VIGTIGT! Kurset består af: 1. Forelæsninger. 2. Øvelser. 3. Litteraturlæsning

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Starte visningen fra side:

Download "VIGTIGT! Kurset består af: 1. Forelæsninger. 2. Øvelser. 3. Litteraturlæsning"

Transkript

1 Intro til statistik Rasmus F. Brøndum, Institut 17 (Matematik) Hjemmeside: people.math.aau.dk/~froberg 22 forelæsninger (hvor af jeg afholder de første 13) + det samme antal øvelsesgange. Hjælpelærer: Henning Gerner Mikkelsen ekstern lektor på cand.oecon og Mig. Software: SPSS CD kan hentes hos Birgitte Krogner.

2 VIGTIGT! Kurset består af: 1. Forelæsninger 2. Øvelser 3. Litteraturlæsning

3 Eksamen Individuel mundtlig eksamen af 20 minutters varighed. Eksamen tager udgangspunkt i skriftlige opgaver I skal lave i løbet af semesteret. Opgaverne skal ikke afleveres, men gennemarbejdes ved øvelserne. Til eksamen kan I for eksempel præsentere et oplæg over den opgave I kommer op i.

4 Kursus oversigt Deskriptiv statistik Sandsynligheder Stokastiske variable diskrete og kontinuerte Fordelinger Estimation Test Inferens Sammenligning af middelværdier (variansanalyse) Kontingenstabeller Lineær regression simpel og multipel Opsamling

5 Hvad er statistik og hvad bruges det til? Statistics is a way to get information from data Kvalitets kontrol Produkt planlægning Markeds analyse Forecasting Osv...

6 Deskriptiv versus inferential Deskriptiv statistik: Metoder til at organisere og præsentere data på en informativ måde KARAKTER Inferential statistik Metoder til at konkludere noget ud fra data. Eksempel: Hvad er middel længden af en hugorm? Er den større en 50? 20 Frequency KARAKTER

7 Nogle definitioner Population: Mængden af alle individer vi er interesserede i. Parameter: Et deskriptivt mål for populationen (for eksempel middelværdi og varians). Sample/stikprøve: Mængde af data taget fra en delmængde af populationen. Statistik: Et deskriptivt mål for stikprøven.

8 Diskrete og kontinuerte data Diskrete data Kontinuerte data Katagoriske data, for eksempel: Hvilken øjenfarve? 1. Brun 2. Blå 3. Grøn 4. Grå Data, der er reelle tal, eks: Højde Vægt Temperatur Hastighed Osv...

9 Data typer Nominale data Kvalitative/kategoriske data. Værdierne er ord, der beskriver en katagori. Ordinale data Kvalitative/katagoriske data, der er ordnede. Eks: 1. 1: God 2. 2: Bedre 3. 3: Bedst Interval data Kvantitative data, hvor differencer giver mening. Alle beregninger er tilladte. Ratio data Behandles på samme måde som interval data, tænkt derfor ikke mere på dem

10 Data hieraki Interval Alle beregniner kan udføres. Kan også behandles som ordinale eller nominale data. Ordinal Beregninger baseret på ordenen kan udføres. Kan opfattes som nominale data. Nominal Kun beregninger baseret på antal obs. i hver katagori må udføres. Kan ikke opfattes som ordnede eller interval data.

11 Percentiler og kvartiler Den P te percentil af en mængde data punkter, er den værdi hvor P % af dataene ligger under. Positionen af den P te percentil er givet ved (n+1)p/100, hvor n er antallet af data punkter. Kvartiler er de procent point, der inddeler data i kvarte. 1. kvartil er 25 percentilen. Under denne ligger 25 % af data. 2. kvartil er 50 percentilen. Under denne ligger 50 % af data. Kaldes også medianen. 3. kvartil er 75 percentilen. Under denne ligger 75 % af data. Den interkvartile range defineres som afstanden mellem den første og den tredje kvartil.

12 Ordinale data - karakterer

13 Central lokation Gennemsnit: Interval data 1 x = n n x i i= 1 Median: Den midterste observation Interval og ordinal Mode: Den observation, der forekommer med størst frekvens Interval, ordinal og nominal

14 Variation (interval data) Range: største mindste observation Stikprøve varians s 2 = n i= 1 (x i n 1 x) 2 = n i= 1 x 2 i n x i= 1 n 1 i 2 / n Standard afvigelse s= 2 s

15 Populations parametre Populationens størrelse: N Populations middelværdi: Populations varians: σ 2 = n i= 1 (x i N i= 1 μ= N N xi μ) 2 Populations spredning: σ = 2 σ

16 Interval data - grafisk Frekvens fordeling Histogram Ogive (Kumuleret relativ frekvens) Stem and leaf

17 Grafisk representation Frekvens fordeling Tæller antallet af observationer i hver klasse Relativ frekvens fordeling Divider antallet af observationer i hver klasse med det totale antal observationer

18 Eksempel 1-7 fra bogen

19 Histogram - frekvens

20 Histogram relativ frekvens

21 Skævhed og topstejlhed (engelsk: skewness og kurtosis) Skævhed er et mål for graden af asymmetri af frekvens fordelingen. En højreskæv fordeling trækker observationer asymmetrisk mod højre (positiv skævhed). En venstreskæv fordeling trækker observationer asymmetrisk mod venstre (negativ skævhed). Symmetrisk fordeling har tal for skævhed=0.

22 Skævhed Venstreskæv

23 Skævhed Symmetrisk

24 Skævhed Højreskæv

25 Topstejlhed Platykurtic flad fordeling

26 Topstjelhed Mesokurtic - normal

27 Topstejlhed Leptokurtic spids fordeling

28 Chebyshev s sætning Mindst 3/4 af observationerne ligger indenfor 2 standard afvigelser fra middelværdien. Mindst 8/9 af observationerne ligger indenfor 3 standard afvigelser fra middelværdien.

