Delmængder af Rummet

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Starte visningen fra side:

Download "Delmængder af Rummet"

Transkript

1 Delmængder af Rummet Frank Nasser 11. juli Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her.

2 Indhold 1 Introduktion 2 2 Linjer Frihedsgrader Parameterfremstilling af linjer Planer Parametrisering af planer Normalvektor for en plan Ligning for en plan Kugler Tangentplaner Parametrisering af en kugle? Parameterkurver 11 6 Parametriserede flader 11

3 Resumé I dette dokument kigger vi på nogle forskellige delmængder af det tredimensionelle koordinatsystem: Linjer, Planer og Kugler. Vi ser på hvordan de kan beskrives og giver simple eksempler på hvad man kan gøre ved dem. Her slutter MatBog.dk Figur 1: På dette sted løb jeg desværre tør for fritid. Derfor er dette dokument ikke færdigt. Hvis du køber et abonnement (eller får din lærer eller skole til at gøre det), så kan jeg tillade mig at tage lidt mere fri til at skrive på MatBog, og så vil disse huller blive lappet meget hurtigere! side 1

4 1 Introduktion Velkommen i det tredimensionelle rum! Her er masser af plads til alle mulige forskellige delmængder. Vi skal se på nogle af de mest fundamentale af disse i dette dokument, nemlig linjer, planer og kugler. Forudsætninger For at læse dette dokument får du brug for at kende til tredimensionelle vektorer 1. Vi får både brug for prikproduktet og krydsproduktet og mange af de sætninger som gælder om dem. Men hvis ikke du gider at læse en masse teori om vektorer først, kan du klare dig med at slå disse ting op efterhånden som vi får brug for dem. 1 Læs om vektorer i rummet her. side 2

5 2 Linjer Det første objekt man kommer i tanker om at tegne i det tredimensionelle rum, som ikke bare er et punkt, er sandsynligvis en linje. Hvis bare man udpeger to forskellige punkter i rummet, så har man indirekte udpeget en linje, nemlig den der går igennem disse to punkter. Bemærk at vi med ordet linje altid mener ret linje. Hvis vi nogensinde vil tale om streger som kan bøje eller krumme, så vil vi bruge ordet en kurve i stedet for. 2.1 Frihedsgrader I planen kan alle linjer beskrives med en ligning af typen: ax + by = c hvor a, b og c er reelle tal. Hvis linjen ikke er lodret, kan man endda nøjes med ligninger af typen: y = ax + b hvor a er linjens hældningskoefficient og b er højden hvori linjen skærer y-aksen. Linjer i rummet kan desværre ikke beskrives ved hjælp af en enkelt ligning. En god intuitiv måde at forstå dette på er ved at bruge begrebet frihedsgrader 2 I det tredimensionelle rum har man tre frihedsgrader, forstået på den måde at man altid har tre uafhængige retninger at bevæge sig i. Hvis man opstiller en begrænsning af hvilket punkter der må bruges, i form af f.eks. en ligning som punkternes koordinater skal opfylde, så fjerner man en frihedsgrad. 2 Vi vil ikke kaste os ud i at definere dette begreb præcist, eftersom det faktisk er meget svært. I stedet vil vi gøre som man ofte gør i fysik og antage at alle ved hvad det betyder. side 3

6 Derfor vil en ligning som regel 3 beskrive en delmængde af rummet med 2 frihedsgrader. Det kunne f.eks. være en plan eller (overfladen af) en kugle som vi skal se på senere. Hvis man vil beskrive noget som kun har 1 frihedsgrad (som f.eks. en linje) kan man derfor vælge at gøre en af følgende to ting: 1. Opstille to ligninger, som hver fjerner en frihedsgrad. Vi skal senere se at dette svarer til at defineret to forskellige planer. Og linjen består dermed af de punkter som opfylder begge ligninger (dvs. skæringspunkterne mellem de to planer). 2. Starte fra den modsatte ende, idet vi ikke fortæller hvad et punkt i rummet skal opfylde for at være med, men i stedet fortælle præcis hvordan man fremstiller de punkter som er med. En sådan beskrivelse kaldes en parameterfremstilling. Når vi skal arbejde med planer vil du se at begge disse strategier kan være fordelagtige, alt efter hvad vi vil bruge beskrivelsen til. 2.2 Parameterfremstilling af linjer Den bedste måde at beskrive linjer i rummet på er altså ved at give en måde at producere punkterne på dem med en såkaldt parameterfremstilling. Først skal vi lige bruge et nyt begreb: Definition 1. Hvis L er en linje i rummet, så vil vi sige at en vektor v, som ikke er nulvektor, er retningsvektor for L hvis v opfører sig sådan at når den indtegnes fra et punkt på L, så peger den på et andet punkt på L. Med andre (mere upræcise) ord: Hvis v peger i en retning som er parallel med L. 3 Det er ikke en præcis regel. F.eks. beskriver ligningen x 2 + y 2 + z 2 = 0 noget 0- dimensionalt, nemlig punktet (0;0;0). side 4

7 Nu er det så rigtig vigtigt at fange ideen: Vi vil lave en opskrift på hvordan samtlige punkter på linjen kan beregnes 4. Hvis man allerede kender et punkt på en linje og en retningsvektor for denne linje, så er det næsten oplagt at finde på sådan en opskrift: Hvis man indtegner retningsvektoren fra det punkt som vi kender i forvejen, så peger den ihvertfald på et punkt mere som ligger på linjen. Dette punkts koordinater er givet som vores kendte punkts koordinater plus retningsvektorens koordinater. Men hvis man skalerer retningsvektoren (altså ganger den med et reelt tal), så har vi en ny retningsvektor. Hvis vi skalerer med et negativt tal, så vender den bare den modsatte vej, men stadig parallelt med linjen. Kun hvis vi skalerer med nul, så kommer der ikke en retningsvektor ud af det, fordi det giver nulvektor. Ved at indtegne alle de skalerede retningsvektorer fra det punkt som vi kender i forvejen kan vi lave uendeligt mange andre punkter. Selv hvis vi bruger skaleringen med nul så fremkommer får vi bare det punkt vi havde fra starten. Ethvert punkt på linjen kan produceres på denne måde. Det er bare et spørgsmål om at vælge den rigtige skalering af retningsvektoren og lægge til punktet. Man skal have et billede i stil med figur?? i hovedet. Sætning 2. Hvis P = (x 0 ; y 0 ; z 0 ) R 3 4 Hvis du allerede kender til begrebet vektorfunktioner, så lyder dette som en opgave for lige præcis en vektorfunktion. Men eftersom vektorfunktioner i rummet er en (meget gennemskuelig) hemmelighed i gymnasiematematik vil vi krybe uden om at tale om vektorfunktioner, og holde os til begrebet en opskrift. side 5

