05 Statistik 7. gang 9. HYPOTESE TEST Hypotesetest ved 6 trins raket! : Trin : Formuler hypotese Spørgsmål der ønskes testet vha. data H : Nul hypotese Formuleres som en ligheds hændelse H eller H A : Alternativ

Læs mere

En Introduktion til SAS. Kapitel 6.

En Introduktion til SAS. Kapitel 6. En Introduktion til SAS. Kapitel 6. Inge Henningsen Afdeling for Statistik og Operationsanalyse Københavns Universitet Marts 2005 6. udgave Kapitel 6 Regressionsanalyse i SAS 6.1 Indledning Dette kapitel

Læs mere

Kvantitative Metoder 1 - Forår 2007. Dagens program

Kvantitative Metoder 1 - Forår 2007. Dagens program Dagens program Hypoteser: kap: 10.1-10.2 Eksempler på Maximum likelihood analyser kap 9.10 Test Hypoteser kap. 10.1 Testprocedure kap 10.2 Teststørrelsen Testsandsynlighed 1 Estimationsmetoder Kvantitative

Læs mere

Introduktion til Statistik. Forelæsning 3: Kontinuerte fordelinger. Peder Bacher

Introduktion til Statistik. Forelæsning 3: Kontinuerte fordelinger. Peder Bacher Introduktion til Statistik Forelæsning 3: Kontinuerte fordelinger Peder Bacher DTU Compute, Dynamiske Systemer Bygning 303B, Rum 009 Danmarks Tekniske Universitet 2800 Lyngby Danmark e-mail: pbac@dtu.dk

Læs mere

Modul 7: Eksempler. 7.1 Beskrivende dataanalyse. 7.1.1 Diagrammer. Bent Jørgensen. Forskningsenheden for Statistik ST501: Science Statistik

Modul 7: Eksempler. 7.1 Beskrivende dataanalyse. 7.1.1 Diagrammer. Bent Jørgensen. Forskningsenheden for Statistik ST501: Science Statistik Forskningsenheden for Statistik ST501: Science Statistik Bent Jørgensen Modul 7: Eksempler 7.1 Beskrivende dataanalyse............................... 1 7.1.1 Diagrammer.................................

Læs mere

Tema. Model og modelkontrol ( Fx. en normalfordelt obs. række m. kendt varians) Estimation af parametre. Fordeling. Hypotese og test. Teststørrelse.

Tema. Model og modelkontrol ( Fx. en normalfordelt obs. række m. kendt varians) Estimation af parametre. Fordeling. Hypotese og test. Teststørrelse. Tema Model og modelkontrol ( Fx. en normalfordelt obs. række m. kendt varians) Estimation af parametre. Fordeling. (Fx. x. µ) Hypotese og test. Teststørrelse. (Fx. H 0 : µ = µ 0 ) konfidensintervaller

Læs mere

Program. Simpel og multipel lineær regression. I tirsdags: model og estimation. I tirsdags: Prædikterede værdier og residualer

Program. Simpel og multipel lineær regression. I tirsdags: model og estimation. I tirsdags: Prædikterede værdier og residualer Program Simpel og multipel lineær regression Helle Sørensen E-mail: helle@math.ku.dk Simpel LR: repetition, konfidensintervaller, test, prædiktionsintervaller, mm. Multipel LR: estimation, valg af model,

Læs mere

Oversigt. 1 Eksempel. 2 Fordelingen for gennemsnittet t-fordelingen. 3 Konfidensintervallet for µ Eksempel

Oversigt. 1 Eksempel. 2 Fordelingen for gennemsnittet t-fordelingen. 3 Konfidensintervallet for µ Eksempel Kursus 02402/02323 Introducerende Statistik Forelæsning 4: Konfidensinterval for middelværdi (og spredning) Klaus K. Andersen og Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Danmarks Tekniske

Læs mere

Kapitel 7 Forskelle mellem centraltendenser

Kapitel 7 Forskelle mellem centraltendenser Kapitel 7 Forskelle mellem centraltendenser Peter Tibert Stoltze stat@peterstoltze.dk Elementær statistik F2011 1 / 29 Indledning 1. z-test for ukorrelerede data 2. t-test for ukorrelerede data med ens

Læs mere

Binomial fordeling. n f (x) = p x (1 p) n x. x = 0, 1, 2,...,n = x. x x!(n x)! Eksempler. Middelværdi np og varians np(1 p). 2/