29 Empirisk regel hvis histogrammet er klokkeformet Cirka 68% af all observationer ligger indenfor en standard afvigelse fra middelværdien Cirka 95% af alle observationer ligger indenfor to standard afvigelser fra middelværdien Cirka 99.7% af alle observationer ligger indenfor 3 standard afvigelser fra middelværdien

30 Frequency Polygon and Ogive Relative Frequency Polygon Ogive Relative Frequency Sales Cumulative Relative Frequency Sales (Cumulative frequency or relative frequency graph)

31 Stem and leaf 2003 Brooks/Cole Publishing / Thomson Learning

32 Stem and leaf 11, 12, 12, 13, 15, 15, 15, 16, 17, 20, 21, 21, 21, 22, 22, 22, 23, 24, 26, 27, 27, 27, 28, 29, 29, 30, 31, 32, 34, 35, 37, 41, 42, 45, 47, 50, 52, 53, 56, 60,

33 Box Plot Elements of a Box Plot Outlier Smallest data point not below inner fence Largest data point not exceeding inner fence Suspected outlier o X X * Outer Fence Inner Fence Q Median 1 Q 3 Inner Fence Outer Fence Q 1-1.5(IQR) Q 1-3(IQR) Interquartile Range Q (IQR) Q 3 +3(IQR)

34 Eksempel: Box Plot

35 Søjledigram lagkage diagram nominale data 40 KARAKTER KARAKTER Frequency KARAKTER

36 Karakterer - histogram 40 KARAKTER 40 KARAKTER Frequency ,0 2,0 4,0 6,0 8,0 10,0 12,0 14,0 Std. Dev = 3,69 Mean = 6,0 N = 128,00 Frequency ,0 2,0 4,0 6,0 8,0 Std. Dev = 3,69 Mean = 6,0 N = 128,00 12,0 10,0 14,0 KARAKTER KARAKTER

37 Opgaver Fra kapitel 1: 7, 17, 23, 35, 40, 41, 43, og hvis tiden er til det: 47, 48, 66. Lav også et histogram over data i opg. 66.

Statistik. Introduktion Deskriptiv statistik Sandsynslighedregning

Statistik. Introduktion Deskriptiv statistik Sandsynslighedregning Statistik Introduktion Deskriptiv statistik Sandsynslighedregning Introduktion Kasper K. Berthelsen, Institut f. Mat. Fag 8 Kursusgange Individuel mundtlig eksamen (7-skala) Udgangspunkt i opgaver Software:

Læs mere

Statistik Lektion 1. Introduktion Grundlæggende statistiske begreber Deskriptiv statistik Sandsynlighedsregning

Statistik Lektion 1. Introduktion Grundlæggende statistiske begreber Deskriptiv statistik Sandsynlighedsregning Statistik Lektion 1 Introduktion Grundlæggende statistiske begreber Deskriptiv statistik Sandsynlighedsregning Introduktion Kasper K. Berthelsen, Inst f. Matematiske Fag Omfang: 8 Kursusgang I fremtiden

Læs mere

Statistik Lektion 1. Introduktion Grundlæggende statistiske begreber Deskriptiv statistik

Statistik Lektion 1. Introduktion Grundlæggende statistiske begreber Deskriptiv statistik Statistik Lektion 1 Introduktion Grundlæggende statistiske begreber Deskriptiv statistik Introduktion Kursusholder: Kasper K. Berthelsen Opbygning: Kurset består af 5 blokke En blok består af: To normale

Læs mere

Binomial fordeling. n f (x) = p x (1 p) n x. x = 0, 1, 2,...,n = x. x x!(n x)! Eksempler. Middelværdi np og varians np(1 p). 2/

Binomial fordeling. n f (x) = p x (1 p) n x. x = 0, 1, 2,...,n = x. x x!(n x)! Eksempler. Middelværdi np og varians np(1 p). 2/ Program: 1. Repetition af vigtige sandsynlighedsfordelinger: binomial, (Poisson,) normal (og χ 2 ). 2. Populationer og stikprøver 3. Opsummering af data vha. deskriptive størrelser og grafer. 1/29 Binomial

Læs mere

Kvantitative Metoder 1 - Forår 2007. Dagens program

Kvantitative Metoder 1 - Forår 2007. Dagens program Dagens program Kapitel 7 Introduktion til statistik Organisering af data Diskrete variabler Kontinuerte variabler Beskrivende statistik Fraktiler Gennemsnit Empirisk varians og spredning Empirisk korrelationkoe

Læs mere

Beskrivende statistik

Beskrivende statistik Beskrivende statistik Stikprøve af størrelse n for variablen x: x 1, x 2,, x n Beskriv fordelingen af data med nogle få talstørrelser. Centralt mål: en værdi som data er centreret om. Variationsmål: mål

Læs mere

Kapitel 3 Centraltendens og spredning

Kapitel 3 Centraltendens og spredning Kapitel 3 Centraltendens og spredning Peter Tibert Stoltze stat@peterstoltze.dk Elementær statistik F2011 1 Indledning 2 Centraltendens 3 Spredning 4 Praktisk beregning 5 Fraktiler 6 Opsamling 1 Indledning

Læs mere

Basal statistik. 30. januar 2007

Basal statistik. 30. januar 2007 Basal statistik 30. januar 2007 Deskriptiv statistik Typer af data Tabeller Grafik Summary statistics Lene Theil Skovgaard, Biostatistisk Afdeling Institut for Folkesundhedsvidenskab, Københavns Universitet

Læs mere

Module 2: Beskrivende Statistik

Module 2: Beskrivende Statistik Forskningsenheden for Statistik ST01: Elementær Statistik Bent Jørgensen og Hans Chr. Petersen Module 2: Beskrivende Statistik 2.1 Histogrammer og søjlediagrammer......................... 1 2.2 Sammenfatning

Læs mere

Statistik Lektion 1. Introduktion Grundlæggende statistiske begreber Deskriptiv statistik Sandsynlighedsregning

Statistik Lektion 1. Introduktion Grundlæggende statistiske begreber Deskriptiv statistik Sandsynlighedsregning Statistik Lektion 1 Introduktion Grundlæggende statistiske begreber Deskriptiv statistik Sandsynlighedsregning Introduktion Kasper K. Berthelsen, Inst f. Matematiske Fag Omfang: 8 Kursusgang I fremtiden

Læs mere

Kapitel 3 Centraltendens og spredning

Kapitel 3 Centraltendens og spredning Kapitel 3 Centraltendens og spredning Peter Tibert Stoltze stat@peterstoltze.dk Elementær statistik F2011 1 / 25 Indledning I kapitel 2 omsatte vi de rå data til en tabel, der bedre viste materialets fordeling

