Matematik. på Åbent VUC. Trin 2 Xtra opgaver. Trigonometri, boksplot, potensfunktioner, to ligninger med to ubekendte

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Starte visningen fra side:

Download "Matematik. på Åbent VUC. Trin 2 Xtra opgaver. Trigonometri, boksplot, potensfunktioner, to ligninger med to ubekendte"

Transkript

1 Matematik på Åbent VUC Trin 2 Xtra opgaver Trigonometri, boksplot, potensfunktioner, to ligninger med to ubekendte

2 Trigonometri Opgaver 1: Til højre er tegnet en kvart enhedscirkel i et koordinatsystem. 1,00 90º 75º 60º Der er indtegnet vinklerne 0º, 15º, 30º osv. Cosinus og sinus til vinklerne er markeret. 45º a: Aflæs så præcist som muligt cosinus- og sinus-værdierne. Kontroller også tallene på din regnemaskine.. 0,50 30º b: Udfyld vha. koordinatsystemet tabellen herunder. 15º c: Tabellen og tegningen viser, at der er en vis symetri. Der gælder: cos(v) = sin(90 v) sin(v) = cos(90 v) 0º 0,50 1,00 Prøv at forklare hvorfor! Vinkel 0º 15º 30º 45º 60º 75º 90º Cosinus Sinus 2: Herunder er skitseret to retvinklede trekanter. Beregn størrelsen på de sider og vinkler, som ikke er angivet. c = 6 cm B a c = 6,8 cm 50º B a A 30º b C A b C Side 9 2

3 Trigonometri 3: Til højre er skitseret en retvinklet trekant ABC a: Beregn sin( A) b: Find A (antal grader) c: Find B (antal grader) d: Find længden af siden b A c = 13 cm b B a = 5 cm C 4: Til højre er skitseret en retvinklet trekant ABC B a: Beregn tan( A) b: Find A (antal grader) c a = 8 cm c: Find B (antal grader) d: Find længden af siden c A b = 15 cm C 5: Beregn de ukendte vinkler og sider i de fem retvinklede trekanter. A O n 45º M b c = 100 mm E 52º d F m o = 7,2 cm f = 25,0 m e N C a 58º B A D B b = 63 mm c = 98 mm c a = 9,8 cm A b =15,1 cm C C a B Side 10 3

4 Trigonometri 6: Tegningerne viser et stykke af to trapper. Trappen til venstre stiger 25º, og trinene er 32 cm brede. På trappen til højre er trinene 25 cm brede og 18 cm høje. a: Hvor høje er trinene på trappen til venstre? b: Hvor mange graden stiger trappen til højre? c: En trappe skal have en trinbredde på 26 cm og en stigning på 30º. Find trinhøjden. d: En trappe skal have en stigning på 45º. Giv et forslag til trinbredde og trinhøjde. e: Mål trinene på en trappe på din skole og beregn, hvor mange graden trappen siger. 25º 32 cm 25 cm 18 cm 7: Tegningen viser en stige, der står op ad en mur. Stiger skal helst stå med en hældning på 75º. a: En stige er 5 m lang. Hvor højt kan stigen nå op på muren, med en hældning på 75º? b: Hvor højt kan stigen på 5 m nå op, hvis den hælder 60º? c: Hvor lang skal en stige være, hvis den skal kunne nå 4 m op og have en hældning på 75º? d: En stige er 420 cm lang, og den når 4 m op ad muren. Hvad er hældning? e: En stige når 3,5 m op ad muren, og bunden af stigen står 95 cm fra muren. Hvad er hældningen? f: En A-stige (en Wiener-stige) har de viste mål. Benenes længde er 2,25 m og afstanden mellem benene er 140 cm. Find benenes hældning og stigens højde. 140 cm 2,25 m 8: Tegningen viser gavlen på et hus. a: Find husets højde b: Hvor meget lavere ville huset være, hvis tagets hældning var 25º? c: Hvor meget højere ville huset være, hvis tagets hældning var 45º? 860 cm 525 cm 35º 240 cm Side 11 4

5 Trigonometri 9: Tegningerne viser tre figurer. Den ene er opdelt i retvinklede trekanter. a: Opdel også de to andre figurer i retvinklede trekanter. b: Find arealet af hver af de tre figurer. Tallene skal være i m 2. Du kan fx gøre det således: - beregn så mange vinkler som muligt - beregn de manglende sidelængder i de retvinklede trekanter - beregn arealerne af de retvinklede trekanter 7,50 dm - læg arealerne sammen 70º 65º 125 cm 110º 3,60 m 5,00 m 146,3º 67,4º 6,50 m 10: I har sikkert en tavlelineal på præcis 1 m i klasseværelset. Stil linealen på skrå op ad en væg. Mål vinklen med en vinkelmåler som vist på tegningerne. Mål også den vandrette afstand x og den lodrette afstand y. Stil linealen i en ny vinkel og mål igen vinklen, x og y. Fortsæt med flere vinkler. x Brug dine målinger til at lave at lave en cosinus- og sinus-tabel. y Side 12 5

6 Trigonometri 11: Skitsen viser to huse, som begge er 18 m lange og 8 m brede. Taget på huset til venstre har en hældning på 25º. Taget på huset til højre har en hældning på 45º. Sammenlign arealet af tagene på de to huse. 25º 45º 12: Tegningen viser en cyklist på vej op ad en bakke. Bakken er indtegnet som en retvinklet trekant ABC. Man kan angive en bakkes stigning på to måder: Som et antal grader c og som et antal procent. Antal grader er størrelsen af A. A b Antal procent er den lodrette stigning som procent af den kørte strækning. Altså a som procent af c. a: Mål længden af a, b og c på tegningen b: Find stigningen på tegningen målt i procent. c: Find stigningen på tegningen målt i grader. Du må gerne måle vinklen på tegningen men prøv også at beregne tallet. d: Vurder om det er realistisk at cykle op ad en sådan stigning. e: Omregn en stigning på 10% til grader. f: Omregn en stigning på 8º til procent. B a C Side 13 6

7 Opgaver 1: Ølpriser Tabellen viser prisen på en øl på de forskellige værtshuse i en by Den røde ko 25 Hønsehuset 27 Overhuset 38 Guldkalven 35 Løveburet 30 Tronsalen 35 Hos Hans 24 Mødestedet 20 Underhuset 18 a: Hvor mange værtshuse er der? b: Find medianen c: Find 1. kvartil og 3 kvartil. d: Find middelværdien Guldkalven, Overhuset og Tronsalen sætter alle deres pris ned til 30 kr. e: Hvad sker der med middelværdi og median? 2: Aldersfordeling Tabellerne viser alderen på kursisterne på to forskellige VUC-hold Allan 45 Ester 49 Mogens 41 Rania 24 Victor 21 Conny 32 Henry 62 Olga 56 Svend 70 Yrsa 61 Anton 21 Eskild 18 Jackie 18 Leon 42 Rami 18 Brian 27 Fartun 17 Kasper 19 Lisa 35 Rikke 31 Dagny 51 Goran 27 Kate 26 Matin 23 Sabrina 17 Ditte 22 Halima 20 a: Hvor mange kursister er der på hvert af de to hold? b: Find median, 1. kvartil og 3. kvartil for det første hold c: Find median, 1. kvartil og 3. kvartil for det andet hold d: Tegn boksplot for begge hold. e: Sammenlign aldersfordelingen på de to hold 3: Undersøg aldersfordelingen på dit eget hold. Find median, 1. kvartil og 3. kvartil. Lav evt. også et boksplot. Side 7 7

8 4: Højde-sammenligning De to boksplot viser Højdefordeling for basketball-spillere højde-fordeling i cm på to forskellige grupper af mandlige idrætsfolk. En gruppe basketball-spillere og en gruppe gymnaster. a: Prøv at beskrive de to grupper Hvorledes ville de se ud, Højdefordeling for gymnaster hvis de stod ved siden af hinanden? b: Aflæs mindste-værdi, og største-værdi for basketball-spillerne. c: Aflæs mindste-værdi, og største-værdi for gymnasterne. d: Aflæs medianen, kvartil og 3. kvartil for basketball-spillerne. e: Aflæs medianen, 1 kvartil og 3. kvartil gymnasterne. f: Hvor mange cm er den højeste basketball-spiller højere end den laveste gymnast? 5: SMS-er VUC-kursisterne fra opgave 2 har holdt øje med, hvor mange SMS-er de sendte på en dag. Tallene er vist i tabellen. Allan 1 Ester 1 Mogens 2 Rania 5 Victor 8 Conny 2 Henry 0 Olga 2 Svend 0 Yrsa 0 Anton 5 Eskild 19 Jackie 38 Leon 2 Rami 32 Brian 12 Fartun 22 Kasper 25 Lisa 0 Rikke 3 Dagny 1 Goran 7 Kate 41 Matin 6 Sabrina 10 Ditte 15 Halima 5 a: Beskriv tallene for det nederste hold vha. boksplot. b: Lav evt. også et boksplot for det øverste hold men overvej først om det giver mening. Hvis det ikke giver mening, så overvej at lave et andet diagram for det øverste hold. Side 8 8