8 og v = a b c V 3 så udgør punkterne givet ved koordinaterne: x y z = x 0 y 0 z 0 + t a b c, t R den linje som går gennem P og har v som retningsvektor. Allerede med linjer kan man finde på mange forskellige spørgsmål. Det skal vi lige se et par eksempler på. Eksempel 1. Lad os starte med punkterne: og P = (3;4;7) Q = ( 1;18;4) Der findes præcis en linje som går igennem disse to punkter, og vi kan nemt finde en parameterfremstilling for den. Det eneste vi skal bruge er en retningsvektor for den, og det kan findes som den forbindende vektor: r = PQ = = Dermed er punkterne på linjen givet ved parameterfremstillingen: x y z = t side 6

9 (Bemærk at den samme linje har uendeligt mange andre parameterfremstillinger. F.eks. kunne vi sagtens have brugt Q s koordinater som den første vektor, og vi kunne have brugt QP eller en hvilken som helst skalering af den som retningsvektor.) 3 Planer 3.1 Parametrisering af planer 3.2 Normalvektor for en plan 3.3 Ligning for en plan 4 Kugler Sætning 3. Hvis og så P = (a;b;c) R 3 r R 4.1 Tangentplaner Hvis man kender et punkt på en kugle, så er det nemt at finde en beskrivelse af kuglens tangentplan i dette punkt: Eksempel 2. Lad os sige at vi har gang i kuglen med ligningen: (x 2) 2 + (y 1) 2 + (z + 3) 2 = 9 side 7

10 Altså den kugle som har centrum i punktet og radius C = (2;1; 3) R = 3 Det er ikke svært at se at punktet: P = (4; 1; 4) ligger på kuglen. Lad os finde en beskrivelse af tangentplanen i dette punkt. For det første må P være et punkt i denne plan. Og for det andet må vektoren som går fra centrum ud til P være en normalvektor for denne plan. Vi har altså en normalvektor n givet ved: n = C P = ( 3) = Dermed er tangentplanen givet ved ligningen: 2 (x 4) 2 (y ( 1)) 1 (z ( 4)) = 0 eller omskrevet: 2x 2y z 10 = Parametrisering af en kugle? Så er vi nået til det punkt hvor forfatteren går i selvsving. Hvis du har svært ved at følge med til dette afsnit, så er det ikke noget problem at stoppe med at læse lige her. Hvis du alligevel hænger på, så lover jeg at det bliver sjovt og spændende. Kan vi mon producere overfladen af en kugle med en parameterfremstilling i stedet for at beskrive den med en ligning? Dette spørgsmål side 8

11 opstår nogle gange når man sidder med et af de sjældne grafprogrammer som kan tegne tredimensionelt, hvis de f.eks. ikke tillader at beskrive delmængder ved hjælp af ligninger 5. Svaret er heldigvis ja, men vi skal være lidt kreative. Her er en ide som virker. Vi vil parametrisere enhedskuglen, men det er ret nemt at ændre til alle andre kugler. Vi vil lade den ene parameter, s, løbe fra 1 til 1, og forestille os at dette angiver et punkt på x-aksen. Til hver værdi af s vil vi så lade den anden parameter, t, styre os igennem en cirkelbevægelse som foregår i y z-retningerne omkring det aktuelle punkt på x-aksen, og med den rigtige radius. Det ser sådan her ud: x y z = s r cos(t) r sin(t), s [ 1;1], t [0;2π] Det eneste som vi mangler er at indse hvordan den rigtige radius afhænger af de to parametre. Det kan man indse hvis man forestiller sig at det aktuelle punkt på x-aksen (med koordinaterne: (s;0;0)) som vi tegner en cirkel omkring indgår i en retvinklet trekant. Nemlig den trekant som opstår hvis hvis først vi tegner en kant fra origo ud til punktet på x-aksen. Denne kant har længden s. Derfra fortsætter vi vinkelret ud (f.eks. lodret opad) indtil vi møder kuglen. Denne kant har længden r den rigtige radius. Til sidst tegner vi en kant tilbage til origo. Denne har længde 1, fordi den er en radius i enhedskuglen. Nu siger Pythagoras at: s 2 + r 2 = 1 2 dvs. r = 1 s 2 5 Det er ret ofte tilfældet ikke fordi programmøren har været ond, men fordi det faktisk er en kollosal beregning for computeren at finde de punkter i rummet som opfylder en given ligning. side 9

12 (Vi valgte den positive løsning fordi radius bør være positiv). Nu er det blot at indsætte denne viden i parameterfremstillingen: x y z = s 1 s2 cos(t) 1 s2 sin(t), s [ 1;1], t [0;2π] Det er ganske nydeligt, men hvis man tænker lidt over det, så er der en enkelt detalje som måske virker irriterende: Når s = ±1, svarende til at vi står ude i de alleryderste punkter på kuglen på x-aksen, så kører vi rundt på en cirkel med radius nul. Med andre ord: Vi får det samme punkt frem uanset hvad vi sætter den anden paramter, t til at være. Dette virker som temmeligt meget spild af gode parametre, ikke? Man kunne så spørge om kugleoverfladen kunne parametriseres mere elegant. Dermed vi snuser vi faktisk til en meget dybsindig (og meget flot) sætning, som vi desværre ikke har magt nok til at bevise på dette niveau. Men den er nem nok at forstå: Sætning 4. Der findes ikke nogen (kontinuerte) parametriseringer af kugler i rummet, hvor hvert punkt gennemløbes præcis 1 gang, og hvor begge parametre kan tage alle værdier inden for et lukket interval. Eksempel 3 (Lidt om computerspil). Den foregående sætning kan faktisk blive enormt relevant i praksis. Lad os forestille os at vi er i gang med at programmere et computerspil, hvor spillerne skal styre et eller andet som bevæger sig på overfladen af en kugle. Dermed har vi brug for hele tiden at holde styr på hvilket punkt på kuglen en spiller befinder sig i. Det gør man i praksis ved at lave en eller anden form for koordinater dvs. nogle talvariable som tilsammen angiver en entydig position på side 10

13 kuglen. Et oplagt valg kunne være længdegrad og breddegrad sådan som man f.eks. gør med GPS-koordinater på jordoverfladen. Men det har en irritende bivirkning som minder meget om problemerne vi så ovenover; Nemlig at når man befinder sig på nordpolen eller sydpolen, så kan breddegradskoordinaten ændre sig uden at man flytter sig. Dette kan føre til mange besværligheder i praksis. F.eks. kan man ikke se om to spiller er kørt ind i hinanden alene ved at undersøge om begge deres koordinater er ens. Et andet (og værre) problem kommer når man gerne vil lave en måde at styre på, som fungerer ens uanset hvorhenne man befinder sig. Vi skal slet ikke gå ind i detaljerne om disse problemer her, men blot afsløre at det hænger nøje sammen med en masse spændende matematik som hedder topologi. Og sætningen ovenover er et eksempel på et resultat fra denne gren af matematikken. 5 Parameterkurver 6 Parametriserede flader side 11

