Projekt 4.6 Didaktisk oplæg til et eksperimenterende forløb med fokus på modellering og repræsentationsformer

Størrelse: px
Starte visningen fra side:

Download "Projekt 4.6 Didaktisk oplæg til et eksperimenterende forløb med fokus på modellering og repræsentationsformer"

Transkript

1 rojekter: Kapitel. rojekt.6 Eksperimenterende forløb med fokus på modellering og repræsentationsformer rojekt.6 idaktisk oplæg til et eksperimenterende forløb med fokus på modellering og repræsentationsformer ette er et oplæg til underviseren om en mulig udformning af et eksperimenterende forløb, hvor der er fokus på modellering og repræsentationsformer. Oplægget er således ikke et færdigt forløb, men indeholder materialer og forslag, som man kan klippe fra til sit veget forløb. et skyldes bl.a., at fokus her er arbejdsformer og kompetencer. et kan realiseres i flere faglige sammenhænge vægt på geometri, vægt på symbolhåndtering, vægt på anvendelse af værktøjer, vægt på at illustrere differentialregningens muligheder osv. er er givet eksempler fra alle disse felter. Introduktion om taksonomi et følgende er en eksemplificering af rolins taksonomi. enne handler først og fremmest om modelleringsopgaver i matematik, dvs. det er en taksonomi for matematikopgaver og dermed knap så generel som Solo-taksonomien. Taksonomien går fra helt lukkede opgaver til helt åbne opgaver: Niveau 1: Opgaven er helt lukket. Modellen er givet med diagrammer, variable og relevante sammenhænge i form af ligninger eller forskrifter. et er også klart, hvad opgaven går ud på: Løsning af en ligning, fastlæggelse af et toppunkt, Hvis den er meget enkel med f kun to variable involveret (standardopgave) svarer det nærmest til Solo-taksonomiens første niveau Unistrukturel, men den kan godt involvere flere end to variable, så der skal kombineres lidt før man kan løse opgaven og så kan den nå op på Solo-taksonomiens andet niveau, multi-strukturel. Niveau : Opgaven er delvis lukket. enne gang får vi ikke foræret variabelsammenhængene, men vi får oplyst hvilke variable, der indgår i modellen, så det er ligningerne, vi først skal finde. et er langt sværere selv at opbygge de nødvendige ligninger, så opgaver af denne type når hurtigt op på det tredje solo-niveau, det relationelle niveau, selv om der også findes simple standardopgaver af denne type (f givet en retvinklet trekant med kateterne a og b. Find hypotenusen c.) Niveau 3: Opgaven er delvis åben. enne gang får vi heller ikke variablene foræret men skal selv identificere de relevante variable. et er endnu sværere at afkode den slags opgaver, så de vil ikke blot ligge på det tredje solo-niveau, det relationelle, men typisk nå op på det abstrakte. Opgaven kan dog formuleres så den kan løses konkret, hvor man holder sig på det strukturelle niveau, ved at man undlader at forlange en symbolsk gennemregning af problemstillingen, men en fuldstændig løsning vil kunne række op gennem alle niveauerne. Niveau : Opgaven er helt åben. Her får man kun et problemfelt udpeget og skal selv definere problemet/opgaven. et er selvfølgelig det allersværeste. Her er det næppe muligt at arbejde meningsfyldt hvis man ikke mindst er på tredje soloniveau, det relationelle. rolins taksonomi illustreres nemmest ved at gå fra oven og ned. Man kan både vælge at anvende niveauerne i en undervisningsdifferentiering og i en progressionsplan. Eksemplificering gennem et eksempel: Foldning af et stykke papir. Niveau : Et eksempel på et niveau problem kunne være: Her er et ark papir, f et -papir. Konstruer et interessant problem! Her må man så overveje hvad man overhovedet kan. 013 L& Uddannelse /S Vognmagergade 11 K-118 København K Tlf:

2 rojekter: Kapitel. rojekt.6 Eksperimenterende forløb med fokus på modellering og repræsentationsformer et simpleste man kan gøre med et stykke papir er nok at folde det på midten: Man kan da se på forholdene i det oprindelige papir og det foldede papir. et kan gøres helt konkret eller ved hjælpe af mere eller mindre abstrakte udregninger. For et -ark opdager man da at de to forhold synes at være ens. erefter er vejen åbnet for en modellering af -arket, inklusive at man til sidst finder symbolske formler for sidelængderne i et -ark (givet at 0-arket må være 1 m, hvilket man også kan opdage selv). et næst simpleste man kan gøre med et stykke papir synes at være at folde det så et hjørne rammer den modsatte side. et giver anledning til en rig problemstilling, hvor man kan kigge på mange størrelser. et er typisk for mange af disse problemstilligner at de til syvende og sidst kan reduceres til et tredjegradspolynomium. et mest kendte eksempel er nok hvor man ser på den trekant i nederste venstre hjørne, der afsnøres af foldningen, og hvor man forsøger at bestemme arealet af den størst mulige trekant. Man kan også se på længden af folden: Hvor lille kan den blive? Men mulighederne er som sagt mange! Niveau 3: Som et eksempel på et niveau 3 problem vil vi nu se på foldningen af et stykke papir, hvor det ene hjørne foldes over på den modstående side. Man skal bestemme den foldning, der giver den mindste fold. Trin 0: Man kan til at begynde med danne sig et indtryk af problemet ved at afprøve forskellige muligheder for foldningen: 013 L& Uddannelse /S Vognmagergade 11 K-118 København K Tlf:

3 rojekter: Kapitel. rojekt.6 Eksperimenterende forløb med fokus på modellering og repræsentationsformer et ser da ud som om at folden i den ene ende er diagonalen i et kvadrat, at diagonalen bliver lidt kortere når man sænker punktet lidt, idet det nedre punkt på folden rykker hurtigere end det øvre punkt, men at der tilsyneladende ikke er nogen øvre grænse for hvor lang folden kan blive, anden end den der sættes af papirets højde. Man kunne selvfølgelig også prøve at følge med ved at måle med lineal. Men det er svært at komme tæt på det endelige resultat, hvis der er tale om en konkret papirfoldning. Trin 1 Geometrisk modellering (-niveau): en grundlæggende modellering består da i at konstruere en egentlig dynamisk geometrisk model af foldningen. å dette trin er der endnu ikke indført egentlige talvariable. Konstruktionen kan gennemføres på flere forskellige måder alt efter hvad man tager udgangspunkt i. Hvis vi indfører betegnelser for karakteristiske punkter kan vi f vælge mellem at tage udgangspunkt i et af de punkter, folden har som endepunkter, eller vi kan tage udgangspunkt i det punkt, hjørnet foldes over i. et giver allerede tre forskellige modeller, der konstrueres på hver sin måde: ' ' '' '' ' '' ' '' ' Om man foretrækker cirkelkonstruktionen eller midtnormal-konstruktionen er nok mest et spørgsmål om smag og behag, men valget kan få konsekvenser i de senere dele af analysen. Her følger vi det første spor. Så snart vi har en geometrisk modellering på plads kan vi ved at måle på foldens længde og trække i det røde punkt (her ) som driver konstruktionen finde et første bud på den minimale længde. et er da vigtigt at vi også måler papirets bredde, her 5 cm, (hvorimod højden ingen indflydelse har): ' ' '' '' '' 013 L& Uddannelse /S Vognmagergade 11 K-118 København K Tlf:

4 rojekter: Kapitel. rojekt.6 Eksperimenterende forløb med fokus på modellering og repræsentationsformer = cm = 6.95 cm = cm Man finder da den mindste fold til at være 6.95 cm med fire decimaler, og det er ikke nemt at se hvad dette tal skulle betyde. Tilsvarende kan man se at man skal folde papiret i afstanden ca cm. enne afstand er dog meget dårligt bestemt, da den varierer kraftigere end foldens længde. Meget mere kan man ikke gøre med en dynamisk geometrik model. Hvis man har stor erfaring med geometrisk modellering kan man finde på at sammenligne såvel forhold som kvadratet på forhold: = = = cm = 6.95 cm = cm et kunne godt tyde på at foldens kvadrat var gange kvadratet på sidebredden, ligesom det punkt vi folder fra kunne ligger ¾ hen af grundlinjen. Men det er svært at se om det er præcise mål eller bare vilde gæt. et er dog en smule bemærkelsesværdigt at netop er 7/16, altså 3 (3/). Men de færreste har så meget talsans at de vil kunne se at der er noget at forfølge. Trin variabelsammenhængen som en graf (-niveau): I første trin fandt vi en konkret løsning på problemet. ndet trin er et mellemtrin, hvor vi identificerer væsentlige variable og undersøger 013 L& Uddannelse /S Vognmagergade 11 K-118 København K Tlf:

5 rojekter: Kapitel. rojekt.6 Eksperimenterende forløb med fokus på modellering og repræsentationsformer variabelsammenhængen. en ene variabel er oplagt foldens længde. et er den afhængige variabel, som vi undersøger i modellen, dvs. y erimod er det ikke så oplagt hvad vi skal vælge som den uafhængige variabel. Vi vil prøve at følge flere forskellige spor. Men først og fremmest er det vigtigt at gøre sig klart at valget af uafhængig variabel i høj grad afhænger af hvordan vi forestiller os modellen opbygget! Her har vi ladet være det drivende punkt, så det er naturligt at lade definere den uafhængige variabel. ermed bliver det naturligt at lade s placering på grundlinjen være afgørende, dvs. vi bruger afstanden til hjørnepunktet som uafhængig variabel og sætter derfor Om det er et godt valg vil først vise sig senere! Men da vi har målt både og, dvs. og y kan vi overføre dem til et grafpunkt i koordinatsystemet. Man kan starte med at spore grafpunktet (,y) for at 18 danne sig et indtryk af grafens form. Men det er mere effektivt at konstruere grafen som et geometrisk sted hvad den jo vitterligt også er, selv om vi ikke altid tænker på grafen for en funktion som en geometrisk kurve. Under alle omstændigheder viser grafen tydeligt de forventede opførsel, med et klart 16 minimum. et er netop det minimum vi ønsker at fastlægge mere præcist. 1 1 = = = cm = 6.95 cm = cm Nogle vil foretrække at binde koordinatsystemet til selve konstruktionen. Så skal figuren spejlvendes, så man kan bruge grundlinjen som -aksen. Nogle vil endda foretrække at tage udgangspunkt i koordinatsystemet, så konstruktionen i langt højere grad gennemføres indenfor rammerne af analytisk geometri: 013 L& Uddannelse /S Vognmagergade 11 K-118 København K Tlf:

6 1 rojekter: Kapitel. rojekt.6 Eksperimenterende forløb med fokus på modellering og repræsentationsformer = = Her foreslår vi, at man adskiller repræsentationsformerne, og arbejde rent geometrisk indenfor den geometriske model og rent analytisk indenfor koordinatsystemet, så man ser hvordan de to forskellige repræsentationer belyser problemet fra forskellige synsvinkler. Trin 3 variabelsammenhængen som en ligning (-niveau): Så kommer vi ikke udenom at finde funktionens forskrift, dvs. ligningen, der binder og 6 y sammen. et er ikke trivielt og slet ikke i denne model, hvor vi reelt skal sammenholde oplysningerne om tre forskellige retvinklede trekanter: 8 S S S 5- Undervejs er der brug for flere gode ideer! I den første trekant genfinder vi hypotenusen, fordi og må ligge lige langt fra foldningspunktet. Grundlinjen må ydermere være 5 (eller b, hvis eleverne kan tage springet til ren bogstavregning, ellers kan man substituere senere). Men kender vi to af siderne i en retvinklet trekant kender vi selvfølgelig også den sidste side! 013 L& Uddannelse /S Vognmagergade 11 K-118 København K Tlf:

7 rojekter: Kapitel. rojekt.6 Eksperimenterende forløb med fokus på modellering og repræsentationsformer (5 ) 10 5 dvs Men så kan vi jo nemt komme videre til den anden trekant, hvor vi nu kender de to kateter: dvs. 10 Læg mærke til at vi kan kontrollere udregningerne i den dynamiske geometriske model ved at udregne værdien af de fundne udtryk og sammenholde dem med målinger. er er kontant afregning, hvis man har regnet galt. Men kigger vi så på den sidste trekant må S på grund af foldningen være midtpunktet, og må være midtnormalen til, dvs. S er netop halvt så stor og spiller rollen som højden i den sidste retvinklede trekant. I den sidste retvinklede trekant kender vi altså igen stykker, nemlig grundlinjen (som er ) og 10 højden S (som er ). Men så må vi kunne finde den søgte hypotenuse, dvs. y. et er her problemet skifter fra at være multistrukturelt til at være relationelt! y z Vi er nemlig nødt til at bruge to sammenhænge for at komme igennem: å den ene side ythagoras på den anden side arealformlen udregnet på to måder: y z y h z Man kan få god hjælp af sit S-værktøj, men under alle omstændigheder skal man finde y udtrykt ved og h. 3 y 5 h 5 Når støvet har lagt sig er forskriften altså givet ved y 3 5 emærkning: Når man arbejder med problemet i et S-værktøj vil eleverne løbe ind i mange komplikationer! et skyldes primært at vi arbejder indenfor måltallene, dvs. +. Men S-værktøjet arbejder indenfor de reelle tal - og endda delvist indenfor de komplekse tal, så længe resultaterne bare holder sig til de reelle tal. erved forsvinder nogle af de regneregler vi er vant til med kvadratrødder: Specielt gælder der ikke længere reglerne a b a b a b h a b 013 L& Uddannelse /S Vognmagergade 11 K-118 København K Tlf:

8 rojekter: Kapitel. rojekt.6 Eksperimenterende forløb med fokus på modellering og repræsentationsformer Man kan styre uden om nogle af problemerne ved at pålægge antagelser om at diverse størrelser skal være positive. Og man kan styre uden om alle problemerne ved at kvadrere variablene. Men det er noget man skal være meget opmærksom på, når man arbejder med S-reduktioner. å -niveau bør man vide noget mere om dette. Igen kan vi kontrollere det direkte ved at lægge grafen for funktionen oveni den geometriske modelgraf: f( ) = Man kan se hvordan funktionsgrafen er en udvidelse af den geometriske modelgraf. Men ellers er alt gået glat. Vi kan nu bruge de indbyggede grafiske værktøjer til at finde en mere præcis værdi for toppunktet: 013 L& Uddannelse /S Vognmagergade 11 K-118 København K Tlf:

9 16 rojekter: Kapitel. rojekt.6 Eksperimenterende forløb med fokus på modellering og repræsentationsformer Toppunkt 3 f( ) = 5 Toppunkt = y Toppunkt = Trin symbolsk løsning af problemet (- og -niveau): Med S-værktøjer til rådighed er det nu nærmest rutine at finde toppunktet symbolsk: Udtrykket ser lidt grimt ud, men tælleren viser klart at = 15/ er den eksakte værdi for minimumsstedet. En solve-kommando bekræfter dette: Ydermere ses det at den mindste fold har længden L& Uddannelse /S Vognmagergade 11 K-118 København K Tlf:

10 rojekter: Kapitel. rojekt.6 Eksperimenterende forløb med fokus på modellering og repræsentationsformer ifferentialkvotienten afslører også hvor den pæne løsning kommer fra, idet tælleren jo indeholdt faktoren ( 15). enne information ville være gået tabt, hvis vi var sprunget direkte til en solve(f ()=0,)! Trin 5 analyse af den symbolske løsning (+-niveau): Når der som her er en pæn løsning til problemet. Vi skal folde præcis ¾ henne af grundlinjen for at finde den mindste fold, ville det være rart at kaste lys over, hvorfor det er så simpelt? et kan man næppe sige at den ovenstående symbolske løsning gør! et er da en kunst at nedbryde det komplicerede funktionsudtryk og vise at problemet i virkeligheden handler om et tredjegradspolynomium af rkimedestypen y a ( k ), hvor rkimedes jo netop viste at det toppede i /3 k (ligesom andengradspolynomiet y a ( k ) topper i 1/ k ). et er de to simpleste og ældst kendte toppunktsformler: Tredjegradspolynomiet topper to tredje dele henne af definitionsintervallet, hvor anden gradspolynomiet topper halvvejs. Man skal da kunne argumentere med monotoniforhold! Vi søger et minimum for y Men her kan vi roligt kvadrere og i stedet søge et minimum for y, da kvadratfunktionen for de 5 positive tal er voksende. Her er brøklen lidt snasket i nævneren, så vi vender brøken og søger i stedet et maksimum for, da reciprokfunktionen for de positive tal er aftagende. 3 3 y 1 Så er vi næsten hjemme: Indfører vi variablene Y og y 1 X er det det samme som at finde et maksimum for variabelsammenhængen: Y X X X ( ) 5 Men den er jo netop af rkimedestypen, dvs. den topper to tredjedele henne eller i X og da vores uafhængige variabel er den reciprokke værdi fås netop. Man behøver altså ikke kunne differentiere hverken kvadratrødder eller brøker for at kunne finde toppunktet i hånden. Og samtidigt ser man nu klart, hvorfor der må være en pæn løsning til problemet. Men det kræver altså symbolsk overskud at kunne trævle et sådant funktionsudtryk op. fsluttende bemærkning: Vi har valgt at arbejde med algebraiske funktioner i denne løsningsmodel. Men man kunne lige så godt forsøge sig med en trigonometrisk løsning. Man ville da også kunne komme hurtigere frem til tredjegradspolynomiet. Nøglen ligger i valget af den uafhængige variabel. Her vil man i stedet kunne vælge en vinkel, f den vinkel, der peger over mod det punkt, der foldes til: 013 L& Uddannelse /S Vognmagergade 11 K-118 København K Tlf:

11 rojekter: Kapitel. rojekt.6 Eksperimenterende forløb med fokus på modellering og repræsentationsformer S y å grund af de retvinklede trekanter dukker vinklen op flere steder på figuren. Specielt gælder der den interessante sammenhæng: sin( ) sin( ) dvs. y y sin( ) Vi skal altså blot udtrykke ved hjælp af! et kræver selvfølgelig inddragelse af de andre retvinklede trekanter ligesom før. Først kan vi bemærke, at der må gælde S cos( ) dvs. S cos( ) og dermed S cos( ) Så kan vi bemærke at der må gælde Tan( ) dvs. 5 tan( ) 5 Men i trekanten kender vi nu både udtryk for kateterne og hypotenusen, så vi kan anvende pythagoras til at binde dem sammen: cos( ) 5 tan( ) 5 dvs. sin( ) 1 5 tan( ) 1 5 cos( ) 5 sin( ) cos( ) 5 1 cos( ) cos( ) cos( ) cos( ) Igen vil de få stor glæde af deres S-værktøj, men når støvet har lagt sig ender de med det simple udtryk: 5 1 cos( ) Vi kan samle det hele i udtrykket: 5 5 y cos( ) sin( ) (1 sin( ) ) sin( ) Graferne fører selvfølgelig til det samme resultat som før: 013 L& Uddannelse /S Vognmagergade 11 K-118 København K Tlf:

12 0 18 rojekter: Kapitel. rojekt.6 Eksperimenterende forløb med fokus på modellering og repræsentationsformer = cm = cm = 9.06 S G F 6 h( ) = 5 ( 1 sin( ) ) sin( ) Toppunkt = y Toppunkt = Toppunkt Vinklen er ikke så pæn! Men det er temmelig oplagt at den reciprokke fold er et tredjegradspolynomium i sin(). esværre dog ikke af rkimedes typen! Samtidigt peger dette valg af variabel på en anden overraskende kendsgerning: Vi kan lave ækvivalente repræsentationer af problemstillingen ved hjælp af enten algebraiske funktioner eller trigonometriske funktioner. å trods af at de som udgangspunkt synes at komme fra to helt forskellige verdener afspejler de altså dybest set de samme sammenhænge. er er altså en dyb forbindelse mellem algebra og trigonometri en pointe man kunne vælge at gøre noget ud af. 013 L& Uddannelse /S Vognmagergade 11 K-118 København K Tlf:

Projekt 2.1: Parabolantenner og parabelsyning

Projekt 2.1: Parabolantenner og parabelsyning Projekter: Kapitel Projekt.1: Parabolantenner og parabelsyning En af de vigtigste egenskaber ved en parabel er dens brændpunkt og en af parablens vigtigste anvendelser er som profilen for en parabolantenne,

Læs mere

Arealet af en trekant Der er mange formler for arealet af en trekant. Den mest kendte er selvfølgelig

Arealet af en trekant Der er mange formler for arealet af en trekant. Den mest kendte er selvfølgelig Arealet af en trekant Der er mange formler for arealet af en trekant. Den mest kendte er selvfølgelig som også findes i en trigonometrisk variant, den såkaldte 'appelsin'-formel: Men da en trekants form