9 6: Fritidsaktiviteter En klasse med skolebørn er blevet spurgt om, hvor mange timer om ugen de bruger på fritids-aktiviteter (sport, spejder, musik mv.). Svarerne er vist i tabellen. Hvor mange timer bruger du om ugen? Så mange a: Hvor mange børn er der? Ahmed 0 Hans 0 Mads 1 Ronni 14 b: Find medianen Asta 5 Hilda 6 Mette 2 Sidsel 4 c: Find 1. kvartil og 3 kvartil Bent 3 Ismail 3 Mie 4 Søren 1 d: Sammenlign median og Carl 0 Kirstin 2 Ninna 0 Tanja 0 middelværdi e: Lav et boksplot Fatima 2 Lone 8 Peter 10 Torben 1 7: Løn-sammenligning De to boksplot viser Timelønnen på Poulsen Pølsefabrik timelønnen på to forskellige virksomheder. a: Aflæs mindste-værdi, og største-værdi på pølsefabrikken. b: Aflæs mindste-værdi, og største-værdi på isfabrikken. Timelønnen på Iversens Isfabrik c: Aflæs medianen, 1 kvartil og 3. kvartil på pølsefabrikken. d: Aflæs medianen, 1 kvartil og 3. kvartil på isfabrikken. e: Vurder hvilke af disse udsagn der er rigtige: - 50% af medarbejderne på pølsefabrikken tjener over 150 kr. - 50% af medarbejderne på isfabrikken tjener mellem 140 kr. og 200 kr. - De dårligst lønnede 25% af medarbejderne på pølsefabrikken får under 95 kr. - De bedst lønnede 25% af medarbejderne på isfabrikken får over 250 kr. - 75% af medarbejderne på pølsefabrikken får mellem 95 kr. og 210 kr. - 75% af medarbejderne på isfabrikken får mellem 140 kr. og 250 kr. Skriv selv rigtige udsagn i stedet for de forkerte udsagn. Side 9 9

10 8: Leverpostej Der står 500 g på alle bakker med Lenes Leverpostej. Her er resultatet af en kontrol-vejning af nogle bakker: Lenes Leverpostej 500 g KUN 16,95 kr. 498 g 491 g 481 g 480 g 499 g 472 g 486 g 487 g 504 g 512 g 500 g 469 g 508 g 462 g 470 g 492 g 485 g 475 g 479 g 496 g 493 g 516 g 497 g 501 g 488 g g a: Hvor mange bakker er blevet vejet? Vægt i gram Hyppighed Frekvens b: Find mindsteværdi, størsteværdi [460 ; 470[ og variationsbredde. [470 ; 480[ c: Find medianen, 1. kvartil og 3. kvartil. [480 ; 490[ d: Lav et boksplot. [490 ; 500[ e: Lav og udfyld en tabel med hyppighed [500 ; 510[ og frekvens som den viste? f: Lav et histogram. g: Sammenlign boksplot og histogram. [510 ; 520[ I alt Hvad synes du giver det bedste billede? h: Sammenlign kg-prisen for den letteste og den tungeste bakke. 9: Hastigheds-kontrol Boksplottet viser resultatet Hastighed i km/time af en hastigheds-kontrol på bilerne en landevej. Hastigheds-grænsen er 80 km/t. a: Aflæs den laveste og den højeste hastighed. b: Aflæs median, 1. kvartil og 3. kvartil c: Vurder hvor mange procent af bilerne, der har overholdt hastighedsgrænsen. d: Vurder hvor mange procent af bilerne, der har kørt over 100 km/t. Ved en senere kontrol overholdt 50% af bilerne hastigheds-grænsen, og alle hastigheder lå mellem 70 km/t og 105 km/t. e: Hvilke oplysninger mangler du for at kunne lave et boksplot? f: Prøv at skitsere et boksplot, selv om du mangler nogle oplysninger. Side 10 10

11 10: Histogram tabel sumkurve Histogrammet viser befolkningens aldersfordeling i et område af en by. 30% 20% 10% a: Aflæs frekvenserne (cirka-tal) for de forskellige aldersintervaller og skriv tallene ind i tabellen til højre. b: Udregn de summerede frekvenser og skriv tallene ind i tabellen til højre. c: Tegn ud fra tallene i tabellen en sumkurve i koordinatsystemet herunder. d: Aflæs (cirka-tal) median, 1. kvartil og 3. kvartil. e: Find evt. et cirka-tal for gennemsnitsalderen. Alder Frekvens Sum. Fre. [0 ; 15[ [15 ; 30[ [30 ; 45[ [45 ; 60[ [60 ; 75[ [75 ; 90[ [90 ; 105[ 100% 90% 80% 70% 60% 50% 40% 30% 20% 10% Side 11 11

12 11: Sumkurve tabel histogram Sumkurven viser befolkningens aldersfordeling i et område af en by. 100% 90% 80% 70% 60% 50% 40% 30% 20% 10% a: Aflæs de summerede frekvenser (cirka-tal) for de forskellige aldersintervaller og skriv tallene ind i tabellen til højre. b: Udregn frekvenserne og skriv tallene ind. c: Lav ud fra tallene i tabellen et histogram i koordinatsystemet herunder. d: Sammenlign aldersfordelingen i denne opgave med aldersfordelingen i sidste opgave. Brug evt. median, kvartiler og/eller gennemsnit. Alder Frekvens Sum. Fre. [0 ; 15[ [15 ; 30[ [30 ; 45[ [45 ; 60[ [60 ; 75[ [75 ; 90[ [90 ; 105[ 30% 20% 10% Side 12 12

13 Opgaver 1: Tegn i samme koordinatsystem graferne for disse funktioner: Start med at udfylde en tabel som denne: 2 f(x) = x og g(x) 2 = 2 x. x f(x) g(x) Hvis du tegner graferne på papir, kan du buge et helt A4-ark og vælge disse enheder: På x-aksen er 1 cm = 1. På y-aksen er 1 cm = 10. 2: Tegn i samme koordinatsystem graferne for disse funktioner: f(x) = 4 x og g(x) = x og h(x) = 0,25 x. Start med at udfylde en tabel som denne: x f(x) g(x) h(x) Hvis du tegner graferne på papir, kan du buge et helt A4-ark og vælge disse enheder: På x-aksen er 1 cm = 1. På y-aksen er 1 cm = 20. Noget af graferne for g og h vil dog ikke kunne være på papiret. OBS: De tre grafer skærer hinanden i samme punkt. Prøv at forklare hvorfor. 3: Potensfunktioner er funktioner, som kan skrives formen y Hvad er a og b i disse potensfunktioner? a: y 2 = 117 x b: 6 y = x c: y a = b x. -2 = 5 x d: y = x a 4: Potensfunktioner er funktioner, som kan skrives formen y = b x. Skriv selv potensfunktioner med disse værdier af a og b: a: a = 0,5 b = 3 b: a = 10 1 b = 3 c: a = -1 b = 1 d: a = 1 b = 2 Side 8 13

14 5: Fliser Forestil dig at du lægger fliser. Fliserne er kvadratiske, og det område, som fliserne dækker, er også kvadratisk. a: Hvor mange fliser skal du bruge i alt, hvis du lægger 4 fliser på hver led? b: Hvor mange fliser er der på hver led, hvis der i alt er lagt 100 fliser? c: Udfyld en tabel som denne: Antal fliser på hver led (x) o.s.v. Antal fliser i alt (y) Det er lidt fjollet at regne med 0 fliser, men tallet er med for systemets skyld d: Tegn i et koordinatsystem en graf ud fra tallene i tabellen. Grafen skal være en blød bue. Bestem selv hvorledes du vil inddele dine akser. e: Hvilken af disse funktioner passer til tabellen og grafen: 2 y = 2 x y = x y = x 6: Fliser (fortsat) Fliserne er 50 cm på hvert led. Du skal stadig forestille dig, at du lægger fliserne på et kvadratisk område. a: Hvad er arealet ( i m 2 ) af en flise? b: Hvor mange fliser skal der til en m 2? f: Hvad er arealet af hele området, hvis der er lagt 3 fliser på hver led? g: Tegn og udfyld en tabel som denne: 50 cm 50 cm Antal fliser på hver led (x) o.s.v. 10 Antal m 2 med fliser (y) h: Tegn i et koordinatsystem en graf ud fra tallene i tabellen. Bestem selv hvorledes du vil inddele dine akser. i: Hvilken af disse funktioner passer til tabellen og grafen: 2 2 y = 4 x y = 0,25 x y = x Side 9 14

15 7: Rumfanget af terning. Rumfanget kan beregnes med formlen V = s 3, hvor V er rumfanget og s er terningens kant-længde. Hvis s måles i cm, får man V i cm 3 (eller ml). a: Udfyld en tabel som den viste: s (cm) o.s.v. 10 V (cm 3 ) b: Tegn en graf ud fra tabellen. c: Rumfanget er en potensfunktion af kant-længden. Prøv at forklare hvorfor! d: Hvad skal kantlængden være for at terningens rumfang bliver: - 1 liter = ml = cm 3? - 1 dl = 100 ml = 100 cm 3? - 1 cl = 10 ml = 10 cm 3? 8: Bremselængde Kik på teksten og tabellen til højre. a: Hvilken af disse funktioner kan beskrive sammenhængen mellem hastighed (x) og bremselængde (y): 2 10 y = 0,1 x y = 0,004 x y = x b: Når du har fundet den rigtige funktion, skal du tegne en graf i et koordinatsystem. Start med at lave og udfylde en tabel som denne: x o.s.v. 150 y Bremselængde Bremselængden for en bil vokser, når hastigheden vokser. De helt præcise tal afhænger også af bilen, vejen og vejret, men her er nogle typiske tal: Hastighed Bremselængde i km/time i meter 25 2, Hvis du tegner i hånden, skal du lave et koordinatsystem, hvor 1 cm på x-aksen svarer til 10 km/time, og 1 cm på y-aksen svarer til 10 m. c: Aflæs på din graf (cirka-tal): - bremselængden når hastigheden er 90 km/time. - hastigheden når bremselængden er 50 m. d: Kan du kontrol-beregne svarerne fra c? Bremselængderne i tabellen er for kørsel i tør-vejr. Hvis det regner, kan bremselængderne godt være dobbelt så lange. e: Tegn i samme koordinatsystem som før en graf for bremselængden i regn-vejr. Side 10 15

