Kursusgang 5 Afledte funktioner og differentialer Repetition

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Starte visningen fra side:

Download "Kursusgang 5 Afledte funktioner og differentialer Repetition"

Transkript

1 Kursusgang 5 Repetition - froberg/oecon3 Institut for Matematiske Fag Aalborg Universitet 30. september /15

2 Differenskvotient og Differentialkvotient For en funktion f (x) fås en tilnærmee hælning i et punkt x 0 ve ifferenskvotienten y x = f (x 0 + h) f (x 0 ) h Den faktiske hælning fås som grænseværien af enne f (x 0 ) = lim h 0 f (x 0 + h) f (x 0 ) h funktionen f (x) kales en aflete af f (x), og noteres også som x f (x) eller y x når y = f (x). 2/15

3 Eksempler på aflete funktioner Vi har set følgene aflete funktioner x k = 0 x xn = nx n 1 x ex = e x x ln x = 1 x x bx = b x lnb x log b x = 1 x ln b 3/15

4 Regneregler For afleee funktioner gæler er følgene resultater: Proukt me skalar x c f (x) = c x f (x) = c f (x) Sum eller ifferens af to funktioner x (f (x) ± g(x)) = x f (x) ± x g(x) = f (x) ± g (x) Prouktreglen x (f (x) g(x)) = x f (x) g(x) + f (x) x g(x) = f (x)g(x) + f (x)g (x) Kvotientreglen [ ] f (x) = f (x)g(x) f (x)g (x) x g(x) g 2 (x) 4/15

5 Kæereglen Givet en ifferentiabel funktion z = f (y) hvor y er en funktion af en anen variabel y = g(x), så gæler er at z x = z y y x Reglen kenes også som reglen for ifferentiation af sammensatte funktioner, sålees at hvis vi skriver z = f (g(x)), så svarer ovenståene utryk til z x = f (g(x))g (x) Ex: Hvis z = e y hvor y = 4x 3 så er z x = ey 12x 2 = e 4x 312x 2 5/15

6 Invers funktion reglen Hvis funktionen y = f (x) opfører sig på en måe så hver y-væri svarer til en unik x-væri, så har funktionen f en invers funktion f 1 Funktioner er har en invers, kales strengt monotone, vs. e er enten strengt voksene eller strengt aftagene. Strengt voksene betyer at x 2 > x 1 f (x 2 ) > f (x 1 ) Strengt aftagene betyer at x 2 > x 1 f (x 2 ) < f (x 1 ) f (x) > 0 for alle x f (x) < 0 for alle x Dvs. er er alti enten positiv eller negativ hælning. 6/15

7 Inverse funktioner Generelt gæler er at båe en originale funktion og en inverse er strengt monotone funktioner. Den originale funktion er inverse til en inverse. Grafen for en inverse svarer til spejlbilleet gennem en 45 graers linie i planen, som vi så et for eksponentialfunktioner og logaritmer. For inverse funktioner gæler er at x y = 1 y/x 7/15

8 Partiel Differentiation Vi betragter funktionen y = f (x 1, x 2,..., x n ) hvor ingen af variable x 1,..., x n afhænger af hinanen. Vi kan så variere f.eks. x 1 mens værien af e anre x er fastholt, og se på hvoran ette påvirker y. U fra ette kan vi betragte ifferenskvotienten y = f (x 1 + h, x 2,...,x n ) f (x 1, x 2,..., x n ) x 1 h Betragter vi grænseværien af enne for h gåene mo 0 så får vi en partielle ifferentialkvotient me hensyn til x 1 f 1 (x) = y f (x 1 + h, x 2,..., x n ) f (x 1, x 2,...,x n ) = lim x 1 h 0 h 8/15

9 Eksempler på partiel ifferentiation Den største forskel mellem alm. og partiel ifferentiation er at vi har fastholer (n 1) variable mens vi varierer en. Teknikken ve ette bliver så at alle e variable man ikke ifferentierer mht. kan betragtes som konstanter ve uregningen. Ex: Givet y = f (x 1, x 2, x 3 ) = 10x ex2 + x 2 lnx 3 + x 1 x 3 fås e partielle afleee til: f 1 (x) = y x 1 = 40x x 3 f 2 (x) = y x 2 = e x2 + ln x 3 f 3 (x) = y x 3 = x 2 x 3 + x 1 De partielle aflee svarer til hælningen i en givne variabels retning. 9/15

10 Graientvektor Alle e partielle aflete kan samles i en størrelse, som kales graientvektoren. Denne er givet ve f (x 1, x 2,..., x n ) = (f 1, f 2,..., f n ) For eksemplet ovenfor fås et altså at f (x 1, x 2,..., x n ) = (40x x 3, e x2 + lnx 3, x 2 x 3 + x 1 ) Evaluerer man graientvektoren i et punkt fås er en vektor beståene af størrelsen af e aflete i e forskellige retninger. Fortsætter vi eksemplet fås f (0, 0, 1) = ( , e 0 + ln(1), 0 + 0) = (1, 1, 0) 1 10/15

11 Hvis vi betragter y x = f (x) så kan ette omskrives til utrykket y = f (x)x De to størrelser y og x kales ifferentialer, og y kan opfattes som en approksimation til tilvæksten i y,, y i forhol til tilvæksten i x, x. Denne ie uvies let til funktioner af flere variable vha. e partielle aflete. Man får sålees et totale ifferential for en funktion y = f (x 1, x 2,..., x n ) ve y = n i=1 y x i x i = y x 1 x 1 + y x 2 x y x n x n y er her igen en approksimation til tilvæksten i y, y i forhol til tilvækster i variablene x 1,..., x n. 11/15