Læs mere

Årsplan 8. klasse matematik 2013-2014 Uge Emne Faglige mål Trinmål Materialer/ systemer 33 og løbende

Årsplan 8. klasse matematik 2013-2014 Uge Emne Faglige mål Trinmål Materialer/ systemer 33 og løbende Årsplan 8. klasse matematik 2013-2014 33 løbende 33-34 løbende Løbende Problemregning ( faglig læsning) Mundtlig matematik (forberede oplæg til 6. klasse) - flere forskellige trinmål Ben, formelsamlingen,

Læs mere

Eleverne skal lære at:

Eleverne skal lære at: PK: Årsplan 8.Ga. M, matematik Tid og fagligt område Aktivitet Læringsmål Uge 32 uge 50 Tal og algebra Eleverne skal arbejde med at: kende de reelle tal og anvende dem i praktiske og teoretiske sammenhænge

Læs mere

Anvendt litteratur : Mat C v. Bregendal, Nitschky Schmidt og Vestergård, Systime 2005

Anvendt litteratur : Mat C v. Bregendal, Nitschky Schmidt og Vestergård, Systime 2005 Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin juni 2011 Institution Campus Bornholm Uddannelse Fag og niveau Lærer Hold Hhx Matematik C Peter Seide 1AB

Læs mere

Tip til 1. runde af Georg Mohr-Konkurrencen Geometri

Tip til 1. runde af Georg Mohr-Konkurrencen Geometri Tip til. runde af - Geometri, Kirsten Rosenkilde. Tip til. runde af Geometri Her er nogle centrale principper om og strategier for hvordan man løser geometriopgaver. et er ikke en særlig teoretisk indføring,

Læs mere

Her er et spørgsmål, du måske aldrig har overvejet: kan man finde to trekanter med samme areal?

Her er et spørgsmål, du måske aldrig har overvejet: kan man finde to trekanter med samme areal? Her er et spørgsmål, du måske aldrig har overvejet: kan man finde to trekanter med samme areal? Det er ret let at svare på: arealet af en trekant, husker vi fra vor kære folkeskole, findes ved at gange

Læs mere

Emne Tema Materiale r - - - - - aktiviteter

Emne Tema Materiale r - - - - - aktiviteter Fag: Matematik Hold: 24 Lærer: TON Undervisningsmål Læringsmål 9 klasse 32-34 Introforløb: række tests, som viser eleverne faglighed og læringsstil. Faglige aktiviteter Emne Tema Materiale r IT-inddragelse

Læs mere

Tal og algebra. I kapitlet arbejdes med følgende centrale matematiske begreber: algebra variable. Huskeliste: Tændstikker (til side 146) FRA FAGHÆFTET

Tal og algebra. I kapitlet arbejdes med følgende centrale matematiske begreber: algebra variable. Huskeliste: Tændstikker (til side 146) FRA FAGHÆFTET I kapitlet skal eleverne arbejde med fire forskellige vinkler på algebra de præsenteres på kapitlets første mundtlige opslag. De fire vinkler er algebra som et redskab til at løse matematiske problemer.

Læs mere

Årsplan for 7. klasse, matematik

Årsplan for 7. klasse, matematik Årsplan for 7. klasse, matematik I matematik bruger vi bogsystemet Sigma som grundmateriale. I systemet er der, ud over grundbogen, også kopiark og tests tilknyttet de enkelte kapitler. Systemet er udarbejdet

Læs mere

Evaluering af matematik undervisning

Evaluering af matematik undervisning Evaluering af matematik undervisning Udarbejdet af Khaled Zaher, matematiklærer 6-9 klasse og Boushra Chami, matematiklærer 2-5 klasse Matematiske kompetencer. Fællesmål efter 3.klasse indgå i dialog om

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Maj-juni 2015 Skoleår 2014/2015 Thy-Mors HF & VUC Hfe Matematik,

Læs mere

Kapitel 2 Tal og variable

Kapitel 2 Tal og variable Tal og variable Uden tal ingen matematik - matematik handler om tal og anvendelse af tal. Matematik beskæftiger sig ikke udelukkende med konkrete problemer fra andre fag, og de konkrete tal fra andre fagområder

Læs mere

Læringsmål Faglige aktiviteter Emne Tema Materialer

Læringsmål Faglige aktiviteter Emne Tema Materialer Uge 33-48 Målsætningen med undervisningen er at eleverne individuelt udvikler deres matematiske kunnen,opnår en viden indsigt i matematik kens verden således at de kan gennemføre folkeskolens afsluttende

Læs mere

3. klasse 6. klasse 9. klasse

3. klasse 6. klasse 9. klasse Børne- og Undervisningsudvalget 2012-13 BUU Alm.del Bilag 326 Offentligt Elevplan 3. klasse 6. klasse 9. klasse Matematiske kompetencer Status tal og algebra sikker i, er usikker i de naturlige tals opbygning

Læs mere

Foreløbig udgave af læringsmål til: Kapitel 1 Regn med store tal Fælles Mål Læringsmål Forslag til tegn på læring

Foreløbig udgave af læringsmål til: Kapitel 1 Regn med store tal Fælles Mål Læringsmål Forslag til tegn på læring Foreløbig udgave af læringsmål til: Kapitel 1 Regn med store tal Fælles Mål Læringsmål Forslag til tegn på læring udføre beregninger med de fire regningsarter inden for naturlige tal, herunder beregninger

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 2015 Institution Horsens HF og VUC Uddannelse Fag og niveau Lærer(e) Hold Hfe Matematik C Signe Skovsgaard

Læs mere

Årsplan 9. klasse matematik 2013-2014 Uge Emne Faglige mål Trinmål Materialer/ systemer 33 Årsprøven i matematik

Årsplan 9. klasse matematik 2013-2014 Uge Emne Faglige mål Trinmål Materialer/ systemer 33 Årsprøven i matematik Årsplan 9. klasse matematik 2013-2014 33 Årsprøven i matematik Årsprøve og rettevejledledning 34-35 36 og løbe nde Talmængder og regnemetoder Mundtlig matematik 37 Fordybelses uge 38-39 Procent - Gennemgå

Læs mere

Selam Friskole Fagplan for Matematik

Selam Friskole Fagplan for Matematik Selam Friskole Fagplan for Matematik Formål Formålet med undervisningen er, at eleverne udvikler matematiske kompetencer og opnår viden og kunnen således, at de bliver i stand til at begå sig hensigtsmæssigt

Læs mere

Ib Michelsen Vejledende løsning stxb 101 1

Ib Michelsen Vejledende løsning stxb 101 1 Ib Michelsen Vejledende løsning stxb 101 1 Opgave 1 Løs ligningen: 3(2 x+1)=4 x+9 Løsning 3(2 x+1)=4 x+9 6 x+3=4 x+9 6 x+3 3=4 x+9 3 6 x=4 x+6 6x 4 x=4 x+6 4 x 2 x=6 2 x 2 = 6 2 x=3 Opgave 2 P(3,1) er