Delmængder af Rummet

Delmængder af Rummet Delmængder af Rummet Frank Villa 15. maj 2012 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Indhold 1 Introduktion

Læs mere

Afstandsformlerne i Rummet

Afstandsformlerne i Rummet Afstandsformlerne i Rummet Frank Nasser 12. april 2011 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Bemærk:

Læs mere

Afstand fra et punkt til en linje

Afstand fra et punkt til en linje Afstand fra et punkt til en linje Frank Villa 6. oktober 2014 Dette dokument er en del af MatBog.dk 2008-2012. IT Teaching Tools. ISBN-13: 978-87-92775-00-9. Se yderligere betingelser for brug her. Indhold

Læs mere

Temaopgave: Parameterkurver Form: 6 timer med vejledning Januar 2010

Temaopgave: Parameterkurver Form: 6 timer med vejledning Januar 2010 Temaopgave: Parameterkurver Form: 6 timer med vejledning Januar 1 Parameterkurver Vi har tidligere set på en linjes parameterfremstilling, feks af typen: 1 OP = t +, hvor t R, og hvor OP er stedvektor

Læs mere

VEKTOR I RUMMET PROJEKT 1. Jacob Weng & Jeppe Boese. Matematik A & Programmering C. Avedøre-værket. Roskilde Tekniske Gymnasium 3.4. Fag.

VEKTOR I RUMMET PROJEKT 1. Jacob Weng & Jeppe Boese. Matematik A & Programmering C. Avedøre-værket. Roskilde Tekniske Gymnasium 3.4. Fag. VEKTOR I RUMMET PROJEKT 1 Fag Matematik A & Programmering C Tema Avedøre-værket Jacob Weng & Jeppe Boese Roskilde Tekniske Gymnasium 3.4 07-10-2010 1 Vektor i rummet INDLEDNING Projektet omhandler et af

Læs mere

Variabel- sammenhænge

Variabel- sammenhænge Variabel- sammenhænge Udgave 2 2009 Karsten Juul Dette hæfte kan bruges som start på undervisningen i variabelsammenhænge for stx og hf. Hæftet er en introduktion til at kunne behandle to sammenhængende

Læs mere

Afstande, skæringer og vinkler i rummet

Afstande, skæringer og vinkler i rummet Afstande, skæringer og vinkler i rummet Frank Nasser 9. april 20 c 2008-20. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her.

Læs mere

Differentiation af Logaritmer

Differentiation af Logaritmer Differentiation af Logaritmer Frank Nasser 11. juli 2011 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Indhold

Læs mere

Afstande, skæringer og vinkler i rummet

Afstande, skæringer og vinkler i rummet Afstande, skæringer og vinkler i rummet Frank Villa 2. maj 202 c 2008-20. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Indhold

Læs mere

Frank Villa. 15. juni 2012

Frank Villa. 15. juni 2012 2 er irrationel Frank Villa 15. juni 2012 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som aonnerer på MatBog.dk. Se yderligere etingelser for rug her. Indhold 1 Introduktion

Læs mere

Egenskaber ved Krydsproduktet

Egenskaber ved Krydsproduktet Egenskaber ved Krydsproduktet Frank Nasser 12. april 2011 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Bemærk:

Læs mere

Inverse funktioner og Sektioner

Inverse funktioner og Sektioner Inverse funktioner og Sektioner Frank Nasser 15. april 2011 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Bemærk:

Læs mere

Analytisk Geometri. Frank Nasser. 12. april 2011

Analytisk Geometri. Frank Nasser. 12. april 2011 Analytisk Geometri Frank Nasser 12. april 2011 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Bemærk: Dette er

Læs mere

Gode råd om læsning i 3. klasse på Løjtegårdsskolen

Gode råd om læsning i 3. klasse på Løjtegårdsskolen Gode råd om læsning i 3. klasse på Løjtegårdsskolen Udarbejdet af læsevejlederne september 2014. Kære forælder. Dit barn er på nuværende tidspunkt sikkert rigtig dygtig til at læse. De første skoleår er

Læs mere

Løsning af præmie- og ekstraopgave

Løsning af præmie- og ekstraopgave 52 Læserbidrag Løsning af præmie- og ekstraopgave 23. årgang, nr. 1 Martin Wedel Jacobsen Både præmieopgaven og ekstraopgaven er specialtilfælde af en mere generel opgave: Hvor mange stykker kan en n-dimensionel

Læs mere

Rumfangs. umfangsberegning. Rumfang af en cylinder. På illustrationen til højre er indtegnet en lineær funktion indenfor et afgrænset interval, hvor

Rumfangs. umfangsberegning. Rumfang af en cylinder. På illustrationen til højre er indtegnet en lineær funktion indenfor et afgrænset interval, hvor Rumfang af en cylinder På illustrationen til øjre er indtegnet en lineær funktion indenfor et afgrænset interval, vor 0;. Funktionen () kan skrives på formen: = (vor a er en konstant) Det markerede grå

Læs mere

Tal, funktioner og grænseværdi

Tal, funktioner og grænseværdi Tal, funktioner og grænseværdi Skriv færdig-eksempler der kan udgøre en væsentlig del af et forløb der skal give indsigt vedrørende begrebet grænseværdi og nogle nødvendige forudsætninger om tal og funktioner

Læs mere

Arealer under grafer

Arealer under grafer HJ/marts 2013 1 Arealer under grafer 1 Arealer og bestemt integral Som bekendt kan vi bruge integralregning til at beregne arealer under grafer. Helt præcist har vi denne sætning. Sætning 1 (Analysens

Læs mere

Funktionalligninger - løsningsstrategier og opgaver

Funktionalligninger - løsningsstrategier og opgaver Funktionalligninger - løsningsstrategier og opgaver Altså er f (f (1)) = 1. På den måde fortsætter vi med at samle oplysninger om f og kombinerer dem også med tidligere oplysninger. Hvis vi indsætter =

Læs mere

Højere Teknisk Eksamen maj 2008. Matematik A. Forberedelsesmateriale til 5 timers skriftlig prøve NY ORDNING. Undervisningsministeriet

