Sorø Opgaver, geometri

Størrelse: px
Starte visningen fra side:

Download "Sorø 2004. Opgaver, geometri"

Transkript

1 Opgaver, geometri 1. [Balkan olympiade 1999]. For en given trekant ABC skærer den omskrevne cirkel BC s midtnormal i punkterne D og E, og F og G er spejlbillederne af D og E i BC. Vis at midtpunkterne af ABC s sider og midtpunkterne af AF og AG alle ligger på samme cirkel. 2. [Grossman Memorial Olympiad 1999]. For n N er A n+1, B n+1 og C n+1 røringspunkterne mellem siderne i trekant A n B n C n og dens indskrevne cirkel. Vis A n 60 for n. 3. [Canadian Open Mathematics Challenge 2002]. I den spidsvinklede trekant ABC skærer højden fra B cirklen med diameter AC i P og Q og højden fra C cirklen med diameter AB i S og T. Vis at P, Q, S og T ligger på samme cirkel. 4. [Tjekkisk og Slovakisk olympiade 1998]. Givet en cirkel og et punkt A. Vis at de indskrevne trapezer i cirklen hvis forlængede ben mødes i A, har et fælles skæringspunkt for deres diagonaler. 5. [Iransk olympiade ]. I trekant ABC er AD vinkelhalveringlinje. Cirklen C går gennem A og rører BC i D. M er skæringspunktet mellem AC og C og N skæringspunktet mellem BM og C. Vis at AN er median i trekant ABD.

2 Løsninger, geometri 1. Lad K, L, M, P og Q betegne midtpunkterne af henholdsvis BC, AC, AB, AF og AG. Trekant KLM er ligedannet med og vender modsat af trekant ABC, og trekant LMP er ligedannet med og vender samme vej som trekant CBF, som er kongruent med og vender modsat af trekant BCD. Dermed er firkant KLMP ligedannet med firkant ABCD. På samme måde ses at firkant KLMQ er ligedannet med firkant ABCE. Da A, B, C, D og E ligger på samme cirkel, ligger K, L, M, P og Q så også på samme cirkel. 2. Antag først at A n+1 er trekant A n B n C n s indskrevne cirkels røringspunkt med B n C n, og tilsvarende B n+1 og C n+1. Hvis O er den indskrevne cirkels centrum og D røringpunktet mellem den indskrevne cirkel og siden B n C n, har vi A n+1 = 1 2 B n+1oc n+1 = 1 2 (180 A n ), eller Følgelig 6o A n+1 = 1 2 (6o A n ). max{ 6o A n+1, 6o B n+1, 6o C n+1 } = 1 2 max{ 6o A n, 6o B n, 6o C n }. Dette gælder stadig efter en vilkårlig ombytning af betegnelsene A n+1, B n+1 og C n+1. Heraf følger påstanden. 3. Da korden P Q er vinkelret på diameteren AC, har vi AP = AQ. Tilsvarende AS = AT. Vi vil vise at der gælder AP = AS. P, Q, S og T ligger så alle på samme cirkel med centrum i A. Lad D og E betegne fodpunkterne af højderne fra B og C. Da AP C er ret, har vi AP 2 = AD AC. Tilsvarende AS 2 = AE AB. Da ABD ACE, har vi desuden AB AE = AC AD. Heraf følger påstanden. 4. Lad trapezet KLMN med LM KN og LM < KN være indkrevet i cirklen så KL og NM mødes i A, og lad O betegne cirklens centrum og P og Q midtpunkterne af de disjunkte buer KN og LM. Lad endvidere D betegne skæringspunktet mellem diagonalerne KM og LN. De trapezet er spejlsymmetrisk med hensyn til cirklens diagonal P Q, ligger A, D og O alle på P Q eller dens forlængelse. Lad u = KOP og v = LOQ. Vi har så LDA = LDQ = 1 LDM = 1 1( LOM + KON) = 1 1(2u + 2v) = 1 (u + v) Følgelig OLD = LDA LOA = 1(u+v) v = 1 (u v) = OAL. Dermed 2 2 1

3 er trekanterne OLD og OAL ligedannede, og vi har OD OA = OL 2 = r 2, hvor r er cirklens radius. Det følger heraf at afstanden OD er den samme for alle trapezer med de forudsatte egenskaber. 5. Lad P betegne skæringspunkt mellem BC og AN s forlængelse og Q skæringspunktet mellem AB og C. Da buerne QD og DM er lige store, er QM parallel med BC. Vi har så ABP = AQM = ANM = BNP. Dermed er trekanterne ABP og BNP ligedannede, og der gælder BP 2 = BN BA. Da også P D 2 = BN BA, har vi BP = P D. 2

4 Flere opgaver, geometri 1. Vis at hvis to linjer skærer hinanden i punktet A og rører samme cirkel i punkterne B og C, er midtpunktene af de to buer BC centrum for henholdsvis trekant ABC s indskrevne cirkel og trekantens ydre røringscirkel modsat A. 2. [Spansk olympiade 1993]. Punkterne D, E og F på siden BC i trekant ABC opfylder følgende: 1) AD er vinkelhalveringslinje. 2) BD = CE. 3) BAE = CAF. Vis BF/CF = (AB/AC) [Iransk olympiade ]. ABCDEF er en konveks sekskant med A+ C + E = 360 og AB CD EF BC DE F A = 1. Vis BC AE F D CA EF DB = [Russisk olympiade 1999]. ABCD er en omskrivelig firkant hvis indskrevne cirkel rører AB i K, BC i L, CD i M og DA i N. C 1, C 2, C 3 og C 4 er de indskrevne cirkler i trekanterne ANK, BKL, CLM og DMN og l 1, l 2, l 3 og l 4 de fælles ydre tangenter til C 1 og C 2, C 2 og C 3, C 3 og C 4 og C 4 og C 1 som ikke er sider i ABCD. Vis at l 1, l 2, l 3 og l 4 danner en rombe. [Benyt resultatet fra opgave 1].

