Kapitel 3 Centraltendens og spredning

Størrelse: px
Starte visningen fra side:

Download "Kapitel 3 Centraltendens og spredning"

Transkript

1 Kapitel 3 Centraltendens og spredning Peter Tibert Stoltze Elementær statistik F2011

2 1 Indledning 2 Centraltendens 3 Spredning 4 Praktisk beregning 5 Fraktiler 6 Opsamling

3 1 Indledning 2 Centraltendens 3 Spredning 4 Praktisk beregning 5 Fraktiler 6 Opsamling

4 Indledning I kapitel 2 omsatte vi de rå data til en tabel, der bedre viste materialets fordeling Fordelingen illustrerede vi med forskellige former for grafik Nu vil vi gerne karakterisere fordelingerne kvantitativt gennem deres beliggenhed og variation

5 1 Indledning 2 Centraltendens 3 Spredning 4 Praktisk beregning 5 Fraktiler 6 Opsamling

6 Centraltendens Typetal eller modus (eng: mode) Aritmetisk middelværdi eller stikprøvegennemsnit (eng: mean or sample mean) Median

7 Modus Modus eller typetallet er den hyppigst forekommende værdi Eneste anvendelige mål for data målt på nominalskala (m/k, ja/nej) men vel nok mest anvendt ifm. data målt på ordinalskala (karakterer, scores) Læsescores: 71 for pigerne mod 55 for drengene Beregnes i Excel med funktionen hyppigst

8 Modus Modus eller typetallet er den hyppigst forekommende værdi Eneste anvendelige mål for data målt på nominalskala (m/k, ja/nej) men vel nok mest anvendt ifm. data målt på ordinalskala (karakterer, scores) Læsescores: 71 for pigerne mod 55 for drengene Beregnes i Excel med funktionen hyppigst

9 Aritmetisk middelværdi Betegnes også tit som stikprøvegennemsnit Den aritmetiske middelværdi er summen af observationerne i forhold til antallet af observationer x = 1 n n i=1 x i = x 1 + x x n n Læsescores: 59,7 for pigerne mod 51,9 for drengene Beregnes i Excel med funktionen middel

10 Aritmetisk middelværdi Betegnes også tit som stikprøvegennemsnit Den aritmetiske middelværdi er summen af observationerne i forhold til antallet af observationer x = 1 n n i=1 x i = x 1 + x x n n Læsescores: 59,7 for pigerne mod 51,9 for drengene Beregnes i Excel med funktionen middel

11 Median Medianen er den midterste observation (gennemsnittet af de to midterste hvis n er lige) Specialtilfælde af generelt fraktilbegreb, som vi gennemgår senere Læsescores: 62,5 for pigerne mod 50,5 for drengene Beregnes i Excel med funktionen median

12 Median Medianen er den midterste observation (gennemsnittet af de to midterste hvis n er lige) Specialtilfælde af generelt fraktilbegreb, som vi gennemgår senere Læsescores: 62,5 for pigerne mod 50,5 for drengene Beregnes i Excel med funktionen median

13 Centraltendenser for læsescores Score Drenge Piger n Modus x (stikprøvegennemsnit) 51,9 59,7 Median 50,5 62,5

14 1 Indledning 2 Centraltendens 3 Spredning 4 Praktisk beregning 5 Fraktiler 6 Opsamling

15 Spredning og varians Spredning kaldes også for standardafvigelse Spredning på læsescores er 16,6 for pigerne mod 19,2 for drengene der er større spredning på drengenes score end på pigernes, der i gennemsnit ligner hinanden mere Med Excel benyttes funktionerne stdafv og varians til beregning af spredning og varians

16 Spredning og varians Spredning kaldes også for standardafvigelse Spredning på læsescores er 16,6 for pigerne mod 19,2 for drengene der er større spredning på drengenes score end på pigernes, der i gennemsnit ligner hinanden mere Med Excel benyttes funktionerne stdafv og varians til beregning af spredning og varians

17 Spredning og varians Spredning kaldes også for standardafvigelse Spredning på læsescores er 16,6 for pigerne mod 19,2 for drengene der er større spredning på drengenes score end på pigernes, der i gennemsnit ligner hinanden mere Med Excel benyttes funktionerne stdafv og varians til beregning af spredning og varians

18 Spredning og varians Spredningen s er kvadratroden af variansen s 2 Variansen s 2 er kvadratet på spredningen s Variansen beregnes efter følgende formel: hvor s 2 = 1 n 1 SAK x = n i=1 n i=1 (x i x) 2 = SAK x n 1 x 2 i 1 n n ( x i ) 2 i=1 Hvis der ikke er tale om en stikprøve kan man benytte n i stedet for n 1 i nævneren, men...

19 Spredning og varians Spredningen s er kvadratroden af variansen s 2 Variansen s 2 er kvadratet på spredningen s Variansen beregnes efter følgende formel: hvor s 2 = 1 n 1 SAK x = n i=1 n i=1 (x i x) 2 = SAK x n 1 x 2 i 1 n n ( x i ) 2 i=1 Hvis der ikke er tale om en stikprøve kan man benytte n i stedet for n 1 i nævneren, men...

20 Spredning og varians Spredningen s er kvadratroden af variansen s 2 Variansen s 2 er kvadratet på spredningen s Variansen beregnes efter følgende formel: hvor s 2 = 1 n 1 SAK x = n i=1 n i=1 (x i x) 2 = SAK x n 1 x 2 i 1 n n ( x i ) 2 i=1 Hvis der ikke er tale om en stikprøve kan man benytte n i stedet for n 1 i nævneren, men...

21 n 1 giver centrale estimater SAK n SAK n 1 Population ,80 61,00 Stikprøve ,19 10,92 Stikprøve ,00 81,33 Stikprøve ,69 80,92 Stikprøve ,19 70,92 Stikprøve ,69 60,92 Gennemsnit 45,75 61,00

22 Standardafvigelse og standardfejl Spredning kaldes også for standardafvigelse (eng: standard deviation) Må ikke forveksles med standardfejl (eng: standard error), der er spredningen på middelværdien: s x = s n Dette vender vi tilbage til i kapitel 4

23 Standardafvigelse og standardfejl Spredning kaldes også for standardafvigelse (eng: standard deviation) Må ikke forveksles med standardfejl (eng: standard error), der er spredningen på middelværdien: s x = s n Dette vender vi tilbage til i kapitel 4

24 1 Indledning 2 Centraltendens 3 Spredning 4 Praktisk beregning 5 Fraktiler 6 Opsamling

25 Først lidt opsamling på nomenklatur Vi regner på en simpelt tilfældigt udtaget stikprøve fra en population. Vi antager at observationerne er målt på en intervalskala eller en ratioskala. Gennemsnittet i stikprøven x er et estimat for middelværdien µ i populationen: ˆµ = x Spredningen i stikprøven s er estimat for spredningen σ i populationen: ˆσ = s Spredningen er målt på samme skala som observationerne det er variansen ikke.

26 Først lidt opsamling på nomenklatur Vi regner på en simpelt tilfældigt udtaget stikprøve fra en population. Vi antager at observationerne er målt på en intervalskala eller en ratioskala. Gennemsnittet i stikprøven x er et estimat for middelværdien µ i populationen: ˆµ = x Spredningen i stikprøven s er estimat for spredningen σ i populationen: ˆσ = s Spredningen er målt på samme skala som observationerne det er variansen ikke.

27 Først lidt opsamling på nomenklatur Vi regner på en simpelt tilfældigt udtaget stikprøve fra en population. Vi antager at observationerne er målt på en intervalskala eller en ratioskala. Gennemsnittet i stikprøven x er et estimat for middelværdien µ i populationen: ˆµ = x Spredningen i stikprøven s er estimat for spredningen σ i populationen: ˆσ = s Spredningen er målt på samme skala som observationerne det er variansen ikke.

