Oversigt. 1 Eksempel. 2 Fordelingen for gennemsnittet t-fordelingen. 3 Konfidensintervallet for µ Eksempel

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Starte visningen fra side:

Download "Oversigt. 1 Eksempel. 2 Fordelingen for gennemsnittet t-fordelingen. 3 Konfidensintervallet for µ Eksempel"

Transkript

1 Kursus 02402/02323 Introducerende Statistik Forelæsning 4: Konfidensinterval for middelværdi (og spredning) Klaus K. Andersen og Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Danmarks Tekniske Universitet 2800 Lyngby Danmark Oversigt Konfidensintervallet for µ 4 Den statistiske sprogbrug og formelle ramme 5 Ikke-normale data, Central Grænseværdisætning (CLT) 6 En formel fortolkning af konfidensintervallet 7 Planlægning af studie med krav til præcision, højdedata igen 8 Klaus KA og Per BB Introduktion til Statistik, Forelæsning 4 Efteråret / 47 Klaus KA og Per BB Introduktion til Statistik, Forelæsning 4 Efteråret / 47 - Højde af 10 studerende: Theorem 3.2: Fordeling for gennemsnit af normalfordelinger Stikprøve, n = 10: Sample mean og standard deviation: x = 178 s = NYT:Konfidensinterval, µ: 178± [169.3; 186.7] Estimerer population mean og standard deviation: ˆµ = 178 ˆσ = NYT:Konfidensinterval, σ: [8.4; 22.3] (Stikprøve-) fordelingen/ The (sampling) distribution for X Assume that X 1,..., X n are independent and identically normally distributed random variables, X i N(µ, σ 2 ), i = 1,..., n, then: X = 1 n X i N ) (µ, σ2 n Klaus KA og Per BB Introduktion til Statistik, Forelæsning 4 Efteråret / 47 Klaus KA og Per BB Introduktion til Statistik, Forelæsning 4 Efteråret / 47

2 Middelværdi og varians følger af regneregler Vi kender nu fordelingen af den fejl vi begår: (Når vi bruger x som estimat for µ) Middelværdien af X E( X) = 1 n E(X i ) = 1 n µ = 1 n nµ = µ Spredningen af X σ X = σ n Variansen for X Var( X) = 1 n 2 Var(X i ) = 1 n 2 σ 2 = 1 n 2 nσ2 = σ2 n Spredningen af ( X µ) σ ( X µ ) = σ n Klaus KA og Per BB Introduktion til Statistik, Forelæsning 4 Efteråret / 47 Klaus KA og Per BB Introduktion til Statistik, Forelæsning 4 Efteråret / 47 Standardiseret version af de samme ting, Corollary 3.3: Praktisk problem i alt dette, so far: Fordelingen for den standardiserede fejl vi begår: Assume that X 1,..., X n are independent and identically normally distributed random variables, X i N (µ, σ 2 ) where i = 1,..., n, then: Z = X µ σ/ n N ( 0, 1 2) That is, the standardized sample mean Z follows a standard normal distribution. Hvordan skal alt dette omsættes til et konkret interval for µ? Når nu populationsspredningen σ indgår i alle formlerne? Oplagt løsning: Anvend estimtatet s i stedet for σ i formlerne! MEN MEN: Så bryder den givne teori faktisk sammen!! HELDIGVIS: Der findes en udvidet teori, der kan klare det!! Klaus KA og Per BB Introduktion til Statistik, Forelæsning 4 Efteråret / 47 Klaus KA og Per BB Introduktion til Statistik, Forelæsning 4 Efteråret / 47

3 Theorem 3.4: More applicable extension of the same stuff: (kopi af Theorem 2.49) med 9 frihedsgrader (n = 10): tager højde for usikkerheden i at bruge s: Assume that X 1,..., X n are independent and identically normally distributed random variables, where X i N ( µ, σ 2) and i = 1,..., n, then: T = X µ S/ n t where t is the t-distribution with n 1 degrees of freedom. dt(x, 9) Black: standard normal Red: t(9) x Klaus KA og Per BB Introduktion til Statistik, Forelæsning 4 Efteråret / 47 Klaus KA og Per BB Introduktion til Statistik, Forelæsning 4 Efteråret / 47 med 9 frihedsgrader og standardnormalfordelingen: med 9 frihedsgrader og standardnormalfordelingen: dt(x, 9) Black: standard normal Red: t(9) P(T>2)=0.038 dt(x, 9) Black: standard normal Red: t(9) P(Z>2)= x x Klaus KA og Per BB Introduktion til Statistik, Forelæsning 4 Efteråret / 47 Klaus KA og Per BB Introduktion til Statistik, Forelæsning 4 Efteråret / 47

4 Konfidensintervallet for µ Konfidensintervallet for µ Metodeboks 3.8: One-sample konfidensinterval for µ Højde-eksempel Brug den rigtige t-fordeling til at lave konfidensintervallet: For a sample x 1,..., x n the 100(1 α)% confidence interval is given by: x ± t 1 α/2 s n where t 1 α/2 is the 100(1 α)% quantile from the t-distribution with n 1 degrees of freedom. Mest almindeligt med α = 0.05: The most commonly used is the 95%-confidence interval: x ± t s n The t-quantiles for n=10: qt(0.975,9) [1] Og vi kan genkende det allerede angivne resultat: which is: 178 ± ± 8.74 = [169.3; 186.7] Klaus KA og Per BB Introduktion til Statistik, Forelæsning 4 Efteråret / 47 Klaus KA og Per BB Introduktion til Statistik, Forelæsning 4 Efteråret / 47 Konfidensintervallet for µ Konfidensintervallet for µ Højde-eksempel, 99% Konfidensinterval (CI) Der findes en R-funktion, der kan gøre det hele (og lidt mere til): qt(0.995,9) [1] som giver 178 ± ± = [165.4; 190.6] x <- c(168,161,167,179,184,166,198,187,191,179) t.test(x,conf.level=0.99) Results of Hypothesis Test Null Hypothesis: mean = 0 Alternative Hypothesis: True mean is not equal to 0 Test Name: One Sample t-test Estimated Parameter(s): mean of x = 178 Data: x Test Statistic: t = Test Statistic Parameter: df = 9 P-value: e-12 99% Confidence Interval: LCL = UCL = Klaus KA og Per BB Introduktion til Statistik, Forelæsning 4 Efteråret / 47 Klaus KA og Per BB Introduktion til Statistik, Forelæsning 4 Efteråret / 47

5 Den statistiske sprogbrug og formelle ramme Den formelle ramme for statistisk inferens Den statistiske sprogbrug og formelle ramme Den formelle ramme for statistisk inferens - Fra enote, Chapter 1: An observational unit is the single entity/level about which information is sought (e.g. a person) (Observationsenhed) The statistical population consists of all possible measurements on each observational unit (Population) The sample from a statistical population is the actual set of data collected. (Stikprøve) Sprogbrug og koncepter: µ og σ er parametre, som beskriver populationen x er estimatet for µ (konkret udfald) X er estimatoren for µ (nu set som stokastisk variabel) Fra enote, Chapter 1, højdeeksempel Vi måler højden for 10 tilfældige personer i Danmark Stikprøven/The sample: De 10 konkrete talværdier: x 1,..., x 10 Populationen: Højderne for alle mennesker i Danmark. Observationsenheden: En person Begrebet statistic(s) er en fællesbetegnelse for begge Klaus KA og Per BB Introduktion til Statistik, Forelæsning 4 Efteråret / 47 Klaus KA og Per BB Introduktion til Statistik, Forelæsning 4 Efteråret / 47 Den statistiske sprogbrug og formelle ramme Statistisk inferens = Learning from data Den statistiske sprogbrug og formelle ramme Tilfældig stikprøveudtagning Learning from data: Is learning about parameters of distributions that describe populations. Vigtigt i den forbindelse: Stikprøven skal på meningsfuld vis være repræsentativ for en eller anden veldefineret population Hvordan sikrer man det: F.eks. ved at sikre at stikprøven er fuldstændig tilfældig udtaget Definition 3.11: A random sample from an (infinite) population: A set of observations X 1, X 2,..., X n constitutes a random sample of size n from the infinite population f(x) if: 1 Each X i is a random variable whose distribution is given by f(x) 2 These n random variables are independent Hvad betyder det???? 1 Alle observationer skal komme fra den samme population 2 De må IKKE dele information med hinanden (f.eks. hvis man havde udtaget hele familier i stedet for enkeltindivider) Klaus KA og Per BB Introduktion til Statistik, Forelæsning 4 Efteråret / 47 Klaus KA og Per BB Introduktion til Statistik, Forelæsning 4 Efteråret / 47