16 9: Side-længde på kvadrat Side-længden (s) afhænger af arealet (A). Tegningerne viser et par eksempler. A = 4 cm 2 s = 2 cm A = 9 cm 2 s = 3 cm a: Udfyld en tabel som denne: A (cm 2 ) s (cm) 2 3 b: Tegn en graf ud fra tabellen. c: Opstil en funktion for s. Altså en funktion hvor arealet er x, og side-længden er y. d: Det er ikke sikkert, at din funktion ligner en potensfunktion, men det er den! Prøv at forklare hvorfor. Kik tilbage på opgave 7. Den med kant-længden og rumfanget for en terning e: Opstil en funktion, hvor rumfanget er x, og kantlængden er y. Prøv at forklare hvorfor det er en potensfunktion. 10: Tegn i samme koordinatsystem graferne for disse funktioner: Start med at udfylde en tabel som denne: 0,5 y = x og 1 y = x og 1,5 y = x. x ,5 y = x 1 y = x 1,5 y = x Hvis du tegner graferne på papir, kan du vælge disse enheder: På x-aksen er 1 cm = 1. På y-aksen er 1 cm = 1. Noget af graferne for den sidste funktion vil måske ikke kunne være i dit koordinatsystem. OBS: Funktionerne og graferne opfører sig lidt mystisk for små x-værdier. Hvis du har godt tid eller bruger regneark, kan du også udfylde denne tabel: x 0 0,2 0,4 0,6 0,8 1 1,2 1,4 1,6 1,8 2 0,5 y = x 1 y = x 1,5 y = x Tegn også grafer ud fra tallene i den sidste tabel. Side 11 16

17 11: Hestefoder Man kan med god tilnærmelse beregne hestes behov for foder med denne funktion: 0,75 f(x) = 0,04 x x er hestens vægt i kg, og f(x) er antal foderenheder pr. dag. a: Lav og udfyld en tabel som denne: Foderenheder Der er ikke lige meget næring i alle slags dyrefoder. Derfor bruger man foderenheder. En foderenhed svarer fx til ca. 1 kg korn eller ca. 2 kg hø eller ca. 4 kg halm. x f(x) b: Lav en graf ud fra tallene i tabellen. c: Hvor meget vejer en hest, som har brug for 4 foderenheder pr. dag? d: En hest på 375 kg får 400 g korn om dagen. Resten af foderet er en blanding af hø og halm. Lav et forslag til hvor meget hø og hvor meget halm hesten skal have. e: En hest vejer 450 kg. Hestens ejer køber 20 kg korn, 150 kg hø og 200 kg halm. Hvor lang tid er der foder til? For hunde gælder der en tilsvarende funktion. Den ser sådan ud: 0,75 h(x) = 523 x x er hundens vægt i kg, og h(x) er energi-behovet pr. dag målt i kilojoule (kj). f: Lav også en tabel og en graf for denne funktion. g: Der er sikkert nogle kursister på jeres hold, som har hund. Undersøg om funktionen passer på jeres hunde. I kan finde antal kj vha. varedeklarationerne på den hundemad, som I bruger. 12: Buket-priser En dame sælger blomster-buketter. Hun tager normalt 60 kr. for en buket, og hun sælger normalt ca. 100 buketter pr. dag. Hun har prøvet at sætte prisen ned til 50 kr. Så solgte hun ca. 110 buketter pr. dag. Hun har også prøvet at sætte prisen op til 75 kr. Så solgte hun ca. 90 buketter pr. dag. Hendes mand, som er matematik-lærer (og derfor meget, meget klog), siger, -0,5 at det tyder på, at prisen og antal buketter følger denne funktion y = 775 x. x er prisen, og y er antal solgte buketter pr. dag. Undersøg om hendes meget, meget kloge mand kan have ret. Lav evt. en graf for funktionen. Side 12 17

18 13: Dykning Den tid, som en dykker højst må være under vand, afhænger af vand-dybden. Man kan bruge denne funktion til at beregne tiden: -2,12 y = x x er vand-dybden i meter, og y er tiden i minutter. a: I hvor lang tid må en dykker opholde sig i en vanddybde på 15 m? b: Lav og udfyld en tabel som denne: x y c: Lav en graf ud fra tallene i tabellen. d: Hvilken vand-dybde svarer til en tid på 25 min? Hvis dykkere er for lang tid under vand, risikerer de at få dykkersyge. Der er også regler for, hvor lang tid dykkere skal bruge på at svømme ned og op. Den tid skal lægges til, hvis man vil finde den samlede neddykningstid. 14: Vindmøller En vindmølle laver meget mere elektricitet, når det blæser kraftigt. For en bestemt type vindmølle gælder der denne funktion: 3,3 y = 0,6 x x er vind-hastigheden i meter pr. sekund (m/s), y er elektricitets-mængden målt i kilowatt (kw). y kaldes også effekten. a: Lav og udfyld en tabel som denne: x osv. 20 y b: Lav en graf ud fra tallene i tabellen. Du kan evt. nøjes med at medtage noget af grafen, da der sjældent blæser mere end m/s. NB: Undersøg evt. selv hvad vindhastigheden typisk er i Danmark. c: Hvad er vindhastigheden, hvis effekten er kw? d: Forstil dig, at al elektriciteten fra vindmølleparken går til lavenergi-pærer. Hvor mange lavenergipærer er der elektricitet til, hvis vindhastigheden er 8 m/s Vindmøllen i denne opgave står i en vindmøllepark med i alt 20 vindmøller. Effekt kan måles i kw eller i W. 1 kw = W. En lavenergi-pære bruger typisk 9 W. Side 13 18

19 15: Vinglas Tegning til højre viser et kegleformet vinglas. Rumfanget af en kegle kan findes med denne formel: 1 2 V = π r h 3 a: Vis at glasset kan rumme ca. 150 ml, når det er fyldt. Husk at 1 cm 3 = 1 ml (milliliter). Når glasset er delvist fyldt, kan indholdet beregnes med denne funktion: 3 y = 0,207 x hvor x er vinstanden i cm og y er rumfanget i ml. b: Hvor meget vin er der i glasset, når x = 6 cm? c: Udfyld en tabel som den viste: h = 9 cm r = 4 cm x Højde i cm (x) Vin i ml (y) d: Tegn ud fra tallene i tabellen en graf i et koordinatsystem. Hvis du tegner i hånden kan du vælge disse enheder. 1 cm = 1 cm på x-aksen og 1 cm = 10 ml på y-aksen. e: Undersøg vha. grafen: - hvor højt står vinen, når glasset rummer 100 ml? - hvor højt står vinen, når glasset rummer 50 ml? - hvor højt står vinen, når glasset er halvt fyldt? f: Overvej hvorledes du kunne have beregnet svarene fra e. g: Vurder om disse påstande er rigtige: - når man fordobler x, bliver y 8-doblet. - når man 3-dobler x, bliver y 27-doblet? og hvis ja hvorfor? Side 14 19

20 To lineære ligninger med to ubekendte 1: Hvilke ligninger og hvilke funktionsforskrifter passer sammen? a: 10x + 5y = 20 A: y = x 2 b: 4x + 4y = 8 B: y = 4x + 2 c: 8x + 2y = 6 C: y = 4x 3 d: 2 x + 0,5y = 1 D: y = x 2 e: 2x 6y = 12 E: y = 0,5x 1,5 f: x 2y = 3 F: y = 2x : Hvilke ligninger og hvilke funktionsforskrifter passer sammen? a: 5y 3x = x + 4y A: y = 0,5x 3 b: 3x 6y + 8 = x 5y + 5 B: y = 2x 2, 5 c: y 4x = 3y 5x + 6 C: y = 4x d: x + 5y = x y D: y = 2x + 3 e: 2 x + 5 = 2y + 6x + 10 E: y = x 1 3 3: Hvilke ligninger og hvilke funktionsforskrifter passer sammen? a: 4x + 2y 7 = 5(2x 3) A: y = x x + 12y b: = 8 3 B: y = 2x + 6 c: 3(x + 2) = 2(y 3) x C: y = 3x 5x + 3y d: = 2x + y 4 D: y = 3x 4 Side 5 20

21 4: Claus og Christina skal dele 100 kr. De behøver ikke at få lige mange penge. Claus beløb kaldes x. Christinas beløb kaldes y. a: Tegn og udfyld en tabel som denne: x y. Sammenhængen mellem x og y kan beskrives ved ligningen x + y = 100 b: Omskriv ligningen til en lineær funktion. c: Tegn en graf for funktionen. Prøv også at forklare hvad de forskellige punkter på grafen betyder. 5: Lars vil købe kager og minirugbrød for 50 kr. Antal kager kaldes x. Antal minirugbrød kaldes y. a: Hvor mange kager kan han højst få? b: Hvor mange minirugbrød kan han højst få? c: Tegn og udfyld en tabel som denne: x y Brødkiosken Kager kr. Minirugbrød... 5 kr. d: Beskriv sammenhængen mellem x og y med en ligning og en lineær funktion. e: Tegn en graf for funktionen. Forklar også hvad de forskellige punkter på grafen betyder. 6: Mette skal købe æbler og pærer for 75 kr. Antal kg æbler kaldes x. Antal kg pærer kaldes y. a: Hvor mange kg æbler kan hun højst få? b: Hvor mange kg pærer kan hun højst få? c: Tegn og udfyld en tabel som denne: x osv. y Frugt og grønt Æbler 15 kr. pr. kg. Pærer 20 kr. pr. kg. d: Beskriv sammenhængen mellem x og y med en ligning og en lineær funktion. e: Tegn en graf for funktionen. Forklar også hvad de forskellige punkter på grafen betyder. Side 6 21