28 Først lidt opsamling på nomenklatur Vi regner på en simpelt tilfældigt udtaget stikprøve fra en population. Vi antager at observationerne er målt på en intervalskala eller en ratioskala. Gennemsnittet i stikprøven x er et estimat for middelværdien µ i populationen: ˆµ = x Spredningen i stikprøven s er estimat for spredningen σ i populationen: ˆσ = s Spredningen er målt på samme skala som observationerne det er variansen ikke.

29 Først lidt opsamling på nomenklatur Vi regner på en simpelt tilfældigt udtaget stikprøve fra en population. Vi antager at observationerne er målt på en intervalskala eller en ratioskala. Gennemsnittet i stikprøven x er et estimat for middelværdien µ i populationen: ˆµ = x Spredningen i stikprøven s er estimat for spredningen σ i populationen: ˆσ = s Spredningen er målt på samme skala som observationerne det er variansen ikke.

30 Praktisk beregning af middelværdi og spredning Data (stikprøven) præsenteres på en liste på følgende måde x = {9; 2; 8; 11; 16; 16; 6; 5; 4; 6} Start med at bestemme antallet af observationer n = 10 og dernæst summen af observationerne (indeks på sumtegnene er udeladt, da der summeres over alle observationer) x = = 83 Nu kan du bestemme gennemsnittet i stikprøven x x = n = = 8, 3

31 Praktisk beregning af middelværdi og spredning Data (stikprøven) præsenteres på en liste på følgende måde x = {9; 2; 8; 11; 16; 16; 6; 5; 4; 6} Start med at bestemme antallet af observationer n = 10 og dernæst summen af observationerne (indeks på sumtegnene er udeladt, da der summeres over alle observationer) x = = 83 Nu kan du bestemme gennemsnittet i stikprøven x x = n = = 8, 3

32 Praktisk beregning af middelværdi og spredning Data (stikprøven) præsenteres på en liste på følgende måde x = {9; 2; 8; 11; 16; 16; 6; 5; 4; 6} Start med at bestemme antallet af observationer n = 10 og dernæst summen af observationerne (indeks på sumtegnene er udeladt, da der summeres over alle observationer) x = = 83 Nu kan du bestemme gennemsnittet i stikprøven x x = n = = 8, 3

33 Praktisk beregning af middelværdi og spredning Data (stikprøven) præsenteres på en liste på følgende måde x = {9; 2; 8; 11; 16; 16; 6; 5; 4; 6} Start med at bestemme antallet af observationer n = 10 og dernæst summen af observationerne (indeks på sumtegnene er udeladt, da der summeres over alle observationer) x = = 83 Nu kan du bestemme gennemsnittet i stikprøven x x = n = = 8, 3

34 Praktisk beregning af middelværdi og spredning Så beregner du summen af de kvadrerede observationer (kvadratsummen) x 2 = = 895 så du kan beregne summen af de kvadrerede afvigelser fra gennemsnittet (summen af afvigelsernes kvadrater) SAK x = (x i x) 2 = x 2 1 n ( x) 2 = = 206, 1 Så kan du beregne variansen for xerne i stikprøven var(x) ˆ = SAK x n 1 = 206, = 22, 9 og endelig spredningen (stikprøvestandardafvigelsen) s = var(x) ˆ = 22, 9 = 4, 8

35 Praktisk beregning af middelværdi og spredning Så beregner du summen af de kvadrerede observationer (kvadratsummen) x 2 = = 895 så du kan beregne summen af de kvadrerede afvigelser fra gennemsnittet (summen af afvigelsernes kvadrater) SAK x = (x i x) 2 = x 2 1 n ( x) 2 = = 206, 1 Så kan du beregne variansen for xerne i stikprøven var(x) ˆ = SAK x n 1 = 206, = 22, 9 og endelig spredningen (stikprøvestandardafvigelsen) s = var(x) ˆ = 22, 9 = 4, 8

36 Praktisk beregning af middelværdi og spredning Så beregner du summen af de kvadrerede observationer (kvadratsummen) x 2 = = 895 så du kan beregne summen af de kvadrerede afvigelser fra gennemsnittet (summen af afvigelsernes kvadrater) SAK x = (x i x) 2 = x 2 1 n ( x) 2 = = 206, 1 Så kan du beregne variansen for xerne i stikprøven var(x) ˆ = SAK x n 1 = 206, = 22, 9 og endelig spredningen (stikprøvestandardafvigelsen) s = var(x) ˆ = 22, 9 = 4, 8

37 Praktisk beregning af middelværdi og spredning Så beregner du summen af de kvadrerede observationer (kvadratsummen) x 2 = = 895 så du kan beregne summen af de kvadrerede afvigelser fra gennemsnittet (summen af afvigelsernes kvadrater) SAK x = (x i x) 2 = x 2 1 n ( x) 2 = = 206, 1 Så kan du beregne variansen for xerne i stikprøven var(x) ˆ = SAK x n 1 = 206, = 22, 9 og endelig spredningen (stikprøvestandardafvigelsen) s = var(x) ˆ = 22, 9 = 4, 8

38 1 Indledning 2 Centraltendens 3 Spredning 4 Praktisk beregning 5 Fraktiler 6 Opsamling

39 Fraktiler Om P%-fraktilen gælder, at P procent af observationerne er mindre end eller lig denne værdi Der er nogle fraktilværdier, man ofte er specielt interesseret i: Medianen (50) Kvartiler (25, 50, 75) Deciler (10, 20,..., 90) Percentiler (1, 2,..., 99) Specielt er 25% fraktilen den nedre kvartil og 75% fraktilen den øvre kvartil, og forskellen mellem øvre og nedre kvartil kaldes for interkvartilafstanden (IQR)

40 Fraktiler Om P%-fraktilen gælder, at P procent af observationerne er mindre end eller lig denne værdi Der er nogle fraktilværdier, man ofte er specielt interesseret i: Medianen (50) Kvartiler (25, 50, 75) Deciler (10, 20,..., 90) Percentiler (1, 2,..., 99) Specielt er 25% fraktilen den nedre kvartil og 75% fraktilen den øvre kvartil, og forskellen mellem øvre og nedre kvartil kaldes for interkvartilafstanden (IQR)

41 Fraktiler Om P%-fraktilen gælder, at P procent af observationerne er mindre end eller lig denne værdi Der er nogle fraktilværdier, man ofte er specielt interesseret i: Medianen (50) Kvartiler (25, 50, 75) Deciler (10, 20,..., 90) Percentiler (1, 2,..., 99) Specielt er 25% fraktilen den nedre kvartil og 75% fraktilen den øvre kvartil, og forskellen mellem øvre og nedre kvartil kaldes for interkvartilafstanden (IQR)

42 Direkte beregning af fraktiler Lad en stikprøve med n elementer være opstillet i rækkefølge, således at x 1 er den mindste observation og x n er den største, da er den i te observation P-fraktilen i stikprøven, hvor P = i 0, 5 n For store stikprøver er således P 0 for i = 1 og P 1 for i = n Ønsker man at kende en bestemt fraktil, da kan man regne baglæns i ovenstående udtryk, hvor resultatet dog kun sjældent vil være heltalligt i og dermed en bestemt observation. Dette kan løses ved lineær interpolation...

43 Direkte beregning af fraktiler Lad en stikprøve med n elementer være opstillet i rækkefølge, således at x 1 er den mindste observation og x n er den største, da er den i te observation P-fraktilen i stikprøven, hvor P = i 0, 5 n For store stikprøver er således P 0 for i = 1 og P 1 for i = n Ønsker man at kende en bestemt fraktil, da kan man regne baglæns i ovenstående udtryk, hvor resultatet dog kun sjældent vil være heltalligt i og dermed en bestemt observation. Dette kan løses ved lineær interpolation...