5 Flere løsninger, geometri 1. Lad M betegne midtpunktet af buen på samme side af BC som A. Da ABM = MBC og ACM = MCB, er M vinkelhalveringernes skæringspunkt i trekant ABC. På tilsvarende måde ses at midtpunktet af buen på den modsatte side af BC er skæringspunktet mellem halveringslinjerne for de ydre vinkler B og C. 2. Lad AD, AE og AF være forlænget til henholdsvis P, Q og S så BS AC, P og Q ligger på samme rette linje gennem C, og CP AB. Vi har så Da ABS ACQ, gælder BF CF = BS AC = BS CQ CQ AB AB AC. BS CQ = AB AC. Da CP A = P AB = P AC, gælder CP = AC. Følgelig Alt i alt CQ AB = CE BE = BD CD = AB CP = AB AC. BF CF = ( ) 3 AB. AC 3. Da A + C + E = 360, findes der en halvlinje h fra A så BAh = C og F Ah = E. Vælges P og Q på h så ABP = CBD og AF Q = EF D, har vi så ABP CBD og AF Q EF D. Heraf følger AP AQ = AB AP AF BA QA F A = AB CD EF BC DE F A = 1 og dermed P = Q. Da BC/BA = BD/BP og CBA = DBP, har vi CBA DBP og tilsvarende EF A DF P. Følgelig BC AE F D CA EF DB = BD P D F D DP DF DB = Ifølge resultatet i opgave 1 er centrene P og Q for C 1 og C 2 midtpunkterne af buerne NK og KL på firkant ABCD s indskrevne cirkel. Ved spejling i P Q s midtnormal afbildes K i midtpunktet S af buen NL. Hvis O er den 1

6 indskrevne cirkels centrum, gælder nemlig N OP = P OK = QOS og P OS = QOK = LOQ. Spejlingen kan opnås ved først at spejle i P Q og så dreje 180 om P Q s midtpunkt. Ved spejlingen i P Q afbildes AB i l 1, og ved drejningen om midtpunkt afbildes l 1 i en linje m som er parallel med l 1. Da m rører den indskrevne cirkel i S, er m og dermed l 1 parallel med NL, og O s afstand fra m er lig med cirklens radius r. Da afstanden mellem l 1 og m er lig med summen r 1 + r 2 af radierne i C 1 og C 2, er O s afstand fra l 1 så lig med r r 1 r 2. På samme måde indses at l 3 er parallel med NL og O s afstand fra l 3 lig med r r 3 r 4, hvor r 3 og r 4 er radierne i C 3 og C 4. l 1 og l 3 er så parallelle og deres indbyrdes afstand er lig med 2r r 1 r 2 r 3 r 4. Helt tilsvarende indses at l 2 og l 4 er parallelle og deres indbyrdes afstand også lig med 2r r 1 r 2 r 3 r 4. Dermed danner l 1, l 2, l 3 og l 4 en rombe. 2

1 Trekantens linjer. Definition af median En median er en linje i en trekant der forbinder en vinkelspids med midtpunktet af modstående side.

1 Trekantens linjer. Definition af median En median er en linje i en trekant der forbinder en vinkelspids med midtpunktet af modstående side. Geometrinoter 1, januar 009, Kirsten Rosenkilde 1 Geometrinoter 1 Disse noter omhandler grundlæggende sætninger om trekantens linjer, sammenhængen mellem en vinkel og den cirkelbue den spænder over, samt

Læs mere

1 Trekantens linjer. Definition af median En median er en linje i en trekant der forbinder en vinkelspids med midtpunktet af modstående side.

1 Trekantens linjer. Definition af median En median er en linje i en trekant der forbinder en vinkelspids med midtpunktet af modstående side. Geometrinoter 1, januar 2009, Kirsten Rosenkilde 1 Geometrinoter 1 Disse noter omhandler grundlæggende sætninger om trekantens linjer, sammenhængen mellem en vinkel og den cirkelbue den spænder over, samt

Læs mere

Transformationsgeometri: Inversion. Kirsten Rosenkilde, august Inversion

Transformationsgeometri: Inversion. Kirsten Rosenkilde, august Inversion Transformationsgeometri: Inversion. Kirsten Rosenkilde, august 2007 1 Inversion Inversion er en bestemt type transformation af planen, og ved at benytte transformation på en geometrisk problemstilling

Læs mere

1 Trekantens linjer. 1.1 Medianer En median er en linje i en trekant der forbinder en vinkelspids med midtpunktet af modstående side.

1 Trekantens linjer. 1.1 Medianer En median er en linje i en trekant der forbinder en vinkelspids med midtpunktet af modstående side. Geometrinoter, maj 007, Kirsten Rosenkilde 1 Geometrinoter Disse noter omhandler grundlæggende sætninger om trekantens linjer, sammenhængen mellem en vinkel og den cirkelbue den spænder over, indskrivelige

Læs mere

Forslag til løsning af Opgaver til analytisk geometri (side 338)

Forslag til løsning af Opgaver til analytisk geometri (side 338) Forslag til løsning af Opgaver til analytisk geometri (side 8) Opgave Linjerne har ligningerne: a : y x 9 b : x y 0 y x 8 c : x y 8 0 y x Der må gælde: a b, da Skæringspunkt mellem a og b:. Det betyder,

Læs mere

Lærereksemplar. Kun til lærerbrug GEOMETRI 89. Kopiering er u-økonomisk og forbudt til erhvervsformål.

Lærereksemplar. Kun til lærerbrug GEOMETRI 89. Kopiering er u-økonomisk og forbudt til erhvervsformål. Kun salg ved direkte kontakt mellem skole og forlag. Kopiering er u-økonomisk og forbudt til erhvervsformål. GEOMETRI 89 Side Emne 1 Indholdsfortegnelse 2 Måling af vinkler 3 Tegning og måling af vinkler

Læs mere

Dynamiske konstruktioner med et dynamisk geometriprogram En øvelsessamling

Dynamiske konstruktioner med et dynamisk geometriprogram En øvelsessamling Dynamiske konstruktioner med et dynamisk geometriprogram En øvelsessamling Disse opgaver er i sin tid udarbejdet til programmerne Geometer, og Geometrix. I dag er GeoGebra (af mange gode grunde, som jeg

Læs mere

Paradokser og Opgaver

Paradokser og Opgaver Paradokser og Opgaver Mogens Esrom Larsen (MEL) Vi modtager meget gerne læserbesvarelser af opgaverne, samt forslag til nye opgaver enten per mail (gamma@nbi.dk) eller per almindelig post (se adresse på

Læs mere

Affine transformationer/afbildninger

Affine transformationer/afbildninger Affine transformationer. Jens-Søren Kjær Andersen, marts 2011 1 Affine transformationer/afbildninger Følgende afbildninger (+ sammensætninger af disse) af planen ind i sig selv kaldes affine: 1) parallelforskydning

Læs mere

Geometri Følgende forkortelser anvendes:

Geometri Følgende forkortelser anvendes: Geometri Følgende forkortelser anvendes: D eller d = diameter R eller r = radius K eller k = korde tg = tangent Fig. 14 Benævnelser af cirklens liniestykker Cirkelperiferien inddeles i grader Cirkelperiferien

Læs mere

Paradokser og Opgaver

Paradokser og Opgaver Paradokser og Opgaver Mogens Esrom Larsen Vi modtager meget gerne læserbesvarelser af opgaverne, samt forslag til nye opgaver enten per mail (gamma@nbi.dk) eller per almindelig post (se adresse på bagsiden).