Læs mere

LÆRINGSMÅL PÅ NIF MATEMATIK 2014-15

LÆRINGSMÅL PÅ NIF MATEMATIK 2014-15 LÆRINGSMÅL PÅ NIF MATEMATIK 2014-15 Mål for undervisningen i Matematik på NIF Følgende er baseret på de grønlandske læringsmål, tilføjelser fra de danske læringsmål står med rød skrift. Læringsmål Yngstetrin

Læs mere

Løsninger til eksamensopgaver på B-niveau 2015

Løsninger til eksamensopgaver på B-niveau 2015 Løsninger til eksamensopgaver på B-niveau 2015 22. maj 2015: Delprøven UDEN hjælpemidler Opgave 1: Ligningen løses ved at isolere x i det åbne udsagn: 4 x 7 81 4 x 88 88 x 22 4 Opgave 2: y 87 0,45 x Det

Læs mere

Matematik for stx C-niveau

Matematik for stx C-niveau Thomas Jensen og Morten Overgård Nielsen Matematik for stx C-niveau Frydenlund Nu 2. reviderede, udvidede og ajourførte udgave Nu 2. reviderede, udvidede og ajourførte udgave Matema10k Matematik for stx

Læs mere

Eleven kan handle med overblik i sammensatte situationer med matematik. Eleven kan anvende rationale tal og variable i beskrivelser og beregninger

Eleven kan handle med overblik i sammensatte situationer med matematik. Eleven kan anvende rationale tal og variable i beskrivelser og beregninger Kompetenceområde Efter klassetrin Efter 6. klassetrin Efter 9. klassetrin Matematiske kompetencer handle hensigtsmæssigt i situationer med handle med overblik i sammensatte situationer med handle med dømmekraft

Læs mere

Fagårsplan 10/11 Fag: Matematik Klasse: 7.ABC Lærer: Henrik Stillits. Fagområde/ emne

Fagårsplan 10/11 Fag: Matematik Klasse: 7.ABC Lærer: Henrik Stillits. Fagområde/ emne Fagårsplan 10/11 Fag: Matematik Klasse: 7.ABC Lærer: Henrik Stillits. Fagområde/ emne Matematiske færdigheder Grundlæggende færdigheder - plus, minus, gange, division (hele tal, decimaltal og brøker) Identificer

Læs mere

Animationer med TI-Nspire CAS

Animationer med TI-Nspire CAS Animationer med TI-Nspire CAS Geometrinoter til TI-Nspire CAS version 2.0 Brian Olesen & Bjørn Felsager Midtsjællands Gymnasieskoler Marts 2010 Indholdsfortegnelse: Indledning side 1 Eksempel 1: Pythagoras

Læs mere

Undervisningsbeskrivelse for MATEMATIK C, 1. 2. semester 2013-2014. Stamoplysninger til brug ved prøver til gymnasiale uddannelser

Undervisningsbeskrivelse for MATEMATIK C, 1. 2. semester 2013-2014. Stamoplysninger til brug ved prøver til gymnasiale uddannelser Undervisningsbeskrivelse for MATEMATIK C, 1. 2. semester 2013-2014 Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin maj-juni 2014 Institution Uddannelse Fag og niveau Lærer(e) Hold

Læs mere

Årsplan for matematik 2012-13

Årsplan for matematik 2012-13 Årsplan for matematik 2012-13 Uge Tema/emne Metode/mål 32 Matematiske arbejdsmåder(metode) 33 Intro 34 Tal + talforståelse 35 Brøker-procent 36 Potens+kvadrat-og kubikrod 37 Emneuge 38 Ligninger-uligheder

Læs mere

Matematik. Trinmål 2. Nordvestskolen 2006 Forord. Trinmål 2 (4. 6. klasse)

Matematik. Trinmål 2. Nordvestskolen 2006 Forord. Trinmål 2 (4. 6. klasse) Matematik Trinmål 2 Nordvestskolen 2006 Forord Forord For at sikre kvaliteten og fagligheden i folkeskolen har Undervisningsministeriet udarbejdet faghæfter til samtlige fag i folkeskolen med bindende

Læs mere

Emne Tema Materialer

Emne Tema Materialer 32 36 Uge 35 Fag: Matematik Hold: 20 Lærer: Trine Koustrup Undervisningsmål 9. klasse Læringsmål Faglige aktiviteter Emne Tema Materialer Målsætningen med undervisningen er at eleverne udvikler deres kunnen,opnår

Læs mere

TW 2011/12. Fag: Matematik Klasse: 9. Mandag, Tirsdag, fredag. Formål for faget matematik:

TW 2011/12. Fag: Matematik Klasse: 9. Mandag, Tirsdag, fredag. Formål for faget matematik: TW 2011/12 Fag: Matematik Klasse: 9. Mandag, Tirsdag, fredag Formål for faget matematik: Formålet med undervisningen er, at eleverne udvikler matematiske kompetencer og opnår viden og kunnen således, at

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin maj-juni 200/2010 Institution Herning HF og VUC Uddannelse Fag og niveau Lærer(e) Hf Matematik C, HF Johnny

Læs mere

Matematik. Jonas Albrekt Karmann (JK) Mål for undervisningen:

Matematik. Jonas Albrekt Karmann (JK) Mål for undervisningen: Matematik Årgang: Lærer: 9. årgang Jonas Albrekt Karmann (JK) Mål for : Formålet med er, at udvikler matematiske kompetencer og opnår viden og kunnen således, at de bliver i stand til at begå sig hensigtsmæssigt

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Maj- juni, 14-15 Horsens HF & VUC HF 2- årigt Matematik

Læs mere

Komplekse tal. Mikkel Stouby Petersen 27. februar 2013

Komplekse tal. Mikkel Stouby Petersen 27. februar 2013 Komplekse tal Mikkel Stouby Petersen 27. februar 2013 1 Motivationen Historien om de komplekse tal er i virkeligheden historien om at fjerne forhindringerne og gøre det umulige muligt. For at se det, vil

Læs mere

Kære matematiklærer. Når vi er færdige med dette forløb skal du (eleven):

Kære matematiklærer. Når vi er færdige med dette forløb skal du (eleven): Kære matematiklærer Formålet med denne materialekasse er, at eleverne med konkrete materialer og it får mulighed for at gøre sig erfaringer, der kan føre til, at de erkender de sammenhænge, der gør sig

Læs mere

Faglig årsplan 2010-2011 Skolerne i Oure Sport & Performance. Emne Tema Materialer Regneregler og Algebra. Læringsmål Faglige aktiviteter

Faglig årsplan 2010-2011 Skolerne i Oure Sport & Performance. Emne Tema Materialer Regneregler og Algebra. Læringsmål Faglige aktiviteter Fag: Matematik Hold: 26 Lærer: Harriet Tipsmark Undervisningsmål 9/10 klasse Læringsmål Faglige aktiviteter 33-35 Målet for undervisningen er, at eleverne tilegner sig gode matematiske færdigheder og at