44 Direkte beregning af fraktiler Lad en stikprøve med n elementer være opstillet i rækkefølge, således at x 1 er den mindste observation og x n er den største, da er den i te observation P-fraktilen i stikprøven, hvor P = i 0, 5 n For store stikprøver er således P 0 for i = 1 og P 1 for i = n Ønsker man at kende en bestemt fraktil, da kan man regne baglæns i ovenstående udtryk, hvor resultatet dog kun sjældent vil være heltalligt i og dermed en bestemt observation. Dette kan løses ved lineær interpolation...

45 Beregning af fraktiler for grupperet data hvor P% = L + P er den ønskede fraktil k( Pn 100 F ) f L nedre grænse i klassen, hvor den ønskede fraktil befinder sig k er klassebredden n er antal observationer F er antal observationer op til nedre grænse i den klasse, hvor fraktilen befinder sig f er antal observationer i den klasse, hvor fraktilen befinder sig

46 Eksempel: Vokalvarighed Frekvensfordeling for vokalvarighed i ms. Klassebredde er 5ms. Nedre Øvre Frekvens Kumulativ frekvens Relativt 184, ,0 184,5 189, ,0 189,5 194, ,0 194,5 199, ,5 199,5 204, ,5 204,5 209, ,0 209,5 214, ,0 214,5 219, ,0 219,5 224, ,0 224,5 229, ,5 229,5 234, ,0 234, ,0 40

47 Kumulativ fordeling af vokalvarighed Fraktil [pct.] Grupperet data Direkte beregning Vokalvarighed [ms]

48 Eksempel på beregning Vi vil beregne 50% fraktilen (medianen) for datasættet med vokalvarighed: Median = L + Pn k( 100 F ) ( 100 = 204, ) = 208, 39 f 9 Vi kunne også lave interpolation i tabellen: dvs. bestemme x 204,5 32,5 x 50,0 209,5 55,0

49 Lineær interpolation generelt Vi kender punkterne (x 1, y 1 ) og (x 2, y 2 ) og ønsker at bestemme punktet (x, y ) idet vi kender den ene af koordinaterne. Vi antager at der gælder y 2 y 1 x 2 x 1 = y y 1 x x 1 Kender vi x kan vi bestemme y som y = y 1 + y 2 y 1 x 2 x 1 (x x 1 ) Kender vi omvendt y kan vi bestemme x som x = x 1 + x 2 x 1 y 2 y 1 (y y 1 )

50 Lineær interpolation grafisk Fraktil [pct.] (204.5, 32.5) (209.5, 55.0) (208.39, 50) Vokalvarighed [ms] 55, 0 32, 5 50, 0 32, 5 = 209, 5 204, 5 x 204, 5 x 209, 5 204, 5 = 204, 5 + (50, 0 32, 5) = 208, 39 55, 0 32, 5

51 Beregning med Excel Beregnes i Excel med funktionen fraktil Der benyttes her en lidt anden definition end den her anvendte, men resultaterne minder en del om hinanden (specielt for store n) Beregning med Excel af de tre kvartiler samt interkvartilafstand (IQR) og spredning (s) for læsescores: Fraktil Drenge Piger 25% fraktil 39,3 55,0 50% fraktil 49,0 62,7 75% fraktil 65,0 67,6 IQR 25,8 12,6 s 19,2 16,6

52 Omsamling omkring fraktiler Om P%-fraktilen for et datasæt gælder, at P procent af observationerne i datasættet er mindre end eller lig denne værdi Specielle fraktiler har navne som kvartiler, deciler og percentiler, men det er altså alle fraktiler Beregning kan foretages direkte på stikprøven, typisk vha en regnearksfunktion Der kan også laves beregning for grupperede data enten med en lidt kryptisk formel eller ved lineær interpolation

53 Omsamling omkring fraktiler Om P%-fraktilen for et datasæt gælder, at P procent af observationerne i datasættet er mindre end eller lig denne værdi Specielle fraktiler har navne som kvartiler, deciler og percentiler, men det er altså alle fraktiler Beregning kan foretages direkte på stikprøven, typisk vha en regnearksfunktion Der kan også laves beregning for grupperede data enten med en lidt kryptisk formel eller ved lineær interpolation

54 Omsamling omkring fraktiler Om P%-fraktilen for et datasæt gælder, at P procent af observationerne i datasættet er mindre end eller lig denne værdi Specielle fraktiler har navne som kvartiler, deciler og percentiler, men det er altså alle fraktiler Beregning kan foretages direkte på stikprøven, typisk vha en regnearksfunktion Der kan også laves beregning for grupperede data enten med en lidt kryptisk formel eller ved lineær interpolation

55 Omsamling omkring fraktiler Om P%-fraktilen for et datasæt gælder, at P procent af observationerne i datasættet er mindre end eller lig denne værdi Specielle fraktiler har navne som kvartiler, deciler og percentiler, men det er altså alle fraktiler Beregning kan foretages direkte på stikprøven, typisk vha en regnearksfunktion Der kan også laves beregning for grupperede data enten med en lidt kryptisk formel eller ved lineær interpolation

56 1 Indledning 2 Centraltendens 3 Spredning 4 Praktisk beregning 5 Fraktiler 6 Opsamling

57 Opsamling Vi regner på en simpelt tilfældigt udvalgt stikprøve fra en population Centraltendens kan beskrives ved modus, stikprøvegennemsnit og median Spredning kan beskrives ved variationsområde, stikprøvestandardafvigelse og interkvartilafstand Den samlede fordeling kan beskrives med den empiriske fordelingsfunktion, dvs. fraktilværdien afsat som funktion af observationsværdien.

58 Opsamling Vi regner på en simpelt tilfældigt udvalgt stikprøve fra en population Centraltendens kan beskrives ved modus, stikprøvegennemsnit og median Spredning kan beskrives ved variationsområde, stikprøvestandardafvigelse og interkvartilafstand Den samlede fordeling kan beskrives med den empiriske fordelingsfunktion, dvs. fraktilværdien afsat som funktion af observationsværdien.

59 Opsamling Vi regner på en simpelt tilfældigt udvalgt stikprøve fra en population Centraltendens kan beskrives ved modus, stikprøvegennemsnit og median Spredning kan beskrives ved variationsområde, stikprøvestandardafvigelse og interkvartilafstand Den samlede fordeling kan beskrives med den empiriske fordelingsfunktion, dvs. fraktilværdien afsat som funktion af observationsværdien.

60 Opsamling Vi regner på en simpelt tilfældigt udvalgt stikprøve fra en population Centraltendens kan beskrives ved modus, stikprøvegennemsnit og median Spredning kan beskrives ved variationsområde, stikprøvestandardafvigelse og interkvartilafstand Den samlede fordeling kan beskrives med den empiriske fordelingsfunktion, dvs. fraktilværdien afsat som funktion af observationsværdien.