12 Implicitte funktioner En funktion på formen y = f (x 1,...,x n ) kales en eksplicit funktion, a er er givet et eksplicit utryk for hvoran y afhænger af x 1,...,x n. En funktion på formen F(y, x 1,..., x n ) = 0 kales en implicit funktion, a utrykket kun antyer (eng: implies) en sammenhæng mellem variablene. I nogle tilfæle kan en implicit funktion omskrives til en eksplicit funktion ve at isolere y, men et gæler ikke alti. : Ex: Betragt F(x, y) = x 2 + y 2 9 = 0. Dette utryk angiver ikke en funktion, men en relation mellem y og x, a utrykket svarer til en cirkel i planen, sålees at er for en x-væri kan være flere y værier. Vi kan og betragte enten en øvre eller nere halvcircel som en funktion a y = ± 9 x 2 12/15

13 Implicitte funktioner Uner hvilke betingelser gæler et at er kan fines en eksplicit efineret funktion u fra en implicit? Dette gæler hvis 1. De partielle aflete F y,f 1,..., F n er kontinuerte 2. Der fines et punkt y 0,x 10,..., x n0 så F(y 0,x 10,..., x n0) = 0 og F Y (y 0,x 10,..., x n0) 0. Så eksisterer er et områe omkring x 10,..., x n0 hvor y = f (x 1,..., x n ) og y 0 = f (x 10,...,x n0 ). Denne funktion er kontinuert og har kontinuerte aflete. 13/15

14 Aflete af implicitte funktioner Hvis y kan isoleres kan e aflete beregnes irekte. F.eks. fås er for y + = 9 x 2 y + x = 1 2 x ( 2x) = 9 x2 y + y = 9 x 2 y x = 1 2 x ( 2x) = 9 x2 y Hvis y ikke kan isoleres kan e partielle aflete beregnes ve y x i = F i F y 14/15

15 Ex: F(y, x, w) = y 3 x 2 + w 3 + yxw 3 = 0 Ikke umielbart muligt at isolere y F y = 3y 2 x 2 + xw,f x = 2y 3 x + yw og F w = 3w 2 + yx er alle kontinuerte. F y (1, 1, 1) = 4 0, vs. y = f (x, w) eksisterer i et områe omkring ette punkt, og e partielle aflete fås ve y x = F x F y = 2y3 x + yw 3y 2 x 2 + xw y w = F w F y = 3w2 + yx 3y 2 x 2 + xw 15/15

Test grafisk afledede Højere partielle afledede Differentiationsordenen er ligegyldig Partielle differentialligninger Test Laplaces ligning

Test grafisk afledede Højere partielle afledede Differentiationsordenen er ligegyldig Partielle differentialligninger Test Laplaces ligning Oversigt [S] 2.7, 3.1, 3.4, 11.3 Nøgleor og begreber Differentiabel funktion i en variabel Partielle afleee i flere variable Notation og regneregler for partielle afleee Test partielle afleee Grafisk afleee

Læs mere

Grafregner-projekt om differentiation.

Grafregner-projekt om differentiation. Grafregner-projekt om ifferentiation. Motivation: Når nu ifferentieret giver, og e ifferentieret giver e, hvorfor får man så ikke e når man ifferentiere e? Formål: ) At opnå kenskab til, og forståelse

Læs mere

Differentiation af Logaritmer

Differentiation af Logaritmer Differentiation af Logaritmer Frank Nasser 11. juli 2011 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Indhold

Læs mere

Opgave 1 ( Toppunktsformlen )

Opgave 1 ( Toppunktsformlen ) Opgve 1 ( Toppunktsformlen ) Et nengrspolynomium er givet ve f x x 2 b x c. For t fine toppunktet vil vi først ifferentiere f x Derefter løser vi ligningen f ' x x b f ' x 0 x b 0 x b D f ' x x b er en

Læs mere

Elementære funktioner

Elementære funktioner enote 14 1 enote 14 Elementære funktioner I enne enote vil vi els repetere nogle af e basale egenskaber for et uvalg af e (fra gymnasiet) velkente funktioner f (x) af én reel variabel x, og els introucere

Læs mere

Løsningsforslag 7. januar 2011

Løsningsforslag 7. januar 2011 Løsningsforslag 7. januar 2011 May 9, 2012 Opgave 1 (5%) Funktionen f er givet ved forskriften f(x) = ln(x 2) + x 2. a) Bestem definitionsmængden for f. b) Beregn f (x). a) Definitionsmængden Logaritmen

Læs mere

Fri søjlelængder for rammekonstruktioner.

Fri søjlelængder for rammekonstruktioner. Fri søjlelænger for rammekonstruktioner. maj 013, LC I litteratur som eksempelvist Teknisk Ståbi kan man fine e frie søjlelænger for en række stanarstilfæle. For søjler gæler Eulers søjleformel, som kan

Læs mere

Sølvkorn 11 Eksponentialfunktioner og logaritmer

Sølvkorn 11 Eksponentialfunktioner og logaritmer Eksponentialfunktioner og logaritmer Rasmus Sylvester Bryder Findes der for b, y > 0 et x R, så b x = y? Svaret er ja undtagen for b = 1, y 1), og det er alment kendt, at logaritmefunktionen gør et godt

Læs mere

Lektion 6 Logaritmefunktioner

Lektion 6 Logaritmefunktioner Lektion 6 Logaritmefunktioner Den naturlige logaritmefunktion Andre logaritmefunktioner log() Regneregler Integration ln() =, ln(e) = ln(a b) = ln(a) + ln(b) ln(a r ) = r ln(a) d = ln + C En berømt grænseværdi

Læs mere

Hjemmeopgavesæt 01.02.10

Hjemmeopgavesæt 01.02.10 Rami Kaoura Matematik A Dato 01.0.010 Hjemmeopgavesæt 01.0.10 Navn: Rami Kaoura Klasse: 1.4 Fag: Matematik A Vejleer: Jørn Christian Bentsen Skole: Roskile tekniske gymnasium, Htx Dato: 01.0.010 1 Rami

Læs mere

PeterSørensen.dk : Differentiation

PeterSørensen.dk : Differentiation PeterSørensen.dk : Differentiation Betydningen af ordet differentialkvotient...2 Sekant...2 Differentiable funktioner...3 Bestemmelse af differentialkvotient i praksis ved opgaveløsning...3 Regneregler:...3