Læs mere

1 Ligninger. 2 Ligninger. 3 Polynomier. 4 Polynomier. 7 Vækstmodeller

1 Ligninger. 2 Ligninger. 3 Polynomier. 4 Polynomier. 7 Vækstmodeller 1 Ligninger a. Fortæl om algebraisk og grafisk løsning af ligninger ud fra ét eller flere eksempler. b. Gør rede for algebraisk løsning af andengradsligningen ax 2 + bx + c = 0. 2 Ligninger a. Fortæl om

Læs mere

Projekt 7.4 Kvadratisk programmering anvendt til optimering af elektriske kredsløb

Projekt 7.4 Kvadratisk programmering anvendt til optimering af elektriske kredsløb Projekt 7.4 Kvadratisk programmering anvendt til optimering af elektriske kredsløb Indledning: I B-bogen har vi i studieretningskapitlet i B-bogen om matematik-fsik set på parallelkoblinger af resistanser

Læs mere

Funktioner og ligninger

Funktioner og ligninger Eleverne har både i Kolorit på mellemtrinnet og i Kolorit 7 matematik grundbog arbejdet med funktioner. I 7. klasse blev funktionsbegrebet defineret, og eleverne arbejdede med forskellige måder at beskrive

Læs mere

Lærervejledning Matematik 1-2-3 på Smartboard

Lærervejledning Matematik 1-2-3 på Smartboard Lærervejledning Matematik 1-2-3 på Smartboard Lærervejledning til Matematik 1-2-3 på Smartboard Materialet består af 33 færdige undervisningsforløb til brug i matematikundervisningen i overbygningen. Undervisningsforløbene

Læs mere

Inspirationsforløb i faget matematik i 7.- 9. klasse. Trekanter et inspirationsforløb om geometri i 8. klasse

Inspirationsforløb i faget matematik i 7.- 9. klasse. Trekanter et inspirationsforløb om geometri i 8. klasse Inspirationsforløb i faget matematik i 7.- 9. klasse Trekanter et inspirationsforløb om geometri i 8. klasse Indhold Indledning 2 Undervisningsforløbet 3 Mål for forløbet 3 Relationsmodellen 3 Planlægningsfasen

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Afsluttende: Maj-juni 2015 Institution Uddannelse Fag og niveau Lærer(e) Hold Favrskov Gymnasium Stx Matematik

Læs mere

Års- og aktivitetsplan i matematik hold 4 2014/2015

Års- og aktivitetsplan i matematik hold 4 2014/2015 Års- og aktivitetsplan i matematik hold 4 2014/2015 Der arbejdes hen mod slutmålene i matematik efter 10. klassetrin. www.uvm.dk => Fælles Mål 2009 => Faghæfter alfabetisk => Matematik => Slutmål for faget

Læs mere

Fælles Mål 2009. Matematik. Faghæfte 12

Fælles Mål 2009. Matematik. Faghæfte 12 Fælles Mål 2009 Matematik Faghæfte 12 Undervisningsministeriets håndbogsserie nr. 14 2009 Fælles Mål 2009 Matematik Faghæfte 12 Undervisningsministeriets håndbogsserie nr. 14 2009 Indhold Formål for faget

Læs mere

Læseplan for matematik på Aalborg Friskole

Læseplan for matematik på Aalborg Friskole Læseplan for matematik på Aalborg Friskole LÆSEPLAN FOR MATEMATIK PÅ AALBORG FRISKOLE 1 1. FORLØB 1.-3. KLASSETRIN 2 ARBEJDET MED TAL OG ALGEBRA 2 ARBEJDET MED GEOMETRI 2 MATEMATIK I ANVENDELSE 3 KOMMUNIKATION

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Juni, 12/13 Institution VID Gymnasier Uddannelse Fag og niveau Lærer(e) Hold hhx Matematik C Hasse Rasmussen

Læs mere

Kalkulus 1 - Opgaver. Anne Ryelund, Anders Friis og Mads Friis. 20. januar 2015

Kalkulus 1 - Opgaver. Anne Ryelund, Anders Friis og Mads Friis. 20. januar 2015 Kalkulus 1 - Opgaver Anne Ryelund, Anders Friis og Mads Friis 20. januar 2015 Mængder Opgave 1 Opskriv følgende mængder med korrekt mængdenotation. a) En mængde A indeholder alle hele tal fra og med 1

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 10/11 Institution Frederikshavn Handelsskole Uddannelse Fag og niveau Lærer(e) Hold HHX Matematik

Læs mere

Variabel- sammenhænge

Variabel- sammenhænge Variabel- sammenhænge 2008 Karsten Juul Dette hæfte kan bruges som start på undervisningen i variabelsammenhænge for st og hf. Indhold 1. Hvordan viser en tabel sammenhængen mellem to variable?... 1 2.

Læs mere

MATEMATIK. Formål for faget

MATEMATIK. Formål for faget Fælles Mål II MATEMATIK Formål for faget Fælles Mål Formålet med undervisningen i matematik er, at eleverne bliver i stand til at forstå og anvende matematik i sammenhænge, der vedrører dagligliv, samfundsliv

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Termin hvori undervisningen afsluttes: maj-juni 2011 Uddannelsescenter

Læs mere

Matematik. Læseplan og formål:

Matematik. Læseplan og formål: Matematik Læseplan og formål: Formålet med undervisningen i matematik er, at eleverne bliver i stand til at forstå og anvende matematik i sammenhænge, der vedrører dagligliv, samfundsliv og naturforhold.

Læs mere

Nye Fælles Mål og årsplanen. Thomas Kaas, Lektor og Kirsten Søs Spahn, pæd. konsulent

Nye Fælles Mål og årsplanen. Thomas Kaas, Lektor og Kirsten Søs Spahn, pæd. konsulent Nye Fælles Mål og årsplanen Thomas Kaas, Lektor og Kirsten Søs Spahn, pæd. konsulent Interview Find en makker, som du ikke kender i forvejen Stil spørgsmål, så du kan fortælle os andre om vedkommende ift.:

Læs mere

Matematik. Matematikundervisningen tager udgangspunkt i Folkeskolens Fælles Mål

Matematik. Matematikundervisningen tager udgangspunkt i Folkeskolens Fælles Mål Matematik Matematikundervisningen tager udgangspunkt i Folkeskolens Fælles Mål Formålet med undervisningen i matematik er, at eleverne bliver i stand til at forstå og anvende matematik i sammenhænge, der

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Juni, 12/13 Institution Grenaa Handelsskole Uddannelse Fag og niveau Lærer(e) Hold hhx Matematik C Ann Risvang

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Maj-juni 2015 VUCHA Hf-Flex Matematik-C Ivan Tønner Jørgensen(itj)

Læs mere

Faglig årsplan 2010-2011 Skolerne i Oure Sport & Performanc. Læringsmål Faglige aktiviteter. Emne Tema Materialer. ITinddragelse.

Faglig årsplan 2010-2011 Skolerne i Oure Sport & Performanc. Læringsmål Faglige aktiviteter. Emne Tema Materialer. ITinddragelse. Fag:matematik Hold:18 Lærer:ym Undervisningsmål 9/10 klasse Læringsmål Faglige aktiviteter Emne Tema Materialer ITinddragelse Evaluering 33-37 Hovedvægten er elevernes forståelse for matematiske begreber.