6 Ikke-normale data, Central Grænseværdisætning (CLT) Theorem 3.13: The Central Limit Theorem Uanset hvad bliver fordelingen for et gennemsnit en normalfordeling: Let X be the mean of a random sample of size n taken from a population with mean µ and variance σ 2, then Z = X µ σ/ n Ikke-normale data, Central Grænseværdisætning (CLT) CLT in action - gennemsnit af Uniform fordelte observationer n=1 k=1000 u=matrix(runif(k*n),ncol=n) hist(apply(u,1,mean),col="blue",main="means: n=1",xlab="", cex.lab =0.7, cex=0.7) Means: n=1 is a random variable whose distribution function approaches that of the standard normal distribution, N(0, 1 2 ), as n Dvs., hvis n er stor nok, kan vi (tilnærmelsesvist) antage: Frequency 0 60 X µ σ/ n N(0, 12 ) Klaus KA og Per BB Introduktion til Statistik, Forelæsning 4 Efteråret / 47 Klaus KA og Per BB Introduktion til Statistik, Forelæsning 4 Efteråret / 47 Ikke-normale data, Central Grænseværdisætning (CLT) CLT in action - gennemsnit af Uniform fordelte observationer Ikke-normale data, Central Grænseværdisætning (CLT) CLT in action - gennemsnit af Uniform fordelte observationer n=2 k=1000 u=matrix(runif(k*n),ncol=n) hist(apply(u,1,mean),col="blue",main="means: n=2",xlab="", cex.lab =0.7, cex=0.7) n=6 k=1000 u=matrix(runif(k*n),ncol=n) hist(apply(u,1,mean),col="blue",main="means: n=6",xlab="", cex.lab =0.7, cex=0.7) Means: n=2 Means: n=6 Frequency Frequency Klaus KA og Per BB Introduktion til Statistik, Forelæsning 4 Efteråret / 47 Klaus KA og Per BB Introduktion til Statistik, Forelæsning 4 Efteråret / 47

7 Ikke-normale data, Central Grænseværdisætning (CLT) CLT in action - gennemsnit af Uniform fordelte observationer Ikke-normale data, Central Grænseværdisætning (CLT) Konsekvens af CLT: n=30 k=1000 u=matrix(runif(k*n),ncol=n) hist(apply(u,1,mean),col="blue",main="means: n=30",xlab="", nclass=15, cex.lab =0.7, cex=0.7) Frequency Means: n=30 Vores CI-metode virker OGSÅ for ikke-normale data: Vi kan bruge konfidens-interval baseret på i stort set alle situationer, blot n er stor nok Hvad er stor nok? Faktisk svært at svare præcist på, MEN: Tommelfingerregel:n 30 Selv for mindre n kan formlen være (næsten)gyldig for ikke-normale data Klaus KA og Per BB Introduktion til Statistik, Forelæsning 4 Efteråret / 47 Klaus KA og Per BB Introduktion til Statistik, Forelæsning 4 Efteråret / 47 En formel fortolkning af konfidensintervallet Repeated sampling fortolkning En formel fortolkning af konfidensintervallet Repeated sampling fortolkning I det lange løb fanger vi den sande værdi i 95% af tilfældene: Konfidensintervallet vil variere i både bredde (s) og position ( x) hvis man gentager sit studie. Mere formelt udtrykt (Theorem 3.4 og 2.49): ( ) X µ P S/ n < t = 0.95 Som er ækvivalent med: ( ) S P X t n < µ < X S + t n = 0.95 P( X µ S n < t 0.975) t t Klaus KA og Per BB Introduktion til Statistik, Forelæsning 4 Efteråret / 47 Klaus KA og Per BB Introduktion til Statistik, Forelæsning 4 Efteråret / 47

8 Planlægning af studie med krav til præcision Planlægning af studie med krav til præcision Planlægning af studie med krav til præcision, højdedata igen, højdedata igen Method 3.45: The one-sample CI sample size formula: When σ is known or guessed at some value, we can calculate the sample size n needed to achieve a given margin of error, ME, with probability 1 α as: ( z1 α/2 σ ) 2 n = (1) ME Sample mean og standard deviation: x = 178 s = Estimerer population mean og standard deviation: ˆµ = 178 ˆσ = Hvis vi nu ønsker at ME = 3cm med 95% konfidens, hvor stor skal n så være? ( ) n = = Klaus KA og Per BB Introduktion til Statistik, Forelæsning 4 Efteråret / 47 Klaus KA og Per BB Introduktion til Statistik, Forelæsning 4 Efteråret / 47 Stikprøvefordelingen for varians-estimatet (Theorem 2.53) Produktion af tabletter Vi producere pulverblanding og tabletter deraf, så koncenttrationen af det aktive stof i tabletterne skal være 1 mg/g med den mindst mulige spredning. En tilfældig stikprøve udtages, hvor vi måler mængden af aktivt stof. Variansestimater opfører sig som en χ 2 -fordeling: Let then: S 2 = 1 n 1 χ 2 = (X i X) 2 (n 1)S2 σ 2 is a stochastic variable following the χ 2 -distribution with v = n 1 degrees of freedom. Klaus KA og Per BB Introduktion til Statistik, Forelæsning 4 Efteråret / 47 Klaus KA og Per BB Introduktion til Statistik, Forelæsning 4 Efteråret / 47

9 χ 2 -fordelingen med ν = 9 frihedsgrader x <- seq(0, 20, by = 0.1) plot(x, dchisq(x, df = 9), type = "l") dchisq(x, df = 9) x Klaus KA og Per BB Introduktion til Statistik, Forelæsning 4 Efteråret / 47 Metode 3.18: Konfidensinterval for stikprøvevarians og -spredning Variansen: A 100(1 α)% confidence interval for a sample variance ˆσ 2 is: [ ] (n 1)s 2 (n 1)s 2 χ 2 ; 1 α/2 χ 2 α/2 where the quantiles come from a χ 2 -distribution with ν = n 1 degrees of freedom. Spredningen: A 100(1 α)% confidence interval for the sample standard deviation ˆσ is: [ ] (n 1)s 2 (n 1)s 2 ; χ 2 1 α/2 χ 2 α/2 Klaus KA og Per BB Introduktion til Statistik, Forelæsning 4 Efteråret / 47 Data: En tilfældig stikprøve med n = 20 tabletter er udtaget og fra denne får man: ˆµ = x = 1.01, ˆσ 2 = s 2 = %-konfidensinterval for variansen - vi skal bruge χ 2 -fraktilerne: χ = , χ = qchisq(c(0.025, 0.975), df = 19) Så konfidensintervallet for variansen σ 2 bliver: [ ; ] = [ ; ] Og konfidensintervallet for spredningen σ bliver: [ ; ] = [0.053; 0.102] [1] Klaus KA og Per BB Introduktion til Statistik, Forelæsning 4 Efteråret / 47 Klaus KA og Per BB Introduktion til Statistik, Forelæsning 4 Efteråret / 47