Kapitel 3 Centraltendens og spredning

Kapitel 3 Centraltendens og spredning Kapitel 3 Centraltendens og spredning Peter Tibert Stoltze stat@peterstoltze.dk Elementær statistik F2011 1 / 25 Indledning I kapitel 2 omsatte vi de rå data til en tabel, der bedre viste materialets fordeling

Læs mere

Module 2: Beskrivende Statistik

Module 2: Beskrivende Statistik Forskningsenheden for Statistik ST01: Elementær Statistik Bent Jørgensen og Hans Chr. Petersen Module 2: Beskrivende Statistik 2.1 Histogrammer og søjlediagrammer......................... 1 2.2 Sammenfatning

Læs mere

Kapitel 1 Statistiske grundbegreber

Kapitel 1 Statistiske grundbegreber Kapitel 1 Statistiske grundbegreber Peter Tibert Stoltze stat@peterstoltze.dk Elementær statistik F2011 1 Indledning 2 Population versus stikprøve 3 Variabeltyper og måleskalaer 4 Parametrisk versus ikke-parametrisk

Læs mere

Løsninger til kapitel 1

Løsninger til kapitel 1 Opgave. a) observation hyppighed frekvens kum. frekvens 2,25,25 3,875,325 2 3,875,5 3 3,875,6875 4,625,75 5,625,825 6,,825 7 2,25,9375 8,,9375 9,625, Frekvenser illustreres i et pindediagram,2,8,6,4,2,,8,6,4,2

Læs mere

Kapitel 2 Frekvensfordelinger

Kapitel 2 Frekvensfordelinger Kapitel 2 Frekvensfordelinger Peter Tibert Stoltze stat@peterstoltze.dk Elementær statistik F2011 1 Indledning 2 Grafik af frekvensfordelinger 3 Frekvensfordeling med Excel 4 Opsamling 1 Indledning 2 Grafik

Læs mere

Statistik med GeoGebra

Statistik med GeoGebra Statistik med GeoGebra Hayati Balo, AAMS, marts 2012 1 Observationssæt Det talmateriale, som man gerne vil undersøge, kaldes et observationssæt. Det talsæt som fremgår i tabel 5.1 kan indsættes i GeoGebra

Læs mere

VIGTIGT! Kurset består af: 1. Forelæsninger. 2. Øvelser. 3. Litteraturlæsning

VIGTIGT! Kurset består af: 1. Forelæsninger. 2. Øvelser. 3. Litteraturlæsning Intro til statistik Rasmus F. Brøndum, Institut 17 (Matematik) Hjemmeside: people.math.aau.dk/~froberg 22 forelæsninger (hvor af jeg afholder de første 13) + det samme antal øvelsesgange. Hjælpelærer:

Læs mere

Modul 5: Test for én stikprøve

Modul 5: Test for én stikprøve Forskningsenheden for Statistik ST01: Elementær Statistik Bent Jørgensen Modul 5: Test for én stikprøve 5.1 Test for middelværdi................................. 1 5.1.1 t-fordelingen.................................

Læs mere

Deskriptiv statistik. Version 2.1. Noterne er et supplement til Vejen til matematik AB1. Henrik S. Hansen, Sct. Knuds Gymnasium

Deskriptiv statistik. Version 2.1. Noterne er et supplement til Vejen til matematik AB1. Henrik S. Hansen, Sct. Knuds Gymnasium Deskriptiv (beskrivende) statistik er den disciplin, der trækker de væsentligste oplysninger ud af et ofte uoverskueligt materiale. Det sker f.eks. ved at konstruere forskellige deskriptorer, d.v.s. regnestørrelser,

Læs mere

Forelæsning 8: Inferens for varianser (kap 9)

Forelæsning 8: Inferens for varianser (kap 9) Kursus 02402 Introduktion til Statistik Forelæsning 8: Inferens for varianser (kap 9) Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800 Lyngby

Læs mere

Kapitel 7 Forskelle mellem centraltendenser

Kapitel 7 Forskelle mellem centraltendenser Kapitel 7 Forskelle mellem centraltendenser Peter Tibert Stoltze stat@peterstoltze.dk Elementær statistik F2011 1 / 29 Indledning 1. z-test for ukorrelerede data 2. t-test for ukorrelerede data med ens

Læs mere

Konfidensinterval for µ (σ kendt)

Konfidensinterval for µ (σ kendt) Program 1. Repetition: konfidens-intervaller. 2. Hypotese test 3. Type I og type II fejl, p-værdi 4. En og to-sidede tests 5. Test for middelværdi (kendt varians) 6. Test for middelværdi (ukendt varians)

Læs mere

Hypotese test. Repetition fra sidst Hypoteser Test af middelværdi Test af andel Test af varians Type 1 og type 2 fejl Signifikansniveau

Hypotese test. Repetition fra sidst Hypoteser Test af middelværdi Test af andel Test af varians Type 1 og type 2 fejl Signifikansniveau ypotese test Repetition fra sidst ypoteser Test af middelværdi Test af andel Test af varians Type 1 og type fejl Signifikansniveau Konfidens intervaller Et konfidens interval er et interval, der estimerer

Læs mere

Kapitel 4 Sandsynlighed og statistiske modeller

Kapitel 4 Sandsynlighed og statistiske modeller Kapitel 4 Sandsynlighed og statistiske modeller Peter Tibert Stoltze stat@peterstoltze.dk Elementær statistik F2011 1 / 22 Generalisering fra stikprøve til population Idé: Opstil en model for populationen

Læs mere

Statistik og Sandsynlighedsregning 2

Statistik og Sandsynlighedsregning 2 Statistik og Sandsynlighedsregning 2 Den flerdimensionale normalfordeling, fordeling af ( X,SSD) Helle Sørensen Uge 9, mandag SaSt2 (Uge 9, mandag) Flerdim. N, ford. af ( X,SSD) 1 / 16 Program Resultaterne

Læs mere

Program. 1. Repetition: konfidens-intervaller. 2. Hypotese test, type I og type II fejl, signifikansniveau, styrke, en- og to-sidede test.

Program. 1. Repetition: konfidens-intervaller. 2. Hypotese test, type I og type II fejl, signifikansniveau, styrke, en- og to-sidede test. Program 1. Repetition: konfidens-intervaller. 2. Hypotese test, type I og type II fejl, signifikansniveau, styrke, en- og to-sidede test. 1/19 Konfidensinterval for µ (σ kendt) Estimat ˆµ = X bedste bud

Læs mere

Kvantitative Metoder 1 - Forår 2007. Dagens program

Kvantitative Metoder 1 - Forår 2007. Dagens program Dagens program Kapitel 7 Introduktion til statistik Organisering af data Diskrete variabler Kontinuerte variabler Beskrivende statistik Fraktiler Gennemsnit Empirisk varians og spredning Empirisk korrelationkoe

Læs mere

Statistik Lektion 1. Introduktion Grundlæggende statistiske begreber Deskriptiv statistik Sandsynlighedsregning

Statistik Lektion 1. Introduktion Grundlæggende statistiske begreber Deskriptiv statistik Sandsynlighedsregning Statistik Lektion 1 Introduktion Grundlæggende statistiske begreber Deskriptiv statistik Sandsynlighedsregning Introduktion Kasper K. Berthelsen, Inst f. Matematiske Fag Omfang: 8 Kursusgang I fremtiden

Læs mere

Kapitel 4 Sandsynlighed og statistiske modeller

Kapitel 4 Sandsynlighed og statistiske modeller Kapitel 4 Sandsynlighed og statistiske modeller Peter Tibert Stoltze stat@peterstoltze.dk Elementær statistik F2011 1 Indledning 2 Sandsynlighed i binomialfordelingen 3 Normalfordelingen 4 Modelkontrol

Læs mere

Lektion 9 Statistik enkeltobservationer

Lektion 9 Statistik enkeltobservationer Lektion 9 Statistik enkeltobservationer Middelværdi med mere Hyppigheds- og frekvens-tabeller Diagrammer Hvilket diagram er bedst? Boxplot Lektion 9 Side 1 Når man skal holde styr på mange oplysninger,

Læs mere

Statistikkompendium. Statistik

Statistikkompendium. Statistik Statistik INTRODUKTION TIL STATISTIK Statistik er analyse af indsamlet data. Det vil sige, at man bearbejder et datamateriale, som i matematik næsten altid er tal. Derved får man et samlet overblik over

Læs mere

Kapitel 12 Variansanalyse

Kapitel 12 Variansanalyse Kapitel 12 Variansanalyse Peter Tibert Stoltze stat@peterstoltzedk Elementær statistik F2011 Version 7 april 2011 1 / 43 Indledning Sammenligning af middelværdien i to grupper indenfor en stikprøve kan

Læs mere

En Introduktion til SAS. Kapitel 6.