Højere Teknisk Eksamen maj 2008. Matematik A. Forberedelsesmateriale til 5 timers skriftlig prøve NY ORDNING. Undervisningsministeriet Højere Teknisk Eksamen maj 2008 HTX081-MAA Matematik A Forberedelsesmateriale til 5 timers skriftlig prøve NY ORDNING Undervisningsministeriet Fra onsdag den 28. maj til torsdag den 29. maj 2008 Forord

Læs mere

Den bedste dåse, en optimeringsopgave

Den bedste dåse, en optimeringsopgave bksp-20-15e Side 1 af 7 Den bedste dåse, en optimeringsopgave Mange praktiske anvendelser af matematik drejer sig om at optimere en variabel ved at vælge en passende kombination af andre variable. Det

Læs mere

Forslag til løsning af Opgaver til ligningsløsning (side172)

Forslag til løsning af Opgaver til ligningsløsning (side172) Forslag til løsning af Opgaver til ligningsløsning (side17) Opgave 1 Hvis sønnens alder er x år, så er faderens alder x år. Der går x år, før sønnen når op på x år. Om x år har faderen en alder på: x x

Læs mere

Forslag til løsning af Opgaver til analytisk geometri (side 338)

Forslag til løsning af Opgaver til analytisk geometri (side 338) Forslag til løsning af Opgaver til analytisk geometri (side 8) Opgave Linjerne har ligningerne: a : y x 9 b : x y 0 y x 8 c : x y 8 0 y x Der må gælde: a b, da Skæringspunkt mellem a og b:. Det betyder,

Læs mere

DesignMat Uge 11 Vektorrum

DesignMat Uge 11 Vektorrum DesignMat Uge Vektorrum Preben Alsholm Forår 200 Vektorrum. Definition af vektorrum Definition af vektorrum Lad L betegne R eller C. Lad V være en ikke-tom mængde udstyret med en addition + og en multiplikation

Læs mere

Når mor eller far er ulykkesskadet. når mor eller far er ulykkesskadet

Når mor eller far er ulykkesskadet. når mor eller far er ulykkesskadet Når mor eller far er ulykkesskadet når mor eller far er ulykkesskadet 2 Til mor og far Denne brochure er til børn mellem 6 og 10 år, som har en forælder, der er ulykkesskadet. Kan dit barn læse, kan det

Læs mere

RUMGEOMETRI-programmet D3GEO til TI-82 og TI-83

RUMGEOMETRI-programmet D3GEO til TI-82 og TI-83 RUMGEOMETRI-programmet D3GEO til TI-8 og TI-83 Af Frans Morville. Programmet har menuer i to niveauer organiseret efter de oplysninger, der opgivet (kendte) og som skal bruges i beregninger. Overskrifterne

Læs mere

Matematik A Vejledende opgaver 5 timers prøven

Matematik A Vejledende opgaver 5 timers prøven Højere Teknisk Eksamen 007 Matematik A Vejledende opgaver 5 timers prøven Undervisningsministeriet Prøvens varighed er 5 timer. Opgavebesvarelsen skal dokumenteres/begrundes. Opgavebesvarelsen skal udformes

Læs mere

Finde invers funktion til en 2-gradsfunktion - ved parallelforskydning. John V Petersen

Finde invers funktion til en 2-gradsfunktion - ved parallelforskydning. John V Petersen Finde invers funktion til en 2-gradsfunktion - ved parallelforskydning John V Petersen Finde invers funktion til en 2-gradsfunktion - ved parallelforskydning 2015 John V Petersen art-science-soul Indhold

Læs mere

Egenskaber ved Krydsproduktet

Egenskaber ved Krydsproduktet Egenskaber ved Krydsproduktet Frank Nasser 23. december 2011 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Indhold

Læs mere

Differential- regning

Differential- regning Differential- regning 1 del () (1) 006 Karsten Juul Indhold 1 Funktionsværdi, graf og tilvækst1 Differentialkvotient og tangent8 3 Formler for differentialkvotient16 4 Opgaver med tangent 5 Væksthastighed5

Læs mere

Analytisk Geometri. Frank Nasser. 11. juli 2011

Analytisk Geometri. Frank Nasser. 11. juli 2011 Analytisk Geometri Frank Nasser 11. juli 2011 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Indhold 1 Introduktion

Læs mere

Statistikkompendium. Statistik

Statistikkompendium. Statistik Statistik INTRODUKTION TIL STATISTIK Statistik er analyse af indsamlet data. Det vil sige, at man bearbejder et datamateriale, som i matematik næsten altid er tal. Derved får man et samlet overblik over

Læs mere

Teknologi & Kommunikation

Teknologi & Kommunikation Side 1 af 6 Indledning Denne note omhandler den lineære funktion, hvis graf i et koordinatsystem er en ret linie. Funktionsbegrebet knytter to størrelser (x og y) sammen, disse to størrelser er afhængige

Læs mere

Partikelbevægelser i magnetfelter

Partikelbevægelser i magnetfelter Da fusion skal foregå ved en meget høj temperatur, 100 millioner grader, så der kan foregå en selvforsynende fusion, kræves der en metode til indeslutning af plasmaet, idet de materialer vi kender med

Læs mere

Projekt 10.1 Er der huller i Euklids argumentation? Et moderne aksiomsystem (især for A)

Projekt 10.1 Er der huller i Euklids argumentation? Et moderne aksiomsystem (især for A) Projekt 10.1 Er der huller i Euklids argumentation? Et moderne aksiomsystem (især for A) Indhold Introduktion... 2 Hilberts 16 aksiomer Et moderne, konsistent og fuldstændigt aksiomsystem for geometri...

Læs mere

Bogstavregning. Formler... 46 Reduktion... 47 Ligninger... 48. Bogstavregning Side 45

Bogstavregning. Formler... 46 Reduktion... 47 Ligninger... 48. Bogstavregning Side 45 Bogstavregning Formler... 6 Reduktion... 7 Ligninger... 8 Bogstavregning Side I bogstavregning skal du kunne regne med bogstaver og skifte bogstaver ud med tal. Formler En formel er en slags regne-opskrift,

Læs mere

Polynomier et introforløb til TII

Polynomier et introforløb til TII Polynomier et introforløb til TII Formål At introducere polynomier af grad 0, 1, 2 samt højere, herunder grafer og rødder At behandle andengradspolynomiet og dets graf, parablen, med fokus på bl.a. toppunkt,

Læs mere

Secret Sharing. Olav Geil Institut for Matematiske Fag Aalborg Universitet email: olav@math.aau.dk URL: http://www.math.aau.dk/ olav.