10 Højdeeksempel - Højde af 10 studerende - recap: Vi skal bruge χ 2 -fraktilerne med ν = 9 frihedsgrader: χ = , χ = qchisq(c(0.025, 0.975), df = 9) [1] Så konfidensintervallet for højdespredningen σ bliver: [ ] ; 2 = [8.4; 22.3] Stikprøve, n = 10: Sample mean og standard deviation: x = 178 s = NYT:Konfidensinterval, µ: 178± [169.3; 186.7] Estimerer population mean og standard deviation: ˆµ = 178 ˆσ = NYT:Konfidensinterval, σ: [8.4; 22.3] Klaus KA og Per BB Introduktion til Statistik, Forelæsning 4 Efteråret / 47 Klaus KA og Per BB Introduktion til Statistik, Forelæsning 4 Efteråret / 47 Oversigt Konfidensintervallet for µ 4 Den statistiske sprogbrug og formelle ramme 5 Ikke-normale data, Central Grænseværdisætning (CLT) 6 En formel fortolkning af konfidensintervallet 7 Planlægning af studie med krav til præcision, højdedata igen 8 Klaus KA og Per BB Introduktion til Statistik, Forelæsning 4 Efteråret / 47

Forelæsning 4: Konfidensinterval for middelværdi (og spredning)

Forelæsning 4: Konfidensinterval for middelværdi (og spredning) Introduktion til Statistik Forelæsning 4: Konfidensinterval for middelværdi (og spredning) Peder Bacher DTU Compute, Dynamiske Systemer Bygning 303B, Rum 009 Danmarks Tekniske Universitet 2800 Lyngby Danmark

Læs mere

Forelæsning 8: Inferens for varianser (kap 9)

Forelæsning 8: Inferens for varianser (kap 9) Kursus 02402 Introduktion til Statistik Forelæsning 8: Inferens for varianser (kap 9) Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800 Lyngby

Læs mere

Kursus 02402 Introduktion til Statistik. Forelæsning 7: Kapitel 7 og 8: Statistik for to gennemsnit, (7.7-7.8,8.1-8.5) Per Bruun Brockhoff

Kursus 02402 Introduktion til Statistik. Forelæsning 7: Kapitel 7 og 8: Statistik for to gennemsnit, (7.7-7.8,8.1-8.5) Per Bruun Brockhoff Kursus 02402 Introduktion til Statistik Forelæsning 7: Kapitel 7 og 8: Statistik for to gennemsnit, (7.7-7.8,8.1-8.5) Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks

Læs mere

Forelæsning 5: Kapitel 7: Inferens for gennemsnit (One-sample setup)

Forelæsning 5: Kapitel 7: Inferens for gennemsnit (One-sample setup) Kursus 02402 Introduktion til Statistik Forelæsning 5: Kapitel 7: Inferens for gennemsnit (One-sample setup) Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske

Læs mere

Forelæsning 6: Kapitel 7: Hypotesetest for gennemsnit (one-sample setup). 7.4-7.6

Forelæsning 6: Kapitel 7: Hypotesetest for gennemsnit (one-sample setup). 7.4-7.6 Kursus 02402 Introduktion til Statistik Forelæsning 6: Kapitel 7: Hypotesetest for gennemsnit (one-sample setup). 7.4-7.6 Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220

Læs mere

Oversigt. Course 02402/02323 Introducerende Statistik. Forelæsning 3: Kontinuerte fordelinger. Per Bruun Brockhoff

Oversigt. Course 02402/02323 Introducerende Statistik. Forelæsning 3: Kontinuerte fordelinger. Per Bruun Brockhoff Course 242/2323 Introducerende Statistik Forelæsning 3: Kontinuerte fordelinger Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 22 Danmarks Tekniske Universitet 28 Lyngby Danmark

Læs mere

Normalfordelingen. Statistik og Sandsynlighedsregning 2

Normalfordelingen. Statistik og Sandsynlighedsregning 2 Normalfordelingen Statistik og Sandsynlighedsregning 2 Repetition og eksamen Erfaringsmæssigt er normalfordelingen velegnet til at beskrive variationen i mange variable, blandt andet tilfældige fejl på

Læs mere

Modul 5: Test for én stikprøve

Modul 5: Test for én stikprøve Forskningsenheden for Statistik ST01: Elementær Statistik Bent Jørgensen Modul 5: Test for én stikprøve 5.1 Test for middelværdi................................. 1 5.1.1 t-fordelingen.................................

Læs mere

Konfidensinterval for µ (σ kendt)

Konfidensinterval for µ (σ kendt) Program 1. Repetition: konfidens-intervaller. 2. Hypotese test 3. Type I og type II fejl, p-værdi 4. En og to-sidede tests 5. Test for middelværdi (kendt varians) 6. Test for middelværdi (ukendt varians)

Læs mere

Introduktion til Statistik. Forelæsning 3: Kontinuerte fordelinger. Peder Bacher

Introduktion til Statistik. Forelæsning 3: Kontinuerte fordelinger. Peder Bacher Introduktion til Statistik Forelæsning 3: Kontinuerte fordelinger Peder Bacher DTU Compute, Dynamiske Systemer Bygning 303B, Rum 009 Danmarks Tekniske Universitet 2800 Lyngby Danmark e-mail: pbac@dtu.dk

Læs mere

Oversigt. 1 Motiverende eksempel - energiforbrug. 2 Hypotesetest (Repetition) 3 Two-sample t-test og p-værdi. 4 Konfidensinterval for forskellen

Oversigt. 1 Motiverende eksempel - energiforbrug. 2 Hypotesetest (Repetition) 3 Two-sample t-test og p-værdi. 4 Konfidensinterval for forskellen Kursus 02402/02323 Introducerende Statistik Forelæsning 6: Sammenligning af to grupper Oversigt 1 Motiverende eksempel - energiforbrug 2 Hypotesetest (Repetition) 3 Klaus K. Andersen og Per Bruun Brockhoff

Læs mere

Afsnit E1 Konfidensinterval for middelværdi i normalfordeling med kendt standardafvigelse

Afsnit E1 Konfidensinterval for middelværdi i normalfordeling med kendt standardafvigelse Afsnit 8.3 - E1 Konfidensinterval for middelværdi i normalfordeling med kendt standardafvigelse Først skal normalfordelingen lige defineres i Maple, så vi kan benytte den i vores udregninger. Dette gøres

Læs mere

da er X 1 + X 2 N(µ 1 + µ 2,σ1 2 + σ2) Hvis X 1,...,X n er uafhængige og X r N(µ,σ 2 ), da er X = 1 n (X 1 +... + X n ) N(µ, σ2

da er X 1 + X 2 N(µ 1 + µ 2,σ1 2 + σ2) Hvis X 1,...,X n er uafhængige og X r N(µ,σ 2 ), da er X = 1 n (X 1 +... + X n ) N(µ, σ2 Statistik og Sandsynlighedsregning IH kapitel Overheads til forelæsninger, onsdag 5. uge Resultater om normalfordeling X N(µ,σ ). N har tæthed ϕ µ,σ (x) = exp (x µ) πσ σ EX = µ, Var(X) = σ X µ N(0,) σ

Læs mere

k UAFHÆNGIGE grupper F-test Oversigt 1 Intro eksempel 2 Model og hypotese 3 Beregning - variationsopspaltning og ANOVA tabellen

k UAFHÆNGIGE grupper F-test Oversigt 1 Intro eksempel 2 Model og hypotese 3 Beregning - variationsopspaltning og ANOVA tabellen Introduktion til Statistik Forelæsning 10: Envejs variansanalyse, ANOVA Peder Bacher DTU Compute, Dynamiske Systemer Bygning 303B, Rum 017 Danmarks Tekniske Universitet 2800 Lyngby Danmark e-mail: pbac@dtu.dk

Læs mere

Konfidensintervaller og Hypotesetest

Konfidensintervaller og Hypotesetest Konfidensintervaller og Hypotesetest Konfidensinterval for andele χ -fordelingen og konfidensinterval for variansen Hypoteseteori Hypotesetest af middelværdi, varians og andele Repetition fra sidst: Konfidensintervaller