22 7: Line skal købe 30 stykker frugt til en skoleklasse. Hun kan vælge mellem æbler og appelsiner. Hun må købe for 100 kr., og hun vil gerne have flest mulige appelsiner. Antal bananer kaldes x. Antal appelsiner kaldes y. Fredes Frugtbod Bananer Appelsiner 3 kr. pr. stk. 4 kr. pr. stk. a: Sammenhængen mellem x og y kan beskrives ved to af disse ligninger. x + y = 30 x + y = 100 3x + 4y = 30 3x + 4y = 100 Find de rigtige ligninger: b: Omskriv de rigtige ligninger til lineære funktioner c: Lav x-y-tabeller og tegn grafer for funktionerne d: Hvor mange appelsiner og hvor mange bananer kan Line købe? 8: Peter skal købe 40 flasker vin til en stor fest. Han kan vælge mellem to slags. Han må købe for kr., og han vil gerne have flest mulige flasker af den dyre vin. a: Opstil to ligninger, der kan bruges til at finde ud af hvor mange flasker af hver slags, han kan købe. b: Find ud af hvor mange flasker af hver slags, han kan købe. Fine vine Château Henri Pr. flaske kun 30 kr. Château Superb Pr. flaske kun 50 kr. 9: Mahmut er i byen. Det er blevet sent, den sidste bus er kørt, og han har meget langt hjem. Han ringer hjem til sin kone, som lover at hente ham i bil, hvis han går hende i møde. Konen begynder at køre samtidig med, at Mahmut begynder at gå. Du skal finde ud af, hvor på turen de mødes. Den strækning, Mahmut når at gå, kaldes x. Den strækning, Mahmuts kone når at køre, kaldes y. 5 km/t 75 km/t 20 km a: Hvor mange min. tager det Mahmut at gå en km? c: Find x og y ved at løse disse to ligninger: x + y = 20 b: Hvor lang tid tager det Mahmuts kone at køre en km? Den tid det tager at gå x km = Den tid det tager at køre y km d: Hvor lang tid går der fra, at Mahmut begynder at gå, til at han er helt hjemme? Side 7 22

23 10: Løs disse ligningssystemer a: x + y = 1 b: x + 2y = 8 2x y = 0 x + y = 3 c: 3x + y = 7 d: 2x + y = 5 x + y = 2 x + 5y = 10 e: 3x + 2y = 16 f: x + 4y = 4 x 4y = 20 2x y = 2 g: 2x + y = 3 h: 2x y = 3 x + 2y = 4 x + 2y = 2 i: 2x y = 3 j: 2x + y = 8 2x + y = 7 8x 2y = 1 11: Løs disse ligningssystemer a: x 2y = 6 b: 2x + y = 2 2x + y = 2 x 2y = 6 c: 2x 10y = 10 d: 3x + 5y = 35 4x 4y = 3 x + 2y = 6 e: x + 3y + 7 = 4x + y 7 f: 2x + 5y + 1 = 3x + y + 3 2x + 6y = 4x + y + 1 2x + 2y + 3 = y + 10 g: 3x + 2y 2 = 2(2x 3) h: 3x + 2y = 12 x + 8y = 2(2x y) + 2 5(x + 2y) = 2,5x + 5y : Løs disse ligningssystemer a: 3x 2y = x y 5 b: 2x + 4y = 5y 3 x + 2y = 3x + y + 2 2x 3y = 2y 2 c: 3( 2x y) = 5x y + 1 d: 4x + 3y = 3x + 6 4x 2y + 1 = ( 12x + 8) : 4 12x + 30y 6 = x + 2y 12 Side 8 23

Median, kvartiler, boksplot og sumkurver

Median, kvartiler, boksplot og sumkurver Median, kvartiler, boksplot og sumkurver Median, kvartil, boksplot og sumkurver... 2 Opgaver... 7 Side 1 Median, kvartil, boksplot og sumkurver Medianen er det midterste af en række tal, der er skrevet

Læs mere

Formler, ligninger, funktioner og grafer

Formler, ligninger, funktioner og grafer Formler, ligninger, funktioner og grafer Omskrivning af ligninger og formler... 39 To ligninger med to ubekendte... 44 Formler, ligninger, funktioner og grafer Side 38 Omskrivning af ligninger og formler

Læs mere

xxx xxx xxx Potensfunktioner Potensfunktioner... 2 Opgaver... 8 Side 1

xxx xxx xxx Potensfunktioner Potensfunktioner... 2 Opgaver... 8 Side 1 Potensfunktioner Potensfunktioner... Opgaver... 8 Side Potensfunktioner Funktioner der kan skrives på formen y a = b kaldes potensfunktioner. Her er nogle eksempler på potensfunktioner: y = y = y = - y

Læs mere

Statistik. Grupperede observationer og summeret frekvens... 12 Indekstal... 14 Median, kvartiler og boksplot... 17.

Statistik. Grupperede observationer og summeret frekvens... 12 Indekstal... 14 Median, kvartiler og boksplot... 17. Statistik Grupperede observationer og summeret frekvens... 12 Indekstal... 14 Median, kvartiler og boksplot... 17 Statistik Side 11 Grupperede observationer og summeret frekvens 1: Fritidsjobs a: Hvor

Læs mere

Navn:&& & Klasse:&& STATISTIK - Fase 2. Undersøge sammenhæng i omverdenen med datasæt. Vurdering fra 1 til 5 (hvor 5 er højst) Lærer.

Navn:&& & Klasse:&& STATISTIK - Fase 2. Undersøge sammenhæng i omverdenen med datasæt. Vurdering fra 1 til 5 (hvor 5 er højst) Lærer. Navn: Klasse: STATISTIK - Fase 2 Undersøge sammenhæng i omverdenen med datasæt Vurdering fra 1 til 5 (hvor 5 er højst) Læringsmål Selv Lærer Beviser og forslag til forbedring 1. Jeg kan bestemme et datasæts

Læs mere

Matematik. på Åbent VUC. Trin 2 Xtra eksempler. Trigonometri, boksplot, potensfunktioner, to ligninger med to ubekendte

Matematik. på Åbent VUC. Trin 2 Xtra eksempler. Trigonometri, boksplot, potensfunktioner, to ligninger med to ubekendte Matematik på Åbent VUC Trin Xtra eksempler Trigonometri, boksplot, potensfunktioner, to ligninger med to ubekendte Trigonometri Sinus og cosinus Til alle vinkler hører der to tal, som kaldes cosinus og

Læs mere

Omvendt proportionalitet og hyperbler... 25 Eksponentialfunktioner... 28 Eksponentialfunktioner og lineære funktioner... 31 Potensfunktioner...

Omvendt proportionalitet og hyperbler... 25 Eksponentialfunktioner... 28 Eksponentialfunktioner og lineære funktioner... 31 Potensfunktioner... Funktioner Omvendt proportionalitet og hperbler... 5 Eksponentialfunktioner... 8 Eksponentialfunktioner og lineære funktioner... 31 Potensfunktioner... 33 Funktioner Side 4 Omvendt proportionalitet og

Læs mere

Lektion 9 Statistik enkeltobservationer

Lektion 9 Statistik enkeltobservationer Lektion 9 Statistik enkeltobservationer Aflæsning af tabeller og diagrammer Middelværdi med mere Hyppighed og frekvens Fremstilling af diagrammer Median, Kvartil og Boksplot Lavet af Niels Jørgen Andreasen,

Læs mere

Lektion 8s Geometri Opgaver

Lektion 8s Geometri Opgaver Matematik på Åbent VU Lektion 8s Geometri Indholdsfortegnelse Sammensatte figurer Kunstruktionsopgaver Trigonometri Lavet af Niels Jørgen ndreasen, VU Århus. Redigeret af Hans Pihl, KVU Lektion 8s Side

Læs mere

Lektion 9 Statistik enkeltobservationer

Lektion 9 Statistik enkeltobservationer Lektion 9 Statistik enkeltobservationer Middelværdi med mere Hyppigheds- og frekvens-tabeller Diagrammer Hvilket diagram er bedst? Boxplot Lektion 9 Side 1 Når man skal holde styr på mange oplysninger,

Læs mere

Navn:&& & Klasse:&& STATISTIK - Fase 2. Undersøge sammenhæng i omverdenen med datasæt. Vurdering fra 1 til 5 (hvor 5 er højst) Lærer.