En Introduktion til SAS. Kapitel 6. En Introduktion til SAS. Kapitel 6. Inge Henningsen Afdeling for Statistik og Operationsanalyse Københavns Universitet Marts 2005 6. udgave Kapitel 6 Regressionsanalyse i SAS 6.1 Indledning Dette kapitel

Læs mere

Kvantitative Metoder 1 - Forår 2007

Kvantitative Metoder 1 - Forår 2007 Dagens program Afsnit 3.3-3.5 Varians Eksempel: Forventet nytte Kovarians og korrelation Middelværdi og varians af summer af stokastiske variabler Eksempel: Porteføljevalg 1 Beskrivelse af fordelinger

Læs mere

Kapitel 12 Variansanalyse

Kapitel 12 Variansanalyse Kapitel 12 Variansanalyse Peter Tibert Stoltze stat@peterstoltzedk Elementær statistik F2011 Version 7 april 2011 1 Indledning 2 Ensidet variansanalyse 3 Blokforsøg 4 Vekselvirkning 1 Indledning 2 Ensidet

Læs mere

Grupperede observationer et eksempel. (begreber fra MatC genopfriskes og varians og spredning indføres)

Grupperede observationer et eksempel. (begreber fra MatC genopfriskes og varians og spredning indføres) Grupperede observationer et eksempel. (begreber fra MatC genopfriskes og varians og spredning indføres) Til Gribskovløbet 006 gennemførte 118 kvinder 1,4 km distancen. Fordelingen af kvindernes løbstider

Læs mere

Statistik Lektion 1. Introduktion Grundlæggende statistiske begreber Deskriptiv statistik

Statistik Lektion 1. Introduktion Grundlæggende statistiske begreber Deskriptiv statistik Statistik Lektion 1 Introduktion Grundlæggende statistiske begreber Deskriptiv statistik Introduktion Kursusholder: Kasper K. Berthelsen Opbygning: Kurset består af 5 blokke En blok består af: To normale

Læs mere

Kapitel 10 Simpel korrelation

Kapitel 10 Simpel korrelation Kapitel 10 Simpel korrelation Peter Tibert Stoltze stat@peterstoltze.dk Elementær statistik F2011 1 Indledning 2 Pearsons r 3 Spearmans ρ 1 Indledning 2 Pearsons r 3 Spearmans ρ Indledning Korrelation

Læs mere

Ensidet variansanalyse

Ensidet variansanalyse Ensidet variansanalyse Sammenligning af grupper Helle Sørensen E-mail: helle@math.ku.dk StatBK (Uge 47, mandag) Ensidet ANOVA 1 / 18 Program I dag: Sammenligning af middelværdier Sammenligning af spredninger

Læs mere

Program. Ensidet variansanalyse Sammenligning af grupper. Statistisk model og hypotese. Eksempel: Aldersfordeling i hjertestudie

Program. Ensidet variansanalyse Sammenligning af grupper. Statistisk model og hypotese. Eksempel: Aldersfordeling i hjertestudie Program Ensidet variansanalyse Sammenligning af grupper Helle Sørensen E-mail: helle@math.ku.dk I dag: Sammenligning af middelværdier Sammenligning af spredninger Parvise sammenligninger To eksempler:

Læs mere

Antal timer 19 5 7 10 0 6 6 3 7 6 4 14 6 5 12 10 Køn k m k m m k m k m k k k m k k k

Antal timer 19 5 7 10 0 6 6 3 7 6 4 14 6 5 12 10 Køn k m k m m k m k m k k k m k k k Statistik 5 Statistik er en meget omfattende matematisk disciplin, og den anvendes i meget stor udstrækning i vores moderne samfund. Den handler om at analysere et (ofte meget stort) talmateriale. Det

Læs mere

Kapitel 13 Reliabilitet og enighed

Kapitel 13 Reliabilitet og enighed Kapitel 13 Reliabilitet og enighed Peter Tibert Stoltze stat@peterstoltze.dk Elementær statistik F2011 Version 11. april 2011 1 / 23 Indledning En observation er sammensat af en sand værdi og en målefejl

Læs mere

Oversigt. 1 Eksempel. 2 Fordelingen for gennemsnittet t-fordelingen. 3 Konfidensintervallet for µ Eksempel

Oversigt. 1 Eksempel. 2 Fordelingen for gennemsnittet t-fordelingen. 3 Konfidensintervallet for µ Eksempel Kursus 02402/02323 Introducerende Statistik Forelæsning 4: Konfidensinterval for middelværdi (og spredning) Klaus K. Andersen og Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Danmarks Tekniske

Læs mere

Basal statistik. 30. januar 2007

Basal statistik. 30. januar 2007 Basal statistik 30. januar 2007 Deskriptiv statistik Typer af data Tabeller Grafik Summary statistics Lene Theil Skovgaard, Biostatistisk Afdeling Institut for Folkesundhedsvidenskab, Københavns Universitet

Læs mere

da er X 1 + X 2 N(µ 1 + µ 2,σ1 2 + σ2) Hvis X 1,...,X n er uafhængige og X r N(µ,σ 2 ), da er X = 1 n (X 1 +... + X n ) N(µ, σ2

da er X 1 + X 2 N(µ 1 + µ 2,σ1 2 + σ2) Hvis X 1,...,X n er uafhængige og X r N(µ,σ 2 ), da er X = 1 n (X 1 +... + X n ) N(µ, σ2 Statistik og Sandsynlighedsregning IH kapitel Overheads til forelæsninger, onsdag 5. uge Resultater om normalfordeling X N(µ,σ ). N har tæthed ϕ µ,σ (x) = exp (x µ) πσ σ EX = µ, Var(X) = σ X µ N(0,) σ

Læs mere

Secret Sharing. Olav Geil Institut for Matematiske Fag Aalborg Universitet email: olav@math.aau.dk URL: http://www.math.aau.dk/ olav.

Secret Sharing. Olav Geil Institut for Matematiske Fag Aalborg Universitet email: olav@math.aau.dk URL: http://www.math.aau.dk/ olav. 1 Læsevejledning Secret Sharing Olav Geil Institut for Matematiske Fag Aalborg Universitet email: olav@math.aau.dk URL: http://www.math.aau.dk/ olav September 2006 Nærværende note er tænkt som et oplæg

Læs mere

Statistik vejledende læreplan og læringsmål, efteråret 2013 SmartLearning

Statistik vejledende læreplan og læringsmål, efteråret 2013 SmartLearning Side 1 af 6 Statistik vejledende læreplan og læringsmål, efteråret 2013 SmartLearning Litteratur: Kenneth Hansen & Charlotte Koldsø: Statistik I økonomisk perspektiv, Hans Reitzels Forlag 2012, 2. udgave,

Læs mere

LØNSPREDNINGSOPGØRELSER NU TILGÆNGELIG I LOPAKS

LØNSPREDNINGSOPGØRELSER NU TILGÆNGELIG I LOPAKS LØNSPREDNINGSOPGØRELSER NU TILGÆNGELIG I LOPAKS INDHOLD 2 Formål 2 LOPAKS 3 Begreber 6 Eksempler 6. december 2010 LOPAKS er nu udvidet med en ny tabel, der giver mulighed for at opgøre lønspredning på

Læs mere

Modul 3: Kontinuerte stokastiske variable

Modul 3: Kontinuerte stokastiske variable Forskningsenheden for Statistik ST501: Science Statistik Bent Jørgensen Modul 3: Kontinuerte stokastiske variable 3.1 Kontinuerte stokastiske variable........................... 1 3.1.1 Tæthedsfunktion...............................