Læs mere

Oversigt. 1 Motiverende eksempel: Højde-vægt. 2 Lineær regressionsmodel. 3 Mindste kvadraters metode (least squares)

Oversigt. 1 Motiverende eksempel: Højde-vægt. 2 Lineær regressionsmodel. 3 Mindste kvadraters metode (least squares) Kursus 02402/02323 Introducerende Statistik Forelæsning 8: Simpel lineær regression Oversigt Motiverende eksempel: Højde-vægt 2 Lineær regressionsmodel 3 Mindste kvadraters metode (least squares) Klaus

Læs mere

Hypotese test. Repetition fra sidst Hypoteser Test af middelværdi Test af andel Test af varians Type 1 og type 2 fejl Signifikansniveau

Hypotese test. Repetition fra sidst Hypoteser Test af middelværdi Test af andel Test af varians Type 1 og type 2 fejl Signifikansniveau ypotese test Repetition fra sidst ypoteser Test af middelværdi Test af andel Test af varians Type 1 og type fejl Signifikansniveau Konfidens intervaller Et konfidens interval er et interval, der estimerer

Læs mere

Løsning eksamen d. 15. december 2008

Løsning eksamen d. 15. december 2008 Informatik - DTU 02402 Introduktion til Statistik 2010-2-01 LFF/lff Løsning eksamen d. 15. december 2008 Referencer til Probability and Statistics for Engineers er angivet i rækkefølgen [8th edition, 7th

Læs mere

Statistik og Sandsynlighedsregning 2

Statistik og Sandsynlighedsregning 2 Statistik og Sandsynlighedsregning 2 Den flerdimensionale normalfordeling, fordeling af ( X,SSD) Helle Sørensen Uge 9, mandag SaSt2 (Uge 9, mandag) Flerdim. N, ford. af ( X,SSD) 1 / 16 Program Resultaterne

Læs mere

Program. 1. Repetition: konfidens-intervaller. 2. Hypotese test, type I og type II fejl, signifikansniveau, styrke, en- og to-sidede test.

Program. 1. Repetition: konfidens-intervaller. 2. Hypotese test, type I og type II fejl, signifikansniveau, styrke, en- og to-sidede test. Program 1. Repetition: konfidens-intervaller. 2. Hypotese test, type I og type II fejl, signifikansniveau, styrke, en- og to-sidede test. 1/19 Konfidensinterval for µ (σ kendt) Estimat ˆµ = X bedste bud

Læs mere

Oversigt. Course 02402/02323 Introducerende Statistik. Forelæsning 2: Stokastisk variabel og diskrete fordelinger

Oversigt. Course 02402/02323 Introducerende Statistik. Forelæsning 2: Stokastisk variabel og diskrete fordelinger Course 02402/02323 Introducerende Statistik Forelæsning 2: Stokastisk variabel og diskrete fordelinger Klaus K. Andersen og Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Danmarks Tekniske Universitet

Læs mere

1 enote 1: Simple plots og deskriptive statistik. 2 enote2: Diskrete fordelinger. 3 enote 2: Kontinuerte fordelinger

1 enote 1: Simple plots og deskriptive statistik. 2 enote2: Diskrete fordelinger. 3 enote 2: Kontinuerte fordelinger Kursus 02402/02323 Introduktion til statistik Forelæsning 13: Et overblik over kursets indhold Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Building 324, Room 220 Danish Technical University

Læs mere

Reminder: Hypotesetest for én parameter. Økonometri: Lektion 4. F -test Justeret R 2 Aymptotiske resultater. En god model

Reminder: Hypotesetest for én parameter. Økonometri: Lektion 4. F -test Justeret R 2 Aymptotiske resultater. En god model Reminder: Hypotesetest for én parameter Antag vi har model Økonometri: Lektion 4 F -test Justeret R 2 Aymptotiske resultater y = β 0 + β 1 x 2 + β 2 x 2 + + β k x k + u. Vi ønsker at teste hypotesen H

Læs mere

Forelæsning 3: Kapitel 5: Kontinuerte fordelinger

Forelæsning 3: Kapitel 5: Kontinuerte fordelinger Kursus 02402 Introduktion til Statistik Forelæsning 3: Kapitel 5: Kontinuerte fordelinger Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800

Læs mere

Module 12: Mere om variansanalyse

Module 12: Mere om variansanalyse Mathematical Statistics ST06: Linear Models Bent Jørgensen og Pia Larsen Module 2: Mere om variansanalyse 2. Parreded observationer................................ 2.2 Faktor med 2 niveauer (0- variabel)........................

Læs mere

enote 2: Kontinuerte fordelinger Introduktion til Statistik Forelæsning 3: Kontinuerte fordelinger Peder Bacher enote 2: Continuous Distributions

enote 2: Kontinuerte fordelinger Introduktion til Statistik Forelæsning 3: Kontinuerte fordelinger Peder Bacher enote 2: Continuous Distributions Introduktion til Statistik Forelæsning 3: Kontinuerte fordelinger Peder Bacher DTU Compute, Dynamiske Systemer Bygning 33B, Rum 9 Danmarks Tekniske Universitet 28 Lyngby Danmark e-mail: pbac@dtu.dk Efterår

Læs mere

Oversigt. Kursus Introduktion til Statistik. Forelæsning 3: Kapitel 5: Kontinuerte fordelinger. Per Bruun Brockhoff.

Oversigt. Kursus Introduktion til Statistik. Forelæsning 3: Kapitel 5: Kontinuerte fordelinger. Per Bruun Brockhoff. Kursus 242 Introduktion til Statistik Forelæsning 3: Kapitel 5: Kontinuerte fordelinger Per Bruun Brockhoff DTU Compute, Statistik Bygning 35/324 Danmarks Tekniske Universitet 28 Lyngby Danmark e-mail:

Læs mere

Kapitel 3 Centraltendens og spredning

Kapitel 3 Centraltendens og spredning Kapitel 3 Centraltendens og spredning Peter Tibert Stoltze stat@peterstoltze.dk Elementær statistik F2011 1 Indledning 2 Centraltendens 3 Spredning 4 Praktisk beregning 5 Fraktiler 6 Opsamling 1 Indledning

Læs mere

Oversigt. 1 Gennemgående eksempel: Højde og vægt. 2 Korrelation. 3 Regressionsanalyse (kap 11) 4 Mindste kvadraters metode

Oversigt. 1 Gennemgående eksempel: Højde og vægt. 2 Korrelation. 3 Regressionsanalyse (kap 11) 4 Mindste kvadraters metode Kursus 02402 Introduktion til Statistik Forelæsning 11: Kapitel 11: Regressionsanalyse Oversigt 1 Gennemgående eksempel: Højde og vægt 2 Korrelation 3 Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse

Læs mere

Introduktion til Statistik. Forelæsning 3: Kontinuerte fordelinger. Peder Bacher

Introduktion til Statistik. Forelæsning 3: Kontinuerte fordelinger. Peder Bacher Introduktion til Statistik Forelæsning 3: Kontinuerte fordelinger Peder Bacher DTU Compute, Dynamiske Systemer Bygning 303B, Rum 009 Danmarks Tekniske Universitet 2800 Lyngby Danmark e-mail: pbac@dtu.dk

Læs mere

Kursus 02402/02323 Introduktion til statistik. Forelæsning 13: Et overblik over kursets indhold. Klaus K. Andersen og Per Bruun Brockhoff

Kursus 02402/02323 Introduktion til statistik. Forelæsning 13: Et overblik over kursets indhold. Klaus K. Andersen og Per Bruun Brockhoff Kursus 02402/02323 Introduktion til statistik Forelæsning 13: Et overblik over kursets indhold Klaus K. Andersen og Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Danmarks Tekniske Universitet