Læs mere

DesignMat Uge 8 Integration og elementære funktioner

DesignMat Uge 8 Integration og elementære funktioner DesignMat Uge 8 Integration og elementære funktioner Preben Alsholm Forår 008 Hyperbolske funktioner. sinh og cosh sinh og cosh Sinus hyperbolsk efineres sålees for alle x R sinh x = ex e x Cosinus hyperbolsk

Læs mere

Kursusgang 3 Matrixalgebra Repetition

Kursusgang 3 Matrixalgebra Repetition Kursusgang 3 Repetition - froberg@mathaaudk http://peoplemathaaudk/ froberg/oecon3 Institut for Matematiske Fag Aalborg Universitet 12 september 2008 1/12 Lineære ligningssystemer Et lineært ligningssystem

Læs mere

Ligninger med reelle løsninger

Ligninger med reelle løsninger Ligninger med reelle løsninger, marts 2008, Kirsten Rosenkilde 1 Ligninger med reelle løsninger Når man løser ligninger, er der nogle standardmetoder som er vigtige at kende. Vurdering af antallet af løsninger

Læs mere

MATEMATIK B-NIVEAU STX081-MAB

MATEMATIK B-NIVEAU STX081-MAB MATEMATIK B-NIVEAU STX081-MAB Delprøven uden hjælpemidler Opgave 1 Indsættes h = 2 og x = i (x + h) 2 h(h + 2x), så fås (x + h) 2 h(h + 2x) = ( + 2) 2 2(2 + 2 ) = 5 2 2 8 = 25 16 = 9 Hvis man i stedet

Læs mere

Kort om. Andengradspolynomier. 2011 (2012) Karsten Juul

Kort om. Andengradspolynomier. 2011 (2012) Karsten Juul Kort om Anengraspolynomier 11 (1) Karsten Juul Dette häfte ineholer pensum i anengraspolynomier for gymnasiet og hf Inhol 1. Definition Anengraspolynomium... 1. Eksempel Hvilke tal er a, b og c lig?...

Læs mere

Funktioner af flere variable

Funktioner af flere variable Funktioner af flere variable Stud. Scient. Martin Sparre Københavns Universitet 23-10-2006 Definition 1 (Definition af en funktion af flere variable). En funktion af n variable defineret på en delmængde,

Læs mere

Differentialligninger. Ib Michelsen

Differentialligninger. Ib Michelsen Differentialligninger Ib Michelsen Ikast 203 2 Indholdsfortegnelse Indholdsfortegnelse Indholdsfortegnelse...2 Ligninger og løsninger...3 Indledning...3 Lineære differentialligninger af første orden...3

Læs mere

MM501 forelæsningsslides

MM501 forelæsningsslides MM50 forelæsningsslides uge 36, 2009 Produceret af Hans J. Munkholm Nogle talmængder s. 3 N = {, 2, 3, } omtales som de naturlige tal eller de positive heltal. Z = {0, ±, ±2, ±3, } omtales som de hele

Læs mere

TALTEORI Wilsons sætning og Euler-Fermats sætning.

TALTEORI Wilsons sætning og Euler-Fermats sætning. Wilsons sætning og Euler-Fermats sætning, marts 2007, Kirsten Rosenkilde 1 TALTEORI Wilsons sætning og Euler-Fermats sætning. Disse noter forudsætter et grundlæggende kendskab til talteori som man kan

Læs mere

Differentialregning Infinitesimalregning

Differentialregning Infinitesimalregning Udgave 2.1 Differentialregning Infinitesimalregning Noterne gennemgår begreberne differentialregning, og anskuer dette som et derligere redskab til vækst og funktioner. Noterne er supplement til kapitel

Læs mere

Preben Holm - Copyright 2002

Preben Holm - Copyright 2002 En regelmæssig bølge kales en harmonisk bølge: Bølgelænge er længen fra f.eks. en bølgetop til næste bølgetop Perioe/svingningsti: Tien et tager at bvæge sig en hel bølgelænge Amplitue: et maksimale usving

Læs mere

Formelsamling Matematik på højniveau version 2.0 af Daniel Thaagaard Andreasen & Kristian Jerlsev Aarhus Universitet Institut for Fysik og Astronomi

Formelsamling Matematik på højniveau version 2.0 af Daniel Thaagaard Andreasen & Kristian Jerlsev Aarhus Universitet Institut for Fysik og Astronomi Formelsamling Matematik på højniveau version 2.0 af Daniel Thaagaar Anreasen & Kristian Jerlsev Aarhus Universitet Institut for Fysik og Astronomi Inhol 1 Foror 2 2 Potensregneregler 3 3 Kvaratsætninger

Læs mere

Funktionalligninger - løsningsstrategier og opgaver

Funktionalligninger - løsningsstrategier og opgaver Funktionalligninger - løsningsstrategier og opgaver Altså er f (f (1)) = 1. På den måde fortsætter vi med at samle oplysninger om f og kombinerer dem også med tidligere oplysninger. Hvis vi indsætter =

Læs mere

Opgaver til Maple kursus 2012

Opgaver til Maple kursus 2012 Opgaver til Maple kursus 2012 Jonas Camillus Jeppesen, jojep07@student.sdu.dk Martin Gyde Poulsen, gyde@nqrd.dk October 7, 2012 1 1 Indledende opgaver Opgave 1 Udregn følgende regnestykker: (a) 2342 +

Læs mere

Den svingende streng

Den svingende streng Den svingende streng Stig Andur Pedersen October 2, 2009 Ufuldstændigt udkast. Abstract 1 I det 18. århundrede blev differential- og integralregningen, som var introduceret af Newton, Leibniz og mange

Læs mere

Mat. B (Sådan huskes fomlerne) Formler, som skal kunnes til prøven uden hjælpemidler

Mat. B (Sådan huskes fomlerne) Formler, som skal kunnes til prøven uden hjælpemidler Mt. B (Sån huskes fomlerne) Formler, som skl kunnes til prøven uen hjælpemiler Inhol Her er tilføjet emærkninger til nogle f formlerne BRØKER... PARENTESER... EKSPONENTER... LOGARITMER... GEOMETRI... Arel

Læs mere

10. Differentialregning

10. Differentialregning 10. Differentialregning Hayati Balo,AAMS Følgende fremstilling er baseret på 1. Nils Victor-Jensen, Matematik for adgangskursus, B-niveau 2, 2. udg. 10.1 Grænseværdibegrebet I afsnit 7. Funktioner på side

Læs mere

Kursusgang 3 Matrixalgebra Repetition

Kursusgang 3 Matrixalgebra Repetition Kursusgang 3 Repetition - froberg@math.aau.dk http://people.math.aau.dk/ froberg/oecon3 Institut for Matematiske Fag Aalborg Universitet 16. september 2008 1/19 Betingelser for nonsingularitet af en Matrix

Læs mere

TALTEORI Wilsons sætning og Euler-Fermats sætning.