Læs mere

Trivsel og fravær i folkeskolen

Trivsel og fravær i folkeskolen Trivsel og fravær i folkeskolen Sammenfatning De årlige trivselsmålinger i folkeskolen måler elevernes trivsel på fire forskellige områder: faglig trivsel, social trivsel, støtte og inspiration og ro og

Læs mere

2 Populationer. 2.1 Virkelige populationer

2 Populationer. 2.1 Virkelige populationer 2 Populationer I en statistisk sammenhæng er en population en samling af elementer, fx personer, virksomheder, lande, kunder eller mere abstrakte objekter. Fra en population kan man udtage en stikprøve.

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin maj-juni 15/16 Institution Uddannelse Fag og niveau Lærer(e) Hold Haderslev Handelsskole hhx Matematik B Mogens

Læs mere

Beskrivende statistik

Beskrivende statistik Beskrivende statistik Stikprøve af størrelse n for variablen x: x 1, x 2,, x n Beskriv fordelingen af data med nogle få talstørrelser. Centralt mål: en værdi som data er centreret om. Variationsmål: mål

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj 2016 Institution Roskilde Handelsskole Uddannelse Fag og niveau Lærer(e) Hold Hhx Matematik B Kubilay

Læs mere

Module 12: Mere om variansanalyse

Module 12: Mere om variansanalyse Mathematical Statistics ST06: Linear Models Bent Jørgensen og Pia Larsen Module 2: Mere om variansanalyse 2. Parreded observationer................................ 2.2 Faktor med 2 niveauer (0- variabel)........................

Læs mere

Privatansatte mænd bliver desuden noget hurtigere chef end kvinderne og forholdsvis flere ender i en chefstilling.

Privatansatte mænd bliver desuden noget hurtigere chef end kvinderne og forholdsvis flere ender i en chefstilling. Sammenligning af privatansatte kvinder og mænds løn Privatansatte kvindelige djøfere i stillinger uden ledelsesansvar har en løn der udgør ca. 96 procent af den løn deres mandlige kolleger får. I sammenligningen

Læs mere

Billedbehandling og mønstergenkendelse: Lidt elementær statistik (version 1)

Billedbehandling og mønstergenkendelse: Lidt elementær statistik (version 1) ; C ED 6 > Billedbehandling og mønstergenkendelse Lidt elementær statistik (version 1) Klaus Hansen 24 september 2003 1 Elementære empiriske mål Hvis vi har observationer kan vi udregne gennemsnit og varians

Læs mere

5. Statistik. Hayati Balo,AAMS. 1. Carstensen, Frandsen og Studsgaard, stx mat B2, systime

5. Statistik. Hayati Balo,AAMS. 1. Carstensen, Frandsen og Studsgaard, stx mat B2, systime 5. Statistik Hayati Balo,AAMS Følgende fremstilling er baseret på 1. Carstensen, Frandsen og Studsgaard, stx mat B2, systime 1. Ugrupperede Observationer Hvis der foreligger et antal målinger eller observationer

Læs mere

Matematik B. Højere handelseksamen. 1. Delprøve, uden hjælpemidler. Mandag den 19. december 2011. kl. 9.00-13.00

Matematik B. Højere handelseksamen. 1. Delprøve, uden hjælpemidler. Mandag den 19. december 2011. kl. 9.00-13.00 Matematik B Højere handelseksamen 1. Delprøve, uden hjælpemidler kl. 9.00-10.00 hhx113-mat/b-19122011 Mandag den 19. december 2011 kl. 9.00-13.00 Matematik B Prøven uden hjælpemidler Prøvens varighed er

Læs mere

Hvem kender ÅOP? en empirisk undersøgelse

Hvem kender ÅOP? en empirisk undersøgelse N O T A T Hvem kender ÅOP? en empirisk undersøgelse 16. januar 2008 I forbindelse med julen 2007 blev der af Finansrådet udarbejdet en analyse af lån til forbrug. Analysen indeholdt blandt andet en forbrugerundersøgelse

Læs mere

Oversigt. Kursus 02402 Introduktion til Statistik. Forelæsning 1: Intro og beskrivende statistik. Per Bruun Brockhoff. Praktisk Information

Oversigt. Kursus 02402 Introduktion til Statistik. Forelæsning 1: Intro og beskrivende statistik. Per Bruun Brockhoff. Praktisk Information Kursus 02402 Forelæsning 1: Intro og beskrivende statistik Oversigt 1 Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800 Lyngby Danmark e-mail:

Læs mere

Forelæsning 1: Intro og beskrivende statistik

Forelæsning 1: Intro og beskrivende statistik Kursus 02402 Introduktion til Statistik Forelæsning 1: Intro og beskrivende statistik Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800 Lyngby

Læs mere

Kursus 02402 Introduktion til Statistik. Forelæsning 7: Kapitel 7 og 8: Statistik for to gennemsnit, (7.7-7.8,8.1-8.5) Per Bruun Brockhoff

Kursus 02402 Introduktion til Statistik. Forelæsning 7: Kapitel 7 og 8: Statistik for to gennemsnit, (7.7-7.8,8.1-8.5) Per Bruun Brockhoff Kursus 02402 Introduktion til Statistik Forelæsning 7: Kapitel 7 og 8: Statistik for to gennemsnit, (7.7-7.8,8.1-8.5) Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks

Læs mere

TALTEORI Wilsons sætning og Euler-Fermats sætning.

TALTEORI Wilsons sætning og Euler-Fermats sætning. Wilsons sætning og Euler-Fermats sætning, marts 2007, Kirsten Rosenkilde 1 TALTEORI Wilsons sætning og Euler-Fermats sætning. Disse noter forudsætter et grundlæggende kendskab til talteori som man kan

Læs mere

Behandling af kvantitativ data 28.10.2013

Behandling af kvantitativ data 28.10.2013 Behandling af kvantitativ data 28.10.2013 I dag skal vi snakke om Kvantitativ metode i kort form Hvordan man kvalitetssikrer stikprøven Hvordan man kan kode og indtaste data Data på forskellig måleniveau

Læs mere

PhD-kursus i Basal Biostatistik, efterår 2006 Dag 2, onsdag den 13. september 2006

PhD-kursus i Basal Biostatistik, efterår 2006 Dag 2, onsdag den 13. september 2006 PhD-kursus i Basal Biostatistik, efterår 2006 Dag 2, onsdag den 13. september 2006 I dag: To stikprøver fra en normalfordeling, ikke-parametriske metoder og beregning af stikprøvestørrelse Eksempel: Fiskeolie

Læs mere

Statistik. Introduktion Deskriptiv statistik Sandsynslighedregning

Statistik. Introduktion Deskriptiv statistik Sandsynslighedregning Statistik Introduktion Deskriptiv statistik Sandsynslighedregning Introduktion Kasper K. Berthelsen, Institut f. Mat. Fag 8 Kursusgange Individuel mundtlig eksamen (7-skala) Udgangspunkt i opgaver Software:

Læs mere

Deskriptiv Statitik. Judith L. Jacobsen, PhD. http://staff.pubhealth.ku.dk/~lts/basal09_1/ jlj@statcon.dk

Deskriptiv Statitik. Judith L. Jacobsen, PhD. http://staff.pubhealth.ku.dk/~lts/basal09_1/ jlj@statcon.dk Deskriptiv Statitik Judith L. Jacobsen, PhD. http://staff.pubhealth.ku.dk/~lts/basal09_1/ jlj@statcon.dk Kursus formål Planlægning af studier selve indsamlingen af data, opstilling af statistiske hypoteser

Læs mere

Basal statistik for sundhedsvidenskabelige forskere, forår 2015 Udleveret 3. marts, afleveres senest ved øvelserne i uge 13 (24.-25.