Læs mere

Deskriptiv Statitik. Judith L. Jacobsen, PhD. http://staff.pubhealth.ku.dk/~lts/basal09_1/ jlj@statcon.dk

Deskriptiv Statitik. Judith L. Jacobsen, PhD. http://staff.pubhealth.ku.dk/~lts/basal09_1/ jlj@statcon.dk Deskriptiv Statitik Judith L. Jacobsen, PhD. http://staff.pubhealth.ku.dk/~lts/basal09_1/ jlj@statcon.dk Kursus formål Planlægning af studier selve indsamlingen af data, opstilling af statistiske hypoteser

Læs mere

Deskriptiv statistik. Version 2.1. Noterne er et supplement til Vejen til matematik AB1. Henrik S. Hansen, Sct. Knuds Gymnasium

Deskriptiv statistik. Version 2.1. Noterne er et supplement til Vejen til matematik AB1. Henrik S. Hansen, Sct. Knuds Gymnasium Deskriptiv (beskrivende) statistik er den disciplin, der trækker de væsentligste oplysninger ud af et ofte uoverskueligt materiale. Det sker f.eks. ved at konstruere forskellige deskriptorer, d.v.s. regnestørrelser,

Læs mere

Hypotese test. Repetition fra sidst Hypoteser Test af middelværdi Test af andel Test af varians Type 1 og type 2 fejl Signifikansniveau

Hypotese test. Repetition fra sidst Hypoteser Test af middelværdi Test af andel Test af varians Type 1 og type 2 fejl Signifikansniveau ypotese test Repetition fra sidst ypoteser Test af middelværdi Test af andel Test af varians Type 1 og type fejl Signifikansniveau Konfidens intervaller Et konfidens interval er et interval, der estimerer

Læs mere

Løsninger til kapitel 1

Løsninger til kapitel 1 Opgave. a) observation hyppighed frekvens kum. frekvens 2,25,25 3,875,325 2 3,875,5 3 3,875,6875 4,625,75 5,625,825 6,,825 7 2,25,9375 8,,9375 9,625, Frekvenser illustreres i et pindediagram,2,8,6,4,2,,8,6,4,2

Læs mere

3.600 kg og den gennemsnitlige fødselsvægt kg i stikprøven.

3.600 kg og den gennemsnitlige fødselsvægt kg i stikprøven. PhD-kursus i Basal Biostatistik, efterår 2006 Dag 1, onsdag den 6. september 2006 Eksempel: Sammenhæng mellem moderens alder og fødselsvægt I dag: Introduktion til statistik gennem analyse af en stikprøve

Læs mere

Statistik vejledende læreplan og læringsmål, efteråret 2013 SmartLearning

Statistik vejledende læreplan og læringsmål, efteråret 2013 SmartLearning Side 1 af 6 Statistik vejledende læreplan og læringsmål, efteråret 2013 SmartLearning Litteratur: Kenneth Hansen & Charlotte Koldsø: Statistik I økonomisk perspektiv, Hans Reitzels Forlag 2012, 2. udgave,

Læs mere

Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab. Introduktion

Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab. Introduktion Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab Introduktion 1 Formelt Lærere: Esben Budtz-Jørgensen Jørgen Holm Petersen Øvelseslærere: Berivan+Kathrine, Amalie+Annabell Databehandling: SPSS

Læs mere

Modul 7: Eksempler. 7.1 Beskrivende dataanalyse. 7.1.1 Diagrammer. Bent Jørgensen. Forskningsenheden for Statistik ST501: Science Statistik

Modul 7: Eksempler. 7.1 Beskrivende dataanalyse. 7.1.1 Diagrammer. Bent Jørgensen. Forskningsenheden for Statistik ST501: Science Statistik Forskningsenheden for Statistik ST501: Science Statistik Bent Jørgensen Modul 7: Eksempler 7.1 Beskrivende dataanalyse............................... 1 7.1.1 Diagrammer.................................

Læs mere

Forelæsning 1: Intro og beskrivende statistik

Forelæsning 1: Intro og beskrivende statistik Kursus 02402 Introduktion til Statistik Forelæsning 1: Intro og beskrivende statistik Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800 Lyngby

Læs mere

Oversigt. Kursus 02402 Introduktion til Statistik. Forelæsning 1: Intro og beskrivende statistik. Per Bruun Brockhoff. Praktisk Information

Oversigt. Kursus 02402 Introduktion til Statistik. Forelæsning 1: Intro og beskrivende statistik. Per Bruun Brockhoff. Praktisk Information Kursus 02402 Forelæsning 1: Intro og beskrivende statistik Oversigt 1 Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800 Lyngby Danmark e-mail:

Læs mere

Statistik vejledende læreplan og læringsmål, foråret 2015 SmartLearning

Statistik vejledende læreplan og læringsmål, foråret 2015 SmartLearning Side 1 af 6 Statistik vejledende læreplan og læringsmål, foråret 2015 SmartLearning Litteratur: Kenneth Hansen & Charlotte Koldsø: Statistik I økonomisk perspektiv, Hans Reitzels Forlag 2012, 2. udgave,

Læs mere

Stikprøver og stikprøve fordelinger. Stikprøver Estimatorer og estimater Stikprøve fordelinger Egenskaber ved estimatorer Frihedsgrader

Stikprøver og stikprøve fordelinger. Stikprøver Estimatorer og estimater Stikprøve fordelinger Egenskaber ved estimatorer Frihedsgrader Stikprøver og stikprøve fordelinger Stikprøver Estimatorer og estimater Stikprøve fordelinger Egenskaber ved estimatorer Frihedsgrader Statistik Statistisk Inferens: Prediktere og forekaste værdier af

Læs mere

Statistik (deskriptiv)

Statistik (deskriptiv) Statistik (deskriptiv) Ikke-grupperede data For at behandle ikke-grupperede data i TI, skal data tastes ind i en liste. Dette kan gøres ved brug af List, hvis ikon er nr. 5 fra venstre på værktøjsbjælken

Læs mere

Konfidensintervaller og Hypotesetest

Konfidensintervaller og Hypotesetest Konfidensintervaller og Hypotesetest Konfidensinterval for andele χ -fordelingen og konfidensinterval for variansen Hypoteseteori Hypotesetest af middelværdi, varians og andele Repetition fra sidst: Konfidensintervaller

Læs mere

En Introduktion til SAS. Kapitel 5.