Secret Sharing. Olav Geil Institut for Matematiske Fag Aalborg Universitet email: olav@math.aau.dk URL: http://www.math.aau.dk/ olav. 1 Læsevejledning Secret Sharing Olav Geil Institut for Matematiske Fag Aalborg Universitet email: olav@math.aau.dk URL: http://www.math.aau.dk/ olav September 2006 Nærværende note er tænkt som et oplæg

Læs mere

Det er altså muligt at dele lige på to kvalitativt forskellige måder: Deling uden forståelse af helheden Deling med forståelse af helheden

Det er altså muligt at dele lige på to kvalitativt forskellige måder: Deling uden forståelse af helheden Deling med forståelse af helheden DELE 1 Vejledning Division Allerede i børnehaven oplever man børn travlt optaget af at dele legetøj, mad eller andet af interesse ud fra devisen en til dig og en til mig. Når der ikke er flere tilbage

Læs mere

Ikke-lineære funktioner

Ikke-lineære funktioner I elevernes arbejde med funktioner på tidligere klassetrin har hovedvægten ligget på sammenhænge, der kan beskrives med lineære funktioner. Dette kapitel berører ligefrem proportionalitet og stykkevist

Læs mere

Hvis man ønsker mere udfordring, kan man springe de første 10 opgaver over. , og et punkt er givet ved: P (2, 1).

Hvis man ønsker mere udfordring, kan man springe de første 10 opgaver over. , og et punkt er givet ved: P (2, 1). Plangeometri Hvis man ønsker mere udfordring, kan man springe de første 10 opgaver over Opgave 1 To linjer er givet ved ligningerne: x y 0 og x b y 4 0, hvor b er en konstant a) Beregn konstanten b således,

Læs mere

Løsningsforslag 7. januar 2011

Løsningsforslag 7. januar 2011 Løsningsforslag 7. januar 2011 May 9, 2012 Opgave 1 (5%) Funktionen f er givet ved forskriften f(x) = ln(x 2) + x 2. a) Bestem definitionsmængden for f. b) Beregn f (x). a) Definitionsmængden Logaritmen

Læs mere

Geometri med Geometer I

Geometri med Geometer I f Frans Kappel Øvre, Morsø Gymnasium Geometri med Geometer I Markeringspil: Klik på et objekt (punkt, linje, cirkel) for at markere det. Hvis du trykker Shift samtidig kan du markere flere objekter eller

Læs mere

Harmoniske Svingninger

Harmoniske Svingninger Harmoniske Svingninger Frank Nasser 14. april 2011 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Bemærk: Dette

Læs mere

Lektion 5 Det bestemte integral

Lektion 5 Det bestemte integral a f(x) dx = F (b) F (a) Lektion 5 Det bestemte integral Definition Integralregningens Middelværdisætning Integral- og Differentialregningens Hovedsætning Beregning af bestemte integraler Regneregler Areal

Læs mere

https://www.uvm.dk/~/media/uvm/filer/udd/folke/pdf14/nov/141127_initiativer_til_videreudvikling _af_folkeskolens_proever.pdf

https://www.uvm.dk/~/media/uvm/filer/udd/folke/pdf14/nov/141127_initiativer_til_videreudvikling _af_folkeskolens_proever.pdf Digitalt prøvesæt Dette er et opgavesæt, som jeg har forsøgt at forestille mig, det kan se ud, hvis det skal leve op til ordene i det der er initiativ 3 i rækken af initiativer til videreudvikling af folkeskolens

Læs mere

Kurver i planen og rummet

Kurver i planen og rummet Kurver i planen og rummet John Olsen 1 Indledning Dette sæt noter er forelæsningsnoter til foredraget Kurver i planen og rummet. Noterne er beregnet til at blive brugt sammen med foredraget. Afsnit 2 er

Læs mere

Løsningsvejledning til eksamenssæt fra august 2008 udarbejdet af René Aagaard Larsen i Maple

Løsningsvejledning til eksamenssæt fra august 2008 udarbejdet af René Aagaard Larsen i Maple Løsningsvejledning til eksamenssæt fra august 2008 udarbejdet af René Aagaard Larsen i Maple Opgave 1 1a - Trigonometri I en trekant ABC får vi opgivet følgende: Vi skitserer trekanten i GeoGebra: Vi beregner

Læs mere

Funktioner af flere variable

Funktioner af flere variable Funktioner af flere variable Stud. Scient. Martin Sparre Københavns Universitet 23-10-2006 Definition 1 (Definition af en funktion af flere variable). En funktion af n variable defineret på en delmængde,

Læs mere

Kursusmappe. HippHopp. Uge 29: Nørd. Vejledning til HippHopp guider HIPPY. Baseret på førskoleprogrammet HippHopp Uge 29 Nørd side 1

Kursusmappe. HippHopp. Uge 29: Nørd. Vejledning til HippHopp guider HIPPY. Baseret på førskoleprogrammet HippHopp Uge 29 Nørd side 1 Uge 29: Nørd Vejledning til HippHopp guider Kursusmappe Baseret på førskoleprogrammet HippHopp Uge 29 Nørd side 1 HIPPY HippHopp uge_29_guidevejl_nørd.indd 1 06/07/10 10.42 Denne vejledning er et supplement

Læs mere

Matematik A. Studentereksamen. Forsøg med digitale eksamensopgaver med adgang til internettet

Matematik A. Studentereksamen. Forsøg med digitale eksamensopgaver med adgang til internettet Matematik A Studentereksamen Forsøg med digitale eksamensopgaver med adgang til internettet frs102-matn/a-12082010 Torsdag den 12. august 2010 kl. 09.00-14.00 Opgavesættet er delt i to dele. Delprøve

Læs mere

Pendulbevægelse. Måling af svingningstid: Jacob Nielsen 1

Pendulbevægelse. Måling af svingningstid: Jacob Nielsen 1 Pendulbevægelse Jacob Nielsen 1 Figuren viser svingningstiden af et pendul i sekunder som funktion af udsvinget i grader. For udsving mindre end 20 grader er svingningstiden med god tilnærmelse konstant.

Læs mere

Til underviseren. I slutningen af hver skrivelse er der plads til, at du selv kan udfylde med konkrete eksempler fra undervisningen.

Til underviseren. I slutningen af hver skrivelse er der plads til, at du selv kan udfylde med konkrete eksempler fra undervisningen. Til underviseren Her er nogle små skrivelser med information til forældrene om Perspekt 3. Du kan bruge dem til løbende at lægge på Forældreintra eller lignende efterhånden som undervisningen skrider frem.