Læs mere

Mødet. 6 Geometri. Begreb Eksempel Navn. Parallel. Vinkelret. Linjestykke. Polygon. Cirkelperiferi. Midtpunkt. Linje. Diagonal. Radius.

Mødet. 6 Geometri. Begreb Eksempel Navn. Parallel. Vinkelret. Linjestykke. Polygon. Cirkelperiferi. Midtpunkt. Linje. Diagonal. Radius. 6.01 Mødet Begreb Eksempel Navn Parallel Vinkelret Linjestykke Polygon Cirkelperiferi Midtpunkt Linje Diagonal Radius Ret vinkel 6.02 Fire på stribe Regler Hver spiller får en spilleplade (6.03). Alle

Læs mere

Geometrisk tegning - Facitliste

Geometrisk tegning - Facitliste Geometrisk tegning - Facitliste Om kapitlet I dette kapitel om geometrisk tegning skal eleverne arbejde med forskellige tegneteknikker og hjælpemidler. De skal gengive og undersøge muligheder og begrænsninger

Læs mere

Geometri med Geometer I

Geometri med Geometer I f Frans Kappel Øvre, Morsø Gymnasium Geometri med Geometer I Markeringspil: Klik på et objekt (punkt, linje, cirkel) for at markere det. Hvis du trykker Shift samtidig kan du markere flere objekter eller

Læs mere

Projekt 2.4 Euklids konstruktion af femkanten

Projekt 2.4 Euklids konstruktion af femkanten Projekter: Kapitel Projekt.4 Euklids konstruktion af femkanten Et uddrag af sætninger fra Euklids Elementer, der fører frem til konstruktionen af den regulære femkant. 0. Forudsætninger, definitioner og

Læs mere

Navn: Klasse: HTx1A Opgaver: 067, 068, 069, 070, 071, 072, 073 & 074 Afleveringsdato: 03-12-2014

Navn: Klasse: HTx1A Opgaver: 067, 068, 069, 070, 071, 072, 073 & 074 Afleveringsdato: 03-12-2014 Sæt 05 Geometri 01 Navn: Klasse: HTx1A Opgaver: 067, 068, 069, 070, 071, 072, 073 & 074 Afleveringsdato: 03-12-2014 Rettes: Karakter: Rettes ikke: Set og godkendt: Samlet elevtid: 165 min. = 2,75 time

Læs mere

Geometrinoter 2. Brahmaguptas formel Arealet af en indskrivelig firkant ABCD kan tilsvarende beregnes ud fra firkantens sidelængder:

Geometrinoter 2. Brahmaguptas formel Arealet af en indskrivelig firkant ABCD kan tilsvarende beregnes ud fra firkantens sidelængder: Geometrinoter 2, jnur 2009, Kirsten Rosenkilde 1 Geometrinoter 2 Disse noter omhndler sætninger om treknter, trekntens ydre røringscirkler, to cirklers rdiklkse smt Simson- og Eulerlinjen i en treknt.

Læs mere

Matematik 2011/2012 Skovbo Efterskole Trigonometri. Trigonometri

Matematik 2011/2012 Skovbo Efterskole Trigonometri. Trigonometri Trigonometri Spidse og stumpe vinkler En vinkel kaldes spids, når den er mindre end 90. En vinkel kaldes ret, når den er 90. En vinkel kaldes stump, når den er større end 90. En vinkel kaldes lige, når

Læs mere

Projekt 10.1 Er der huller i Euklids argumentation? Et moderne aksiomsystem (især for A)

Projekt 10.1 Er der huller i Euklids argumentation? Et moderne aksiomsystem (især for A) Projekt 10.1 Er der huller i Euklids argumentation? Et moderne aksiomsystem (især for A) Indhold Introduktion... 2 Hilberts 16 aksiomer Et moderne, konsistent og fuldstændigt aksiomsystem for geometri...

Læs mere

brikkerne til regning & matematik geometri F+E+D preben bernitt

brikkerne til regning & matematik geometri F+E+D preben bernitt brikkerne til regning & matematik geometri F+E+D preben bernitt brikkerne til regning & matematik geometri, F+E+D ISBN: 978-87-92488-16-9 1. Udgave som E-bog 2010 by bernitt-matematik.dk Kopiering er kun

Læs mere

dvs. vinkelsummen i enhver trekant er 180E. Figur 11

dvs. vinkelsummen i enhver trekant er 180E. Figur 11 Sætning 5.8: Vinkelsummen i en trekant er 180E. Bevis: Lad ÎABC være givet. Gennem punktet C konstrueres en linje, som er parallel med linjen gennem A og B. Dette lader sig gøre på grund af sætning 5.7.

Læs mere

Projekt 3.3 Linjer og cirkler ved trekanten

Projekt 3.3 Linjer og cirkler ved trekanten Projekt 3.3 Linjer og cirkler ved trekanten Midtnormalerne i en trekant Konstruer et linjestykke (punkt-menuen) og navngiv endepunkterne A og B (højreklik og vælg: Etiket), dvs. linjestykket betegnes AB.

Læs mere

Bjørn Grøn. Euklids konstruktion af femkanten

Bjørn Grøn. Euklids konstruktion af femkanten Bjørn Grøn Euklids konstruktion af femkanten Euklids konstruktion af femkanten Side af 17 Euklids konstruktion af femkanten Et uddrag af sætninger fra Euklids Elementer, der fører frem til konstruktionen

Læs mere

Geometriopgaver. Pladeudfoldning Geometriopgaver - 1 -

Geometriopgaver. Pladeudfoldning Geometriopgaver - 1 - 2009 Geometriopgaver Pladeudfoldning Geometriopgaver Teknisk Isolering AMUSYD 06 02 2009-1 - Indholdsfortegnelse OPGAVE 1 - A, B, C, D.... 3 OPGAVE 1 A REKTANGEL DEL VED FORSØG... 3 OPGAVE 1 B PARALLELOGRAM...