En Introduktion til SAS. Kapitel 5. En Introduktion til SAS. Kapitel 5. Inge Henningsen Afdeling for Statistik og Operationsanalyse Københavns Universitet Marts 2005 6. udgave Kapitel 5 T-test og PROC UNIVARIATE 5.1 Indledning Dette kapitel

Læs mere

Lektion 9 Statistik enkeltobservationer

Lektion 9 Statistik enkeltobservationer Lektion 9 Statistik enkeltobservationer Middelværdi med mere Hyppigheds- og frekvens-tabeller Diagrammer Hvilket diagram er bedst? Boxplot Lektion 9 Side 1 Når man skal holde styr på mange oplysninger,

Læs mere

Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab. Introduktion

Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab. Introduktion Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab Introduktion 1 Formelt Lærer: Jørgen Holm Petersen Øvelseslærere: Signe, Helene, Marie, Amalie Databehandling: SPSS Eksamen: Ugeopgave efterfulgt

Læs mere

Kvantitative Metoder 1 - Forår 2007

Kvantitative Metoder 1 - Forår 2007 Dagens program Afsnit 3.3-3.5 Varians Eksempel: Forventet nytte Kovarians og korrelation Middelværdi og varians af summer af stokastiske variabler Eksempel: Porteføljevalg 1 Beskrivelse af fordelinger

Læs mere

Fagplan for statistik, efteråret 2015

Fagplan for statistik, efteråret 2015 Side 1 af 7 M Fagplan for statistik, efteråret 20 Litteratur Kenneth Hansen & Charlotte Koldsø (HK): Statistik I økonomisk perspektiv, Hans Reitzels Forlag 2012, 2. udgave, ISBN 9788741256047 HypoStat

Læs mere

Ex µ = 3,σ 2 = 1 og µ = 1,σ 2 = 4. hvor. Vha. R: Vha. tabel:

Ex µ = 3,σ 2 = 1 og µ = 1,σ 2 = 4. hvor. Vha. R: Vha. tabel: Normal fordeling Tæthedsfunktion for normalfordeling med middelværdi µ og varians σ 2 : Program (8.15-10): f() = 1 µ)2 ep( ( 2πσ 2 2σ 2 ) E µ = 3,σ 2 = 1 og µ = 1,σ 2 = 4 1. vigtige sandsynlighedsfordelinger:

Læs mere

Deskriptiv Statitik. Kursus formål. Deskriptiv Statistik MPH F 2009. Judith L. Jacobsen 1

Deskriptiv Statitik. Kursus formål. Deskriptiv Statistik MPH F 2009. Judith L. Jacobsen 1 MPH Deskriptiv Statitik Judith L. Jacobsen, PhD. http://staff.pubhealth.ku.dk/~lts/basal09_1/ jlj@statcon.dk Kursus formål Planlægning af studier selve indsamlingen af data, opstilling af statistiske hypoteser

Læs mere

Modul 1: Beskrivende dataanalyse

Modul 1: Beskrivende dataanalyse Forskningsenheden for Statistik ST501: Science Statistik Bent Jørgensen Modul 1: Beskrivende dataanalyse 1.1 Statistik og dataanalyse............................... 1 1.2 Variable og data...................................

Læs mere

Statistik med GeoGebra

Statistik med GeoGebra Statistik med GeoGebra Hayati Balo, AAMS, marts 2012 1 Observationssæt Det talmateriale, som man gerne vil undersøge, kaldes et observationssæt. Det talsæt som fremgår i tabel 5.1 kan indsættes i GeoGebra

Læs mere

Statistik noter - Efterår 2009 Keller - Statistics for management and economics

Statistik noter - Efterår 2009 Keller - Statistics for management and economics Statistik noter - Efterår 2009 Keller - Statistics for management and economics Jonas Sveistrup Hansen - stud.merc.it 22. september 2009 1 Indhold 1 Begrebsliste 3 2 Forelæsning 1 - kap. 1-3 3 2.1 Kelvin

Læs mere

Statistikkompendium. Statistik

Statistikkompendium. Statistik Statistik INTRODUKTION TIL STATISTIK Statistik er analyse af indsamlet data. Det vil sige, at man bearbejder et datamateriale, som i matematik næsten altid er tal. Derved får man et samlet overblik over

Læs mere

Basal statistik. 2. september 2008

Basal statistik. 2. september 2008 Basal statistik 2. september 2008 Deskriptiv statistik Grafik Summary statistics Normalfordelingen Typer af data Esben Budtz-Jørgensen, Biostatistisk Afdeling Institut for Folkesundhedsvidenskab, Københavns

Læs mere

Basal statistik. 29. januar 2008

Basal statistik. 29. januar 2008 Basal statistik 29. januar 2008 Deskriptiv statistik Grafik Summary statistics Normalfordelingen Typer af data Lene Theil Skovgaard, Biostatistisk Afdeling Institut for Folkesundhedsvidenskab, Københavns

Læs mere

Kursusindhold: Produkt og marked - matematiske og statistiske metoder. Monte Carlo

Kursusindhold: Produkt og marked - matematiske og statistiske metoder. Monte Carlo Kursusindhold: Produkt og marked - matematiske og statistiske metoder Rasmus Waagepetersen Institut for Matematiske Fag Aalborg Universitet Sandsynlighedsregning og lagerstyring Normalfordelingen og Monte

Læs mere

Kvantitative Metoder 1 - Forår 2007. Dagens program

Kvantitative Metoder 1 - Forår 2007. Dagens program Dagens program Approksimation af binomialsandsynligheder, Afsnit 4.5 Poisson fordeling og Poisson process, Afsnit 4.6 Kontinuerte fordelinger, Afsnit 5.1-5.2: - Fordelingsfunktion - Tæthedsfunktion - Eksempel:

Læs mere

Normalfordelingen. Statistik og Sandsynlighedsregning 2

Normalfordelingen. Statistik og Sandsynlighedsregning 2 Normalfordelingen Statistik og Sandsynlighedsregning 2 Repetition og eksamen Erfaringsmæssigt er normalfordelingen velegnet til at beskrive variationen i mange variable, blandt andet tilfældige fejl på

Læs mere

Modul 5: Test for én stikprøve

Modul 5: Test for én stikprøve Forskningsenheden for Statistik ST01: Elementær Statistik Bent Jørgensen Modul 5: Test for én stikprøve 5.1 Test for middelværdi................................. 1 5.1.1 t-fordelingen.................................