Læs mere

Introduktion til Statistik. Forelæsning 12: Inferens for andele. Peder Bacher

Introduktion til Statistik. Forelæsning 12: Inferens for andele. Peder Bacher Introduktion til Statistik Forelæsning 12: Inferens for andele Peder Bacher DTU Compute, Dynamiske Systemer Bygning 303B, Rum 009 Danmarks Tekniske Universitet 2800 Lyngby Danmark e-mail: pbac@dtu.dk Efterår

Læs mere

Forelæsning 11: Kapitel 11: Regressionsanalyse

Forelæsning 11: Kapitel 11: Regressionsanalyse Kursus 02402 Introduktion til Statistik Forelæsning 11: Kapitel 11: Regressionsanalyse Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800

Læs mere

Ensidet eller tosidet alternativ. Hypoteser. tosidet alternativ. nul hypotese testes mod en alternativ hypotese

Ensidet eller tosidet alternativ. Hypoteser. tosidet alternativ. nul hypotese testes mod en alternativ hypotese Kursus 02402 Introduktion til Statistik Forelæsning 6: Kapitel 7: Hypotesetest for gennemsnit (one-sample setup). 7.4-7.6 Per Bruun Brockhoff DTU Compute, Statistik Bygning 305/324 Danmarks Tekniske Universitet

Læs mere

En Introduktion til SAS. Kapitel 5.

En Introduktion til SAS. Kapitel 5. En Introduktion til SAS. Kapitel 5. Inge Henningsen Afdeling for Statistik og Operationsanalyse Københavns Universitet Marts 2005 6. udgave Kapitel 5 T-test og PROC UNIVARIATE 5.1 Indledning Dette kapitel

Læs mere

Program. Modelkontrol og prædiktion. Multiple sammenligninger. Opgave 5.2: fosforkoncentration

Program. Modelkontrol og prædiktion. Multiple sammenligninger. Opgave 5.2: fosforkoncentration Faculty of Life Sciences Program Modelkontrol og prædiktion Claus Ekstrøm E-mail: ekstrom@life.ku.dk Test af hypotese i ensidet variansanalyse F -tests og F -fordelingen. Multiple sammenligninger. Bonferroni-korrektion

Læs mere

PhD-kursus i Basal Biostatistik, efterår 2006 Dag 2, onsdag den 13. september 2006

PhD-kursus i Basal Biostatistik, efterår 2006 Dag 2, onsdag den 13. september 2006 PhD-kursus i Basal Biostatistik, efterår 2006 Dag 2, onsdag den 13. september 2006 I dag: To stikprøver fra en normalfordeling, ikke-parametriske metoder og beregning af stikprøvestørrelse Eksempel: Fiskeolie

Læs mere

Basal statistik. 30. januar 2007

Basal statistik. 30. januar 2007 Basal statistik 30. januar 2007 Deskriptiv statistik Typer af data Tabeller Grafik Summary statistics Lene Theil Skovgaard, Biostatistisk Afdeling Institut for Folkesundhedsvidenskab, Københavns Universitet

Læs mere

Introduktion til Statistik. Forelæsning 10: Inferens for andele. Peder Bacher

Introduktion til Statistik. Forelæsning 10: Inferens for andele. Peder Bacher Introduktion til Statistik Forelæsning 10: Inferens for andele Peder Bacher DTU Compute, Dynamiske Systemer Bygning 303B, Rum 009 Danmarks Tekniske Universitet 2800 Lyngby Danmark e-mail: pbac@dtu.dk Efterår

Læs mere

Oversigt. Kursus 02402 Introduktion til Statistik. Forelæsning 10: Statistik ved hjælp af simulering. Per Bruun Brockhoff.

Oversigt. Kursus 02402 Introduktion til Statistik. Forelæsning 10: Statistik ved hjælp af simulering. Per Bruun Brockhoff. Kursus 02402 Introduktion til Statistik Forelæsning 10: Statistik ved hjælp af simulering Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800

Læs mere

Anvendt Statistik Lektion 6. Kontingenstabeller χ 2 -test [ki-i-anden-test]

Anvendt Statistik Lektion 6. Kontingenstabeller χ 2 -test [ki-i-anden-test] Anvendt Statistik Lektion 6 Kontingenstabeller χ 2 -test [ki-i-anden-test] 1 Kontingenstabel Formål: Illustrere/finde sammenhænge mellem to kategoriske variable Opbygning: En celle for hver kombination

Læs mere

Normalfordelingen. Statistik og Sandsynlighedsregning 2

Normalfordelingen. Statistik og Sandsynlighedsregning 2 Statistik og Sandsynlighedsregning 2 Repetition og eksamen T-test Normalfordelingen Erfaringsmæssigt er normalfordelingen velegnet til at beskrive variationen i mange variable, blandt andet tilfældige

Læs mere

Susanne Ditlevsen Institut for Matematiske Fag Email: susanne@math.ku.dk http://math.ku.dk/ susanne

Susanne Ditlevsen Institut for Matematiske Fag Email: susanne@math.ku.dk http://math.ku.dk/ susanne Statistik og Sandsynlighedsregning 1 Indledning til statistik, kap 2 i STAT Susanne Ditlevsen Institut for Matematiske Fag Email: susanne@math.ku.dk http://math.ku.dk/ susanne 5. undervisningsuge, onsdag

Læs mere

Oversigt. Kursus Introduktion til Statistik. Forelæsning 2: Kapitel 4, Diskrete fordelinger. Per Bruun Brockhoff. Stokastiske Variable

Oversigt. Kursus Introduktion til Statistik. Forelæsning 2: Kapitel 4, Diskrete fordelinger. Per Bruun Brockhoff. Stokastiske Variable Kursus 02402 Introduktion til Statistik Forelæsning 2: Kapitel 4, Diskrete fordelinger Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800

Læs mere

Dansk. Oversigt. 1 Fordelingen for gennemsnittet t-fordelingen. 2 Konfidensintervallet for µ Eksempel. 3 Den statistiske sprogbrug og formelle ramme

Dansk. Oversigt. 1 Fordelingen for gennemsnittet t-fordelingen. 2 Konfidensintervallet for µ Eksempel. 3 Den statistiske sprogbrug og formelle ramme Itroduktio til Statistik enote 3: Kofidesitervaller for é gruppe/stikprøve Egelsk Forelæsig 4: Kofidesiterval for middelværdi (og spredig) Peder Bacher DTU Compute, Dyamiske Systemer Bygig 303B, Rum 009

Læs mere

Kommentarer til opg. 1 og 3 ved øvelser i basalkursus, 3. uge

Kommentarer til opg. 1 og 3 ved øvelser i basalkursus, 3. uge Kommentarer til opg. 1 og 3 ved øvelser i basalkursus, 3. uge Opgave 1. Data indlæses i 3 kolonner, som f.eks. kaldessalt,pre ogpost. Der er således i alt tale om 26 observationer, idet de to grupper lægges

Læs mere

Oversigt. 1 Motiverende eksempel - energiforbrug. 2 Hypotesetest (Repetition) 3 Two-sample t-test og p-værdi. 4 Konfidensinterval for forskellen

Oversigt. 1 Motiverende eksempel - energiforbrug. 2 Hypotesetest (Repetition) 3 Two-sample t-test og p-værdi. 4 Konfidensinterval for forskellen Kursus 02402/02323 Introducerende Statistik Forelæsning 6: Sammenligning af to grupper Peder Bacher DTU Compute, Dynamiske Systemer Bygning 303B, Rum 009 Danmarks Tekniske Universitet 2800 Lyngby Danmark

Læs mere

Forelæsning 9: Inferens for andele (kapitel 10)

Forelæsning 9: Inferens for andele (kapitel 10) Kursus 02402 Introduktion til Statistik Forelæsning 9: Inferens for andele (kapitel 10) Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800