Navn:&& & Klasse:&& STATISTIK - Fase 2. Undersøge sammenhæng i omverdenen med datasæt. Vurdering fra 1 til 5 (hvor 5 er højst) Lærer. Navn: Klasse: STATISTIK - Fase 2 Undersøge sammenhæng i omverdenen med datasæt Vurdering fra 1 til 5 (hvor 5 er højst) Læringsmål Selv Lærer Beviser og forslag til forbedring 1. Jeg kan forklar og beskrive

Læs mere

Matematik. på AVU. Opgaver til niveau F, E og D

Matematik. på AVU. Opgaver til niveau F, E og D Matematik på AVU Opgaver til niveau F, E og D Denne opgavesamling er lavet i forlængelse af Matematik på AVU - opgaver til niveau G. Opgavesamlingen omfatter derfor kun det fagstof, som ikke er med på

Læs mere

Lektion 7s Funktioner - supplerende opgaver

Lektion 7s Funktioner - supplerende opgaver Lektion 7s Funktioner - supplerende opgaver Omvendt proportionalitet og hperbler.gradsfunktioner og parabler Eksponentialfunktioner Eksponentialfunktioner og lineære funktioner Andre funktioner og blandede

Læs mere

1hf Spørgsmål til mundtlig matematik eksamen sommer 2014

1hf Spørgsmål til mundtlig matematik eksamen sommer 2014 1. Procent og rente Vis, hvordan man beregner gennemsnitlig procentændring 2. Procent og rente Vis hvordan man beregner indekstal. 3. Procent og rente Vis, hvordan man kan beregne forskellige størrelser

Læs mere

Variabel- sammenhænge

Variabel- sammenhænge Variabel- sammenhænge Udgave 2 2009 Karsten Juul Dette hæfte kan bruges som start på undervisningen i variabelsammenhænge for stx og hf. Hæftet er en introduktion til at kunne behandle to sammenhængende

Læs mere

Statistikkompendium. Statistik

Statistikkompendium. Statistik Statistik INTRODUKTION TIL STATISTIK Statistik er analyse af indsamlet data. Det vil sige, at man bearbejder et datamateriale, som i matematik næsten altid er tal. Derved får man et samlet overblik over

Læs mere

Ikke-lineære funktioner

Ikke-lineære funktioner I elevernes arbejde med funktioner på tidligere klassetrin har hovedvægten ligget på sammenhænge, der kan beskrives med lineære funktioner. Dette kapitel berører ligefrem proportionalitet og stykkevist

Læs mere

Lektion 5 Det bestemte integral

Lektion 5 Det bestemte integral a f(x) dx = F (b) F (a) Lektion 5 Det bestemte integral Definition Integralregningens Middelværdisætning Integral- og Differentialregningens Hovedsætning Beregning af bestemte integraler Regneregler Areal

Læs mere

Statistik med GeoGebra

Statistik med GeoGebra Statistik med GeoGebra Hayati Balo, AAMS, marts 2012 1 Observationssæt Det talmateriale, som man gerne vil undersøge, kaldes et observationssæt. Det talsæt som fremgår i tabel 5.1 kan indsættes i GeoGebra

Læs mere

Matematikopgaver niveau C-B-A STX-HTX

Matematikopgaver niveau C-B-A STX-HTX Matematikopgaver niveau C-B-A STX-HTX Niels Junge Niels Junge 1 Indhold 1. Algebra...4 Opgave 1.1...4 Opgave 1.2...4 Opgave 1.3...4 Opgave 1.4...5 Opgave 1.5...5 Opgave 1.6...5 Opgave 1.7...5 Opgave 1.8...6

Læs mere

Matematik D. Almen voksenuddannelse. Skriftlig prøve. Fredag den 11. december 2015 kl. 9.00-13.00 AVU151-MAT/D. (4 timer)

Matematik D. Almen voksenuddannelse. Skriftlig prøve. Fredag den 11. december 2015 kl. 9.00-13.00 AVU151-MAT/D. (4 timer) Matematik D Almen voksenuddannelse Skriftlig prøve (4 timer) AVU151-MAT/D Fredag den 11. december 2015 kl. 9.00-13.00 Økonomi Matematik niveau D Skriftlig matematik Opgavesættet består af: Opgavehæfte

Læs mere

Areal. Et af de ældste skrifter om matematik, der findes, hedder Rhind Papyrus. NTRO

Areal. Et af de ældste skrifter om matematik, der findes, hedder Rhind Papyrus. NTRO Areal Et af de ældste skrifter om matematik, der findes, hedder Rhind Papyrus. NTRO Det stammer fra Egypten og er ca. 3650 år gammelt. I Rhind Papyrus findes optegnelser, der viser, hvordan egypterne beregnede

Læs mere

VIA læreruddannelsen Silkeborg. WordMat kompendium

VIA læreruddannelsen Silkeborg. WordMat kompendium VIA læreruddannelsen Silkeborg WordMat kompendium Bolette Fisker Olesen 25-11-2015 Indholdsfortegnelse Ligning... 2 Løs ligning... 2 WordMat som lommeregner... 4 Geometri... 4 Trekanter... 4 Funktioner...

Læs mere

Bogstavregning. Formler... 46 Reduktion... 47 Ligninger... 48. Bogstavregning Side 45

Bogstavregning. Formler... 46 Reduktion... 47 Ligninger... 48. Bogstavregning Side 45 Bogstavregning Formler... 6 Reduktion... 7 Ligninger... 8 Bogstavregning Side I bogstavregning skal du kunne regne med bogstaver og skifte bogstaver ud med tal. Formler En formel er en slags regne-opskrift,

Læs mere

fsa 1 På indkøb 2 En redekasse 3 Mikaels løbeture 4 Brug af Facebook 5 En femkantblomst 6 Sumtrekanter Matematisk problemløsning

fsa 1 På indkøb 2 En redekasse 3 Mikaels løbeture 4 Brug af Facebook 5 En femkantblomst 6 Sumtrekanter Matematisk problemløsning fsa Folkeskolens Afgangsprøve Matematisk problemløsning Maj 2013 Et svarark er vedlagt som bilag til dette opgavesæt 1 På indkøb 2 En redekasse 3 Mikaels løbeture 4 Brug af Facebook 5 En femkantblomst

Læs mere

Forslag til løsning af Opgaver til analytisk geometri (side 338)

Forslag til løsning af Opgaver til analytisk geometri (side 338) Forslag til løsning af Opgaver til analytisk geometri (side 8) Opgave Linjerne har ligningerne: a : y x 9 b : x y 0 y x 8 c : x y 8 0 y x Der må gælde: a b, da Skæringspunkt mellem a og b:. Det betyder,

Læs mere

Forslag til løsning af Opgaver til ligningsløsning (side172)

Forslag til løsning af Opgaver til ligningsløsning (side172) Forslag til løsning af Opgaver til ligningsløsning (side17) Opgave 1 Hvis sønnens alder er x år, så er faderens alder x år. Der går x år, før sønnen når op på x år. Om x år har faderen en alder på: x x

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj 2014 Institution Uddannelse Fag og niveau Lærer(e) VUF - Voksenuddannelsescenter Frederiksberg Hf Matematik

Læs mere

Matematik B. Højere forberedelseseksamen

Matematik B. Højere forberedelseseksamen Matematik B Højere forberedelseseksamen hfe11-mat/b-3108011 Onsdag den 31. august 011 kl. 9.00-13.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål.

Læs mere

1hf Spørgsmål til mundtlig matematik eksamen sommer 2014

1hf Spørgsmål til mundtlig matematik eksamen sommer 2014 1. Procent og rente Vis, hvordan man beregner gennemsnitlig procentændring 2. Procent og rente Vis hvordan man beregner indekstal. 3. Procent og rente Vis, hvordan man kan beregne forskellige størrelser

Læs mere

https://www.uvm.dk/~/media/uvm/filer/udd/folke/pdf14/nov/141127_initiativer_til_videreudvikling _af_folkeskolens_proever.pdf

https://www.uvm.dk/~/media/uvm/filer/udd/folke/pdf14/nov/141127_initiativer_til_videreudvikling _af_folkeskolens_proever.pdf Digitalt prøvesæt Dette er et opgavesæt, som jeg har forsøgt at forestille mig, det kan se ud, hvis det skal leve op til ordene i det der er initiativ 3 i rækken af initiativer til videreudvikling af folkeskolens

Læs mere

Bogstavregning. Formler...74 Reduktion...78 Ligninger...81 Ligninger som løsningsmetode...86. Bogstavregning Side 73

Bogstavregning. Formler...74 Reduktion...78 Ligninger...81 Ligninger som løsningsmetode...86. Bogstavregning Side 73 Bogstavregning Formler...7 Reduktion...78 Ligninger...81 Ligninger som løsningsmetode...86 Bogstavregning Side 7 Formler 1: Regn disse opgaver med formler: a: Beregn: y = 5 + når: = b: Beregn: b = 15 a

Læs mere

MATEMATIK B-NIVEAU STX081-MAB

MATEMATIK B-NIVEAU STX081-MAB MATEMATIK B-NIVEAU STX081-MAB Delprøven uden hjælpemidler Opgave 1 Indsættes h = 2 og x = i (x + h) 2 h(h + 2x), så fås (x + h) 2 h(h + 2x) = ( + 2) 2 2(2 + 2 ) = 5 2 2 8 = 25 16 = 9 Hvis man i stedet

Læs mere

8.1 Lav en ordbog med tegninger og/eller definitioner af de geometriske begreber:

8.1 Lav en ordbog med tegninger og/eller definitioner af de geometriske begreber: 8. 8.1 Lav en ordbog med tegninger og/eller definitioner af de geometriske begreber: Kvadrat Rektangel Parallelogram Trapez Ligebenet trekant Ligesidet trekant Retvinklet trekant Rombe Polygon Ellipse

Læs mere

Den bedste dåse, en optimeringsopgave

Den bedste dåse, en optimeringsopgave bksp-20-15e Side 1 af 7 Den bedste dåse, en optimeringsopgave Mange praktiske anvendelser af matematik drejer sig om at optimere en variabel ved at vælge en passende kombination af andre variable. Det

Læs mere

4x + 3y + k 4(x + 3y + k) 2(y + x) + 2(xy + k) 7(2y + 3x) 2(k + 2(y + x))

4x + 3y + k 4(x + 3y + k) 2(y + x) + 2(xy + k) 7(2y + 3x) 2(k + 2(y + x)) A.0 A Algebradans x + y + k (x + y + k) (y + x) + (xy + k) (y + x) (k + (y + x)) k + k + k + (y +xy + k) (y + x) + k x + x + x + x + x + k (xy + (y + x) xy + xy + k (k + y + k) (xy + x) + y 6(x + xy) k

Læs mere

Matematik A Vejledende opgaver 5 timers prøven

Matematik A Vejledende opgaver 5 timers prøven Højere Teknisk Eksamen 007 Matematik A Vejledende opgaver 5 timers prøven Undervisningsministeriet Prøvens varighed er 5 timer. Opgavebesvarelsen skal dokumenteres/begrundes. Opgavebesvarelsen skal udformes

Læs mere

Andengradspolynomier

Andengradspolynomier Andengradspolynomier Teori og opgaver (hf tilvalg) Forskydning af grafer...... 2 Andengradspolynomiets graf (parablen)..... 5 Andengradsligninger. 10 Andengradsuligheder 13 Nyttige formler, beviser og

Læs mere

Reelle tal. Symbolbehandlingskompetencen er central gennem arbejdet med hele kapitlet i elevernes arbejde med tal og regneregler.