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin aug-juni 10/11 Institution Campus Vejle Handelsgymnasie Uddannelse Fag og niveau Lærer(e) Hold HHX Statistik

Læs mere

Forelæsning 8: Inferens for varianser (kap 9)

Forelæsning 8: Inferens for varianser (kap 9) Kursus 02402 Introduktion til Statistik Forelæsning 8: Inferens for varianser (kap 9) Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800 Lyngby

Læs mere

Produkt og marked - matematiske og statistiske metoder

Produkt og marked - matematiske og statistiske metoder Produkt og marked - matematiske og statistiske metoder Rasmus Waagepetersen Institut for Matematiske Fag Aalborg Universitet February 19, 2016 1/26 Kursusindhold: Sandsynlighedsregning og lagerstyring

Læs mere

Indblik i statistik - for samfundsvidenskab

Indblik i statistik - for samfundsvidenskab Indblik i statistik - for samfundsvidenskab Læs mere om nye titler fra Academica på www.academica.dk Nikolaj Malchow-Møller og Allan H. Würtz Indblik i statistik for samfundsvidenskab Academica Indblik

Læs mere

Normalfordelingen og Stikprøvefordelinger

Normalfordelingen og Stikprøvefordelinger Normalfordelingen og Stikprøvefordelinger Normalfordelingen Standard Normal Fordelingen Sandsynligheder for Normalfordelingen Transformation af Normalfordelte Stok.Var. Stikprøver og Stikprøvefordelinger

Læs mere

Statistiske modeller

Statistiske modeller Statistiske modeller Statistisk model Datamatrice Variabelmatrice Hændelse Sandsynligheder Data Statistiske modeller indeholder: Variable Hændelser defineret ved mulige variabel værdier Sandsynligheder

Læs mere

Teoretisk Statistik, 9 marts nb. Det forventes ikke, at alt materialet dækkes d. 9. marts.

Teoretisk Statistik, 9 marts nb. Det forventes ikke, at alt materialet dækkes d. 9. marts. Teoretisk Statistik, 9 marts 2005 Empiriske analoger (Kap. 3.7) Normalfordelingen (Kap. 3.12) Opsamling på Kap. 3 nb. Det forventes ikke, at alt materialet dækkes d. 9. marts. 1 Empiriske analoger Betragt

Læs mere

2011.09.20 lth@campus.dk

2011.09.20 lth@campus.dk 2011.09.20 lth@campus.dk Intro Læseplan Beskrivende Statistik Sandsynligheder Ordet kommer fra Latin.: statisticum (statsrådgiver) Italiensk.: statistica (statsmand / politiker) Hvorfor statistik? Træk

Læs mere

Kvantitative Metoder 1 - Forår Dagens program

Kvantitative Metoder 1 - Forår Dagens program Dagens program Kontinuerte fordelinger Ventetider i en Poissonproces Beskrivelse af kontinuerte fordelinger: - Median og kvartiler - Middelværdi - Varians Simultane fordelinger 1 Ventetider i en Poissonproces

Læs mere

for gymnasiet og hf 2016 Karsten Juul

for gymnasiet og hf 2016 Karsten Juul for gymnasiet og hf 75 50 5 016 Karsten Juul Statistik for gymnasiet og hf Ä 016 Karsten Juul 4/1-016 Nyeste version af dette håfte kan downloades fra http://mat1.dk/noter.htm HÅftet mç benyttes i undervisningen

Læs mere

Syddansk Universitet. Statistik i grænseregionen Sørensen, Nils Karl. Publication date: 2013. Document Version Tidlig version også kaldet pre-print

Syddansk Universitet. Statistik i grænseregionen Sørensen, Nils Karl. Publication date: 2013. Document Version Tidlig version også kaldet pre-print Syddansk Universitet Statistik i grænseregionen Sørensen, Nils Karl Publication date: 013 Document Version Tidlig version også kaldet pre-print Link to publication Citation for pulished version (APA):

Læs mere

Introduktion til Statistik. Forelæsning 3: Kontinuerte fordelinger. Peder Bacher

Introduktion til Statistik. Forelæsning 3: Kontinuerte fordelinger. Peder Bacher Introduktion til Statistik Forelæsning 3: Kontinuerte fordelinger Peder Bacher DTU Compute, Dynamiske Systemer Bygning 303B, Rum 009 Danmarks Tekniske Universitet 2800 Lyngby Danmark e-mail: pbac@dtu.dk

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin maj-juni 15/16 Institution Uddannelse Fag og niveau Lærer(e) Hold Haderslev Handelsskole hhx Matematik B Mogens

Læs mere

Oversigt. Course 02402/02323 Introducerende Statistik. Forelæsning 3: Kontinuerte fordelinger. Per Bruun Brockhoff

Oversigt. Course 02402/02323 Introducerende Statistik. Forelæsning 3: Kontinuerte fordelinger. Per Bruun Brockhoff Course 242/2323 Introducerende Statistik Forelæsning 3: Kontinuerte fordelinger Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 22 Danmarks Tekniske Universitet 28 Lyngby Danmark

Læs mere

Eksempel 1.1: kvalitetskontrol

Eksempel 1.1: kvalitetskontrol Idag 1. Introduktion til statistik: Eksempel 1.1 og 1.2 fra WMMY samt andre eksempler. 2. Sandsynlighedsregning: udfaldsrum, hændelser, regning med sandsynligheder. 1/17 Eksempel 1.1: kvalitetskontrol

Læs mere

Uge 10 Teoretisk Statistik 1. marts 2004

Uge 10 Teoretisk Statistik 1. marts 2004 1 Uge 10 Teoretisk Statistik 1. marts 004 1. u-fordelingen. Normalfordelingen 3. Middelværdi og varians 4. Mere normalfordelingsteori 5. Grafisk kontrol af normalfordelingsantagelse 6. Eksempler 7. Oversigt

Læs mere

Statistik Lektion 20 Ikke-parametriske metoder. Repetition Kruskal-Wallis Test Friedman Test Chi-i-anden Test