Binomial fordeling. n f (x) = p x (1 p) n x. x = 0, 1, 2,...,n = x. x x!(n x)! Eksempler. Middelværdi np og varians np(1 p). 2/ Program: 1. Repetition af vigtige sandsynlighedsfordelinger: binomial, (Poisson,) normal (og χ 2 ). 2. Populationer og stikprøver 3. Opsummering af data vha. deskriptive størrelser og grafer. 1/29 Binomial

Læs mere

Kvantitative Metoder 1 - Forår 2007

Kvantitative Metoder 1 - Forår 2007 Dagens program Afsnit 3.3-3.5 Varians Eksempel: Forventet nytte Kovarians og korrelation Middelværdi og varians af summer af stokastiske variabler Eksempel: Porteføljevalg 1 Beskrivelse af fordelinger

Læs mere

SENIORKURSUS STATA OG BIOSTATISTIK

SENIORKURSUS STATA OG BIOSTATISTIK SENIORKURSUS STATA OG BIOSTATISTIK Aarhus Universitet juni 011 Genopfriskning af statistik Basale tankegange og begreber (i dag) Sammenligninger (i morgen) Sammenhænge (i overmorgen) Brug af programpakken

Læs mere

Appendiks Økonometrisk teori... II

Appendiks Økonometrisk teori... II Appendiks Økonometrisk teori... II De klassiske SLR-antagelser... II Hypotesetest... VII Regressioner... VIII Inflation:... VIII Test for SLR antagelser... IX Reset-test... IX Plots... X Breusch-Pagan

Læs mere

Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab. Indledende om Signifikanstest Boldøvelser

Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab. Indledende om Signifikanstest Boldøvelser Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab Indledende om Signifikanstest Boldøvelser 1 Påstand: Et nyt præparat M virker mod migræne. Inden præparatet kan markedsføres, skal denne påstand

Læs mere

Sandsynlighedsregning: endeligt udfaldsrum (repetition)

Sandsynlighedsregning: endeligt udfaldsrum (repetition) Program: 1. Repetition: sandsynlighedsregning 2. Sandsynlighedsregning fortsat: stokastisk variabel, sandsynlighedsfunktion/tæthed, fordelingsfunktion. 1/16 Sandsynlighedsregning: endeligt udfaldsrum (repetition)

Læs mere

Statistik Lektion 1. Introduktion Grundlæggende statistiske begreber Deskriptiv statistik Sandsynlighedsregning

Statistik Lektion 1. Introduktion Grundlæggende statistiske begreber Deskriptiv statistik Sandsynlighedsregning Statistik Lektion 1 Introduktion Grundlæggende statistiske begreber Deskriptiv statistik Sandsynlighedsregning Introduktion Kasper K. Berthelsen, Inst f. Matematiske Fag Omfang: 8 Kursusgang I fremtiden

Læs mere

Statistik i basketball

Statistik i basketball En note til opgaveskrivning jerome@falconbasket.dk 4. marts 200 Indledning I Falcon og andre klubber er der en del gymnasieelever, der på et tidspunkt i løbet af deres gymnasietid skal skrive en større

Læs mere

Maple 11 - Chi-i-anden test

Maple 11 - Chi-i-anden test Maple 11 - Chi-i-anden test Erik Vestergaard 2014 Indledning I dette dokument skal vi se hvordan Maple kan bruges til at løse opgaver indenfor χ 2 tests: χ 2 - Goodness of fit test samt χ 2 -uafhængighedstest.

Læs mere

Basal statistik Esben Budtz-Jørgensen 4. november Forsøgsplanlægning Stikprøvestørrelse

Basal statistik Esben Budtz-Jørgensen 4. november Forsøgsplanlægning Stikprøvestørrelse Basal statistik Esben Budtz-Jørgensen 4. november 2008 Forsøgsplanlægning Stikprøvestørrelse 1 46 Planlægning af et studie Videnskabelig hypotese Endpoints Instrumentelle/eksponerings variable Variationskilder

Læs mere

Estimation og konfidensintervaller

Estimation og konfidensintervaller Statistik og Sandsynlighedsregning STAT kapitel 4.4 Susanne Ditlevsen Institut for Matematiske Fag Email: susanne@math.ku.dk http://math.ku.dk/ susanne Estimation og konfidensintervaller Antag X Bin(n,

Læs mere

Hvad skal vi lave? Nulhypotese - alternativ. Teststatistik. Signifikansniveau

Hvad skal vi lave? Nulhypotese - alternativ. Teststatistik. Signifikansniveau Hvad skal vi lave? 1 Statistisk inferens: Hypotese og test Nulhypotese - alternativ. Teststatistik P-værdi Signifikansniveau 2 t-test for middelværdi Tosidet t-test for middelværdi Ensidet t-test for middelværdi