TALTEORI Wilsons sætning og Euler-Fermats sætning. Wilsons sætning og Euler-Fermats sætning, marts 2007, Kirsten Rosenkilde 1 TALTEORI Wilsons sætning og Euler-Fermats sætning. Disse noter forudsætter et grundlæggende kendskab til talteori som man kan

Læs mere

Oversigt [S] 2.7, 2.9, 11.4

Oversigt [S] 2.7, 2.9, 11.4 Oversigt [S] 2.7, 2.9, 11.4 Nøgleord og begreber Tangentlinje for graf Tangentplan for graf Test tangentplan Lineær approximation i en og flere variable Test approximation Differentiabilitet i flere variable

Læs mere

9 Eksponential- og logaritmefunktioner

9 Eksponential- og logaritmefunktioner 9 Eksponential- og logaritmefunktioner Hayati Balo, AAMS Følgende fremstilling er baseret på 1. Nils Victor-Jensen, Matematik for adgangskursus, B-niveau 2 2. Crone og Rosenquist, Matematiske elementer

Læs mere

matx.dk Enkle modeller

matx.dk Enkle modeller matx.dk Enkle modeller Dennis Pipenbring 28. juni 2011 Indhold 1 Indledning 4 2 Funktionsbegrebet 4 3 Lineære funktioner 8 3.1 Bestemmelse af funktionsværdien................. 9 3.2 Grafen for en lineær

Læs mere

Analyse 1, Prøve 4. 25. juni 2009. r+1. Men vi har øjensynligt, at 2. r r+1

Analyse 1, Prøve 4. 25. juni 2009. r+1. Men vi har øjensynligt, at 2. r r+1 Analyse 1, Prøve 4 25. juni 29 Alle henvisninger til CB er henvisninger til Metriske Rum (1997, Christian Berg), alle henvisninger til TL er til Kalkulus (26, Tom Lindstrøm), og alle henvisninger til Opgaver

Læs mere

MM502+4 forelæsningsslides. uge 6, 2009

MM502+4 forelæsningsslides. uge 6, 2009 MM502+4 forelæsningsslides uge 6, 2009 1 Definition partielle afledede: De (første) partielle afledede af en funktion f(x, y) af to variable er f(x + h, y) f(x, y) f 1 (x, y) := lim h 0 h f(x, y + k) f(x,

Læs mere

Statistik og Sandsynlighedsregning 2

Statistik og Sandsynlighedsregning 2 Statistik og Sandsynlighedsregning 2 Transformation af kontinuerte fordelinger på R, flerdimensionale kontinuerte fordelinger, mere om normalfordelingen Helle Sørensen Uge 7, onsdag SaSt2 (Uge 7, onsdag)

Læs mere

Analyse 1, Prøve 2 Besvarelse

Analyse 1, Prøve 2 Besvarelse Københavns Universitet Prøve ved Det naturvidenskabelige Fakultet maj Analyse, Prøve Besvarelse Opgave (3%) (a) (%) Bestem mængden af x R for hvilke rækken ( + (x) n ) er konvergent og angiv sumfunktionen

Læs mere

Koblede svingninger. Thomas Dan Nielsen Troels Færgen-Bakmar Mads Sørensen juni 2005

Koblede svingninger. Thomas Dan Nielsen Troels Færgen-Bakmar Mads Sørensen juni 2005 Koblee svingninger Thomas Dan Nielsen 20041151 Troels Færgen-Bakmar 20041116 Mas Sørensen 20040795 1. juni 2005 Institut for Fysik og Astronomi Det Naturvienskabelige Fakultet Aarhus Universitet Inhol

Læs mere

Tekst Notation og layout Redegørelse og dokumentation Figurer Konklusion

Tekst Notation og layout Redegørelse og dokumentation Figurer Konklusion 1 Indledning Dette afsnit omhandler første delprøve, den uden hjælpemidler. Dette afsnit bygger på vejledningen til lærerplanen og lærerplanen for matematik b-niveau, samt eksamensopgaverne fra 2014-2012,

Læs mere

Arealer under grafer

Arealer under grafer HJ/marts 2013 1 Arealer under grafer 1 Arealer og bestemt integral Som bekendt kan vi bruge integralregning til at beregne arealer under grafer. Helt præcist har vi denne sætning. Sætning 1 (Analysens

Læs mere

REGULARITET AF LØSNINGER M.M.

REGULARITET AF LØSNINGER M.M. REGULARITET AF LØSNINGER M.M. E. SKIBSTED Inhol 1. Plan og forusætninger 1 2. Generalisering af [B, Theorem 3.8] 1 3. Autonomt tilfæle 3 3.1. Mængen D er åben 3 3.2. Strømmen er kontinuert på D 4 4. Tisafhængige

Læs mere

Finde invers funktion til en 2-gradsfunktion - ved parallelforskydning. John V Petersen

Finde invers funktion til en 2-gradsfunktion - ved parallelforskydning. John V Petersen Finde invers funktion til en 2-gradsfunktion - ved parallelforskydning John V Petersen Finde invers funktion til en 2-gradsfunktion - ved parallelforskydning 2015 John V Petersen art-science-soul Indhold

Læs mere

Monotoniforhold Der gælder følgende sætninger om en differentiabel funktions monotoniforhold:

Monotoniforhold Der gælder følgende sætninger om en differentiabel funktions monotoniforhold: Side 21 Oversigt over undervisningen i matematik - 2x 05/06 Der undervises efter: Claus Jessen, Peter Møller og Flemming Mørk : Tal, Geometri og funktioner. Gyldendal 1997 Claus Jessen, Peter Møller og

Læs mere

1 Differentialkvotient

1 Differentialkvotient gudmandsen.net Ophavsret Kopiering, distribution og fremvisning af dette dokument eller dele deraf er tilladt i ikke-kommercielle sammenhænge, sålænge dette foregår med tydelig kildeangivelse. Al anden

Læs mere

Inverse funktioner. John V Petersen

Inverse funktioner. John V Petersen Inverse funktioner John V Petersen Indhold Indledning: Indledende eksempel. Grafen for en funktion. Og grafen for den inverse funktion.... 3 Afbildning, funktion og inverse funktion: forklaringer og definitioner...

Læs mere

TALTEORI Primfaktoropløsning og divisorer.

TALTEORI Primfaktoropløsning og divisorer. Primfaktoropløsning og divisorer, oktober 2008, Kirsten Rosenkilde 1 TALTEORI Primfaktoropløsning og divisorer. Disse noter forudsætter et grundlæggende kendskab til talteori som man kan få i Marianne

Læs mere

Multipel Lineær Regression. Polynomiel regression Ikke-lineære modeller og transformation Multi-kolinearitet Auto-korrelation og Durbin-Watson test

Multipel Lineær Regression. Polynomiel regression Ikke-lineære modeller og transformation Multi-kolinearitet Auto-korrelation og Durbin-Watson test Multipel Lineær Regression Polynomiel regression Ikke-lineære modeller og transformation Multi-kolinearitet Auto-korrelation og Durbin-Watson test Multipel lineær regression x,x,,x k uafhængige variable

Læs mere

MATEMATIK A-NIVEAU. Eksempel på løsning af matematik A eksamenssæt STX143-MAT/A-05122014 Matematik A, STX. Anders Jørgensen & Mark Kddafi

MATEMATIK A-NIVEAU. Eksempel på løsning af matematik A eksamenssæt STX143-MAT/A-05122014 Matematik A, STX. Anders Jørgensen & Mark Kddafi MATEMATIK A-NIVEAU Eksempel på løsning af matematik A eksamenssæt STX143-MAT/A-05122014 Matematik A, STX 2016 MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik 2012

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Termin hvori undervisningen afsluttes: maj-juni 2012 HTX

Læs mere

Formelsamling i Matematik på C og B og A niveau Dette er en formelsamling der er under konstant udvikling Så hvis du har ønsker til denne så sig til

Formelsamling i Matematik på C og B og A niveau Dette er en formelsamling der er under konstant udvikling Så hvis du har ønsker til denne så sig til Niels Junges formelsmling Formelsmling i Mtemtik på C og B og A niveu Dette er en formelsmling der er under konstnt udvikling Så hvis du hr ønsker til denne så sig til Indhold Tble of Contents Specielle

Læs mere

Kursusgang 3 Matrixalgebra fortsat

Kursusgang 3 Matrixalgebra fortsat Kursusgang 3 fortsat - froberg@math.aau.dk http://people.math.aau.dk/ froberg/oecon3 Institut for Matematiske Fag Aalborg Universitet 12. september 2008 1/31 Nødvendige betingelser En nødvendig betingelse

Læs mere

EKSAMENSOPGAVELØSNINGER CALCULUS 2 (2005) AUGUST 2006 AARHUS UNIVERSITET

EKSAMENSOPGAVELØSNINGER CALCULUS 2 (2005) AUGUST 2006 AARHUS UNIVERSITET EKSAMENSOPGAVELØSNINGER CALCULUS 2 (2005) AUGUST 2006 AARHUS UNIVERSITET H.A. NIELSEN & H.A. SALOMONSEN Opgave. Lad f betegne funktionen f(x,y) = x 3 + x 2 y + xy 2 + y 3. ) Angiv gradienten f. 2) Angiv

Læs mere

Matematisk modellering og numeriske metoder. Lektion 18

Matematisk modellering og numeriske metoder. Lektion 18 Matematisk modellering numeriske metoder Lektion 18 Morten Grud Rasmussen 12. november, 2013 1 Numeriske metoder til førsteordens ODE er [Bens afsnit 21.1 side 898] 1.1 Euler-metoden Vi stiftede allerede

Læs mere

Figur y. Nøgleord og begreber Tangentlinje for graf Tangentplan for graf

Figur y. Nøgleord og begreber Tangentlinje for graf Tangentplan for graf Oversigt [S] 2.7, 2.9, 11. Tangentlinje [S] 2.7 Derivatives Nøgleord og begreber Tangentlinje for graf Tangentplan for graf Figur y y = f(a) + f (a)( a) Test tangentplan Lineær approimation i en og flere

Læs mere

Lektion 5 Det bestemte integral

Lektion 5 Det bestemte integral a f(x) dx = F (b) F (a) Lektion 5 Det bestemte integral Definition Integralregningens Middelværdisætning Integral- og Differentialregningens Hovedsætning Beregning af bestemte integraler Regneregler Areal

Læs mere

Supplerende opgaver. 0. Opgaver til første uge. SO 1. MatGeo

Supplerende opgaver. 0. Opgaver til første uge. SO 1. MatGeo SO 1 Supplerende opgaver De efterfølgende opgaver er supplerende opgaver til brug for undervisningen i Matematik for geologer. De er forfattet af Hans Jørgen Beck. Opgaverne falder i fire samlinger: Den

Læs mere

Definition: Normalfordelingen. siges at være normalfordelt med middelværdi µ og varians σ 2, hvor µ og σ er reelle tal og σ > 0.