Læs mere

1 Trekantens linjer. Indhold

1 Trekantens linjer. Indhold Geometri - Teori og opgaveløsning Formålet med disse noter er at give en grundig introduktion til geometri med fokus på hvad man har brug for til internationale matematikkonkurrencer. Noterne forudsætter

Læs mere

MATEMATIK B-NIVEAU STX081-MAB

MATEMATIK B-NIVEAU STX081-MAB MATEMATIK B-NIVEAU STX081-MAB Delprøven uden hjælpemidler Opgave 1 Indsættes h = 2 og x = i (x + h) 2 h(h + 2x), så fås (x + h) 2 h(h + 2x) = ( + 2) 2 2(2 + 2 ) = 5 2 2 8 = 25 16 = 9 Hvis man i stedet

Læs mere

1 Oversigt I. 1.1 Poincaré modellen

1 Oversigt I. 1.1 Poincaré modellen 1 versigt I En kortfattet gennemgang af nogle udvalgte emner fra den elementære hyperbolske plangeometri i oincaré disken. Der er udarbejdet både et Java program HypGeo inkl. tutorial og en Android App,

Læs mere

Bilag 2 - Spildevandsplan 2011-2021

Bilag 2 - Spildevandsplan 2011-2021 Bilag 2 - Spildevandsplan 2011-2021 Alle eksisterende ejendomme på følgende matrikler skal separatkloakeres Arninge 4c Ore By, Arninge 2016-2021 Arninge 4e Ore By, Arninge 2016-2021 Arninge 4f Ore By,

Læs mere

Geometriske eksperimenter

Geometriske eksperimenter I kapitlet arbejder eleverne med nogle af de egenskaber, der er knyttet til centrale geometriske figurer og begreber (se listen her under). Set fra en emneorienteret synsvinkel handler kapitlet derfor

Læs mere

*HRPHWUL PHG *HRPH7ULFNV. - et fundament af erfaringer - et arbejde med undersøgelser og overvejelser

*HRPHWUL PHG *HRPH7ULFNV. - et fundament af erfaringer - et arbejde med undersøgelser og overvejelser *HRPHWUL PHG *HRPH7ULFNV q2nodvvh - et fundament af erfaringer - et arbejde med undersøgelser og overvejelser INFA 1998 1 Forord I den nye læseplan for matematik og i den tilhørende undervisningsvejledning

Læs mere

Svar på opgave 322 (September 2015)

Svar på opgave 322 (September 2015) Svar på opgave 3 (September 05) Opgave: En sekskant har sidelængder 7 7. Bestem radius i den omskrevne cirkel hvis sekskanten er indskrivelig. Besvarelse: ny version 6/0-05. metode. Antag at sekskanten

Læs mere

bruge en formel-samling

bruge en formel-samling Geometri Længdemål og omregning mellem længdemål... 56 Omkreds og areal af rektangler og kvadrater... 57 Omkreds og areal af andre figurer... 58 Omregning mellem arealenheder... 6 Nogle geometriske begreber

Læs mere

Løsningsforslag til Geometri 4.-10. klasse

Løsningsforslag til Geometri 4.-10. klasse Løsningsforslag til Geometri 4.-0. klasse Bemærk, at vi benytter betegnelsen øvelser som en meget bred betegnelse. Derfor er der også nogle af vores øvelser, der nærmer sig kategorien undersøgelser, dem

Læs mere

Forlag Malling Beck Best. nr Sigma for syvende

Forlag Malling Beck Best. nr Sigma for syvende Navn: Klasse: Forlag Malling Beck Best. nr. 0 Sigma for svende Navn: Klasse: Forlag Malling Beck Best. nr. 0 Sigma for svende Navn: Klasse: Forlag Malling Beck Best. nr. 0 Sigma for svende Navn: Klasse:

Læs mere

Konstruktion. d: En cirkel med diameter 7,4 cm. e: En trekant med grundlinie på 9,6 cm og højde på 5,2 cm. (Der er mange muligheder)

Konstruktion. d: En cirkel med diameter 7,4 cm. e: En trekant med grundlinie på 9,6 cm og højde på 5,2 cm. (Der er mange muligheder) 1: Tegn disse figurer: a: Et kvadrat med sidelængden 3,5 cm. b: En cirkel med radius 4,. c: Et rektangel med sidelængderne 3,6 cm og 9,. d: En cirkel med diameter 7,. e: En trekant med grundlinie på 9,6

Læs mere

Teknisk. Matematik FACITLISTE. Preben Madsen. 4. udgave

Teknisk. Matematik FACITLISTE. Preben Madsen. 4. udgave Teknisk Preben Madsen Matematik 4. udgave FACITLISTE Indhold TAL OG ALGEBRA... LIGNINGER OG ULIGHEDER... GEOMETRI... 4 TRIGONOMETRI... 5 CIRKLEN... 5 6 OVERFLADER UDFOLDNINGER... 5 7 RUMFANG... 8 8 ANALYTISK

Læs mere

Projektiv plangeometri

Projektiv plangeometri Transformationsgeometri: Projektiv plangeometri. Kai Neergård, juli 2016 1 Projektiv plangeometri 1 Uendelig fjerne punkter og den uendelig fjerne linje I den projektive plangeometri er hver af planets

Læs mere

GeoGebra. Tegn følgende i Geogebra. Indsæt tegningen fra geogebra. 1. Indsæt punkterne: (2,3) (-2, 4) (-3, -4,5)

GeoGebra. Tegn følgende i Geogebra. Indsæt tegningen fra geogebra. 1. Indsæt punkterne: (2,3) (-2, 4) (-3, -4,5) Tegn følgende i Geogebra 1. Indsæt punkterne: (2,3) (-2, 4) (-3, -4,5) Forbind disse tre punker (brug polygon ) 2. Find omkreds, vinkler, areal og sidelængder 3. Tegn en vinkelret linje fra A og ned på

Læs mere

8.1 Lav en ordbog med tegninger og/eller definitioner af de geometriske begreber:

8.1 Lav en ordbog med tegninger og/eller definitioner af de geometriske begreber: 8. 8.1 Lav en ordbog med tegninger og/eller definitioner af de geometriske begreber: Kvadrat Rektangel Parallelogram Trapez Ligebenet trekant Ligesidet trekant Retvinklet trekant Rombe Polygon Ellipse

Læs mere

DOKUMENT: Dato/løbenummer: TINGLYSNINGSDATO:

DOKUMENT: Dato/løbenummer: TINGLYSNINGSDATO: side 1 ================================================================================ DOKUMENTAKTUELHENT ================================================================================ DOKUMENT: Dato/løbenummer:

Læs mere

Formel- og tabelsamling

Formel- og tabelsamling Formel- og tabelsamling Folkeskolens afsluttende prøver i matematik Uddannelsesstyrelsens håndbogsserie 2005 Grundskolen Formel- og tabelsamling Folkeskolens afsluttende prøver i matematik Uddannelsesstyrelsens

Læs mere

Noter til læreren side 1 I Trinmål for faget matematik står der bl.a.

Noter til læreren side 1 I Trinmål for faget matematik står der bl.a. Noter til læreren side 1 I Trinmål for faget matematik står der bl.a. Undervisningen skal lede frem mod, at eleverne har tilegnet sig kundskaber og færdigheder, der sætter dem i stand til i arbejdet med

Læs mere

Hvis man ønsker mere udfordring, kan man springe de første 10 opgaver over. , og et punkt er givet ved: P (2, 1).