Statistik Lektion 20 Ikke-parametriske metoder. Repetition Kruskal-Wallis Test Friedman Test Chi-i-anden Test Statistik Lektion 0 Ikkeparametriske metoder Repetition KruskalWallis Test Friedman Test Chiianden Test Run Test Er sekvensen opstået tilfældigt? PPPKKKPPPKKKPPKKKPPP Et run er en sekvens af ens elementer,

Læs mere

Kvantitative Metoder 1 - Forår 2007

Kvantitative Metoder 1 - Forår 2007 Dagens program Kapitel 4: Diskrete fordelinger Afsnit 4.1-4.2, 4.7: Bernoulli fordeling Binomial fordeling Store Tals Lov (Laws of Averages, Laws of Large Numbers) 1 Bernoulli fordeling Kvantitative Metoder

Læs mere

Chi-i-anden Test. Repetition Goodness of Fit Uafhængighed i Kontingenstabeller

Chi-i-anden Test. Repetition Goodness of Fit Uafhængighed i Kontingenstabeller Chi-i-anden Test Repetition Goodness of Fit Uafhængighed i Kontingenstabeller Chi-i-anden Test Chi-i-anden test omhandler data, der har form af antal eller frekvenser. Antag, at n observationer kan inddeles

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj 2016 Institution Roskilde Handelsskole Uddannelse Fag og niveau Lærer(e) Hold Hhx Matematik B Kubilay

Læs mere

Statistik Lektion 3. Simultan fordelte stokastiske variable Kontinuerte stokastiske variable Normalfordelingen

Statistik Lektion 3. Simultan fordelte stokastiske variable Kontinuerte stokastiske variable Normalfordelingen Statistik Lektion 3 Simultan fordelte stokastiske variable Kontinuerte stokastiske variable Normalfordelingen Repetition En stokastisk variabel er en funktion defineret på S (udfaldsrummet, der antager

Læs mere

Hypoteser om mere end to stikprøver ANOVA. k stikprøver: (ikke ordinale eller højere) gælder også for k 2! : i j

Hypoteser om mere end to stikprøver ANOVA. k stikprøver: (ikke ordinale eller højere) gælder også for k 2! : i j Hypoteser om mere end to stikprøver ANOVA k stikprøver: (ikke ordinale eller højere) H 0 : 1 2... k gælder også for k 2! H 0ij : i j H 0ij : i j simpelt forslag: k k 1 2 t-tests: i j DUER IKKE! Bonferroni!!

Læs mere

Billedbehandling og mønstergenkendelse: Lidt elementær statistik (version 1)

Billedbehandling og mønstergenkendelse: Lidt elementær statistik (version 1) ; C ED 6 > Billedbehandling og mønstergenkendelse Lidt elementær statistik (version 1) Klaus Hansen 24 september 2003 1 Elementære empiriske mål Hvis vi har observationer kan vi udregne gennemsnit og varians

Læs mere

Statistik. Peter Sørensen: Statistik og sandsynlighed Side 1

Statistik. Peter Sørensen: Statistik og sandsynlighed Side 1 Statistik Formålet... 1 Mindsteværdi... 1 Størsteværdi... 1 Ikke grupperede observationer... 2 Median og kvartiler defineres ved ikke grupperede observationer således:... 2 Middeltal defineres ved ikke

Læs mere

Modul 3: Kontinuerte stokastiske variable

Modul 3: Kontinuerte stokastiske variable Forskningsenheden for Statistik ST501: Science Statistik Bent Jørgensen Modul 3: Kontinuerte stokastiske variable 3.1 Kontinuerte stokastiske variable........................... 1 3.1.1 Tæthedsfunktion...............................

Læs mere

Introduktion til Statistik. Forelæsning 3: Kontinuerte fordelinger. Peder Bacher

Introduktion til Statistik. Forelæsning 3: Kontinuerte fordelinger. Peder Bacher Introduktion til Statistik Forelæsning 3: Kontinuerte fordelinger Peder Bacher DTU Compute, Dynamiske Systemer Bygning 303B, Rum 009 Danmarks Tekniske Universitet 2800 Lyngby Danmark e-mail: pbac@dtu.dk

Læs mere

Oversigt. Kursus Introduktion til Statistik. Forelæsning 4: Kapitel 5: Kontinuerte fordelinger

Oversigt. Kursus Introduktion til Statistik. Forelæsning 4: Kapitel 5: Kontinuerte fordelinger Kursus 02402 Introduktion til Statistik Forelæsning 4: Kapitel 5: Kontinuerte fordelinger Rune Haubo B Christensen (based on slides by Per Bruun Brockhoff) DTU Compute, Statistik og Dataanalyse Bygning

Læs mere

Repetition. Diskrete stokastiske variable. Kontinuerte stokastiske variable

Repetition. Diskrete stokastiske variable. Kontinuerte stokastiske variable Normal fordelingen Normal fordelingen Egenskaber ved normalfordelingen Standard normal fordelingen Find sandsynligheder ud fra tabel Transformation af normal fordelte variable Invers transformation Repetition

Læs mere

Epidemiologi og Biostatistik. Mogens Erlandsen, Institut for Biostatistik Uge 1, tirsdag d. 5. februar 2002

Epidemiologi og Biostatistik. Mogens Erlandsen, Institut for Biostatistik Uge 1, tirsdag d. 5. februar 2002 Epidemiologi og Biostatistik Mogens Erlandsen, Institut for Biostatistik Uge 1, tirsdag d. 5. februar 2002 1 Statestik Det hedder det ikke! Statistik 2 Streptomycin til behandling af lunge-tuberkulose?

Læs mere

Log-lineære modeller. Analyse af symmetriske sammenhænge mellem kategoriske variable. Ordinal information ignoreres.

Log-lineære modeller. Analyse af symmetriske sammenhænge mellem kategoriske variable. Ordinal information ignoreres. Log-lineære modeller Analyse af symmetriske sammenhænge mellem kategoriske variable. Ordinal information ignoreres. Kontingenstabel Contingency: mulighed/tilfælde Kontingenstabel: antal observationer (frekvenser)

Læs mere

Multipel Lineær Regression

Multipel Lineær Regression Multipel Lineær Regression Trin i opbygningen af en statistisk model Repetition af MLR fra sidst Modelkontrol Prædiktion Kategoriske forklarende variable og MLR Opbygning af statistisk model Specificer

Læs mere

K.U. 29-03-2006 Metode Skriveøvelse 1 Af Marie Hammer og Steffen Tiedemann Christensen. Indholdsfortegnelse... 1. Opgave 1... 2. Opgave 2...