Definition: Normalfordelingen. siges at være normalfordelt med middelværdi µ og varians σ 2, hvor µ og σ er reelle tal og σ > 0. Landmålingens fejlteori Lektion 2 Transformation af stokastiske variable - kkb@math.aau.dk http://people.math.aau.dk/ kkb/undervisning/lf12 Institut for Matematiske Fag Aalborg Universitet Repetition:

Læs mere

Repetition Stokastisk variabel

Repetition Stokastisk variabel Repetition Stokastisk variabel Diskret stokastisk variabel Udfaldsrum endelige eller tællelige mange antal elementer Sandsynlighedsfunktion f(x) er ofte tabellagt Udregning af sandsynligheder P( a < X

Læs mere

Module 12: Mere om variansanalyse

Module 12: Mere om variansanalyse Mathematical Statistics ST06: Linear Models Bent Jørgensen og Pia Larsen Module 2: Mere om variansanalyse 2. Parreded observationer................................ 2.2 Faktor med 2 niveauer (0- variabel)........................

Læs mere

Et udtryk på formena n kaldes en potens med grundtal a og eksponent n. Vi vil kun betragte potenser hvor grundtallet er positivt, altså a>0.

Et udtryk på formena n kaldes en potens med grundtal a og eksponent n. Vi vil kun betragte potenser hvor grundtallet er positivt, altså a>0. Konkrete funktioner Potenser Som udgangspunkt er brugen af potenser blot en forkortelse for at gange et tal med sig selv et antal gange. Hvis a Rskriver vi a 2 for a a a 3 for a a a a 4 for a a a a (1).

Læs mere

Manual til TI-89. Af: Martin Kyhl og Andreas Kristansen. Med denne i hånden til eksamen burde de fleste opgaver kunne løses på få minutter.

Manual til TI-89. Af: Martin Kyhl og Andreas Kristansen. Med denne i hånden til eksamen burde de fleste opgaver kunne løses på få minutter. Manual til TI-89 Af: Martin Kyhl og Andreas Kristansen Med denne i hånden til eksamen burde de fleste opgaver kunne løses på få minutter. Indholdsfortegnelse 0 Indledning...3 0.1 Forord...3 0.2 Syntax

Læs mere

Matematik B1. Mike Auerbach. c h A H

Matematik B1. Mike Auerbach. c h A H Matematik B1 Mike Auerbach B c h a A b x H x C Matematik B1 2. udgave, 2015 Disse noter er skrevet til matematikundervisning på stx og kan frit anvendes til ikke-kommercielle formål. Noterne er skrevet

Læs mere

Matematik Kursusopgave Kran Lastning 01-06-2006. Kran Lastning. Lavet af Morten Kvist & Benjamin Jensen Htx 3.2 Side 1 af 8

Matematik Kursusopgave Kran Lastning 01-06-2006. Kran Lastning. Lavet af Morten Kvist & Benjamin Jensen Htx 3.2 Side 1 af 8 Kran Lastning Lavet af Morten Kvist & Benjamin Jensen Htx 3.2 Sie 1 af 8 En kran kørere på et skinnesystem i x-aksens retning me en jævn hastighe på 0,8 meter/sekun. Samtiig svinger kranens ulægger vinklen

Læs mere

Kalkulus 2 - Grænseovergange, Kontinuitet og Følger

Kalkulus 2 - Grænseovergange, Kontinuitet og Følger Kalkulus - Grænseovergange, Kontinuitet og Følger Mads Friis 8. januar 05 Indhold Grundlæggende uligheder Grænseovergange 3 3 Kontinuitet 9 4 Følger 0 5 Perspektivering 4 Grundlæggende uligheder Sætning

Læs mere

Mujtaba og Farid Integralregning 06-08-2011

Mujtaba og Farid Integralregning 06-08-2011 Indholdsfortegnelse Integral regning:... 2 Ubestemt integral:... 2 Integrationsprøven:... 3 1) Integration af potensfunktioner:... 3 2) Integration af sum og Differens:... 3 3) Integration ved Multiplikation

Læs mere

Substitutions- og indkomsteffekt ved prisændringer

Substitutions- og indkomsteffekt ved prisændringer Substitutions- og indkomsteffekt ved prisændringer Erik Bennike 14. november 2009 Denne note giver en beskrivelse af de relevante begreber omkring substitutions- og indkomsteffekter i mikroøkonomi. 1 Introduktion

Læs mere

Højere Teknisk Eksamen maj 2008. Matematik A. Forberedelsesmateriale til 5 timers skriftlig prøve NY ORDNING. Undervisningsministeriet

Højere Teknisk Eksamen maj 2008. Matematik A. Forberedelsesmateriale til 5 timers skriftlig prøve NY ORDNING. Undervisningsministeriet Højere Teknisk Eksamen maj 2008 HTX081-MAA Matematik A Forberedelsesmateriale til 5 timers skriftlig prøve NY ORDNING Undervisningsministeriet Fra onsdag den 28. maj til torsdag den 29. maj 2008 Forord

Læs mere

Sandsynlighedsregning Stokastisk variabel

Sandsynlighedsregning Stokastisk variabel Sandsynlighedsregning Stokastisk variabel I eksperimenter knyttes ofte en talværdi til hvert udfald. S s X(s) R Definition: En stokastisk variabel X er en funktion defineret på S, der antager værdier på

Læs mere

Ang. skriftlig matematik B på hf

Ang. skriftlig matematik B på hf Peter Sørensen: 02-04-2012 Ang. skriftlig matematik B på hf Til skriftlig eksamen i matematik B på hf skal man ikke kunne hele pensum. Pensum til skriftlig eksamen kan defineres ved, at opgaverne i opgavehæftet

Læs mere

Matematik Eksamensprojekt

Matematik Eksamensprojekt Matematik Eksamensprojekt Casper Wandrup Andresen, 2.F I dette projekt arbejdes der bl.a. med parabler, vektorer, funktioner, sinus, cosinus, tangens, differentialregning, integralregning samt de øvrige/resterende

Læs mere

MATEMATIK B. Videooversigt

MATEMATIK B. Videooversigt MATEMATIK B Videooversigt 2. grads ligninger.... 2 CAS værktøj... 3 Differentialregning... 3 Eksamen... 5 Funktionsbegrebet... 5 Integralregning... 5 Statistik... 6 Vilkårlige trekanter... 7 71 videoer.