Læs mere

Hvis man ønsker mere udfordring, kan man springe de første 10 opgaver over. 1, og et punkt er givet ved: (2, 1)

Hvis man ønsker mere udfordring, kan man springe de første 10 opgaver over. 1, og et punkt er givet ved: (2, 1) Plangeometri Hvis man ønsker mere udfordring, kan man springe de første 10 opgaver over. Opgave 1 To linjer er givet ved ligningerne: x y 0 og x b y 4 0, hvor b er en konstant. a) Beregn konstanten b således,

Læs mere

Højdekurver set fra to sider

Højdekurver set fra to sider Højdekurver set fra to sider Hvis ækvidistancen er 5 meter, er der 5 meters højdeforskel mellem hver stiplet linje på tegningen nedenfor. De steder, hvor højdekurverne ligger tæt på hinanden, er der meget

Læs mere

Miniguide for oplægsholdere

Miniguide for oplægsholdere Miniguide for oplægsholdere Intro Vi har lavet den her miniguide, som en hjælp til dig i din fremtidige rolle som oplægsholder. Guiden er din værktøjskasse og huskeliste. Den samler alt det, vi gennemgår

Læs mere

Transkribering af interview, Christian A: Og oprindeligt tror jeg, at vi måske havde mest lyst til at trække det op på sådan et samfunds..

Transkribering af interview, Christian A: Og oprindeligt tror jeg, at vi måske havde mest lyst til at trække det op på sådan et samfunds.. Transkribering af interview, Christian A: Og oprindeligt tror jeg, at vi måske havde mest lyst til at trække det op på sådan et samfunds.. Sådan, hvad skal vi overhovedet bruge uddannelse til, og hvad

Læs mere

Vektorer i 3D. 1. Grundbegreber. 1. Koordinater. Enhedsvektorerne. Vektor OP. De ortogonale enhedsvektorer kaldes for: Hvis punkt p har koordinaterne:

Vektorer i 3D. 1. Grundbegreber. 1. Koordinater. Enhedsvektorerne. Vektor OP. De ortogonale enhedsvektorer kaldes for: Hvis punkt p har koordinaterne: Vektorer i 3D. Grundegreer. Koordinater z k P OP i 0 j x y Enhedsvektorerne De ortogonale enhedsvektorer kaldes for: i, j og k Vektor OP Hvis punkt p har koordinaterne: P ( a a a3 ) Så har vektor OP koordinaterne:

Læs mere

Grafteori, Kirsten Rosenkilde, september 2007 1. Grafteori

Grafteori, Kirsten Rosenkilde, september 2007 1. Grafteori Grafteori, Kirsten Rosenkilde, september 007 1 1 Grafteori Grafteori Dette er en kort introduktion til de vigtigste begreber i grafteori samt eksempler på opgavetyper inden for emnet. 1.1 Definition af

Læs mere

Andengradspolynomier

Andengradspolynomier Andengradspolynomier Teori og opgaver (hf tilvalg) Forskydning af grafer...... 2 Andengradspolynomiets graf (parablen)..... 5 Andengradsligninger. 10 Andengradsuligheder 13 Nyttige formler, beviser og

Læs mere

TALTEORI Wilsons sætning og Euler-Fermats sætning.

TALTEORI Wilsons sætning og Euler-Fermats sætning. Wilsons sætning og Euler-Fermats sætning, marts 2007, Kirsten Rosenkilde 1 TALTEORI Wilsons sætning og Euler-Fermats sætning. Disse noter forudsætter et grundlæggende kendskab til talteori som man kan

Læs mere

Bilag 4: Transskription af interview med Ida

Bilag 4: Transskription af interview med Ida Bilag 4: Transskription af interview med Ida Interviewet indledes med, at der oplyses om, hvad projektet i grove træk handler om, anonymitet, og at Ida til enhver tid kan sige, hvis der er spørgsmål hun

Læs mere

Projekt 5.5 Sfærisk geometri og introduktion til kortprojektioner

Projekt 5.5 Sfærisk geometri og introduktion til kortprojektioner Projekt 5.5 Sfærisk geometri og introduktion til kortprojektioner Et almindeligt 3D-koordinatsystem er som et 2D-koordinatsystem, hvor der blot er rejst en tredje akse vinkelret på planen i punktet (0,0),

Læs mere

Go On! 7. til 9. klasse

Go On! 7. til 9. klasse Go On! 7. til 9. klasse Fra skoleåret 2013 / 2014 Introduktion til linjer Alle er genier. Men hvis du dømmer en fisk på dens evne til at klatre i træer, vil den leve hele sit liv i den tro, at den er dum.

Læs mere

Lille Georgs julekalender 08. 1. december

Lille Georgs julekalender 08. 1. december 1. december Et digitalur viser 20:08. Hvor lang tid går der før de samme fire cifre vises igen (gerne i en anden rækkefølge)? Svar: 4 timer og 20 minutter Forklaring: Næste gang cifrene vises, er klokken

Læs mere

Det gode personalemøde og arbejdspladskulturen

Det gode personalemøde og arbejdspladskulturen TEMA Stress Tekst indsættes Det gode personalemøde og arbejdspladskulturen Værktøj nr. 6 i serien Vi finder os ikke i stress! Værktøj nr. 6 i serien Vi finder os ikke i stress! Personlige strategier mod

Læs mere

Taxageometri og metriske rum

Taxageometri og metriske rum Taxageometri og metriske rum Douglas LaFontain og Troels Bak Andersen 8. oktober 2011 Målet med denne kursusdag er at introducere en ny geometri, der er forskellig fra vores sædvanlige Euklidiske plangeometri.

Læs mere

1. Vis, at hvis realdelen af en holomorf (analytisk) funktion er konstant (på et åbent område) er funktionen konstant.

1. Vis, at hvis realdelen af en holomorf (analytisk) funktion er konstant (på et åbent område) er funktionen konstant. Matematik F2 - sæt 2 af 7 blok 4 f(z)dz = 0 1 I denne uge vil vi studere Cauchy-Riemann betingelserne, potensrækker, konvergenskriterier og flertydige funktioner. Vi skal også se på integration langs en

Læs mere

Potens & Kvadratrod. Navn: Klasse: Matematik Opgave Kompendium. Opgaver: 22 Ekstra: 4 Point: Matematik / Potens & Kvadratrod

Potens & Kvadratrod. Navn: Klasse: Matematik Opgave Kompendium. Opgaver: 22 Ekstra: 4 Point: Matematik / Potens & Kvadratrod Navn: Klasse: Matematik Opgave Kompendium Potens & Kvadratrod Opgaver: Ekstra: Point: http://madsmatik.dk/ d.0-0-01 1/1 Potenser: Du har måske set udtrykket før eller måske 10 1. Begge to er det vi kalder

Læs mere

Programmering C. Casper Hermansen Klasse 2.7 Programmering C. Navn: Casper Hermansen. Klasse: 2.7. Fag: Programmering C