Hvis man ønsker mere udfordring, kan man springe de første 10 opgaver over. , og et punkt er givet ved: P (2, 1). Plangeometri Hvis man ønsker mere udfordring, kan man springe de første 10 opgaver over Opgave 1 To linjer er givet ved ligningerne: x y 0 og x b y 4 0, hvor b er en konstant a) Beregn konstanten b således,

Læs mere

GeomeTricks Windows version

GeomeTricks Windows version GeomeTricks Windows version Elevarbejdsark MI 130 En INFA-publikation - 1998 GeomeTricks - Elevarbejdsark Viggo Sadolin 16 september 1997 Oversigt over elevarbejdsarkene Klassetrin Type ark 3 4 5 6 7 8

Læs mere

geometri trin 2 brikkerne til regning & matematik preben bernitt

geometri trin 2 brikkerne til regning & matematik preben bernitt brikkerne til regning & matematik geometri trin 2 preben bernitt brikkerne til regning & matematik geometri, trin 2 ISBN: 978-87-92488-16-9 1. Udgave som E-bog 2003 by bernitt-matematik.dk Kopiering er

Læs mere

Ændring af rammeområde 2.B.6 Østbyvej

Ændring af rammeområde 2.B.6 Østbyvej Ændring af rammeområde 2.B.6 Østbyvej Tillæg 12 til Roskilde Kommuneplan 2013 2.B.6 2.BT.4 0 500 m 500 Forord HVAD ER ET TILLÆG TIL KOMMUNEPLANEN? Den fysiske planlægning reguleres bl.a. gennem kommuneplanlægning.

Læs mere

Lille Georgs julekalender 08. 1. december

Lille Georgs julekalender 08. 1. december 1. december Et digitalur viser 20:08. Hvor lang tid går der før de samme fire cifre vises igen (gerne i en anden rækkefølge)? Svar: 4 timer og 20 minutter Forklaring: Næste gang cifrene vises, er klokken

Læs mere

Ligedannede trekanter

Ligedannede trekanter Ib Michelsen: Matematik C, Geometri, 1. kapitel 2011 Version 7.1 22-08-11 Rettet: tempel.png inkorporeret / minioverskrift rettet D:\Appserv260\www\2011\ligedannedeTrekanter2.odt Arven fra Grækenland Arven

Læs mere

Areal. Et af de ældste skrifter om matematik, der findes, hedder Rhind Papyrus. NTRO

Areal. Et af de ældste skrifter om matematik, der findes, hedder Rhind Papyrus. NTRO Areal Et af de ældste skrifter om matematik, der findes, hedder Rhind Papyrus. NTRO Det stammer fra Egypten og er ca. 3650 år gammelt. I Rhind Papyrus findes optegnelser, der viser, hvordan egypterne beregnede

Læs mere

Undervisningen skal lede frem mod, at eleverne har tilegnet sig kundskaber og færdigheder, der sætter dem i stand til i arbejdet med geometri at:

Undervisningen skal lede frem mod, at eleverne har tilegnet sig kundskaber og færdigheder, der sætter dem i stand til i arbejdet med geometri at: Noter til læreren side 1 I Trinmål for faget matematik står der bl.a. Undervisningen skal lede frem mod, at eleverne har tilegnet sig kundskaber og færdigheder, der sætter dem i stand til i arbejdet med

Læs mere

Retningslinjer for bedømmelsen. Georg Mohr-Konkurrencen 2010 2. runde

Retningslinjer for bedømmelsen. Georg Mohr-Konkurrencen 2010 2. runde Retningslinjer for bedømmelsen. Georg Mohr-Konkurrencen 2010 2. runde Det som skal vurderes i bedømmelsen af en besvarelse, er om deltageren har formået at analysere problemstillingen, kombinere de givne

Læs mere

LOKALPLAN NR. 8. Fanø Kommune. Klitarealer i sommerhusområderne Fanø Bad og Rindby Strand. Oktober 1979

LOKALPLAN NR. 8. Fanø Kommune. Klitarealer i sommerhusområderne Fanø Bad og Rindby Strand. Oktober 1979 LOKALPLAN NR. 8 Fanø Kommune Klitarealer i sommerhusområderne Fanø Bad og Rindby Strand. Oktober 1979 2 Lokalplan 8 Fanø Kommune Anmelder: Advokat Chr. V. Thuesen Torvegade 28 6700 Esbjerg J.nr. 260 ct/aj

Læs mere

Tip til 1. runde af Georg Mohr-Konkurrencen Geometri

Tip til 1. runde af Georg Mohr-Konkurrencen Geometri Tip til. runde af - Geometri, Kirsten Rosenkilde. Tip til. runde af Geometri Her er nogle centrale principper om og strategier for hvordan man løser geometriopgaver. et er ikke en særlig teoretisk indføring,

Læs mere

GEOMETRI og TRIGONOMETRI del 1

GEOMETRI og TRIGONOMETRI del 1 GEOMETRI og TRIGONOMETRI del 1 x-klasserne Gammel Hellerup Gymnasium Indholdsfortegnelse EUKLIDS ELEMENTER... 3 Euklids sætninger fra 1. bog... 11 TREKANTER: Egenskaber og notation... 15 LIGEDANNEDE FIGURER...

Læs mere

brikkerne til regning & matematik geometri trin 2 preben bernitt

brikkerne til regning & matematik geometri trin 2 preben bernitt brikkerne til regning & matematik geometri trin 2 preben bernitt brikkerne til regning & matematik geometri, trin 2 ISBN: 978-87-92488-16-9 1. Udgave som E-bog 2003 by bernitt-matematik.dk Kopiering er

Læs mere

Løsningsforslag til Geometri 1.-6. klasse

Løsningsforslag til Geometri 1.-6. klasse 1 Løsningsforslag til Geometri 1.-6. klasse Bemærk, at vi benytter betegnelsen øvelser som en meget bred betegnelse. Derfor er der også nogle af vores øvelser, der nærmer sig kategorien undersøgelser,

Læs mere

************************************************************************

************************************************************************ Projektet er todelt: Første del har fokus på Euklids system og består af introduktionen, samt I og II. Anden del har fokus på Hilberts system fra omkring år 1900 og består af III sammen med bilagene. Man

Læs mere

Delprøven uden hlælpemidler

Delprøven uden hlælpemidler Matematik B - Juni 2014 Af hensyn til CAS-programmet er der anvendt punktum som decimaltegn. Delprøven uden hlælpemidler Opgave 1 AB=8, A1B=12, AC=10 Opgave 2 Hvor y er salget af øko. fødevarer i mio.