Læs mere

Matematik - undervisningsplan

Matematik - undervisningsplan I 4. klasse starter man på andet forløb i matematik, der skal lede frem mod at eleverne kan opfylde fagets trinmål efter 6. klasse. Det er dermed det som undervisningen tilrettelægges ud fra og målsættes

Læs mere

Oversigt over gennemførte undervisningsforløb

Oversigt over gennemførte undervisningsforløb Undervisningsbeskrivelse Termin Maj/juni 2015 Institution Favrskov Gymnasium Uddannelse Fag og niveau Lærer(e) Hold stx Matematik B Janne Skjøth Winde 2.s mab Oversigt over gennemførte undervisningsforløb

Læs mere

Trekantsberegning 25 B. 2009 Karsten Juul

Trekantsberegning 25 B. 2009 Karsten Juul Trekantsberegning 7,0 3 5 009 Karsten Juul ette häfte indeholder den del af trekantsberegningen som skal kunnes på - niveau i gymnasiet (stx) og hf ra sommer 0 kräves mere remstillingen undgår at forudsätte

Læs mere

Klassen er sammenlæst, altså 5 og 6 klasse på en og samme tid. Samtidig er klassen pt på ca 11 elever ialt.

Klassen er sammenlæst, altså 5 og 6 klasse på en og samme tid. Samtidig er klassen pt på ca 11 elever ialt. Introduktion til mat i 5/6 klasse Vejle Privatskole 13/14: Klassen er sammenlæst, altså 5 og 6 klasse på en og samme tid. Samtidig er klassen pt på ca 11 elever ialt. Udgangspunktet bliver en blød screening,

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Termin hvori undervisningen afsluttes: maj-juni 2012 Uddannelsescenter

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin maj-juni 11/12 Institution VUC Holstebro-Lemvig-Struer Uddannelse Fag og niveau Lærer(e) Hold Hf/hfe Matematik

Læs mere

Undervisningsplan: Matematik Skoleåret 2014/2015 Strib Skole: 5B Ugenumre: Hovedområder: Emner og temaer: Side 1 af 5

Undervisningsplan: Matematik Skoleåret 2014/2015 Strib Skole: 5B Ugenumre: Hovedområder: Emner og temaer: Side 1 af 5 Ugenumre: Hovedområder: Emner og temaer: 33 Addition og subtraktion Anvendelse af regningsarter 34 Multiplikation og division Anvendelse af regningsarter 35 Multiplikation med decimaltal Anvendelse af

Læs mere

Interaktiv Whiteboard og geometri

Interaktiv Whiteboard og geometri Interaktiv Whiteboard og geometri Nærværende dokumentation af et undervisningsforløb til undervisning i geometri er blevet til som et resultat af initiativet Spredningsprojektet. Spredningsprojektet er

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Juni, 2014 Institution VID Gymnasier Uddannelse Fag og niveau Lærer(e) Hold hhx Matematik C Hasse Rasmussen

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin sommer 15 Institution VUC-vestegnen Uddannelse Fag og niveau Lærer(e) Hold Hf Matematik C Kofi Mensah 1maC05

Læs mere

Side 1 af 10. Undervisningsbeskrivelse. Stamoplysninger til brug ved prøver til gymnasiale uddannelser. Termin Maj-juni 2009/10

Side 1 af 10. Undervisningsbeskrivelse. Stamoplysninger til brug ved prøver til gymnasiale uddannelser. Termin Maj-juni 2009/10 Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 2009/10 Institution Uddannelse Fag og niveau Lærer(e) Hold Handelsskolen Sjælland Syd, Vordingborg

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin maj-juni 2014, skoleår 13/14 Institution Frederiksberg HF Uddannelse Fag og niveau Lærer(e) Hold HF Matematik

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Termin Sommer 2015 Institution Horsens HF & VUC Uddannelse Fag og niveau Lærer(e) Hold Hfe Matematik C Niels Just Mikkelsen mac3 Oversigt over gennemførte undervisningsforløb Forløb

Læs mere

Eksperimenter med areal og rumfang. Aktivitet Emne Klassetrin Side

Eksperimenter med areal og rumfang. Aktivitet Emne Klassetrin Side VisiRegn ideer 5 Eksperimenter med areal og rumfang Inge B. Larsen ibl@dpu.dk INFA juli 2001 Indhold: Aktivitet Emne Klassetrin Side Vejledning til Areal og Rumfang 2 Red burhønsene. Vejledn. 3-7 Største

Læs mere

Matematik. Matematiske kompetencer

Matematik. Matematiske kompetencer Matematiske kompetencer formulere sig skriftligt og mundtligt om matematiske påstande og spørgsmål og have blik for hvilke typer af svar, der kan forventes (tankegangskompetence) løse matematiske problemer

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Termin hvori undervisningen afsluttes: Maj-juni, 11. Denne

Læs mere

matematikhistorie og dynamisk geometri

matematikhistorie og dynamisk geometri Pythagoras matematikhistorie og dynamisk geometri med TI-Nspire Indholdsfortegnelse Øvelse 1: Hvem var Pythagoras?... 2 Pythagoras læresætning... 2 Geometrisk konstruktion af Pythagoræisk tripel... 3 Øvelse

Læs mere

Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer Hold

Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer Hold Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Sommer 2015 Institution 414 Københavns VUC Uddannelse Fag og niveau Lærer Hold Hf Matematik C-B Pia Hald ph@kvuc.dk

Læs mere

Studentereksamen i Matematik B 2012

Studentereksamen i Matematik B 2012 Studentereksamen i Matematik B 2012 (Gammel ordning) Besvarelse Ib Michelsen Ib Michelsen stx_121_b_gl 2 af 11 Opgave 1 På tegningen er gengivet 3 grafer for de nævnte funktioner. Alle funktionerne er

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin December/januar 14/15 Institution VUC Vestegnen Uddannelse Fag og niveau Lærer(e) Hold stx Mat A Karin Hansen

Læs mere

MATEMATIK A-NIVEAU 2g

MATEMATIK A-NIVEAU 2g NETADGANGSFORSØGET I MATEMATIK APRIL 2009 MATEMATIK A-NIVEAU 2g Prøve April 2009 1. delprøve: 2 timer med formelsamling samt 2. delprøve: 3 timer med alle hjælpemidler Hver delprøve består af 14 spørgsmål,

Læs mere

Læseplan for faget matematik. 1. 9. klassetrin

Læseplan for faget matematik. 1. 9. klassetrin Læseplan for faget matematik 1. 9. klassetrin Matematikundervisningen bygger på elevernes mange forudsætninger, som de har med når de starter i skolen. Der bygges videre på elevernes forskellige faglige

Læs mere

Mathcad Survival Guide

Mathcad Survival Guide Mathcad Survival Guide Mathcad er en blanding mellem et tekstbehandlingsprogram (Word), et regneark (Ecel) og en grafisk CAS-lommeregner. Programmet er velegnet til matematikopgaver, fysikrapporter og

Læs mere

Tavleundervisning og samarbejde 2 og 2. Eleverne arbejder selvstændigt med opgaver. Løbende opsamling ved tavlen.