K.U. 29-03-2006 Metode Skriveøvelse 1 Af Marie Hammer og Steffen Tiedemann Christensen. Indholdsfortegnelse... 1. Opgave 1... 2. Opgave 2... Indholdsfortegnelse Indholdsfortegnelse... 1 Opgave 1... 2 Opgave 2... 2 Forforståelse:...2 Deskriptiv statistik:...3 Overvejelser:...12 Opgave 3... 13 Opgave 4... 15 Opgave 5... 16 Opgave 6... 17 Konklusion:...20

Læs mere

Statistik. Hjemmeside: kkb. Statistik - lektion 1 p.1/22

Statistik. Hjemmeside:  kkb. Statistik - lektion 1 p.1/22 Statistik Kursets omfang: 2 ECTS Inklusiv mini-projekt! Bog: Complete Business Statistics, AD Aczel & J. Sounderpandian Software: SPSS eller Excel?? Forelæser: Kasper K. Berthelsen E-mail: kkb@math.aau.dk

Læs mere

Statistik er at behandle en stor mængde af tal, så de bliver lettere at overskue og forstå.

Statistik er at behandle en stor mængde af tal, så de bliver lettere at overskue og forstå. Statistik er at behandle en stor mængde af tal, så de bliver lettere at overskue og forstå. Hvis man fx samler de karakterer, der er givet til en eksamen i én stor bunke (se herunder), kan det være svært

Læs mere

Matematik B. Højere handelseksamen

Matematik B. Højere handelseksamen Matematik B Højere handelseksamen hh121-mat/b-04062012 Mandag den 4. juni 2012 kl. 9.00-13.00 Prøven består af to delprøver. Delprøven uden hjælpemidler består af opgave 1 til 5 med i alt 5 spørgsmål.

Læs mere

Løsning eksamen d. 15. december 2008

Løsning eksamen d. 15. december 2008 Informatik - DTU 02402 Introduktion til Statistik 2010-2-01 LFF/lff Løsning eksamen d. 15. december 2008 Referencer til Probability and Statistics for Engineers er angivet i rækkefølgen [8th edition, 7th

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj 2014 Institution Uddannelse Fag og niveau Lærer(e) VUF - Voksenuddannelsescenter Frederiksberg Hf Matematik

Læs mere

Grupperede observationer et eksempel. (begreber fra MatC genopfriskes og varians og spredning indføres)

Grupperede observationer et eksempel. (begreber fra MatC genopfriskes og varians og spredning indføres) Grupperede observationer et eksempel. (begreber fra MatC genopfriskes og varians og spredning indføres) Til Gribskovløbet 006 gennemførte 118 kvinder 1,4 km distancen. Fordelingen af kvindernes løbstider

Læs mere

Opsamling Modeltyper: Tabelanalyse Logistisk regression Generaliserede lineære modeller Log-lineære modeller

Opsamling Modeltyper: Tabelanalyse Logistisk regression Generaliserede lineære modeller Log-lineære modeller Opsamling Modeltyper: Tabelanalyse Logistisk regression Binær respons og kategorisk eller kontinuerte forklarende variable. Generaliserede lineære modeller Normalfordelt respons og kategoriske forklarende

Læs mere

Oversigt. Kursus Introduktion til Statistik. Forelæsning 3: Kapitel 5: Kontinuerte fordelinger. Per Bruun Brockhoff.

Oversigt. Kursus Introduktion til Statistik. Forelæsning 3: Kapitel 5: Kontinuerte fordelinger. Per Bruun Brockhoff. Kursus 242 Introduktion til Statistik Forelæsning 3: Kapitel 5: Kontinuerte fordelinger Per Bruun Brockhoff DTU Compute, Statistik Bygning 35/324 Danmarks Tekniske Universitet 28 Lyngby Danmark e-mail:

Læs mere

Statistiske data. Datamatricen. Variable j. ... X ij = x ij... Anonymiserede og ækvivalente dataindivider. Datamodellen

Statistiske data. Datamatricen. Variable j. ... X ij = x ij... Anonymiserede og ækvivalente dataindivider. Datamodellen Statistiske data Datamatricen Variable j Individer i X ij = x ij Anonymiserede og ækvivalente dataindivider Datamodellen Hvis dataindividerne er udvalgte repræsentanter fra en population, så er datamatrice

Læs mere

Program. 1. Repetition: konfidens-intervaller. 2. Hypotese test, type I og type II fejl, signifikansniveau, styrke, en- og to-sidede test.

Program. 1. Repetition: konfidens-intervaller. 2. Hypotese test, type I og type II fejl, signifikansniveau, styrke, en- og to-sidede test. Program 1. Repetition: konfidens-intervaller. 2. Hypotese test, type I og type II fejl, signifikansniveau, styrke, en- og to-sidede test. 1/19 Konfidensinterval for µ (σ kendt) Estimat ˆµ = X bedste bud

Læs mere

Oversigt. Kursus 02402 Introduktion til Statistik. Forelæsning 4: Kapitel 5: Kontinuerte fordelinger. Per Bruun Brockhoff. Eksponential fordelingen

Oversigt. Kursus 02402 Introduktion til Statistik. Forelæsning 4: Kapitel 5: Kontinuerte fordelinger. Per Bruun Brockhoff. Eksponential fordelingen Kursus 02402 Introduktion til Statistik Forelæsning 4: Kapitel 5: Kontinuerte fordelinger Per Bruun Brockhoff DTU Compute, Statistik Bygning 305/324 Danmarks Tekniske Universitet 2800 Lyngby Danmark e-mail:

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Sommer 2015 Institution 414 Københavns VUC Uddannelse Fag og niveau Lærer(e) Hold hf Matematik C Kristian

Læs mere

Program: 1. Repetition: fordeling af observatorer X, S 2 og t. 2. Konfidens-intervaller, hypotese test, type I og type II fejl, styrke.