Programmering C. Casper Hermansen Klasse 2.7 Programmering C. Navn: Casper Hermansen. Klasse: 2.7. Fag: Programmering C Navn: Casper Hermansen Klasse: 2.7 Fag: Skole: Roskilde tekniske gymnasium Side 1 af 16 Indhold Indledende aktivitet... 3 Projektbeskrivelse:... 3 Krav:... 3 Målgrupper:... 3 Problemformulering:... 3 Diskussion

Læs mere

Interview med O, bilag 1

Interview med O, bilag 1 1 Interview med O, bilag 1 2 3 4 5 6 7 8 9 Øhm PP første spørgsmål er O: mmm hvor længe har du benyttet second life O: ja hvad var det PP det var ikke længe efter att at du kom og interviewede P eller

Læs mere

Læsning og skrivning i 3. og 4. klasse

Læsning og skrivning i 3. og 4. klasse Læsning og skrivning i 3. og 4. klasse Center for Skoler og Dagtilbud FAKTA Læse- og skriveudvikling De fleste børn kan i starten af 3. kl. læse og forstå lette aldersvarende tekster, dvs. tekster, hvor

Læs mere

Bilag 14: Transskribering af interview med Anna. Interview foretaget d. 20. marts 2014.

Bilag 14: Transskribering af interview med Anna. Interview foretaget d. 20. marts 2014. Bilag 14: Transskribering af interview med Anna. Interview foretaget d. 20. marts 2014. Anna er 14 år, går på Virupskolen i Hjortshøj, og bor i Hjortshøj. Intervieweren i dette interview er angivet med

Læs mere

Vejledning til Uddannelsesplan for elever i 10. klasse til ungdomsuddannelse eller anden aktivitet

Vejledning til Uddannelsesplan for elever i 10. klasse til ungdomsuddannelse eller anden aktivitet Vejledning til Uddannelsesplan for elever i 10. klasse til ungdomsuddannelse eller anden aktivitet Om uddannelsesplanen Uddannelsesplanen er din plan for fremtiden. Du skal bruge den til at finde ud af,

Læs mere

Årsafslutning i SummaSummarum 4

Årsafslutning i SummaSummarum 4 Årsafslutning i SummaSummarum 4 Som noget helt nyt kan du i SummaSummarum 4 oprette et nyt regnskabsår uden, at det gamle (eksisterende) først skal afsluttes. Dette betyder, at det nu er muligt at bogføre

Læs mere

Opgave 1. 1a - To linjer Vi får opgivet linjen m: 1b - Trigonometri Vi får opgivet en trekant med følgende værdier:

Opgave 1. 1a - To linjer Vi får opgivet linjen m: 1b - Trigonometri Vi får opgivet en trekant med følgende værdier: Løsningsvejledning til eksamenssæt fra januar 2009 udarbejdet af René Aagaard Larsen i Maple Opgave 1 1a - To linjer Vi får opgivet linjen m: Vi skal bestemme en ligning til linjen l, som er parallel med

Læs mere

Om hvordan Google ordner websider

Om hvordan Google ordner websider Om hvordan Google ordner websider Hans Anton Salomonsen March 14, 2008 Man oplever ofte at man efter at have givet Google et par søgeord lynhurtigt får oplysning om at der er fundet et stort antal - måske

Læs mere

Det danske sundhedsvæsen

Det danske sundhedsvæsen Det danske sundhedsvæsen Undervisningsmateriale til sprogskoler Kapitel 8: Undersøgelse for brystkræft (mammografi) 8 Undersøgelse for brystkræft (mammografi) Brystkræft Brystkræft er en alvorlig sygdom.

Læs mere

Vinkelrette linjer. Frank Villa. 4. november 2014

Vinkelrette linjer. Frank Villa. 4. november 2014 Vinkelrette linjer Frank Villa 4. november 2014 Dette dokument er en del af MatBog.dk 2008-2012. IT Teaching Tools. ISBN-13: 978-87-92775-00-9. Se yderligere betingelser for brug her. Indhold 1 Introduktion

Læs mere

Bilag F - Caroline 00.00

Bilag F - Caroline 00.00 Bilag F - Caroline 00.00 Benjamin: Så det første jeg godt kunne tænke mig, det var hvis du kunne fortælle mig om en helt almindelig hverdag hvor arbejde indgår. Caroline: Ja. Jamen det er jo fyldt med

Læs mere

Pinsedag Joh. 14,15-21; Jer. 31,31-34; Apg. 2,1-11 Salmer: 290, 300, 283-291,292 (alterg.), 298

Pinsedag Joh. 14,15-21; Jer. 31,31-34; Apg. 2,1-11 Salmer: 290, 300, 283-291,292 (alterg.), 298 Pinsedag Joh. 14,15-21; Jer. 31,31-34; Apg. 2,1-11 Salmer: 290, 300, 283-291,292 (alterg.), 298 Lad os bede! Kære hellige ånd, tak fordi Du er hos os som vor ledsager gennem livet. Vi beder dig: bliv hos

Læs mere

Den svingende streng

Den svingende streng Den svingende streng Stig Andur Pedersen October 2, 2009 Ufuldstændigt udkast. Abstract 1 I det 18. århundrede blev differential- og integralregningen, som var introduceret af Newton, Leibniz og mange

Læs mere

Potensfunktioner, Eksponentialfunktioner og Logaritmer

Potensfunktioner, Eksponentialfunktioner og Logaritmer Potensfunktioner, Eksponentialfunktioner og Logaritmer Frank Villa 2. marts 2014 Dette dokument er en del af MatBog.dk 2008-2012. IT Teaching Tools. ISBN-13: 978-87-92775-00-9. Se yderligere betingelser

Læs mere

Opgave 1 Alle tallene er reelle tal, så opgaven er at finde den mindste talmængde, som resultaterne tilhører.