Tavleundervisning og samarbejde 2 og 2. Eleverne arbejder selvstændigt med opgaver. Løbende opsamling ved tavlen. Fag: Matematik Hold: 21 Lærer: ASH 33-34 35-36 lære at læse og forstå en lønseddel samt vide hvordan deres skat bliver beregnet. Se i øvrigt fælles mål Arbejde med regnehieraki og regneregler. 36-38 Elevere

Læs mere

Repetition og eksamensforberedelse.

Repetition og eksamensforberedelse. Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) maj-juni 2014 skoleår 13/14 Herning HF og VUC Hf Matematik C

Læs mere

Eksaminationsgrundlag for selvstuderende

Eksaminationsgrundlag for selvstuderende Eksaminationsgrundlag for selvstuderende Jeg ønsker at aflægge prøve på nedenstående eksaminationsgrundlag. Jeg har foretaget ændringer i vejlederens fortrykte forslag: nej ja Dato: Underskrift HUSK at

Læs mere

5. KLASSE UNDERVISNINGSPLAN MATEMATIK

5. KLASSE UNDERVISNINGSPLAN MATEMATIK Lærer: SS Forord til faget i klassen Vi vil i matematik arbejde differentieret i hovedemnerne geometri, statistik og sandsynlighed samt tal og algebra. Vi vil i 5. kl. dagligt arbejde med matematisk kommunikation

Læs mere

Undervisningen skal lede frem mod, at eleverne har tilegnet sig kundskaber og færdigheder, der sætter dem i stand til i arbejdet med geometri at:

Undervisningen skal lede frem mod, at eleverne har tilegnet sig kundskaber og færdigheder, der sætter dem i stand til i arbejdet med geometri at: Noter til læreren side 1 I Trinmål for faget matematik står der bl.a. Undervisningen skal lede frem mod, at eleverne har tilegnet sig kundskaber og færdigheder, der sætter dem i stand til i arbejdet med

Læs mere

Matematik for hf C-niveau

Matematik for hf C-niveau Thomas Jensen og Morten Overgård Nielsen Matematik for hf C-niveau Frydenlund Nu 2. reviderede, udvidede og ajourførte udgave 2. reviderede, udvidede og ajourførte udgave Matema10k Matematik for hf C-niveau

Læs mere

Projekt 10.16: Matematik og demokrati Mandatfordelinger ved sidste kommunalvalg

Projekt 10.16: Matematik og demokrati Mandatfordelinger ved sidste kommunalvalg Projekt 10.16: Matematik og demokrati Mandatfordelinger ved sidste kommunalvalg Introduktion: Vi vil nu se på et konkret eksempel på hvordan man i praksis fordeler mandaterne i et repræsentativt demokrati,

Læs mere

Når vi forbereder et nyt emne eller område vælger vi de metoder, materialer og evalueringsformer, der egner sig bedst til forløbet.

Når vi forbereder et nyt emne eller område vælger vi de metoder, materialer og evalueringsformer, der egner sig bedst til forløbet. MATEMATIK Delmål for fagene generelt. Al vores undervisning hviler på de i Principper for skole & undervisning beskrevne områder (- metoder, materialevalg, evaluering og elevens personlige alsidige udvikling),

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 2011 Institution Uddannelsescenter Herning, afd. HHX-Ikast Uddannelse Fag og niveau Lærer(e) Hold

Læs mere

Årsplan for matematik på mellemtrinnet 2015-2016 (Lærere: Ebba Frøslev og Esben O. Lauritsen)

Årsplan for matematik på mellemtrinnet 2015-2016 (Lærere: Ebba Frøslev og Esben O. Lauritsen) Årsplan for matematik på mellemtrinnet 2015-2016 (Lærere: Ebba Frøslev og Esben O. Lauritsen) Bog: Vi bruger grundbogssystemet Format, som er et fleksibelt matematiksystem, der tager udgangspunkt i læringsstile.

Læs mere

Årsplan matematik 4.klasse - skoleår 11/12- Ida Skov Andersen Med ret til ændringer og justeringer

Årsplan matematik 4.klasse - skoleår 11/12- Ida Skov Andersen Med ret til ændringer og justeringer Basis: Klassen består af 22 elever og der er afsat 4 ugentlige timer. Grundbog: Vi vil arbejde ud fra Matematrix 4, arbejds- og grundbog, kopisider, Rema, ekstraopgaver og ugentlige afleveringsopgaver

Læs mere

Geometriske konstruktioner: Ovaler og det gyldne snit

Geometriske konstruktioner: Ovaler og det gyldne snit Matematik Geometriske konstruktioner: Ovaler og det gyldne snit Ole Witt-Hansen, Køge Gymnasium Ovaler og det gyldne snit har fundet anvendelse i arkitektur og udsmykning siden oldtiden. Men hvordan konstruerer

Læs mere

matx.dk Differentialregning Dennis Pipenbring

matx.dk Differentialregning Dennis Pipenbring mat.dk Differentialregning Dennis Pipenbring 0. december 00 Indold Differentialregning 3. Grænseværdi............................. 3. Kontinuitet.............................. 8 Differentialkvotienten

Læs mere

geometri trin 2 brikkerne til regning & matematik preben bernitt

geometri trin 2 brikkerne til regning & matematik preben bernitt brikkerne til regning & matematik geometri trin 2 preben bernitt brikkerne til regning & matematik geometri, trin 2 ISBN: 978-87-92488-16-9 1. Udgave som E-bog 2003 by bernitt-matematik.dk Kopiering er

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Termin hvori undervisningen afsluttes: maj-juni, 2009 EUC

Læs mere

Lærervejledning til Træn matematik på computer. Lærervejledning. Træn matematik på computer. ISBN 978-87-992954-5-6 www.learnhow.dk v/rikke Josiasen

Lærervejledning til Træn matematik på computer. Lærervejledning. Træn matematik på computer. ISBN 978-87-992954-5-6 www.learnhow.dk v/rikke Josiasen Lærervejledning Træn matematik på computer Materialet består af 31 selvrettende emner til brug i matematikundervisningen i overbygningen. De fleste emner består af 3 sider med stigende sværhedsgrad. I

Læs mere

Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser

Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 2012 Institution Tradium Handelsgymnasiet Uddannelse Fag og niveau Lærer(e) Hold Hhx Matematik A

Læs mere

Differential- regning

Differential- regning Differential- regning del () f () m l () 6 Karsten Juul Indhold Tretrinsreglen 59 Formler for differentialkvotienter64 Regneregler for differentialkvotienter67 Differentialkvotient af sammensat funktion7

Læs mere

Kapitel 3 Lineære sammenhænge

Kapitel 3 Lineære sammenhænge Matematik C (må anvendes på Ørestad Gymnasium) Lineære sammenhænge Det sker tit, at man har flere variable, der beskriver en situation, og at der en sammenhæng mellem de variable. Enhver formel er faktisk

Læs mere