Læs mere

Opgave 10.1, side 282 (for 6. og 7. ed. af lærerbogen se/løs opgave 9.1)

Opgave 10.1, side 282 (for 6. og 7. ed. af lærerbogen se/løs opgave 9.1) Kursus 02402: Besvarelser til øvelsesopgaver i uge 9 Opgave 10.1, side 282 (for 6. og 7. ed. af lærerbogen se/løs opgave 9.1) Som model benyttes en binomialfordeling, som beskriver antallet, X, blandt

Læs mere

1 Hb SS Hb Sβ Hb SC = , (s = )

1 Hb SS Hb Sβ Hb SC = , (s = ) PhD-kursus i Basal Biostatistik, efterår 2006 Dag 6, onsdag den 11. oktober 2006 Eksempel 9.1: Hæmoglobin-niveau og seglcellesygdom Data: Hæmoglobin-niveau (g/dl) for 41 patienter med en af tre typer seglcellesygdom.

Læs mere

Løsning til eksaminen d. 14. december 2009

Løsning til eksaminen d. 14. december 2009 DTU Informatik 02402 Introduktion til Statistik 200-2-0 LFF/lff Løsning til eksaminen d. 4. december 2009 Referencer til Probability and Statistics for Engineers er angivet i rækkefølgen [8th edition,

Læs mere

Kvantitative Metoder 1 - Forår 2007

Kvantitative Metoder 1 - Forår 2007 Dagens program Estimation: Kapitel 9.1-9.3 Estimation Estimationsfejlen Bias Eksempler Bestemmelse af stikprøvens størrelse Konsistens De nitioner påkonsistens Eksempler på konsistente og middelrette estimatorer

Læs mere

Normalfordelingen. Statistik og Sandsynlighedsregning 2

Normalfordelingen. Statistik og Sandsynlighedsregning 2 Statistik og Sandsynlighedsregning 2 Repetition og eksamen T-test Normalfordelingen Erfaringsmæssigt er normalfordelingen velegnet til at beskrive variationen i mange variable, blandt andet tilfældige

Læs mere

02402 Vejledende løsninger til Splus-opgaverne fra hele kurset

02402 Vejledende løsninger til Splus-opgaverne fra hele kurset 02402 Vejledende løsninger til Splus-opgaverne fra hele kurset Vejledende løsning SPL3.3.1 Der er tale om en binomialfordeling med n =10ogp=0.6, og den angivne sandsynlighed er P (X =4) som i bogen også

Læs mere

Susanne Ditlevsen Institut for Matematiske Fag susanne

Susanne Ditlevsen Institut for Matematiske Fag    susanne Statistik og Sandsynlighedsregning 1 STAT kapitel 4.4 Susanne Ditlevsen Institut for Matematiske Fag Email: susanne@math.ku.dk http://math.ku.dk/ susanne 7. undervisningsuge, mandag 1 Estimation og konfidensintervaller

Læs mere

Eksempler fra bogen Statistiske Grundbegreber løst ved anvendelse af Excel.

Eksempler fra bogen Statistiske Grundbegreber løst ved anvendelse af Excel. Eksempler fra bogen Statistiske Grundbegreber løst ved anvendelse af Excel. Kapitel Deskriptiv statistik Indhold 1. Generelle forhold... 1 Kapitel : Deskriptiv Statistik... 1 Kapitel 4: Normalfordelingen...

Læs mere

Forelæsning 9: Inferens for andele (kapitel 10)

Forelæsning 9: Inferens for andele (kapitel 10) Kursus 02402 Introduktion til Statistik Forelæsning 9: Inferens for andele (kapitel 10) Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800

Læs mere

Funktionalligninger - løsningsstrategier og opgaver

Funktionalligninger - løsningsstrategier og opgaver Funktionalligninger - løsningsstrategier og opgaver Altså er f (f (1)) = 1. På den måde fortsætter vi med at samle oplysninger om f og kombinerer dem også med tidligere oplysninger. Hvis vi indsætter =

Læs mere

Besvarelser til øvelsesopgaver i uge 6

Besvarelser til øvelsesopgaver i uge 6 Besvarelser til øvelsesopgaver i uge 6 Opgave 7.46, side 228 (7ed 7.28, side 244 og 6ed: 7.28, side 240) Vi tænker os, at vi har data for emissionen {x 1, x 2,..., x n }, når det pågældende device er monteret.