Opgave 1 Alle tallene er reelle tal, så opgaven er at finde den mindste talmængde, som resultaterne tilhører. Opgave 1 Alle tallene er reelle tal, så opgaven er at finde den mindste talmængde, som resultaterne tilhører. A. Q B. R (sidelængden er 5, som er irrational) C. Q Opgave 2 A. 19 = 1 19 24 = 2 3 3 36 =

Læs mere

Behandling og træning, når knæskallen er gået af led

Behandling og træning, når knæskallen er gået af led Behandling og træning, når knæskallen er gået af led Din knæskal er gået af led. Når knæskallen går af led, hopper den oftest ud på ydersiden af knæet. Ledkapslen, som knæskallen ligger i, revner, og knæet

Læs mere

Areal. Et af de ældste skrifter om matematik, der findes, hedder Rhind Papyrus. NTRO

Areal. Et af de ældste skrifter om matematik, der findes, hedder Rhind Papyrus. NTRO Areal Et af de ældste skrifter om matematik, der findes, hedder Rhind Papyrus. NTRO Det stammer fra Egypten og er ca. 3650 år gammelt. I Rhind Papyrus findes optegnelser, der viser, hvordan egypterne beregnede

Læs mere

Arbejdsmiljøgruppens problemløsning

Arbejdsmiljøgruppens problemløsning Arbejdsmiljøgruppens problemløsning En systematisk fremgangsmåde for en arbejdsmiljøgruppe til løsning af arbejdsmiljøproblemer Indledning Fase 1. Problemformulering Fase 2. Konsekvenser af problemet Fase

Læs mere

Vejledning til Photofiltre nr.166 Side 1 Lave små grafik knapper i Photofiltre

Vejledning til Photofiltre nr.166 Side 1 Lave små grafik knapper i Photofiltre Side 1 Photofiltre er jo først og fremmest et fotoredigeringsprogram. MEN det er også udmærket til at lave grafik med. F.eks. disse knapper er hurtig og nemme at lave. Her er der sat en hvid trekant med

Læs mere

Induktion: fra naturlige tal til generaliseret skønhed Dan Saattrup Nielsen

Induktion: fra naturlige tal til generaliseret skønhed Dan Saattrup Nielsen 36 Induktion: fra naturlige tal til generaliseret skønhed Dan Saattrup Nielsen En artikel om induktion, hvordan er det overhovedet muligt? Det er jo trivielt! Bevis ved induktion er en af de ældste matematiske

Læs mere

Matematik A. Studentereksamen. Digital eksamensopgave med adgang til internettet

Matematik A. Studentereksamen. Digital eksamensopgave med adgang til internettet Matematik A Studentereksamen Digital eksamensopgave med adgang til internettet 1stx131-MATn/A-405013 Fredag den 4. maj 013 kl. 09.00-14.00 Opgavesættet er delt i to dele. Delprøve 1: timer med autoriseret

Læs mere

TALTEORI Wilsons sætning og Euler-Fermats sætning.

TALTEORI Wilsons sætning og Euler-Fermats sætning. Wilsons sætning og Euler-Fermats sætning, marts 2007, Kirsten Rosenkilde 1 TALTEORI Wilsons sætning og Euler-Fermats sætning. Disse noter forudsætter et grundlæggende kendskab til talteori som man kan

Læs mere

PERSONALE- OG LEDELSESPOLITIKKEN SAT I SPIL

PERSONALE- OG LEDELSESPOLITIKKEN SAT I SPIL 114659_Manual_250x250 17/10/03 13:38 Side 1 Kunde & Co. Frederiksholms Kanal 6 1220 København K Tlf: 33 92 40 49 perst@perst.dk www.perst.dk Løngangstræde 25, 4. 1468 København K Tlf: 38 17 81 00 cfu@cfu-net.dk

Læs mere

En mini e-bog til dig fra Aros Business Academy 7 FEJL DU IKKE MÅ BEGÅ, NÅR DU SØGER JOB

En mini e-bog til dig fra Aros Business Academy 7 FEJL DU IKKE MÅ BEGÅ, NÅR DU SØGER JOB En mini e-bog til dig fra Aros Business Academy 7 FEJL DU IKKE MÅ BEGÅ, NÅR DU SØGER JOB 7 FEJL DU IKKE MÅ BEGÅ, NÅR DU SØGER JOB Kan du svare klart på alle 7 spørgsmål i den her bog? Hvis ikke, så begår

Læs mere

Loven De 8 opgaver med løsninger

Loven De 8 opgaver med løsninger Loven De 8 opgaver med løsninger Opgave 1 Her er hele fordelingen: E KB5 K982 T9843 KDBT9 D4 DBT65 6 76532 632 43 KB7 ET987 E7 ED52 1 Pas 4? Eksemplet skal vise hvor generende det er når modstanderne melder

Læs mere

Matematik. på Åbent VUC. Trin 2 Xtra eksempler. Trigonometri, boksplot, potensfunktioner, to ligninger med to ubekendte

Matematik. på Åbent VUC. Trin 2 Xtra eksempler. Trigonometri, boksplot, potensfunktioner, to ligninger med to ubekendte Matematik på Åbent VUC Trin Xtra eksempler Trigonometri, boksplot, potensfunktioner, to ligninger med to ubekendte Trigonometri Sinus og cosinus Til alle vinkler hører der to tal, som kaldes cosinus og

Læs mere

Trekanttypespil. 7 Trekanter. En trekant, hvor to af vinklerne er 90. En retvinklet trekant med siderne 3, 4, og 5. Kan ikke konstrueres.

Trekanttypespil. 7 Trekanter. En trekant, hvor to af vinklerne er 90. En retvinklet trekant med siderne 3, 4, og 5. Kan ikke konstrueres. .01 Trekanter Trekanttypespil En retvinklet trekant med siderne,, og. Kan ikke konstrueres. En trekant, hvor to af vinklerne er 90. En ligesidet trekant med siden. En spidsvinklet trekant hvor den ene

Læs mere

Dynamiske konstruktioner med et dynamisk geometriprogram En øvelsessamling

Dynamiske konstruktioner med et dynamisk geometriprogram En øvelsessamling Dynamiske konstruktioner med et dynamisk geometriprogram En øvelsessamling Disse opgaver er i sin tid udarbejdet til programmerne Geometer, og Geometrix. I dag er GeoGebra (af mange gode grunde, som jeg

Læs mere

Få helt styr på NemID WWW.KOMPUTER.DK

Få helt styr på NemID WWW.KOMPUTER.DK KOMPUTER FOR ALLE Få helt styr på Gå på netbank og borgerservice med Her viser vi, hvordan du bestiller og bruger, så du kan bruge netbank og de mange offentlige internettjenester. Når du vil logge på

Læs mere

Hypotese test. Repetition fra sidst Hypoteser Test af middelværdi Test af andel Test af varians Type 1 og type 2 fejl Signifikansniveau

Hypotese test. Repetition fra sidst Hypoteser Test af middelværdi Test af andel Test af varians Type 1 og type 2 fejl Signifikansniveau ypotese test Repetition fra sidst ypoteser Test af middelværdi Test af andel Test af varians Type 1 og type fejl Signifikansniveau Konfidens intervaller Et konfidens interval er et interval, der estimerer

Læs mere

Afstandsformlen og Cirklens Ligning

Afstandsformlen og Cirklens Ligning Afstandsformlen og Cirklens Ligning Frank Villa 19. august 2012 2008-2012. IT Teaching Tools. ISBN-13: 978-87-92775-00-9. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk.

Læs mere