Læs mere

Ib Michelsen: Matematik C, Geometri 2011, Euklid Version 7.2 03-10-11 G:\_nyBog\1-3-euklid\nyEuclid4.odt Sidetal starter med 65

Ib Michelsen: Matematik C, Geometri 2011, Euklid Version 7.2 03-10-11 G:\_nyBog\1-3-euklid\nyEuclid4.odt Sidetal starter med 65 Euklid Ib Michelsen: Matematik C, Geometri 2011, Euklid Version 7.2 03-10-11 G:\_nyBog\1-3-euklid\nyEuclid4.odt Sidetal starter med 65 Indledning "Matematikeren Euklid levede og virkede omtrent 300 aar

Læs mere

De 2D Constraints, der findes i programmet, er vist herunder (dimension er også en form for 2D Constraint). Fig. 298

De 2D Constraints, der findes i programmet, er vist herunder (dimension er også en form for 2D Constraint). Fig. 298 Inventor 2011 - Del 1 Featuren Circular Pattern 2D Constraints Constraints er bindinger, der kan oprettes mellem de forskellige elementer i fx en Sketch. Du har allerede arbejdet med nogle af dem, programmet

Læs mere

Facade 4. 02 Soveværelse 02 Soveværelse. 4 Værelse 10 m². 04 Værelse 3397 3325. 16 Trapperum 19 m². 14 Bad. 1700 11 Entré. 11 Entré 6 m². Stue.

Facade 4. 02 Soveværelse 02 Soveværelse. 4 Værelse 10 m². 04 Værelse 3397 3325. 16 Trapperum 19 m². 14 Bad. 1700 11 Entré. 11 Entré 6 m². Stue. A(A)-1- Type 3-3,2 m² Type 4-98,2 m² Type 1-76, Type 6-3, A1 A2 A3 A4 A5 A6 A7 A8 12588 7452 9768 8280 3050 4 4 3397 3325 3050 4520 4 44 4259 m² AA AB Facade 3 Forsyningsskabe Gang 3682 8152 21 m² 2080

Læs mere

TALTEORI Wilsons sætning og Euler-Fermats sætning.

TALTEORI Wilsons sætning og Euler-Fermats sætning. Wilsons sætning og Euler-Fermats sætning, marts 2007, Kirsten Rosenkilde 1 TALTEORI Wilsons sætning og Euler-Fermats sætning. Disse noter forudsætter et grundlæggende kendskab til talteori som man kan

Læs mere

Løsningsvejledning til eksamenssæt fra august 2008 udarbejdet af René Aagaard Larsen i Maple

Løsningsvejledning til eksamenssæt fra august 2008 udarbejdet af René Aagaard Larsen i Maple Løsningsvejledning til eksamenssæt fra august 2008 udarbejdet af René Aagaard Larsen i Maple Opgave 1 1a - Trigonometri I en trekant ABC får vi opgivet følgende: Vi skitserer trekanten i GeoGebra: Vi beregner

Læs mere

Forslag til løsninger til opgaver i. Matematik En grundbog for lærerstuderende

Forslag til løsninger til opgaver i. Matematik En grundbog for lærerstuderende Forslag til løsninger til opgaver i Matematik En grundbog for lærerstuderende Forslag til løsning af Opgaver til afsnittet om de naturlige tal (side 80) Opgave Vi skal tegne alle de linjestykker, der forbinder

Læs mere

Formel- og tabelsamling

Formel- og tabelsamling Formel- og tabelsamling Folkeskolens afsluttende prøver i matematik Uddannelsesstyrelsens håndbogsserie nr. 2-2005 Folkeskolen Formel- og tabelsamling Folkeskolens afsluttende prøver i matematik Uddannelsesstyrelsens

Læs mere

Thomas Bugge "De første grunde til Regning, Geometrie, Plan-Trigonometrie og Landmaaling". Kiøbenhavn 1795. Tredje Kapitel

Thomas Bugge De første grunde til Regning, Geometrie, Plan-Trigonometrie og Landmaaling. Kiøbenhavn 1795. Tredje Kapitel Thomas Bugge "De første grunde til Regning, Geometrie, Plan-Trigonometrie og Landmaaling". Kiøbenhavn 1795. Tredje Kapitel Skievvinklede Trianglers Opløsning Tab.17. Fig.259. 21 I enhver retlinet flad

Læs mere

STUDENTEREKSAMEN MAJ-JUNI 2009 2009-8-2 MATEMATISK LINJE 2-ÅRIGT FORLØB TIL B-NIVEAU MATEMATIK DELPRØVEN UDEN HJÆLPEMIDLER

STUDENTEREKSAMEN MAJ-JUNI 2009 2009-8-2 MATEMATISK LINJE 2-ÅRIGT FORLØB TIL B-NIVEAU MATEMATIK DELPRØVEN UDEN HJÆLPEMIDLER STUDENTEREKSAMEN MAJ-JUNI 009 009-8- MATEMATISK LINJE -ÅRIGT FORLØB TIL B-NIVEAU MATEMATIK DELPRØVEN UDEN HJÆLPEMIDLER Mandag den 11. maj 009 kl. 9.00-10.00 BESVARELSEN AFLEVERES KL. 10.00 Der tildeles

Læs mere

Byplanvedtægt for byplanområde XXII. i Herlev kommune

Byplanvedtægt for byplanområde XXII. i Herlev kommune Byplanvedtægt for byplanområde XXII i Herlev kommune Februar 1962 I medfør af byplanloven (lovbekendtgørelse nr. 242 af 30. april 1949) fastsættes følgende bestemmelser for det i 1 nævnte område i Herlev

Læs mere

i tredje kilogram (kg) længde cirkeludsnit periferi todimensional hjørne

i tredje kilogram (kg) længde cirkeludsnit periferi todimensional hjørne median 50% halvdel geometri i tredje 3 rumfang normal 90 grader underlig indskrevet kilogram (kg) bage forkortelse tusinde (1000) rumfang beholder fylde liter passer ben sds bredde deci centi lineal tiendedel

Læs mere

Bjørn Felsager, Haslev Gymnasium & HF, 2003

Bjørn Felsager, Haslev Gymnasium & HF, 2003 Keglesnitsværktøjer De følgende værktøjer er beregnet til at tegne keglesnit på forskellig vis, såsom ellipser og hyperbler ud fra centrum, toppunkter, halvakser og lignende. Der er faktisk allerede inkluderet

Læs mere

Thomas Kaas Heidi Kristiansen. Gyldendal MATEMATIK KOPIMAPPE

Thomas Kaas Heidi Kristiansen. Gyldendal MATEMATIK KOPIMAPPE Thomas Kaas Heidi Kristiansen 8 KO L O R I T Gyldendal MATEMATIK KOPIMAPPE Thomas Kaas Heidi Kristiansen KOLORIT 8 Gyldendal KOLORIT 8 KOLORIT 8 MATEMATIK KOPIMAPPE 1. udgave, 1. oplag 2011 2011 Gyldendal

Læs mere

Allan C. Malmberg Matematik i glimt For elever med særlig interesse og evne for faget INFA 2006 Allan C. Malmberg

Allan C. Malmberg Matematik i glimt For elever med særlig interesse og evne for faget INFA 2006 Allan C. Malmberg Allan C. Malmberg Matematik i glimt For elever med særlig interesse og evne for faget INFA 2006 Allan C. Malmberg Matematik i glimt For elever med særlig interesse og evne for faget INFA 2006 Seneste

Læs mere

Byplanvedtægt nr. 2. Tillæg 1. For en del af Niverød by. Vedtagelsesdato: 18. juni 1968. Teknik & Miljø. Delvis ophævet af Lokalplan nr.