Læs mere

Secret Sharing. Olav Geil Institut for Matematiske Fag Aalborg Universitet email: olav@math.aau.dk URL: http://www.math.aau.dk/ olav.

Secret Sharing. Olav Geil Institut for Matematiske Fag Aalborg Universitet email: olav@math.aau.dk URL: http://www.math.aau.dk/ olav. 1 Læsevejledning Secret Sharing Olav Geil Institut for Matematiske Fag Aalborg Universitet email: olav@math.aau.dk URL: http://www.math.aau.dk/ olav September 2006 Nærværende note er tænkt som et oplæg

Læs mere

Landmålingens fejlteori - Lektion 2 - Transformation af stokastiske variable

Landmålingens fejlteori - Lektion 2 - Transformation af stokastiske variable Landmålingens fejlteori Lektion 2 Transformation af stokastiske variable - kkb@math.aau.dk http://people.math.aau.dk/ kkb/undervisning/lf12 Institut for Matematiske Fag Aalborg Universitet 1/31 Repetition:

Læs mere

Marius tanker. Af Hans Marius Kjærsgaard. - I et vektorfelt

Marius tanker. Af Hans Marius Kjærsgaard. - I et vektorfelt Marius tanker Af Hans Marius Kjærsgaar - I et vektorfelt 1 Inholfortegnelse Introuktion... 2 Problemformulering... 2 Introuktion til funktionsmænger... 3 Grafisk repræsentation og samlingspunkter... 3

Læs mere

Nanostatistik: Middelværdi og varians

Nanostatistik: Middelværdi og varians Nanostatistik: Middelværdi og varians JLJ Nanostatistik: Middelværdi og varians p. 1/28 Repetition Stokastisk variabel: funktion fra udfaldsrum over i de hele tal eller over i de reelle tal Ex: Ω = alle

Læs mere

Matematisk Formelsamling

Matematisk Formelsamling Duborg-Skolen Duborg-Skolen Duborg-Skolen Duborg-Skolen Matematisk Formelsamling Indholdsfortegnelse Emne side Vektorer i planen... 1 og 2 Linje... 3 Cirkel, ellipse, hyperbel og parabel... 4 Trekant...

Læs mere

Repetition. Diskrete stokastiske variable. Kontinuerte stokastiske variable

Repetition. Diskrete stokastiske variable. Kontinuerte stokastiske variable Normal fordelingen Normal fordelingen Egenskaber ved normalfordelingen Standard normal fordelingen Find sandsynligheder ud fra tabel Transformation af normal fordelte variable Invers transformation Repetition

Læs mere

Opgavesæt 12 21/01-2009. Laura Pettrine Madsen Uden hjælpemidler. skitse af grafen for f(x).

Opgavesæt 12 21/01-2009. Laura Pettrine Madsen Uden hjælpemidler. skitse af grafen for f(x). Uden hjælpemidler Opgave 8.00 Funktionen f(x) er bestemt ved skitse af grafen for f(x). f ( x) = x 3 4x. På figuren ses en Grafen skærer førsteaksen i punkterne P(,0), O(0,0) og Q(,0). Sammen med førsteaksen

Læs mere

Funktion af flere variable

Funktion af flere variable Funktion af flere variable Preben Alsholm 6. oktober 2008 1 Funktion af flere variable 1.1 Punktmængder i R k : Definitioner Punktmængder i flerdimensionale rum: Definitioner q Normen af x 2 R k er kxk

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni, 2015/16 Institution Vid Gymnasier Uddannelse Fag og niveau Lærer(e) Hold hhx Matematik B Hasse Rasmussen

Læs mere

13 -Integralregning. Hayati Balo, AAMS,Århus. 1. Det ubestemte integrale som betegnes med f (x)dx. 2. Det bestemte integrale som betegnes med b

13 -Integralregning. Hayati Balo, AAMS,Århus. 1. Det ubestemte integrale som betegnes med f (x)dx. 2. Det bestemte integrale som betegnes med b 3 -Integralregning Hayati Balo, AAMS,Århus 3. Stamfunktioner Der er to slags integralregning:. Det ubestemte integrale som betegnes med f (x)dx. Det bestemte integrale som betegnes med b a f (x)dx Det

Læs mere

Introduktion til Laplace transformen (Noter skrevet af Nikolaj Hess-Nielsen sidst revideret marts 2013)

Introduktion til Laplace transformen (Noter skrevet af Nikolaj Hess-Nielsen sidst revideret marts 2013) Introduktion til Laplace transformen (oter skrevet af ikolaj Hess-ielsen sidst revideret marts 23) Integration handler ikke kun om arealer. Tværtimod er integration basis for mange af de vigtigste værktøjer

Læs mere

Formelsamling i Matematik på C og B og A niveau Dette er en formelsamling der er under konstant udvikling Så hvis du har ønsker til denne så sig til

Formelsamling i Matematik på C og B og A niveau Dette er en formelsamling der er under konstant udvikling Så hvis du har ønsker til denne så sig til Niels Junges formelsmling Formelsmling i Mtemtik på C og B og A niveu Dette er en formelsmling der er under konstnt udvikling Så hvis du hr ønsker til denne så sig til Indhold Tble of Contents Specielle

Læs mere

Kom i gang-opgaver til differentialregning

Kom i gang-opgaver til differentialregning Kom i gang-opgaver til differentialregning 00 Karsten Juul Det er kortsigtet at løse en opgave ved blot at udskifte tallene i en besvarelse af en tilsvarende opgave Dette skyldes at man så normalt ikke

Læs mere

Test grafisk afledede Højere partielle afledede Differentiationsordenen er ligegyldig Partielle differentialligninger Test Laplaces ligning

Test grafisk afledede Højere partielle afledede Differentiationsordenen er ligegyldig Partielle differentialligninger Test Laplaces ligning Oversigt [S] 2.7, 3.1, 3.4, 11.3 Nøgleord og begreber Differentiabel funktion i en variabel Partielle afledede i flere variable Notation og regneregler for partielle afledede Test partielle afledede Grafisk

Læs mere

[FUNKTIONER] Hvornår kan vi kalde en sammenhæng en funktion, og hvilke egenskaber har disse i givet fald. Vers. 2.0

[FUNKTIONER] Hvornår kan vi kalde en sammenhæng en funktion, og hvilke egenskaber har disse i givet fald. Vers. 2.0 MaB Sct. Knud Gymnasium, Henrik S. Hansen % [FUNKTIONER] Hvornår kan vi kalde en sammenhæng en funktion, og hvilke egenskaber har disse i givet fald. Vers..0 Indhold Funktioner... Entydighed... Injektiv...