Basal statistik for sundhedsvidenskabelige forskere, forår 2015 Udleveret 3. marts, afleveres senest ved øvelserne i uge 13 (24.-25. Hjemmeopgave Basal statistik for sundhedsvidenskabelige forskere, forår 2015 Udleveret 3. marts, afleveres senest ved øvelserne i uge 13 (24.-25. marts) En stikprøve bestående af 65 mænd og 65 kvinder

Læs mere

Nanostatistik: Middelværdi og varians

Nanostatistik: Middelværdi og varians Nanostatistik: Middelværdi og varians JLJ Nanostatistik: Middelværdi og varians p. 1/28 Repetition Stokastisk variabel: funktion fra udfaldsrum over i de hele tal eller over i de reelle tal Ex: Ω = alle

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer e-mailadresse Hold Termin hvori undervisningen afsluttes: Maj/Juni,

Læs mere

Lokal rapport Tistrup Skole - Forældre til elever i 0.-9. klasse (inkl. specialklasser) 2014. Side 1 ud af 16 sider

Lokal rapport Tistrup Skole - Forældre til elever i 0.-9. klasse (inkl. specialklasser) 2014. Side 1 ud af 16 sider Side 1 ud af 16 sider INDHOLDSFORTEGNELSE FORORD... 3 RAPPORTENS OPBYGNING... 4 DEN SAMLEDE TILFREDSHED... 5 DE FEM HØJESTE OG DE FEM LAVESTE VURDERINGER... 6 STØRSTE FORSKELLE FRA KOMMUNENS GENNEMSNIT...

Læs mere

Forslag til løsning af Opgaver til ligningsløsning (side172)

Forslag til løsning af Opgaver til ligningsløsning (side172) Forslag til løsning af Opgaver til ligningsløsning (side17) Opgave 1 Hvis sønnens alder er x år, så er faderens alder x år. Der går x år, før sønnen når op på x år. Om x år har faderen en alder på: x x

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj 2013 Institution Roskilde Handelsskole Uddannelse Fag og niveau Lærer(e) Hold Hhx Matematik B Henrik Laursen

Læs mere

Den nationale trivselsmåling i folkeskolen, 2016

Den nationale trivselsmåling i folkeskolen, 2016 Den nationale trivselsmåling i folkeskolen, Resultaterne af den nationale trivselsmåling i foråret foreligger nu. Eleverne fra.-9. klasses trivsel præsenteres i fem indikatorer: faglig trivsel, social

Læs mere

Introduktion til Statistik. Forelæsning 3: Kontinuerte fordelinger. Peder Bacher

Introduktion til Statistik. Forelæsning 3: Kontinuerte fordelinger. Peder Bacher Introduktion til Statistik Forelæsning 3: Kontinuerte fordelinger Peder Bacher DTU Compute, Dynamiske Systemer Bygning 303B, Rum 009 Danmarks Tekniske Universitet 2800 Lyngby Danmark e-mail: pbac@dtu.dk

Læs mere

Kapitel 8 Chi-i-anden (χ 2 ) prøven

Kapitel 8 Chi-i-anden (χ 2 ) prøven Kapitel 8 Chi-i-anden (χ 2 ) prøven Peter Tibert Stoltze stat@peterstoltze.dk Elementær statistik F2011 1 / 19 Indledning Forskelle mellem stikprøver undersøges med z-test eller t-test for data målt på

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Sommer 2015 Institution Campus vejle Uddannelse Fag og niveau Lærer(e) Hold HHX Matematik C MIHY (Michael

Læs mere

Statistik. Hjemmeside: kkb. Statistik - lektion 1 p.1/22

Statistik. Hjemmeside:  kkb. Statistik - lektion 1 p.1/22 Statistik Kursets omfang: 2 ECTS Inklusiv mini-projekt! Bog: Complete Business Statistics, AD Aczel & J. Sounderpandian Software: SPSS eller Excel?? Forelæser: Kasper K. Berthelsen E-mail: kkb@math.aau.dk

Læs mere

Statistik er at behandle en stor mængde af tal, så de bliver lettere at overskue og forstå.

Statistik er at behandle en stor mængde af tal, så de bliver lettere at overskue og forstå. Statistik er at behandle en stor mængde af tal, så de bliver lettere at overskue og forstå. Hvis man fx samler de karakterer, der er givet til en eksamen i én stor bunke (se herunder), kan det være svært

Læs mere

T A L K U N N E N. Datasæt i samspil. Krydstabeller Grafer Mærketal. INFA Matematik - 1999. Allan C

T A L K U N N E N. Datasæt i samspil. Krydstabeller Grafer Mærketal. INFA Matematik - 1999. Allan C T A L K U N N E N 3 Allan C Allan C.. Malmberg Datasæt i samspil Krydstabeller Grafer Mærketal INFA-Matematik: Informatik i matematikundervisningen Et delprojekt under INFA: Informatik i skolens fag Et

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj 2013 Institution Roskilde Handelsskole Uddannelse Fag og niveau Lærer(e) Hold Hhx Matematik B Else Marie

Læs mere

Matematik. på Åbent VUC. Trin 2 Xtra eksempler. Trigonometri, boksplot, potensfunktioner, to ligninger med to ubekendte

Matematik. på Åbent VUC. Trin 2 Xtra eksempler. Trigonometri, boksplot, potensfunktioner, to ligninger med to ubekendte Matematik på Åbent VUC Trin Xtra eksempler Trigonometri, boksplot, potensfunktioner, to ligninger med to ubekendte Trigonometri Sinus og cosinus Til alle vinkler hører der to tal, som kaldes cosinus og

Læs mere

Matematik B. Højere handelseksamen

Matematik B. Højere handelseksamen Matematik B Højere handelseksamen hh121-mat/b-04062012 Mandag den 4. juni 2012 kl. 9.00-13.00 Prøven består af to delprøver. Delprøven uden hjælpemidler består af opgave 1 til 5 med i alt 5 spørgsmål.

Læs mere

Valgkampens og valgets matematik

Valgkampens og valgets matematik Ungdommens Naturvidenskabelige Forening: Valgkampens og valgets matematik Rune Stubager, ph.d., lektor, Institut for Statskundskab, Aarhus Universitet Disposition Meningsmålinger Hvorfor kan vi stole på

Læs mere

Statistik (deskriptiv)

Statistik (deskriptiv) Statistik (deskriptiv) Ikke-grupperede data For at behandle ikke-grupperede data i TI, skal data tastes ind i en liste. Dette kan gøres ved brug af List, hvis ikon er nr. 5 fra venstre på værktøjsbjælken

Læs mere

Statistik Lektion 1. Introduktion Grundlæggende statistiske begreber Deskriptiv statistik Sandsynlighedsregning

Statistik Lektion 1. Introduktion Grundlæggende statistiske begreber Deskriptiv statistik Sandsynlighedsregning Statistik Lektion 1 Introduktion Grundlæggende statistiske begreber Deskriptiv statistik Sandsynlighedsregning Introduktion Kasper K. Berthelsen, Inst f. Matematiske Fag Omfang: 8 Kursusgang I fremtiden

Læs mere

TALTEORI Wilsons sætning og Euler-Fermats sætning.

TALTEORI Wilsons sætning og Euler-Fermats sætning. Wilsons sætning og Euler-Fermats sætning, marts 2007, Kirsten Rosenkilde 1 TALTEORI Wilsons sætning og Euler-Fermats sætning. Disse noter forudsætter et grundlæggende kendskab til talteori som man kan

Læs mere

Lokal rapport 10 i Campus - Forældre til elever i 10. klasse - 2014. Side 1 ud af 16 sider

Lokal rapport 10 i Campus - Forældre til elever i 10. klasse - 2014. Side 1 ud af 16 sider Side 1 ud af 16 sider INDHOLDSFORTEGNELSE FORORD... 3 RAPPORTENS OPBYGNING... 4 DEN SAMLEDE TILFREDSHED... 5 DE FEM HØJESTE OG DE FEM LAVESTE VURDERINGER... 6 STØRSTE FORSKELLE FRA KOMMUNENS GENNEMSNIT...