Byplanvedtægt nr. 2. Tillæg 1. For en del af Niverød by. Vedtagelsesdato: 18. juni 1968. Teknik & Miljø. Delvis ophævet af Lokalplan nr. Byplanvedtægt nr. 2 For en del af Niverød by Tillæg 1 Teknik & Miljø Vedtagelsesdato: 18. juni 1968 Delvis ophævet af Lokalplan nr. 40 KARLEBO KOMMUNE TILLÆG NR. 1 TIL PARTIEL BYPLANVEDTÆGT NR. 2 FOR

Læs mere

Paradokser og Opgaver

Paradokser og Opgaver Paradokser og Opgaver Mogens Esrom Larsen og Katrine Rude Laub Vi modtager meget gerne læserbesvarelser af opgaverne, samt forslag til nye opgaver enten per mail (gamma@nbi.dk) eller per almindelig post

Læs mere

Geometri. 1 Trekantens linjer. Indhold

Geometri. 1 Trekantens linjer. Indhold Geometrinoter, 2012, Kirsten Rosenkilde 1 Geometri Formålet med disse noter er at give en grundig introduktion til geometri med fokus på hvad man har brug for til internationale matematikkonkurrencer.

Læs mere

gl. Matematik A Studentereksamen Torsdag den 22. maj 2014 kl gl-1stx141-mat/a

gl. Matematik A Studentereksamen Torsdag den 22. maj 2014 kl gl-1stx141-mat/a gl. Matematik A Studentereksamen gl-1st141-mat/a-05014 Torsdag den. maj 014 kl. 9.00-14.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål. Delprøven

Læs mere

Geogebra Begynder Ku rsus

Geogebra Begynder Ku rsus Navn: Klasse: Matematik Opgave Kompendium Geogebra Begynder Ku rsus Kompendiet indeholder: Mål side længder Mål areal Mål vinkler Vinkelhalveringslinje Indskrevne cirkel Midt normal Omskrevne cirkel Trekant

Læs mere

GUX-2013. Matematik Niveau B prøveform b Vejledende sæt 2

GUX-2013. Matematik Niveau B prøveform b Vejledende sæt 2 GUX-01 Matematik Niveau B prøveform b Vejledende sæt Matematik B Prøvens varighed er 4 timer. Delprøven uden hjælpemidler består af opgaverne 1 til 6 med i alt 6 spørgsmål. Besvarelsen af denne delprøve

Læs mere

Facitliste til eksamensopgaver hf-tilvalgsfag 1999-2005

Facitliste til eksamensopgaver hf-tilvalgsfag 1999-2005 Facitliste til eksamensopgaver hf-tilvalgsfag 1999-005 99-8-1 C = (,-) radius = 7 f (x) = 6x + 4x 5 + y = x + : dist(t, ) = 1,0607 A(1,) og B(5,-1) M AB = (,1) m: y = x 1 x Redegørelse! f(x) = 70,74 x

Læs mere

Facitliste til elevbog

Facitliste til elevbog Facitliste til elevbog Algebra a 8x 4 b 6x c 7x 8 d 0 5x e x 54 f 8x 6 x a x 7x + 4 b 48a 4 + 8a c 56x + x d 6a 4 5a e 4x 80x f 6a 4 4a a 8(x + ) b 5x(4x 7) c 4( a) d 9a ( a) e 4( + 7a ) f 6(x + y) 4 a

Læs mere

ØVEHÆFTE FOR MATEMATIK C GEOMETRI

ØVEHÆFTE FOR MATEMATIK C GEOMETRI ØVEHÆFTE FOR MATEMATIK C GEOMETRI Indhold Begreber i klassisk geometri + formelsamling... 2 Ensvinklede trekanter... 7 Pythagoras Sætning... 10 Øve vinkler i retvinklede trekanter... 15 Sammensatte opgaver....

Læs mere

Hvad er matematik? C, i-bog ISBN 978 87 7066 499 8

Hvad er matematik? C, i-bog ISBN 978 87 7066 499 8 Et af de helt store videnskabelige projekter i 1700-tallets Danmark var kortlægningen af Danmark. Projektet blev varetaget af Det Kongelige Danske Videnskabernes Selskab og løb over en periode på et halvt

Læs mere

Lokalplan nr. 59 (tidligere Holmsland Kommune)

Lokalplan nr. 59 (tidligere Holmsland Kommune) Lokalplan nr. 59 (tidligere Holmsland Kommune) er d. 03.06.2013 blevet delvis aflyst. Det aflyste område er i stedet omfattet af: Lokalplan nr. 274 For et område til sommerhusformål ved Klevevej, Lodbjerg

Læs mere

Løsningsforslag 7. januar 2011

Løsningsforslag 7. januar 2011 Løsningsforslag 7. januar 2011 May 9, 2012 Opgave 1 (5%) Funktionen f er givet ved forskriften f(x) = ln(x 2) + x 2. a) Bestem definitionsmængden for f. b) Beregn f (x). a) Definitionsmængden Logaritmen

Læs mere

TALTEORI Primfaktoropløsning og divisorer.

TALTEORI Primfaktoropløsning og divisorer. Primfaktoropløsning og divisorer, oktober 2008, Kirsten Rosenkilde 1 TALTEORI Primfaktoropløsning og divisorer. Disse noter forudsætter et grundlæggende kendskab til talteori som man kan få i Marianne

Læs mere

ØVEHÆFTE FOR MATEMATIK C GEOMETRI

ØVEHÆFTE FOR MATEMATIK C GEOMETRI ØVEHÆFTE FOR MATEMATIK C GEOMETRI Indhold Begreber i klassisk geometri + formelsamling... 2 Pythagoras Sætning... 8 Retvinklede trekanter. Beregn den ukendte side markeret med et bogstav.... 9 Øve vinkler

Læs mere

MATEMATIK I HASLEBAKKER 14 OPGAVER

MATEMATIK I HASLEBAKKER 14 OPGAVER MATEMATIK I HASLEBAKKER 14 OPGAVER Matematik i Hasle Bakker Hasle Bakker er et oplagt mål for ekskursioner, der lægger op til, at eleverne åbner øjnene for de muligheder, naturen giver. Leg, bevægelse,