Reelle tal. Symbolbehandlingskompetencen er central gennem arbejdet med hele kapitlet i elevernes arbejde med tal og regneregler. Det første kapitel i grundbogen til Kolorit i 9. klasse handler om de reelle tal. Første halvdel af kapitlet har karakter af at være opsamlende i forhold til, hvad eleverne har arbejdet med på tidligere

Læs mere

Opgavesæt 12 21/01-2009. Laura Pettrine Madsen Uden hjælpemidler. skitse af grafen for f(x).

Opgavesæt 12 21/01-2009. Laura Pettrine Madsen Uden hjælpemidler. skitse af grafen for f(x). Uden hjælpemidler Opgave 8.00 Funktionen f(x) er bestemt ved skitse af grafen for f(x). f ( x) = x 3 4x. På figuren ses en Grafen skærer førsteaksen i punkterne P(,0), O(0,0) og Q(,0). Sammen med førsteaksen

Læs mere

Facitliste til Trigonometri i praksis 8.-9. klasse Erik Bilsted 1.udgave, 1. oplag

Facitliste til Trigonometri i praksis 8.-9. klasse Erik Bilsted 1.udgave, 1. oplag [1] Facitliste til Trigonometri i praksis 8.-9. klasse Erik Bilsted 1.udgave, 1. oplag 2009 Alinea København Kopiering af denne bog er kun tilladt ifølge aftale med COPY-DAN Forlagsredaktion: Heidi Freiberg

Læs mere

3 kg vindruer koster 66 kr. 2 kg vindruer koster 56 kr. 2 kg vindruer. koster 48 kr. 2,5 kg vindruer. koster 45 kr. koster 108 kr.

3 kg vindruer koster 66 kr. 2 kg vindruer koster 56 kr. 2 kg vindruer. koster 48 kr. 2,5 kg vindruer. koster 45 kr. koster 108 kr. 2. 4. Vindruer,5 kg vindruer koster 45 kr. 3 kg vindruer koster 45 kr. 2 kg vindruer koster 48 kr. 2 kg vindruer koster 56 kr. 3,5 kg vindruer koster 63 kr. 3 kg vindruer koster 66 kr. 2 kg vindruer koster

Læs mere

Vejledende Matematik B

Vejledende Matematik B Vejledende Matematik B Prøvens varighed er 4 timer. Alle hjælpemidler er tilladt. Af opgaverne 8A, 8B, 8C og 8D skal kun to afleveres til bedømmelse. Hvis flere end to opgaver afleveres, bedømmes kun besvarelsen

Læs mere

Omkreds af polygoner. Måling. Format 6. Nr. 82. Navn: Klasse: Dato: Kopiark til elevbog side 77

Omkreds af polygoner. Måling. Format 6. Nr. 82. Navn: Klasse: Dato: Kopiark til elevbog side 77 Måling Omkreds af polygoner Nr. 82 5 10 15 Par/gruppeaktivitet. Klip de fem polygoner ud. Læg to eller flere polygoner side mod side, så der dannes en ny polygon. Beregn de 13 forskellige omkredse, der

Læs mere

bruge en formel-samling

bruge en formel-samling Geometri Længdemål og omregning mellem længdemål... 56 Omkreds og areal af rektangler og kvadrater... 57 Omkreds og areal af andre figurer... 58 Omregning mellem arealenheder... 6 Nogle geometriske begreber

Læs mere

Formelsamling Matematik C

Formelsamling Matematik C Formelsamling Matematik C Ib Michelsen Ikast 2011 Ligedannede trekanter Hvis to trekanter er ensvinklede har de proportionale sider (dvs. alle siderne i den ene er forstørrelser af siderne i den anden

Læs mere

Teknologi & Kommunikation

Teknologi & Kommunikation Side 1 af 6 Indledning Denne note omhandler den lineære funktion, hvis graf i et koordinatsystem er en ret linie. Funktionsbegrebet knytter to størrelser (x og y) sammen, disse to størrelser er afhængige

Læs mere

Regning med enheder. Måleenheder... 11 Kg-priser... 13 Tid og hastighed... 15 Valuta... 17. Regning med enheder Side 10

Regning med enheder. Måleenheder... 11 Kg-priser... 13 Tid og hastighed... 15 Valuta... 17. Regning med enheder Side 10 Regning med enheder Måleenheder... 11 Kg-priser... 13 Tid og hastighed... 15 Valuta... 17 Regning med enheder Side 10 Måleenheder Du skal kende de vigtigste måleenheder for vægt, rumfang og længde. Vægt

Læs mere

Arealer under grafer

Arealer under grafer HJ/marts 2013 1 Arealer under grafer 1 Arealer og bestemt integral Som bekendt kan vi bruge integralregning til at beregne arealer under grafer. Helt præcist har vi denne sætning. Sætning 1 (Analysens

Læs mere

brikkerne til regning & matematik potenstal og rodtal F+E+D preben bernitt

brikkerne til regning & matematik potenstal og rodtal F+E+D preben bernitt brikkerne til regning & matematik potenstal og rodtal F+E+D preben bernitt brikkerne til regning & matematik potenstal og rodtal F ISBN: 978-87-92488-06-0 2. Udgave som E-bog 2010 by bernitt-matematik.dk

Læs mere

Løsningsforslag 7. januar 2011

Løsningsforslag 7. januar 2011 Løsningsforslag 7. januar 2011 May 9, 2012 Opgave 1 (5%) Funktionen f er givet ved forskriften f(x) = ln(x 2) + x 2. a) Bestem definitionsmængden for f. b) Beregn f (x). a) Definitionsmængden Logaritmen

Læs mere

Afstand fra et punkt til en linje

Afstand fra et punkt til en linje Afstand fra et punkt til en linje Frank Villa 6. oktober 2014 Dette dokument er en del af MatBog.dk 2008-2012. IT Teaching Tools. ISBN-13: 978-87-92775-00-9. Se yderligere betingelser for brug her. Indhold

Læs mere

Matematik Eksamensprojekt

Matematik Eksamensprojekt Matematik Eksamensprojekt Casper Wandrup Andresen, 2.F I dette projekt arbejdes der bl.a. med parabler, vektorer, funktioner, sinus, cosinus, tangens, differentialregning, integralregning samt de øvrige/resterende

Læs mere

Trigonometri. for 8. klasse. Geert Cederkvist

Trigonometri. for 8. klasse. Geert Cederkvist Trigonometri Ved konstruktion af bygningsærker, hor der kræes stor nøjagtighed, er der ofte brug for, at man kan beregne sider og inkler i geometriske figurer. Alle polygoner kan deles op i trekanter,

Læs mere

Afstandsformlerne i Rummet

Afstandsformlerne i Rummet Afstandsformlerne i Rummet Frank Nasser 12. april 2011 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Bemærk:

Læs mere

Eksamensspørgsmål: Trekantberegning

Eksamensspørgsmål: Trekantberegning Eksamensspørgsmål: Trekantberegning Indhold Definition af Sinus og Cosinus... 1 Bevis for Sinus- og Cosinusformlerne... 3 Tangens... 4 Pythagoras s sætning... 4 Arealet af en trekant... 7 Vinkler... 8

Læs mere

Statistik. Statistik Side 136

Statistik. Statistik Side 136 Statistik Tabeller og diagrammer...137 Middelværdi med mere...142 Hyppighed og frekvens...143 Fremstilling af diagrammer...144 Aflæsning på cirkeldiagrammer...147 Grupperede fordelinger...148 Statistik

Læs mere

Differential- regning

Differential- regning Differential- regning 1 del () (1) 006 Karsten Juul Indhold 1 Funktionsværdi, graf og tilvækst1 Differentialkvotient og tangent8 3 Formler for differentialkvotient16 4 Opgaver med tangent 5 Væksthastighed5

Læs mere

Matematik B. Højere handelseksamen. 1. Delprøve, uden hjælpemidler. Mandag den 19. december 2011. kl. 9.00-13.00

Matematik B. Højere handelseksamen. 1. Delprøve, uden hjælpemidler. Mandag den 19. december 2011. kl. 9.00-13.00 Matematik B Højere handelseksamen 1. Delprøve, uden hjælpemidler kl. 9.00-10.00 hhx113-mat/b-19122011 Mandag den 19. december 2011 kl. 9.00-13.00 Matematik B Prøven uden hjælpemidler Prøvens varighed er

Læs mere

MATEMATIK C. Videooversigt

MATEMATIK C. Videooversigt MATEMATIK C Videooversigt Deskriptiv statistik... 2 Eksamensrelevant... 2 Eksponentiel sammenhæng... 2 Ligninger... 3 Lineær sammenhæng... 3 Potenssammenhæng... 4 Proportionalitet... 4 Rentesregning...