Læs mere

To-sidet varians analyse

To-sidet varians analyse To-sidet varians analyse Repetition En-sidet ANOVA Parvise sammenligninger, Tukey s test Model begrebet To-sidet ANOVA Tre-sidet ANOVA Blok design SPSS ANOVA - definition ANOVA (ANalysis Of VAriance),

Læs mere

9. Chi-i-anden test, case-control data, logistisk regression.

9. Chi-i-anden test, case-control data, logistisk regression. Biostatistik - Cand.Scient.San. 2. semester Karl Bang Christensen Biostatististisk afdeling, KU kach@biostat.ku.dk, 35327491 9. Chi-i-anden test, case-control data, logistisk regression. http://biostat.ku.dk/~kach/css2014/

Læs mere

Tænk på a og b som to n 1 matricer. a 1 a 2 a n. For hvert i = 1,..., n har vi y i = x i β + u i.

Tænk på a og b som to n 1 matricer. a 1 a 2 a n. For hvert i = 1,..., n har vi y i = x i β + u i. Repetition af vektor-regning Økonometri: Lektion 3 Matrix-formulering Fordelingsantagelse Hypotesetest Antag vi har to n-dimensionelle (søjle)vektorer a 1 b 1 a 2 a =. og b = b 2. a n b n Tænk på a og

Læs mere

Basal statistik. 30. januar 2007

Basal statistik. 30. januar 2007 Basal statistik 30. januar 2007 Deskriptiv statistik Typer af data Tabeller Grafik Summary statistics Lene Theil Skovgaard, Biostatistisk Afdeling Institut for Folkesundhedsvidenskab, Københavns Universitet

Læs mere

Kommentarer til opg. 1 og 3 ved øvelser i basalkursus, 3. uge

Kommentarer til opg. 1 og 3 ved øvelser i basalkursus, 3. uge Kommentarer til opg. 1 og 3 ved øvelser i basalkursus, 3. uge Opgave 1. Data indlæses i 3 kolonner, som f.eks. kaldessalt,pre ogpost. Der er således i alt tale om 26 observationer, idet de to grupper lægges

Læs mere

Program. t-test Hypoteser, teststørrelser og p-værdier. Hormonkonc.: statistisk model og konfidensinterval. Hormonkoncentration: data

Program. t-test Hypoteser, teststørrelser og p-værdier. Hormonkonc.: statistisk model og konfidensinterval. Hormonkoncentration: data Faculty of Life Sciences Program t-test Hypoteser, teststørrelser og p-værdier Claus Ekstrøm E-mail: ekstrom@life.ku.dk Resumé og hængepartier fra sidst. Eksempel: effekt af foder på hormonkoncentration

Læs mere

Module 2: Beskrivende Statistik

Module 2: Beskrivende Statistik Forskningsenheden for Statistik ST01: Elementær Statistik Bent Jørgensen og Hans Chr. Petersen Module 2: Beskrivende Statistik 2.1 Histogrammer og søjlediagrammer......................... 1 2.2 Sammenfatning

Læs mere

Regneregler for middelværdier M(X+Y) = M X +M Y. Spredning varians og standardafvigelse. 1 n VAR(X) Y = a + bx VAR(Y) = VAR(a+bX) = b²var(x)

Regneregler for middelværdier M(X+Y) = M X +M Y. Spredning varians og standardafvigelse. 1 n VAR(X) Y = a + bx VAR(Y) = VAR(a+bX) = b²var(x) Formelsamlingen 1 Regneregler for middelværdier M(a + bx) a + bm X M(X+Y) M X +M Y Spredning varians og standardafvigelse VAR(X) 1 n n i1 ( X i - M x ) 2 Y a + bx VAR(Y) VAR(a+bX) b²var(x) 2 Kovariansen

Læs mere

Resumé: En statistisk analyse resulterer ofte i : Et estimat θˆmed en tilhørende se

Resumé: En statistisk analyse resulterer ofte i : Et estimat θˆmed en tilhørende se Epidemiologi og biostatistik. Uge, torsdag 5. februar 00 Morten Frydenberg, Institut for Biostatistik. Type og type fejl Statistisk styrke Nogle speciale metoder: Normalfordelte data : t-test eksakte sikkerhedsintervaller

Læs mere

Anvendt Statistik Lektion 9. Variansanalyse (ANOVA)

Anvendt Statistik Lektion 9. Variansanalyse (ANOVA) Anvendt Statistik Lektion 9 Variansanalyse (ANOVA) 1 Undersøge sammenhæng Undersøge sammenhænge mellem kategoriske variable: χ 2 -test i kontingenstabeller Undersøge sammenhæng mellem kontinuerte variable:

Læs mere

Kursusindhold: Produkt og marked - matematiske og statistiske metoder. Monte Carlo