Læs mere

INSTITUT FOR MATEMATISKE FAG c

INSTITUT FOR MATEMATISKE FAG c INSTITUT FOR MATEMATISKE FAG c AALBORG UNIVERSITET FREDRIK BAJERS VEJ 7 G 9220 AALBORG ØST Tlf.: 96 35 89 27 URL: www.math.aau.dk Fax: 98 15 81 29 E-mail: bjh@math.aau.dk Dataanalyse Sandsynlighed og stokastiske

Læs mere

Matematik - September 2001 Afleveret d. 27/4-2006

Matematik - September 2001 Afleveret d. 27/4-2006 Matematik - September Afleveret. 7/ - 6 Opgave For at lave en paremeterfremstilling for en ret linje, så skal jeg bruge et punkt på linjen, og en retningsvektor. Punktet kener jeg a jeg får opgivet to

Læs mere

Matematikopgaver niveau C-B-A STX-HTX

Matematikopgaver niveau C-B-A STX-HTX Matematikopgaver niveau C-B-A STX-HTX Niels Junge Niels Junge 1 Indhold 1. Algebra...4 Opgave 1.1...4 Opgave 1.2...4 Opgave 1.3...4 Opgave 1.4...5 Opgave 1.5...5 Opgave 1.6...5 Opgave 1.7...5 Opgave 1.8...6

Læs mere

Hypotese test. Repetition fra sidst Hypoteser Test af middelværdi Test af andel Test af varians Type 1 og type 2 fejl Signifikansniveau

Hypotese test. Repetition fra sidst Hypoteser Test af middelværdi Test af andel Test af varians Type 1 og type 2 fejl Signifikansniveau ypotese test Repetition fra sidst ypoteser Test af middelværdi Test af andel Test af varians Type 1 og type fejl Signifikansniveau Konfidens intervaller Et konfidens interval er et interval, der estimerer

Læs mere

Epistel E2 Partiel differentiation

Epistel E2 Partiel differentiation Epistel E2 Partiel differentiation Benny Lautrup 19 februar 24 Funktioner af flere variable kan differentieres efter hver enkelt, med de øvrige variable fasthol Definitionen er f(x, y) x f(x, y) f(x +

Læs mere

Privatansatte mænd bliver desuden noget hurtigere chef end kvinderne og forholdsvis flere ender i en chefstilling.

Privatansatte mænd bliver desuden noget hurtigere chef end kvinderne og forholdsvis flere ender i en chefstilling. Sammenligning af privatansatte kvinder og mænds løn Privatansatte kvindelige djøfere i stillinger uden ledelsesansvar har en løn der udgør ca. 96 procent af den løn deres mandlige kolleger får. I sammenligningen

Læs mere

Sætning (Kædereglen) For f(u), u = g(x) differentiable er den sammensatte funktion F = f g differentiabel med

Sætning (Kædereglen) For f(u), u = g(x) differentiable er den sammensatte funktion F = f g differentiabel med Oversigt [S] 3.5, 11.5 Nøgleord og begreber Kædereglen i en variabel Kædereglen to variable Test kædereglen Kædereglen i tre eller flere variable Jacobimatricen Kædereglen på matrixform Test matrixform

Læs mere

Om hvordan Google ordner websider

Om hvordan Google ordner websider Om hvordan Google ordner websider Hans Anton Salomonsen March 14, 2008 Man oplever ofte at man efter at have givet Google et par søgeord lynhurtigt får oplysning om at der er fundet et stort antal - måske

Læs mere

Repetition til eksamen. fra Thisted Gymnasium

Repetition til eksamen. fra Thisted Gymnasium Repetition til eksamen fra Thisted Gymnasium 20. oktober 2015 Kapitel 1 Introduktion til matematikken 1. Fortegn Husk fortegnsregnereglerne for multiplikation og division 2. Hierarki Lær sætningen om regnearternes

Læs mere

1 Kapitel 5: Forbrugervalg

1 Kapitel 5: Forbrugervalg 1 Kapitel 5: Forbrugervalg Vi har set på: 1. budgetbegrænsninger 2. præferencer og nyttefunktioner. Nu stykker vi det hele sammen og studerer forbrugerens optimale valg. 2 Optimalt forbrug - grafisk fremstilling

Læs mere

Matematik for økonomer 3. semester

Matematik for økonomer 3. semester Matematik for økonomer 3. semester cand.oecon. studiet, 3. semester Planchesæt 2 - Forelæsning 3 Esben Høg Aalborg Universitet 10. september 2009 Institut for Matematiske Fag Aalborg Universitet Esben

Læs mere

matx.dk Mikroøkonomi

matx.dk Mikroøkonomi matx.dk Mikroøkonomi Dennis Pipenbring 31. august 2011 Indold 1 Udbuds- og efterspørgselskurver 3 1.1 Lineær.............................. 4 1.2 Eksponentiel........................... 5 1.3 Potens..............................

Læs mere

Contents. Introduktion 2

Contents. Introduktion 2 Contents Introduktion 2 Differentialregning 2 Grænseværdi................................ 2 Tid/distance................................ 2 Regler og eksempler............................ 3 Differentiering

Læs mere

Mere om differentiabilitet

Mere om differentiabilitet Mere om differentiabilitet En uddybning af side 57 i Spor - Komplekse tal Kompleks funktionsteori er et af de vigtigste emner i matematikken og samtidig et af de smukkeste I bogen har vi primært beskæftiget

Læs mere