Læs mere

Matematik på VUC Modul 2 Opgaver. Vægtenheder...2 Rumfangenheder...6 Længdeenheder...8 Blandede opgaver med vægt, rumfang og længde...

Matematik på VUC Modul 2 Opgaver. Vægtenheder...2 Rumfangenheder...6 Længdeenheder...8 Blandede opgaver med vægt, rumfang og længde... Købmandsregning Vægtenheder...2 Rumfangenheder...6 Længdeenheder...8 Blandede opgaver med vægt, rumfang og længde...9 Udarbejdet af: Niels Jørgen Andreasen, VUC Århus nja@vucaarhus.dk Modul 2,1 - købmandsregning

Læs mere

1q + 1qs Ikast-Brande Gymnasium maj 2015. 1. Procent og rente Forklar hvad betyder begrebet procent og hvordan man beregner det.

1q + 1qs Ikast-Brande Gymnasium maj 2015. 1. Procent og rente Forklar hvad betyder begrebet procent og hvordan man beregner det. Emne: procent og rente: 1. Procent og rente Forklar hvad betyder begrebet procent og hvordan man beregner det. Forklar, hvordan man lægger procenter til og trækker procenter fra. Gør rede for begrebet

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj 2014 Institution Uddannelse Fag og niveau Lærer(e) VUF - Voksenuddannelsescenter Frederiksberg Stx Matematik

Læs mere

VEKTOR I RUMMET PROJEKT 1. Jacob Weng & Jeppe Boese. Matematik A & Programmering C. Avedøre-værket. Roskilde Tekniske Gymnasium 3.4. Fag.

VEKTOR I RUMMET PROJEKT 1. Jacob Weng & Jeppe Boese. Matematik A & Programmering C. Avedøre-værket. Roskilde Tekniske Gymnasium 3.4. Fag. VEKTOR I RUMMET PROJEKT 1 Fag Matematik A & Programmering C Tema Avedøre-værket Jacob Weng & Jeppe Boese Roskilde Tekniske Gymnasium 3.4 07-10-2010 1 Vektor i rummet INDLEDNING Projektet omhandler et af

Læs mere

Matematiske færdigheder opgavesæt

Matematiske færdigheder opgavesæt Matematiske færdigheder opgavesæt SÆT + 0 :, 0 000 9 0 cm m 0 liter dl ton kg Hvilket år var der flest privatbiler i Danmark? Cirka hvor mange privatbiler var der i 99? 00 0 000 Priser i Tivoli, 00: Turpas

Læs mere

Sukker. Matematik trin 2. avu. Almen voksenuddannelse Onsdag den 20. maj 2009 kl. 9.00 13.00

Sukker. Matematik trin 2. avu. Almen voksenuddannelse Onsdag den 20. maj 2009 kl. 9.00 13.00 Sukker Matematik trin 2 avu Almen voksenuddannelse Onsdag den 20. maj 2009 kl. 9.00 13.00 Sukker Matematik trin 2 Skriftlig matematik Opgavesættet består af: Opgavehæfte Svarark Hæftet indeholder følgende

Læs mere

Basal Matematik 3. Navn: Klasse: Matematik Opgave Kompendium. Opgaver: 64 Ekstra: 9 Point:

Basal Matematik 3. Navn: Klasse: Matematik Opgave Kompendium. Opgaver: 64 Ekstra: 9 Point: Matematik / Basal Matematik Navn: Klasse: Matematik Opgave Kompendium Basal Matematik Følgende gennemgås De 4 regnearter Afrunding af tal Regne hierarki Enheds omregning Reduktion Brøkregning Potenser

Læs mere

Temaopgave: Parameterkurver Form: 6 timer med vejledning Januar 2010

Temaopgave: Parameterkurver Form: 6 timer med vejledning Januar 2010 Temaopgave: Parameterkurver Form: 6 timer med vejledning Januar 1 Parameterkurver Vi har tidligere set på en linjes parameterfremstilling, feks af typen: 1 OP = t +, hvor t R, og hvor OP er stedvektor

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj 2013 Institution Uddannelse Fag og niveau Lærer(e) VUF - Voksenuddannelsescenter Frederiksberg hf Matematik

Læs mere

Opgave 1 Til denne opgave anvendes bilag 1.

Opgave 1 Til denne opgave anvendes bilag 1. Opgave 1 Til denne opgave anvendes bilag 1. a) Undersøg figur 1. Mål og noter vinklerne Mål og noter længderne b) Undersøg figur 2. Mål og noter vinklerne Mål og noter længderne c) Undersøg figur 3. Mål

Læs mere

Lektion 7 Funktioner og koordinatsystemer

Lektion 7 Funktioner og koordinatsystemer Lektion 7 Funktioner koordinatsystemer Brug af grafer koordinatsystemer Lineære funktioner Andre funktioner ligninger med ubekendte Lavet af Niels Jørgen Andreasen, VUC Århus. Redigeret af Hans Pihl, KVUC

Læs mere

Tekst Notation og layout Redegørelse og dokumentation Figurer Konklusion

Tekst Notation og layout Redegørelse og dokumentation Figurer Konklusion 1 Indledning Dette afsnit omhandler første delprøve, den uden hjælpemidler. Dette afsnit bygger på vejledningen til lærerplanen og lærerplanen for matematik b-niveau, samt eksamensopgaverne fra 2014-2012,

Læs mere

Matematik A. Studentereksamen. Digital eksamensopgave med adgang til internettet

Matematik A. Studentereksamen. Digital eksamensopgave med adgang til internettet Matematik A Studentereksamen Digital eksamensopgave med adgang til internettet 1stx131-MATn/A-405013 Fredag den 4. maj 013 kl. 09.00-14.00 Opgavesættet er delt i to dele. Delprøve 1: timer med autoriseret

Læs mere

Funktioner. Funktioner Side 150

Funktioner. Funktioner Side 150 Funktioner Brug af grafer koordinatsystemer... 151 Lineære funktioner ligefrem proportionalitet... 157 Andre funktioner... 163 Kært barn har mange navne... 165 Funktioner Side 15 Brug af grafer koordinatsystemer

Læs mere

Forklar hvad betyder begrebet procent og hvordan man beregner det. Forklar, hvordan man lægger procenter til og trækker procenter fra.

Forklar hvad betyder begrebet procent og hvordan man beregner det. Forklar, hvordan man lægger procenter til og trækker procenter fra. 1. Procent og rente Forklar hvad betyder begrebet procent og hvordan man beregner det. Forklar, hvordan man lægger procenter til og trækker procenter fra. Gør rede for begrebet fremskrivningsfaktor. Vis,

Læs mere

Trigonometri. Store konstruktioner. Måling af højde

Trigonometri. Store konstruktioner. Måling af højde Trigonometri Ordet trigonometri er sammensat af de to ord trigon og metri, hvor trigon betyder trekant og metri kommer af det græske ord metros, som kan oversættes til måling. Så ordet trigonometri er

Læs mere

FACITLISTE TIL KAPITEL 3 ØVELSER ØVELSE 1. a) Voksende. b) Voksende. c) Konstant. d) Aftagende ØVELSE 2. a) f aftagende i f voksende i

FACITLISTE TIL KAPITEL 3 ØVELSER ØVELSE 1. a) Voksende. b) Voksende. c) Konstant. d) Aftagende ØVELSE 2. a) f aftagende i f voksende i 1 af 41 MATEMATIK B hhx Udskriv siden FACITLISTE TIL KAPITEL 3 ØVELSER ØVELSE 1 Voksende Voksende Konstant Aftagende ØVELSE 2 f aftagende i f aftagende i f aftagende i f aftagende i ØVELSE 3 Hældningen

Læs mere

Lektion 7s Funktioner - supplerende opgaver. Omvendt proportionalitet og hyperbler. Matematik på Åbent VUC

Lektion 7s Funktioner - supplerende opgaver. Omvendt proportionalitet og hyperbler. Matematik på Åbent VUC Lektion 7s Funktioner - supplerende opgaver Omvendt proportionalitet og hperbler 1: 4 m m 1; 8; 6; 4, 8 ; 4;..; 4 4,9 m ( = 4 ) : 1.5 kr. 65 kr..5; 1.5; 8;..; 417 Ja mdr. 15. : 6,6 kr., kr. 1, kr. 9,9

Læs mere

Trekanttypespil. 7 Trekanter. En trekant, hvor to af vinklerne er 90. En retvinklet trekant med siderne 3, 4, og 5. Kan ikke konstrueres.