Læs mere

Afstand fra et punkt til en linje

Afstand fra et punkt til en linje Afstand fra et punkt til en linje Frank Villa 6. oktober 2014 Dette dokument er en del af MatBog.dk 2008-2012. IT Teaching Tools. ISBN-13: 978-87-92775-00-9. Se yderligere betingelser for brug her. Indhold

Læs mere

Rettevejledning til Georg Mohr-Konkurrencen runde

Rettevejledning til Georg Mohr-Konkurrencen runde Rettevejledning til Georg Mohr-Konkurrencen 2006 2. runde Det som skal vurderes i bedømmelsen af en opgave, er om deltageren har formået at analysere problemstillingen, kombinere de givne oplysninger til

Læs mere

Trekanttypespil. 7 Trekanter. En trekant, hvor to af vinklerne er 90. En retvinklet trekant med siderne 3, 4, og 5. Kan ikke konstrueres.

Trekanttypespil. 7 Trekanter. En trekant, hvor to af vinklerne er 90. En retvinklet trekant med siderne 3, 4, og 5. Kan ikke konstrueres. .01 Trekanter Trekanttypespil En retvinklet trekant med siderne,, og. Kan ikke konstrueres. En trekant, hvor to af vinklerne er 90. En ligesidet trekant med siden. En spidsvinklet trekant hvor den ene

Læs mere

LOKALPLAN NR. 720.1. ANVENDELSE AF BOLIGER I TVERSTED Helårsstatus langs Tannisbugtvej og Bindslevvej samt sideveje m.v. til disse.

LOKALPLAN NR. 720.1. ANVENDELSE AF BOLIGER I TVERSTED Helårsstatus langs Tannisbugtvej og Bindslevvej samt sideveje m.v. til disse. LOKALPLAN NR. 720.1 ANVENDELSE AF BOLIGER I TVERSTED Helårsstatus langs Tannisbugtvej og Bindslevvej samt sideveje m.v. til disse. December 2007 HJØRRING KOMMUNE Side 3 LOKALPLAN NR. 720.1 FOR ANVENDELSEN

Læs mere

TALTEORI Wilsons sætning og Euler-Fermats sætning.

TALTEORI Wilsons sætning og Euler-Fermats sætning. Wilsons sætning og Euler-Fermats sætning, marts 2007, Kirsten Rosenkilde 1 TALTEORI Wilsons sætning og Euler-Fermats sætning. Disse noter forudsætter et grundlæggende kendskab til talteori som man kan

Læs mere

Forslag til løsninger til opgaver i. Matematik En grundbog for lærerstuderende

Forslag til løsninger til opgaver i. Matematik En grundbog for lærerstuderende Forslag til løsninger til opgaver i Matematik En grundbog for lærerstuderende 1 Forslag til løsning af Opgaver til afsnittet om de naturlige tal (side 80) Opgave 1 Vi skal tegne alle de linjestykker, der

Læs mere

Vejledende Matematik B

Vejledende Matematik B Vejledende Matematik B Prøvens varighed er 4 timer. Alle hjælpemidler er tilladt. Af opgaverne 8A, 8B, 8C og 8D skal kun to afleveres til bedømmelse. Hvis flere end to opgaver afleveres, bedømmes kun besvarelsen

Læs mere

Løsninger til eksamensopgaver på A-niveau 2014. 22. maj 2014. 22. maj 2014: Delprøven UDEN hjælpemidler

Løsninger til eksamensopgaver på A-niveau 2014. 22. maj 2014. 22. maj 2014: Delprøven UDEN hjælpemidler Opgave 1: Løsninger til eksamensopgaver på A-niveau 014 f x x 4x 6. maj 014. maj 014: Delprøven UDEN hjælpemidler Koordinatsættet til parablens toppunkt bestemmes ved først at udregne diskriminanten for

Læs mere

Pladeudfoldning, Kanaler

Pladeudfoldning, Kanaler 2009 Pladeudfoldning Kanaler Teoretisk gennemgang af de grundlæggende færdigheder inden for Pladeudfoldning, Kanaler Teknisk Isolering AMUSYD 06 02 2009-1 - Indholdsfortegnelse Indholdsfortegnelse...2

Læs mere

4x + 3y + k 4(x + 3y + k) 2(y + x) + 2(xy + k) 7(2y + 3x) 2(k + 2(y + x))

4x + 3y + k 4(x + 3y + k) 2(y + x) + 2(xy + k) 7(2y + 3x) 2(k + 2(y + x)) A.0 A Algebradans x + y + k (x + y + k) (y + x) + (xy + k) (y + x) (k + (y + x)) k + k + k + (y +xy + k) (y + x) + k x + x + x + x + x + k (xy + (y + x) xy + xy + k (k + y + k) (xy + x) + y 6(x + xy) k

Læs mere

MATEMATIK B. Xxxxdag den xx. måned åååå. Kl. 10.00 15.00 GL083-MAB. GU HHX DECEMBER 2008 Vejledende opgavesæt. Undervisningsministeriet

MATEMATIK B. Xxxxdag den xx. måned åååå. Kl. 10.00 15.00 GL083-MAB. GU HHX DECEMBER 2008 Vejledende opgavesæt. Undervisningsministeriet GU HHX DECEMBER 2008 Vejledende opgavesæt MATEMATIK B Xxxxdag den xx. måned åååå Kl. 10.00 15.00 Undervisningsministeriet GL083-MAB 574604_GL083-MAB_12s.indd 1 14/01/09 14:40:30 Matematik B Prøvens varighed

Læs mere

BYPLANVEDTÆGT FOR NØDEBO-OMRÅDET. Byplanvedtægt nr. 41

BYPLANVEDTÆGT FOR NØDEBO-OMRÅDET. Byplanvedtægt nr. 41 BYPLANVEDTÆGT FOR NØDEBO-OMRÅDET Byplanvedtægt nr. 41 Byplanvedtægt nr. 41 - for Nødebo-området I medfør af byplanloven (lovbekendtgørelse nr. 63 af 20. februar 1970) fastsættes følgende bestemmelser for

Læs mere

Lærereksemplar. kun til lærerbrug. Basisgeometri for 6. - 7. klasse. Bestil venligst direkte på: www.forlagetdelta.dk

Lærereksemplar. kun til lærerbrug. Basisgeometri for 6. - 7. klasse. Bestil venligst direkte på: www.forlagetdelta.dk Bestil venligst direkte på: www.forlagetdelta.dk Kopiering er u-økonomisk og forbudt til erhvervsformål. Basisgeometri for 6. - 7. klasse Dette materialer har jeg brugt i en ret god sjetteklasse, og det

Læs mere