Kursusindhold: Produkt og marked - matematiske og statistiske metoder. Monte Carlo Kursusindhold: Produkt og marked - matematiske og statistiske metoder Rasmus Waagepetersen Institut for Matematiske Fag Aalborg Universitet Sandsynlighedsregning og lagerstyring Normalfordelingen og Monte

Læs mere

Normalfordelingen. Det centrale er gentagne målinger/observationer (en stikprøve), der kan beskrives ved den normale fordeling: 1 2πσ

Normalfordelingen. Det centrale er gentagne målinger/observationer (en stikprøve), der kan beskrives ved den normale fordeling: 1 2πσ Normalfordelingen Det centrale er gentagne målinger/observationer (en stikprøve), der kan beskrives ved den normale fordeling: f(x) = ( ) 1 exp (x µ)2 2πσ 2 σ 2 Frekvensen af observationer i intervallet

Læs mere

Analyse af bivirkninger på besætningsniveau efter vaccination med inaktiveret BlueTongue Virus (BTV) serotype 8 i danske malkekvægsbesætninger

Analyse af bivirkninger på besætningsniveau efter vaccination med inaktiveret BlueTongue Virus (BTV) serotype 8 i danske malkekvægsbesætninger Analyse af bivirkninger på besætningsniveau efter vaccination med inaktiveret BlueTongue Virus (BTV) serotype 8 i danske malkekvægsbesætninger Af Karen Helle Sloth og Flemming Skjøth, AgroTech Sammendrag

Læs mere

Susanne Ditlevsen Institut for Matematiske Fag Email: susanne@math.ku.dk http://math.ku.dk/ susanne

Susanne Ditlevsen Institut for Matematiske Fag Email: susanne@math.ku.dk http://math.ku.dk/ susanne Statistik og Sandsynlighedsregning 1 Indledning til statistik, kap 2 i STAT Susanne Ditlevsen Institut for Matematiske Fag Email: susanne@math.ku.dk http://math.ku.dk/ susanne 5. undervisningsuge, onsdag

Læs mere

2 X 2 = Antal mygstik på enpersoniløbetaf1minut

2 X 2 = Antal mygstik på enpersoniløbetaf1minut Opgave I I mange statistiske undersøgelser bygger man analysen på anvendelse af normalfordelingen til (eventuelt tilnærmelsesvist) at beskrive den tilfældige variation. Spørgsmål I.1 (1): Forén af følgende

Læs mere

Personlig stemmeafgivning

Personlig stemmeafgivning Ib Michelsen X 2 -test 1 Personlig stemmeafgivning Efter valget i 2005 1 har man udspurgt en mindre del af de deltagende, om de har stemt personligt. Man har svar fra 1131 mænd (hvoraf 54 % har stemt personligt

Læs mere

Logistisk Regression. Repetition Fortolkning af odds Test i logistisk regression

Logistisk Regression. Repetition Fortolkning af odds Test i logistisk regression Logistisk Regression Repetition Fortolkning af odds Test i logistisk regression Logistisk Regression: Definitioner For en binær (0/) variabel Y antager vi P(Y)p P(Y0)-p Eksempel: Bil til arbejde vs alder

Læs mere

Anvendt Statistik Lektion 9. Variansanalyse (ANOVA)

Anvendt Statistik Lektion 9. Variansanalyse (ANOVA) Anvendt Statistik Lektion 9 Variansanalyse (ANOVA) 1 Undersøge sammenhæng Undersøge sammenhænge mellem kategoriske variable: χ 2 -test i kontingenstabeller Undersøge sammenhæng mellem kontinuerte variable:

Læs mere

Program. Sammenligning af to stikprøver Ikke-parametriske metoder Opsummering. Test for ens spredninger

Program. Sammenligning af to stikprøver Ikke-parametriske metoder Opsummering. Test for ens spredninger Program Sammenligning af to stikprøver Ikke-parametriske metoder Opsummering Helle Sørensen E-mail: helle@math.ku.dk I formiddag: Analyse af ikke-parrede stikprøver: repetition of rettelse af fejl! Lidt

Læs mere

Modul 3: Kontinuerte stokastiske variable

Modul 3: Kontinuerte stokastiske variable Forskningsenheden for Statistik ST501: Science Statistik Bent Jørgensen Modul 3: Kontinuerte stokastiske variable 3.1 Kontinuerte stokastiske variable........................... 1 3.1.1 Tæthedsfunktion...............................

Læs mere

2 0.9245. Multiple choice opgaver

2 0.9245. Multiple choice opgaver Multiple choice opgaver Der gøres opmærksom på, at ideen med opgaverne er, at der er ét og kun ét rigtigt svar på de enkelte spørgsmål. Endvidere er det ikke givet, at alle de anførte alternative svarmuligheder

Læs mere