Trekanttypespil. 7 Trekanter. En trekant, hvor to af vinklerne er 90. En retvinklet trekant med siderne 3, 4, og 5. Kan ikke konstrueres. .01 Trekanter Trekanttypespil En retvinklet trekant med siderne,, og. Kan ikke konstrueres. En trekant, hvor to af vinklerne er 90. En ligesidet trekant med siden. En spidsvinklet trekant hvor den ene

Læs mere

Grundlæggende Opgaver

Grundlæggende Opgaver Grundlæggende Opgaver Opgave 1 En retvinklet trekant har sine vinkelspidser i (,4),(4, 4) og (, 4). a) Hvor store er kateterne? b) Hvor store er hypotenusen? c) Beregn trekantens areal. d) Bestem kateterne,

Læs mere

Omkreds af kvadrater og rektangler

Omkreds af kvadrater og rektangler Omkreds af kvadrater og rektangler Nr. 72 Gæt omkreds Mål længde Mål bredde Beregn omkreds Beregn omkreds dm Gæt omkredsen på kvadraterne og rektanglerne i centimeter. Mål længde og bredde. Beregn omkredsen

Læs mere

funk tioner Bro Træ SEK Grafer 1 Mountainbike løb a Tegn ruten: ( 1,0) (1,1) (2,1) (3,2) (4,1) (3,0) (2,0) (1, 1) ( 1,0)

funk tioner Bro Træ SEK Grafer 1 Mountainbike løb a Tegn ruten: ( 1,0) (1,1) (2,1) (3,2) (4,1) (3,0) (2,0) (1, 1) ( 1,0) Valutak u rser e talpar r Ordned nktione u f r o f r te Forskrif Grafer Sverige (SEK) Euro EU R Amerika 75,0 nske doll ar EUR 59,5 Britiske pund G 9 BP Svenske 1,1 kroner SEK Norske k 7,7 roner N OK Islandsk

Læs mere

Eksamensspørgsmål 4emacff1

Eksamensspørgsmål 4emacff1 Eksamensspørgsmål 4emacff1 1. Funktioner, Lineære funktioner Gør rede for den lineære funktion y ax b. Forklar herunder betydningen af a og b, og kom ind på det grafiske forløb af en lineær funktion. Kom

Læs mere

Tegning og figurer. 1 Tegn med GeoGebra. Du skal bruge Computer. Tablet. 2 Rundt om og indeni Du skal bruge Målebånd. Kvadratpapir.

Tegning og figurer. 1 Tegn med GeoGebra. Du skal bruge Computer. Tablet. 2 Rundt om og indeni Du skal bruge Målebånd. Kvadratpapir. Tegning og figurer 1 Tegn med GeoGebra Du skal bruge Computer Tablet KG 2 Rundt om og indeni Du skal bruge Målebånd Kvadratpapir Arbejdsark 23 24 KG Værksted 3: Byg huse. 25 26 27 Værksted 4: Tegn, hvad

Læs mere

VUC Vestsjælland Syd, Slagelse Nr. 1 Institution: Projekt Trigonometri

VUC Vestsjælland Syd, Slagelse Nr. 1 Institution: Projekt Trigonometri VUC Vestsjælland Syd, Slagelse Nr. 1 Institution: 333247 2015 Anders Jørgensen, Mark Kddafi, David Jensen, Kourosh Abady og Nikolaj Eriksen 1. Indledning I dette projekt, vil man kunne se definitioner

Læs mere

for gymnasiet og hf 2016 Karsten Juul

for gymnasiet og hf 2016 Karsten Juul for gymnasiet og hf 75 50 5 016 Karsten Juul Statistik for gymnasiet og hf Ä 016 Karsten Juul 4/1-016 Nyeste version af dette håfte kan downloades fra http://mat1.dk/noter.htm HÅftet mç benyttes i undervisningen

Læs mere

Matematik projekt 4. Eksponentiel udvikling. Casper Wandrup Andresen 2.F 16-01-2009. Underskrift:

Matematik projekt 4. Eksponentiel udvikling. Casper Wandrup Andresen 2.F 16-01-2009. Underskrift: Matematik projekt 4 Eksponentiel udvikling Casper Wandrup Andresen 2.F 16-01-2009 Underskrift: Teorien bag eksponentiel udvikling er som sådan meget enkel. Den har forskriften: B er vores begndelsesværdi

Læs mere

Potens & Kvadratrod. Navn: Klasse: Matematik Opgave Kompendium. Opgaver: 22 Ekstra: 4 Point: Matematik / Potens & Kvadratrod

Potens & Kvadratrod. Navn: Klasse: Matematik Opgave Kompendium. Opgaver: 22 Ekstra: 4 Point: Matematik / Potens & Kvadratrod Navn: Klasse: Matematik Opgave Kompendium Potens & Kvadratrod Opgaver: Ekstra: Point: http://madsmatik.dk/ d.0-0-01 1/1 Potenser: Du har måske set udtrykket før eller måske 10 1. Begge to er det vi kalder

Læs mere

Statistik - supplerende eksempler

Statistik - supplerende eksempler - supplerende eksempler Grupperede observationer: Middelværdi og summeret frekv... 82b Indekstal... 82c Median, kvartil, boksplot... 82e Sumkurver... 82h Side 82a Grupperede observationer: Middelværdi

Læs mere

Opgave 1 Alle tallene er reelle tal, så opgaven er at finde den mindste talmængde, som resultaterne tilhører.

Opgave 1 Alle tallene er reelle tal, så opgaven er at finde den mindste talmængde, som resultaterne tilhører. Opgave 1 Alle tallene er reelle tal, så opgaven er at finde den mindste talmængde, som resultaterne tilhører. A. Q B. R (sidelængden er 5, som er irrational) C. Q Opgave 2 A. 19 = 1 19 24 = 2 3 3 36 =

Læs mere

Delmængder af Rummet

Delmængder af Rummet Delmængder af Rummet Frank Nasser 11. juli 2011 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Indhold 1 Introduktion

Læs mere

Formler, ligninger, funktioner og grafer

Formler, ligninger, funktioner og grafer Formler, ligninger, funktioner og grafer Omskrivning af formler, funktioner og ligninger... 1 Grafisk løsning af ligningssystemer... 1 To ligninger med to ubekendte beregning af løsninger... 15 Formler,

Læs mere

Polynomier et introforløb til TII

Polynomier et introforløb til TII Polynomier et introforløb til TII Formål At introducere polynomier af grad 0, 1, 2 samt højere, herunder grafer og rødder At behandle andengradspolynomiet og dets graf, parablen, med fokus på bl.a. toppunkt,

Læs mere

Matematik C Højere forberedelseseksamen

Matematik C Højere forberedelseseksamen Matematik C Højere forberedelseseksamen Hæfte: August 2014 Kl. 9.00-12.00 Copyright Anders og Mark Kommentar til opgaven: Lilla farve - angiver formlen. Rød farve - angiver ophævelsen af en ligning. Matematik

Læs mere

Matematik A. Studentereksamen. Tirsdag den 27. maj 2014 kl. 9.00-14.00. 2stx141-MAT/A-27052014

Matematik A. Studentereksamen. Tirsdag den 27. maj 2014 kl. 9.00-14.00. 2stx141-MAT/A-27052014 Matematik A Studentereksamen stx141-mat/a-705014 Tirsdag den 7. maj 014 kl. 9.00-14.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål. Delprøven

Læs mere

brikkerne til regning & matematik geometri trin 2 preben bernitt

brikkerne til regning & matematik geometri trin 2 preben bernitt brikkerne til regning & matematik geometri trin 2 preben bernitt brikkerne til regning & matematik geometri, trin 2 ISBN: 978-87-92488-16-9 1. Udgave som E-bog 2003 by bernitt-matematik.dk Kopiering er

Læs mere

Regn med tallene. 1 Spil Væddeløbet. Du skal bruge Kuber. To terninger. Arbejdsark

Regn med tallene. 1 Spil Væddeløbet. Du skal bruge Kuber. To terninger. Arbejdsark Regn med tallene 1 Spil Væddeløbet Du skal bruge Kuber To terninger Arbejdsark 47 48 KG 2 Regn med lommeregner Du skal bruge Lommeregner Målebånd Stopur Vægt Arbejdsark 49 50 51 KG Værksted : Leg butik.

Læs mere

1. Modeller Redegør for regneforskrift og graf for forskellige vækstmodeller. Du skal specielt redegøre for eksponentielle modeller-

1. Modeller Redegør for regneforskrift og graf for forskellige vækstmodeller. Du skal specielt redegøre for eksponentielle modeller- 1. Modeller Redegør for regneforskrift og graf for forskellige vækstmodeller. Du skal specielt redegøre for eksponentielle modeller- Vækstmodellerne: Lineær funktion: Forskrift: a er hældningskoefficient

Læs mere

STUDENTEREKSAMEN GUX MAJ 2007 2014 MATEMATIK A-NIVEAU. Prøveform b. Kl. 9.00 14.00 GUX-MAA

STUDENTEREKSAMEN GUX MAJ 2007 2014 MATEMATIK A-NIVEAU. Prøveform b. Kl. 9.00 14.00 GUX-MAA STUDENTEREKSAMEN GUX MAJ 007 014 MATEMATIK A-NIVEAU Prøveform b 014 Kl. 9.00 14.00 GUX-MAA Matematik A Prøvens varighed er 5 timer. Delprøven uden hjælpemidler består af opgaverne 1 til 6 med i alt 6 spørgsmål.

Læs mere

Opg. 1. Cylinder. Opg. 1 spm. a løses i hånden. Cylinderens radius er 10 cm og keglen er 20 cm høj. Paraboloidens profil kan beskrives med ligningen

Opg. 1. Cylinder. Opg. 1 spm. a løses i hånden. Cylinderens radius er 10 cm og keglen er 20 cm høj. Paraboloidens profil kan beskrives med ligningen Opg. 1 spm. a løses i hånden. Cylinderens radius er 10 cm og keglen er 20 cm høj. Paraboloidens profil kan beskrives med ligningen Opg. 1 a) Bestem de funktioner h(t), der beskriver vandhøjden i beholderen,

Læs mere