Program: 1. Repetition: fordeling af observatorer X, S 2 og t. 2. Konfidens-intervaller, hypotese test, type I og type II fejl, styrke. Program: 1. Repetition: fordeling af observatorer X, S 2 og t. 2. Konfidens-intervaller, hypotese test, type I og type II fejl, styrke. 1/23 Opsummering af fordelinger X 1. Kendt σ: Z = X µ σ/ n N(0,1)

Læs mere

Statistik med Boxplot

Statistik med Boxplot 11 Statistik med Boxplot Til dette afsnit skal du benytte Stats-List Editoren (SL-editoren). Har du ikke denne applikation installeret, så hent den på TI's hjemmeside. Nøgletal Boxplot bygger på en undersøgelse

Læs mere

Program. Modelkontrol og prædiktion. Multiple sammenligninger. Opgave 5.2: fosforkoncentration

Program. Modelkontrol og prædiktion. Multiple sammenligninger. Opgave 5.2: fosforkoncentration Faculty of Life Sciences Program Modelkontrol og prædiktion Claus Ekstrøm E-mail: ekstrom@life.ku.dk Test af hypotese i ensidet variansanalyse F -tests og F -fordelingen. Multiple sammenligninger. Bonferroni-korrektion

Læs mere

Basal statistik for sundhedsvidenskabelige forskere, forår 2015 Udleveret 3. marts, afleveres senest ved øvelserne i uge 13 (24.-25.

Basal statistik for sundhedsvidenskabelige forskere, forår 2015 Udleveret 3. marts, afleveres senest ved øvelserne i uge 13 (24.-25. Hjemmeopgave Basal statistik for sundhedsvidenskabelige forskere, forår 2015 Udleveret 3. marts, afleveres senest ved øvelserne i uge 13 (24.-25. marts) En stikprøve bestående af 65 mænd og 65 kvinder

Læs mere

Estimation og usikkerhed

Estimation og usikkerhed Estimation og usikkerhed = estimat af en eller anden ukendt størrelse, τ. ypiske ukendte størrelser Sandsynligheder eoretisk middelværdi eoretisk varians Parametre i statistiske modeller 1 Krav til gode

Læs mere

Epidemiologi og biostatistik. Uge 3, torsdag. Erik Parner, Institut for Biostatistik. Regressionsanalyse

Epidemiologi og biostatistik. Uge 3, torsdag. Erik Parner, Institut for Biostatistik. Regressionsanalyse Epidemiologi og biostatistik. Uge, torsdag. Erik Parner, Institut for Biostatistik. Lineær regressionsanalyse - Simpel lineær regression - Multipel lineær regression Regressionsanalyse Regressionsanalyser

Læs mere

Per Vejrup-Hansen STATISTIK. med Excel. 2. udgave

Per Vejrup-Hansen STATISTIK. med Excel. 2. udgave Per Vejrup-Hansen STATISTIK med Excel 2. udgave Per Vejrup-Hansen Statistik med Excel Per Vejrup-Hansen Statistik med Excel 2. trykte udgave 2012 1. e-bogsudgave 2012 Samfundslitteratur 2012 e-isbn: 978-87-593-1736-5

Læs mere

Program: 1. Repetition: p-værdi 2. Simpel lineær regression. 1/19

Program: 1. Repetition: p-værdi 2. Simpel lineær regression. 1/19 Program: 1. Repetition: p-værdi 2. Simpel lineær regression. 1/19 For test med signifikansniveau α: p < α forkast H 0 2/19 p-værdi Betragt tilfældet med test for H 0 : µ = µ 0 (σ kendt). Idé: jo større

Læs mere

Forelæsning 3: Kapitel 5: Kontinuerte fordelinger

Forelæsning 3: Kapitel 5: Kontinuerte fordelinger Kursus 02402 Introduktion til Statistik Forelæsning 3: Kapitel 5: Kontinuerte fordelinger Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800

Læs mere

Anvendt Statistik Lektion 9. Variansanalyse (ANOVA)

Anvendt Statistik Lektion 9. Variansanalyse (ANOVA) Anvendt Statistik Lektion 9 Variansanalyse (ANOVA) 1 Undersøge sammenhæng Undersøge sammenhænge mellem kategoriske variable: χ 2 -test i kontingenstabeller Undersøge sammenhæng mellem kontinuerte variable:

Læs mere

Behandling af kvantitativ data 28.10.2013

Behandling af kvantitativ data 28.10.2013 Behandling af kvantitativ data 28.10.2013 I dag skal vi snakke om Kvantitativ metode i kort form Hvordan man kvalitetssikrer stikprøven Hvordan man kan kode og indtaste data Data på forskellig måleniveau

Læs mere

Oversigt. 1 Gennemgående eksempel: Højde og vægt. 2 Korrelation. 3 Regressionsanalyse (kap 11) 4 Mindste kvadraters metode

Oversigt. 1 Gennemgående eksempel: Højde og vægt. 2 Korrelation. 3 Regressionsanalyse (kap 11) 4 Mindste kvadraters metode Kursus 02402 Introduktion til Statistik Forelæsning 11: Kapitel 11: Regressionsanalyse Oversigt 1 Gennemgående eksempel: Højde og vægt 2 Korrelation 3 Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse

Læs mere

12. september Epidemiologi og biostatistik. Forelæsning 4 Uge 3, torsdag. Niels Trolle Andersen, Afdelingen for Biostatistik. Regressionsanalyse

12. september Epidemiologi og biostatistik. Forelæsning 4 Uge 3, torsdag. Niels Trolle Andersen, Afdelingen for Biostatistik. Regressionsanalyse . september 5 Epidemiologi og biostatistik. Forelæsning Uge, torsdag. Niels Trolle Andersen, Afdelingen for Biostatistik. Lineær regressionsanalyse - Simpel lineær regression - Multipel lineær regression

Læs mere

Multipel Lineær Regression. Polynomiel regression Ikke-lineære modeller og transformation Multi-kolinearitet Auto-korrelation og Durbin-Watson test

Multipel Lineær Regression. Polynomiel regression Ikke-lineære modeller og transformation Multi-kolinearitet Auto-korrelation og Durbin-Watson test Multipel Lineær Regression Polynomiel regression Ikke-lineære modeller og transformation Multi-kolinearitet Auto-korrelation og Durbin-Watson test Multipel lineær regression x,x,,x k uafhængige variable

Læs mere