Læs mere

Ligninger med reelle løsninger

Ligninger med reelle løsninger Ligninger med reelle løsninger, marts 2008, Kirsten Rosenkilde 1 Ligninger med reelle løsninger Når man løser ligninger, er der nogle standardmetoder som er vigtige at kende. Vurdering af antallet af løsninger

Læs mere

Undervisningsplan. Stamoplysninger til brug ved prøver til gymnasiale uddannelser. Oversigt over planlagte undervisningsforløb

Undervisningsplan. Stamoplysninger til brug ved prøver til gymnasiale uddannelser. Oversigt over planlagte undervisningsforløb Undervisningsplan Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Skoleåret 2015-2016 Institution Svendborg Erhvervsskole Uddannelse Fag og niveau Lærer(e) Hold HHX Matematik C Jesper

Læs mere

Normalfordelingen. Statistik og Sandsynlighedsregning 2

Normalfordelingen. Statistik og Sandsynlighedsregning 2 Normalfordelingen Statistik og Sandsynlighedsregning 2 Repetition og eksamen Erfaringsmæssigt er normalfordelingen velegnet til at beskrive variationen i mange variable, blandt andet tilfældige fejl på

Læs mere

En Introduktion til SAS. Kapitel 5.

En Introduktion til SAS. Kapitel 5. En Introduktion til SAS. Kapitel 5. Inge Henningsen Afdeling for Statistik og Operationsanalyse Københavns Universitet Marts 2005 6. udgave Kapitel 5 T-test og PROC UNIVARIATE 5.1 Indledning Dette kapitel

Læs mere

Økonometri 1. Inferens i den lineære regressionsmodel 25. september 2006. Oversigt: De næste forelæsninger

Økonometri 1. Inferens i den lineære regressionsmodel 25. september 2006. Oversigt: De næste forelæsninger Oversigt: De næste forelæsninger Økonometri Inferens i den lineære regressionsmodel 5. september 006 Statistisk inferens: hvorledes man med udgangspunkt i en statistisk model kan drage konklusioner på

Læs mere

Økonometri 1. Interne evalueringer af forelæsninger. Kvalitative variabler. Dagens program. Dummyvariabler 21. oktober 2004

Økonometri 1. Interne evalueringer af forelæsninger. Kvalitative variabler. Dagens program. Dummyvariabler 21. oktober 2004 Dagens program Økonometri 1 Dummyvariabler 21. oktober 2004 Emnet for denne forelæsning er kvalitative egenskaber i den multiple regressionsmodel (Wooldridge kap. 7.1-7.6) Kvalitative variabler generelt

Læs mere

Oversigt. Course 02402/02323 Introducerende Statistik. Forelæsning 3: Kontinuerte fordelinger. Per Bruun Brockhoff

Oversigt. Course 02402/02323 Introducerende Statistik. Forelæsning 3: Kontinuerte fordelinger. Per Bruun Brockhoff Course 242/2323 Introducerende Statistik Forelæsning 3: Kontinuerte fordelinger Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 22 Danmarks Tekniske Universitet 28 Lyngby Danmark

Læs mere

To samhørende variable

To samhørende variable To samhørende variable Statistik er tal brugt som argumenter. - Leonard Louis Levinsen Antagatviharn observationspar x 1, y 1,, x n,y n. Betragt de to tilsvarende variable x og y. Hvordan måles sammenhængen

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Termin hvori undervisningen afsluttes i maj/juni 2012. Denne beskrivelse dækker derfor efteråret 2011 og foråret

Læs mere

Formelsamling Matematik C

Formelsamling Matematik C Formelsamling Matematik C Ib Michelsen Ikast 2011 Ligedannede trekanter Hvis to trekanter er ensvinklede har de proportionale sider (dvs. alle siderne i den ene er forstørrelser af siderne i den anden

Læs mere

Taldata 1. Chancer gennem eksperimenter

Taldata 1. Chancer gennem eksperimenter Taldata 1. Chancer gennem eksperimenter Indhold 1. Kast med to terninger 2. Et pindediagram 3. Sumtabel 4. Median og kvartiler 5. Et trappediagram 6. Gennemsnit 7. En statistik 8. Anvendelse af edb 9.

Læs mere

Vejledning til anvendelse af statistik på FTF-A.dk

Vejledning til anvendelse af statistik på FTF-A.dk Vejledning til anvendelse af statistik på FTF-A.dk Henvendelser og spørgsmål kan rettes til Specialkonsulent Rasmus Hornbøll Hviid, FTF-A organisationsservice og udvikling, tlf. 89 38 39 00, rhh@ftf-a.dk

Læs mere

Note til styrkefunktionen

Note til styrkefunktionen Teoretisk Statistik. årsprøve Note til styrkefunktionen Først er det vigtigt at gøre sig klart, at når man laver statistiske test, så kan man begå to forskellige typer af fejl: Type fejl: At forkaste H

Læs mere

Estimation og usikkerhed

Estimation og usikkerhed Estimation og usikkerhed = estimat af en eller anden ukendt størrelse, τ. ypiske ukendte størrelser Sandsynligheder eoretisk middelværdi eoretisk varians Parametre i statistiske modeller 1 Krav til gode

Læs mere

Kursusindhold: Produkt og marked - matematiske og statistiske metoder. Monte Carlo

Kursusindhold: Produkt og marked - matematiske og statistiske metoder. Monte Carlo Kursusindhold: Produkt og marked - matematiske og statistiske metoder Rasmus Waagepetersen Institut for Matematiske Fag Aalborg Universitet Sandsynlighedsregning og lagerstyring Normalfordelingen og Monte

Læs mere

Matematisk modellering og numeriske metoder. Lektion 18

Matematisk modellering og numeriske metoder. Lektion 18 Matematisk modellering numeriske metoder Lektion 18 Morten Grud Rasmussen 12. november, 2013 1 Numeriske metoder til førsteordens ODE er [Bens afsnit 21.1 side 898] 1.1 Euler-metoden Vi stiftede allerede

Læs mere

STATISTISKE GRUNDBEGREBER

STATISTISKE GRUNDBEGREBER MOGENS ODDERSHEDE LARSEN STATISTISKE GRUNDBEGREBER 18 15 1 9 6 3 0 Histogram for ph 6,9 7,1 7,3 7,5 7,7 7,9 ph 15.b udgave 015 FORORD Der er i denne bog søgt at give letlæst og anskuelig fremstilling af

Læs mere

Per Vejrup-Hansen Praktisk statistik. Omslag: Torben Klahr.dk Lundsted Grafisk tilrettelæggelse: Samfundslitteratur Grafik Tryk: Narayana Press

Per Vejrup-Hansen Praktisk statistik. Omslag: Torben Klahr.dk Lundsted Grafisk tilrettelæggelse: Samfundslitteratur Grafik Tryk: Narayana Press Per Vejrup-Hansen Praktisk statistik 6. 5. udgave 2008 2013 Omslag: Torben Klahr.dk Lundsted Grafisk tilrettelæggelse: Samfundslitteratur Grafik Tryk: Narayana Press ISBN Trykt 978-87-593-1381-7 bog ISBN

Læs mere

Evaluering. Matematik A på htx

Evaluering. Matematik A på htx Evaluering af Matematik A på htx Ministeriet for Børn, Undervisning og Ligestilling Styrelsen for Undervisning og Kvalitet Kontor for Prøver, Eksamen og Test August 201 Indhold Censorernes vurdering af

Læs mere

Skatteforslag fra de Konservative er forbeholdt de rigeste danskere

Skatteforslag fra de Konservative er forbeholdt de rigeste danskere Skatteforslag fra de Konservative er forbeholdt de rigeste danskere De Konservatives forslag om en nedsættelse af marginalskatten til pct. vil være forbeholdt de rigeste. De ti pct. rigeste vil således

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj/juni 2012 (denne beskrivelse dækker efterår 2011 og forår 2012) Institution Roskilde Handelsskole Uddannelse

Læs mere