Læs mere

Kursus 02402/02323 Introducerende Statistik

Kursus 02402/02323 Introducerende Statistik Kursus 02402/02323 Introducerende Statistik Forelæsning 8: Simpel lineær regression Peder Bacher DTU Compute, Dynamiske Systemer Bygning 303B, Rum 009 Danmarks Tekniske Universitet 2800 Lyngby Danmark

Læs mere

Løsning til eksaminen d. 14. december 2009

Løsning til eksaminen d. 14. december 2009 DTU Informatik 02402 Introduktion til Statistik 200-2-0 LFF/lff Løsning til eksaminen d. 4. december 2009 Referencer til Probability and Statistics for Engineers er angivet i rækkefølgen [8th edition,

Læs mere

Note til styrkefunktionen

Note til styrkefunktionen Teoretisk Statistik. årsprøve Note til styrkefunktionen Først er det vigtigt at gøre sig klart, at når man laver statistiske test, så kan man begå to forskellige typer af fejl: Type fejl: At forkaste H

Læs mere

Question I.1 (1) We use Method 3.8 from Chapter 3 to achieve

Question I.1 (1) We use Method 3.8 from Chapter 3 to achieve Correct answers: 35132 25225 11354 53441 12141 32235 Exercise I Question I.1 (1) We use Method 3.8 from Chapter 3 to achieve And since, qt(0.95, 24) ## [1] 1.710882 90.4 ± t 0.95 10.3 25 We get that 10.3

Læs mere

1 enote 1: Simple plots og deskriptive statistik. 2 enote 2: Diskrete fordelinger. 3 enote 2: Kontinuerte fordelinger

1 enote 1: Simple plots og deskriptive statistik. 2 enote 2: Diskrete fordelinger. 3 enote 2: Kontinuerte fordelinger Kursus 02402/02323 Introduktion til statistik Forelæsning 13: Et overblik over kursets indhold Peder Bacher DTU Compute, Dynamiske Systemer Building 303B, Room 017 Danish Technical University 2800 Lyngby

Læs mere

Vi kalder nu antal prøverør blandt de 20, hvor der ikke ses vækst for X.

Vi kalder nu antal prøverør blandt de 20, hvor der ikke ses vækst for X. Opgave I I en undersøgelse af et potentielt antibiotikum har man dyrket en kultur af en bestemt mikroorganisme og tilført prøver af organismen til 20 prøverør med et vækstmedium og samtidig har man tilført

Læs mere

Oversigt. Kursus 02402/02323 Introducerende Statistik. Forelæsning 7: Simuleringsbaseret statistik. Klaus K. Andersen og Per Bruun Brockhoff

Oversigt. Kursus 02402/02323 Introducerende Statistik. Forelæsning 7: Simuleringsbaseret statistik. Klaus K. Andersen og Per Bruun Brockhoff Kursus 02402/02323 Introducerende Statistik Forelæsning 7: Simuleringsbaseret statistik Klaus K. Andersen og Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Danmarks Tekniske Universitet 2800

Læs mere

Modul 7: Eksempler. 7.1 Beskrivende dataanalyse. 7.1.1 Diagrammer. Bent Jørgensen. Forskningsenheden for Statistik ST501: Science Statistik

Modul 7: Eksempler. 7.1 Beskrivende dataanalyse. 7.1.1 Diagrammer. Bent Jørgensen. Forskningsenheden for Statistik ST501: Science Statistik Forskningsenheden for Statistik ST501: Science Statistik Bent Jørgensen Modul 7: Eksempler 7.1 Beskrivende dataanalyse............................... 1 7.1.1 Diagrammer.................................

Læs mere

Oversigt. Kursus 02402 Introduktion til Statistik. Forelæsning 4: Kapitel 5: Kontinuerte fordelinger. Per Bruun Brockhoff. Eksponential fordelingen

Oversigt. Kursus 02402 Introduktion til Statistik. Forelæsning 4: Kapitel 5: Kontinuerte fordelinger. Per Bruun Brockhoff. Eksponential fordelingen Kursus 02402 Introduktion til Statistik Forelæsning 4: Kapitel 5: Kontinuerte fordelinger Per Bruun Brockhoff DTU Compute, Statistik Bygning 305/324 Danmarks Tekniske Universitet 2800 Lyngby Danmark e-mail:

Læs mere

Klasseøvelser dag 2 Opgave 1

Klasseøvelser dag 2 Opgave 1 Klasseøvelser dag 2 Opgave 1 1.1. Vi sætter først working directory og data indlæses: library( foreign ) d

Læs mere

Stikprøver og stikprøve fordelinger. Stikprøver Estimatorer og estimater Stikprøve fordelinger Egenskaber ved estimatorer Frihedsgrader

Stikprøver og stikprøve fordelinger. Stikprøver Estimatorer og estimater Stikprøve fordelinger Egenskaber ved estimatorer Frihedsgrader Stikprøver og stikprøve fordelinger Stikprøver Estimatorer og estimater Stikprøve fordelinger Egenskaber ved estimatorer Frihedsgrader Statistik Statistisk Inferens: Prediktere og forekaste værdier af

Læs mere

Dagens Temaer. Test for lineær regression. Test for lineær regression - via proc glm. k normalfordelte obs. rækker i proc glm. p. 1/??

Dagens Temaer. Test for lineær regression. Test for lineær regression - via proc glm. k normalfordelte obs. rækker i proc glm. p. 1/?? Dagens Temaer k normalfordelte obs. rækker i proc glm. Test for lineær regression Test for lineær regression - via proc glm p. 1/?? Proc glm Vi indlæser data i datasættet stress, der har to variable: areal,

Læs mere

Modul 3: Kontinuerte stokastiske variable

Modul 3: Kontinuerte stokastiske variable Forskningsenheden for Statistik ST501: Science Statistik Bent Jørgensen Modul 3: Kontinuerte stokastiske variable 3.1 Kontinuerte stokastiske variable........................... 1 3.1.1 Tæthedsfunktion...............................

Læs mere

Program. t-test Hypoteser, teststørrelser og p-værdier. Hormonkonc.: statistisk model og konfidensinterval. Hormonkoncentration: data

Program. t-test Hypoteser, teststørrelser og p-værdier. Hormonkonc.: statistisk model og konfidensinterval. Hormonkoncentration: data Faculty of Life Sciences Program t-test Hypoteser, teststørrelser og p-værdier Claus Ekstrøm E-mail: ekstrom@life.ku.dk Resumé og hængepartier fra sidst. Eksempel: effekt af foder på hormonkoncentration

Læs mere

Oversigt. Kursus Introduktion til Statistik. Forelæsning 9: Inferens for andele (kapitel 10) Per Bruun Brockhoff

Oversigt. Kursus Introduktion til Statistik. Forelæsning 9: Inferens for andele (kapitel 10) Per Bruun Brockhoff Kursus 02402 Introduktion til Statistik Forelæsning 9: Inferens for andele (kapitel 10) Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800

Læs mere

Kursus 02402/02323 Introducerende Statistik. Forelæsning 6: Sammenligning af to grupper

Kursus 02402/02323 Introducerende Statistik. Forelæsning 6: Sammenligning af to grupper Kursus 02402/02323 Introducerende Statistik Forelæsning 6: Sammenligning af to grupper Peder Bacher DTU Compute, Dynamiske Systemer Bygning 303B, Rum 009 Danmarks Tekniske Universitet 2800 Lyngby Danmark

Læs mere

Oversigt. Introduktion til Statistik. Forelæsning 2: Stokastisk variabel og diskrete fordelinger

Oversigt. Introduktion til Statistik. Forelæsning 2: Stokastisk variabel og diskrete fordelinger Introduktion til Statistik Forelæsning 2: og diskrete fordelinger Oversigt 1 2 3 Fordelingsfunktion 4 Peder Bacher DTU Compute, Dynamiske Systemer Bygning 303B, Rum 017 Danmarks Tekniske Universitet 2800

Læs mere

enote 5: Simpel lineær regressions analyse Kursus 02402/02323 Introducerende Statistik Oversigt

enote 5: Simpel lineær regressions analyse Kursus 02402/02323 Introducerende Statistik Oversigt enote 5: Simpel lineær regressions analse Kursus 02402/02323 Introducerende Statistik Forelæsning 8: Simpel lineær regression To variable: og Beregn mindstekvadraters estimat af ret linje Inferens med

Læs mere

Normalfordelingen og Stikprøvefordelinger

Normalfordelingen og Stikprøvefordelinger Normalfordelingen og Stikprøvefordelinger Normalfordelingen Standard Normal Fordelingen Sandsynligheder for Normalfordelingen Transformation af Normalfordelte Stok.Var. Stikprøver og Stikprøvefordelinger

Læs mere

Kvant Eksamen December 2010 3 timer med hjælpemidler. 1 Hvad er en continuous variable? Giv 2 illustrationer.

Kvant Eksamen December 2010 3 timer med hjælpemidler. 1 Hvad er en continuous variable? Giv 2 illustrationer. Kvant Eksamen December 2010 3 timer med hjælpemidler 1 Hvad er en continuous variable? Giv 2 illustrationer. What is a continuous variable? Give two illustrations. 2 Hvorfor kan man bedre drage konklusioner

Læs mere

4. september 2003. π B = Lungefunktions data fra tirsdags Gennemsnit l/min

4. september 2003. π B = Lungefunktions data fra tirsdags Gennemsnit l/min Epidemiologi og biostatistik Uge, torsdag 28. august 2003 Morten Frydenberg, Institut for Biostatistik. og hoste estimation sikkerhedsintervaller antagelr Normalfordelingen Prædiktion Statistisk test (udfra

Læs mere

Oversigt. 1 Intro: Regneeksempel og TV-data fra B&O. 2 Model og hypotese. 3 Beregning - variationsopspaltning og ANOVA tabellen

Oversigt. 1 Intro: Regneeksempel og TV-data fra B&O. 2 Model og hypotese. 3 Beregning - variationsopspaltning og ANOVA tabellen Kursus 02402/02323 Introducerende Statistik Forelæsning 10: Envejs variansanalyse, ANOVA Oversigt 1 Intro: Regneeksempel og TV-data fra B&O 2 Model og hypotese Per Bruun Brockhoff DTU Compute, Statistik

Læs mere

02402 Vejledende løsninger til hjemmeopgaver og øvelser i uge 5

02402 Vejledende løsninger til hjemmeopgaver og øvelser i uge 5 02402 Vejledende løsninger til hjemmeopgaver og øvelser i uge 5 Opgave 5.117, side 171 (7ed: 5.116 side 201 og 6ed: 5.116 side 197) I denne opgave skal vi benytte relationen mellem den log-normale fordeling

Læs mere

Statistik og Sandsynlighedsregning 2. Repetition og eksamen. Overheads til forelæsninger, mandag 7. uge

Statistik og Sandsynlighedsregning 2. Repetition og eksamen. Overheads til forelæsninger, mandag 7. uge Statistik og Sandsynlighedsregning 2 Repetition og eksamen Overheads til forelæsninger, mandag 7. uge 1 Normalfordelingen Erfaringsmæssigt er normalfordelingen velegnet til at beskrive variationen i mange

Læs mere

Oversigt. Kursus Introduktion til Statistik. Forelæsning 4: Kapitel 5: Kontinuerte fordelinger

Oversigt. Kursus Introduktion til Statistik. Forelæsning 4: Kapitel 5: Kontinuerte fordelinger Kursus 02402 Introduktion til Statistik Forelæsning 4: Kapitel 5: Kontinuerte fordelinger Rune Haubo B Christensen (based on slides by Per Bruun Brockhoff) DTU Compute, Statistik og Dataanalyse Bygning

Læs mere

Tema. Model og modelkontrol ( Fx. en normalfordelt obs. række m. kendt varians) Estimation af parametre. Fordeling. Hypotese og test. Teststørrelse.

Tema. Model og modelkontrol ( Fx. en normalfordelt obs. række m. kendt varians) Estimation af parametre. Fordeling. Hypotese og test. Teststørrelse. Tema Model og modelkontrol ( Fx. en normalfordelt obs. række m. kendt varians) Estimation af parametre. Fordeling. (Fx. x. µ) Hypotese og test. Teststørrelse. (Fx. H 0 : µ = µ 0 ) konfidensintervaller

Læs mere

Variansanalyse i SAS 1. Institut for Matematiske Fag December 2007

Variansanalyse i SAS 1. Institut for Matematiske Fag December 2007 Københavns Universitet Statistik for Biokemikere Det naturvidenskabelige fakultet Institut for Matematiske Fag December 2007 Variansanalyse i SAS 1 Ensidet variansanalyse Bartlett s test Tukey s test PROC

Læs mere

Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab. Estimation

Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab. Estimation Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab Estimation Eksempel: Bissau data Data kommer fra Guinea-Bissau i Vestafrika: 5273 børn blev undersøgt da de var yngre end 7 mdr og blev herefter

Læs mere

Økonometri: Lektion 4. Multipel Lineær Regression: F -test, justeret R 2 og aymptotiske resultater

Økonometri: Lektion 4. Multipel Lineær Regression: F -test, justeret R 2 og aymptotiske resultater Økonometri: Lektion 4 Multipel Lineær Regression: F -test, justeret R 2 og aymptotiske resultater 1 / 35 Hypotesetest for én parameter Antag vi har model y = β 0 + β 1 x 2 + β 2 x 2 + + β k x k + u. Vi

Læs mere

Kursusindhold: Produkt og marked - matematiske og statistiske metoder. Monte Carlo

Kursusindhold: Produkt og marked - matematiske og statistiske metoder. Monte Carlo Kursusindhold: Produkt og marked - matematiske og statistiske metoder Rasmus Waagepetersen Institut for Matematiske Fag Aalborg Universitet Sandsynlighedsregning og lagerstyring Normalfordelingen og Monte

Læs mere

VIGTIGT! Kurset består af: 1. Forelæsninger. 2. Øvelser. 3. Litteraturlæsning

VIGTIGT! Kurset består af: 1. Forelæsninger. 2. Øvelser. 3. Litteraturlæsning Intro til statistik Rasmus F. Brøndum, Institut 17 (Matematik) Hjemmeside: people.math.aau.dk/~froberg 22 forelæsninger (hvor af jeg afholder de første 13) + det samme antal øvelsesgange. Hjælpelærer:

Læs mere

Det kunne godt se ud til at ikke-rygere er ældre. Spredningen ser ud til at være nogenlunde ens i de to grupper.

Det kunne godt se ud til at ikke-rygere er ældre. Spredningen ser ud til at være nogenlunde ens i de to grupper. 1. Indlæs data. * HUSK at angive din egen placering af filen; data framing; infile '/home/sro00/mph2016/framing.txt' firstobs=2; input id sex age frw sbp sbp10 dbp chol cig chd yrschd death yrsdth cause;

Læs mere

Landmålingens fejlteori - Lektion 2. Sandsynlighedsintervaller Estimation af µ Konfidensinterval for µ. Definition: Normalfordelingen

Landmålingens fejlteori - Lektion 2. Sandsynlighedsintervaller Estimation af µ Konfidensinterval for µ. Definition: Normalfordelingen Landmålingens fejlteori Lektion Sandsynlighedsintervaller Estimation af µ Konfidensinterval for µ - rw@math.aau.dk Institut for Matematiske Fag Aalborg Universitet En stokastisk variabel er en variabel,

Læs mere

Naturvidenskabelig Bacheloruddannelse Forår 2006 Matematisk Modellering 1 Side 1

Naturvidenskabelig Bacheloruddannelse Forår 2006 Matematisk Modellering 1 Side 1 Matematisk Modellering 1 Side 1 I nærværende opgavesæt er der 16 spørgsmål fordelt på 4 opgaver. Ved bedømmelsen af besvarelsen vægtes alle spørgsmål lige. Endvidere lægges der vægt på, at det af besvarelsen

Læs mere

Statistik for MPH: 7

Statistik for MPH: 7 Statistik for MPH: 7 3. november 2011 www.biostat.ku.dk/~pka/mph11 Attributable risk, bestemmelse af stikprøvestørrelse (Silva: 333-365, 381-383) Per Kragh Andersen 1 Fra den 6. uges statistikundervisning:

Læs mere

Kursus i varians- og regressionsanalyse Data med detektionsgrænse. Birthe Lykke Thomsen H. Lundbeck A/S

Kursus i varians- og regressionsanalyse Data med detektionsgrænse. Birthe Lykke Thomsen H. Lundbeck A/S Kursus i varians- og regressionsanalyse Data med detektionsgrænse Birthe Lykke Thomsen H. Lundbeck A/S 1 Data med detektionsgrænse Venstrecensurering: Baggrundsstøj eller begrænsning i måleudstyrets følsomhed

Læs mere

Produkt og marked - matematiske og statistiske metoder

Produkt og marked - matematiske og statistiske metoder Produkt og marked - matematiske og statistiske metoder Rasmus Waagepetersen Institut for Matematiske Fag Aalborg Universitet February 19, 2016 1/26 Kursusindhold: Sandsynlighedsregning og lagerstyring

Læs mere

Side 1 af 17 sider. Danmarks Tekniske Universitet. Skriftlig prøve: 25. maj 2007 Kursus navn og nr: Introduktion til Statistik, 02402

Side 1 af 17 sider. Danmarks Tekniske Universitet. Skriftlig prøve: 25. maj 2007 Kursus navn og nr: Introduktion til Statistik, 02402 Danmarks Tekniske Universitet Side 1 af 17 sider. Skriftlig prøve: 25. maj 2007 Kursus navn og nr: Introduktion til Statistik, 02402 Tilladte hjælpemidler: Alle Dette sæt er besvaret af (navn) (underskrift)

Læs mere

Ensidet variansanalyse

Ensidet variansanalyse Ensidet variansanalyse Sammenligning af grupper Helle Sørensen E-mail: helle@math.ku.dk StatBK (Uge 47, mandag) Ensidet ANOVA 1 / 18 Program I dag: Sammenligning af middelværdier Sammenligning af spredninger

Læs mere

Introduktion til Statistik. Forelæsning 2: Stokastisk variabel og diskrete fordelinger. Peder Bacher

Introduktion til Statistik. Forelæsning 2: Stokastisk variabel og diskrete fordelinger. Peder Bacher Introduktion til Statistik Forelæsning 2: Stokastisk variabel og diskrete fordelinger Peder Bacher DTU Compute, Dynamiske Systemer Bygning 303B, Rum 009 Danmarks Tekniske Universitet 2800 Lyngby Danmark

Læs mere

Program. Ensidet variansanalyse Sammenligning af grupper. Statistisk model og hypotese. Eksempel: Aldersfordeling i hjertestudie

Program. Ensidet variansanalyse Sammenligning af grupper. Statistisk model og hypotese. Eksempel: Aldersfordeling i hjertestudie Program Ensidet variansanalyse Sammenligning af grupper Helle Sørensen E-mail: helle@math.ku.dk I dag: Sammenligning af middelværdier Sammenligning af spredninger Parvise sammenligninger To eksempler:

Læs mere

Reeksamen i Statistik for Biokemikere 6. april 2009

Reeksamen i Statistik for Biokemikere 6. april 2009 Københavns Universitet Det Naturvidenskabelige Fakultet Reeksamen i Statistik for Biokemikere 6. april 2009 Alle hjælpemidler er tilladt, og besvarelsen må gerne skrives med blyant. Opgavesættet er på

Læs mere

Økonometri 1. Inferens i den lineære regressionsmodel 25. september 2006. Oversigt: De næste forelæsninger

Økonometri 1. Inferens i den lineære regressionsmodel 25. september 2006. Oversigt: De næste forelæsninger Oversigt: De næste forelæsninger Økonometri Inferens i den lineære regressionsmodel 5. september 006 Statistisk inferens: hvorledes man med udgangspunkt i en statistisk model kan drage konklusioner på

Læs mere

Logistisk Regression - fortsat

Logistisk Regression - fortsat Logistisk Regression - fortsat Likelihood Ratio test Generel hypotese test Modelanalyse Indtil nu har vi set på to slags modeller: 1) Generelle Lineære Modeller Kvantitav afhængig variabel. Kvantitative

Læs mere

Tænk på a og b som to n 1 matricer. a 1 a 2 a n. For hvert i = 1,..., n har vi y i = x i β + u i.

Tænk på a og b som to n 1 matricer. a 1 a 2 a n. For hvert i = 1,..., n har vi y i = x i β + u i. Repetition af vektor-regning Økonometri: Lektion 3 Matrix-formulering Fordelingsantagelse Hypotesetest Antag vi har to n-dimensionelle (søjle)vektorer a 1 b 1 a 2 a =. og b = b 2. a n b n Tænk på a og

Læs mere

Skriftlig eksamen Science statistik- ST501

Skriftlig eksamen Science statistik- ST501 SYDDANSK UNIVERSITET INSTITUT FOR MATEMATIK OG DATALOGI Skriftlig eksamen Science statistik- ST501 Torsdag den 11. juni Opgavesættet består af 4 opgaver, med i alt 13 delspørgsmål, som vægtes ligeligt.

Læs mere

Multipel Lineær Regression. Polynomiel regression Ikke-lineære modeller og transformation Multi-kolinearitet Auto-korrelation og Durbin-Watson test

Multipel Lineær Regression. Polynomiel regression Ikke-lineære modeller og transformation Multi-kolinearitet Auto-korrelation og Durbin-Watson test Multipel Lineær Regression Polynomiel regression Ikke-lineære modeller og transformation Multi-kolinearitet Auto-korrelation og Durbin-Watson test Multipel lineær regression x,x,,x k uafhængige variable

Læs mere

Oversigt. Kursus 02402/02323 Introducerende Statistik. Forelæsning 5: Hypotesetest, power og modelkontrol - one sample

Oversigt. Kursus 02402/02323 Introducerende Statistik. Forelæsning 5: Hypotesetest, power og modelkontrol - one sample Kursus 02402/02323 Introducerende Statistik Forelæsning 5: Hypotesetest, power og modelkontrol - one sample Klaus K. Andersen og Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Danmarks Tekniske

Læs mere

Sommereksamen 2013. Bacheloruddannelsen i Medicin/Medicin med industriel specialisering

Sommereksamen 2013. Bacheloruddannelsen i Medicin/Medicin med industriel specialisering Sommereksamen 2013 Titel på kursus: Uddannelse: Semester: Statistik og evidensbaseret medicin Bacheloruddannelsen i Medicin/Medicin med industriel specialisering 2. semester Eksamensdato: 17. juni 2013

Læs mere

MM501 forelæsningsslides

MM501 forelæsningsslides MM501 forelæsningsslides uge 40, 2010 Produceret af Hans J. Munkholm bearbejdet af JC 1 Separabel 1. ordens differentialligning En generel 1. ordens differentialligning har formen s.445-8 dx Eksempler

Læs mere

Kapitel 3 Centraltendens og spredning

Kapitel 3 Centraltendens og spredning Kapitel 3 Centraltendens og spredning Peter Tibert Stoltze stat@peterstoltze.dk Elementær statistik F2011 1 / 25 Indledning I kapitel 2 omsatte vi de rå data til en tabel, der bedre viste materialets fordeling

Læs mere

Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab. Uafhængighedstestet

Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab. Uafhængighedstestet Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab Uafhængighedstestet Eksempel: Bissau data Data kommer fra Guinea-Bissau i Vestafrika: 5273 børn blev undersøgt da de var yngre end 7 mdr og blev

Læs mere