Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Starte visningen fra side:

Download "9940 8848"

Transkript

1 Generelt om kurset: Kurset består af flere elementer: ca.10:15-12:00 Opgaveregning i grupperummene Forelæsninger - to timer, Øvelser: Opgaveregning. Arbejde hjemme med Litteraturen Repetitionsopgaver - matematik fra gymnasiet eller første studieår, som skal bruges her. Tre større opgaver, som er udgangspunkt for eksamen Øvelsesopgaver, I ikke nåede eller regner forud. De enkelte kursusgange afholdes alle efter samme overordnede model: Først forelæsning, så opgaveregning. Modellen er altså - om formiddagen i Aalborg i hvert fald. Ellers er den parallelforskudt: 8:15-ca. 10:15 - forelæsning. (med en pause midt i selvfølgelig.) Jeg lægger links til noter på kursushjemmesiden; det er lettere at klikke sig frem derfra, end at skrive lange www adresser ind fra spisesedlerne. Jeg har skrevet noter til den tidligere version af kurset i 2004 og 2006, Kortprojektioner og Forvanskninger og revideret dem lidt undervejs. De ligger på nettet. Jeg vil meget gerne have kommentarer til dem. Om repetitionsopgaverne: Ideen med dem er, at I får genopfrisket den matematik, der skal bruges i de længere øvelsesopgaver. Lav dem helst hjemme, men kan man ikke regne dem, hjælper jeg naturligvis gerne. Jeg vil lægge ugesedler, noter og lignende på www under adressen Problemformulering: Modeller af Jorden. Hvorfor og hvordan. Nye projektioner for Danmark. KMS 18.februar 2009 Danmark har skiftet koordinat- og højdesystem Nyeste status er, at 95 kommuner anvender det nye koordinatsystem, UTM/ETRS89, og 3 er igang med at lægge om. Det nye højdesystem, DVR90, anvendes nu af 96 kommuner og 1 kommuner er igang med at lægge om. KMS, 2. marts 2009: Forslag til nyt koordinatsystem DKTM/ETRS89 til bygge- og anlægsbranchen KMS, 2.oktober 2009."Nyhedsbrev om DKTM/ETRS89 KMS har udsendt 1. nyhedsbrev om DKTM/ETRS89 om status for systemet efter høringsrunden i forået Nyhedsbrevet er ledsaget af en kort introduktion for brugere af DK-

2 TM" KMS, 24. marts 2010 Ny version af KMSTrans og KMSTrLib KMSTrans og KMSTrLib håndterer nu DKTM/ETRS89. Find de nye versioner her. 28. maj 2010 :"Flyer om DKTM (Dansk Transversal Mercator)"KKMS og PLF etablerede i 2008 en Arbejdsgruppe, der skulle forsøge at finde et godt alternativ til System 34 som koordinatsystem i bygge- og anlægssektoren. Det gode alternativ forelå 1. maj 2010, hvor DKTM systemet var fuldt indbygget i Kortforsyningen, KMSTrans m.m. Senest 1. juni 2010 vil DKTM også være indbygget i MIA og MiniMAKS. 2. februar 2012: KMS har netop færdiggjort strategien for referencenet i Danmark, 2013 KMS bliver til GST, Geodatastyrelsen. Geodatastyrelsen har ansvar for, at Danmark kortlægges, til brug for den offentlige forvaltning, virksomheder og borgeren. Geodatastyrelsen og kommunerne kortlægger landet i fællesskab, i FOT-samarbejdet. Kortlægningen sker i forskellige detaljeringsgrader og foregår digitalt. Kortdata opbevares i databaser, hvorfra der kan fremstilles datasamlinger og produkter efter behov. Udtrykket kort benyttes derfor ikke kun om papirkort, men også om datasamlinger, som ligger til grund for online kortvisninger og det almindelige papirkort. 30. januar Grønland får nye kort. De nuværende kort over Grønland er fra en anden tid. De er ikke særligt nøjagtige og kan ikke bruges sammen med GPS. GST pressemeddelelser: Fokus på 3D hydrologisk højdemodel og "frie data." GST 5.november 2015: Topografisk Atlas over Danmark med 3d-effekt. Skala 1: Kortprojektion -?? Formentlig UTM. GST 3. Januar Geodatastyrelsen deles i to: Geodatastyrelsen og Styrelsen for Dataforsyning og Effektivisering.(SDFE) SDFE 7.marts 2016: Ny kortlægning i Grønland. "Pilotprojektet skal bl.a. etablere, afprøve og dokumentere nye metoder til kortlægning, indsamling af satellitbilleder, produktion af geodata, kartografisk visualisering mv."januar Dette kursus: Kort = repræsentation af data i en plan - 2D. Kortegenskaber: afstandstro, vinkeltro, arealtro mv. Forvanskninger er uundgåelige: sfærisk exces Projektioner og afbildninger på plan, kegle og cylinder Geografiske koordinater Planprojektioner: Ortografisk, gnomisk, stereografisk

3 Cylinderprojektioner: Ortografisk, Lambert, Mercator. Litteratur: Kortprojektioner og forvanskninger. Kapitel 3, 4 og 5. Kan hentes på kursushjemmesiden. (se under Litteratur) Diverse noter fra GST og s hjemmeside. (Find links på kursussiden under Litteratur) Det er GSTs nyeste vejledninger om kortprojektioner m.v. Dem kan I formentlig ikke læse nu, men det er et af målene med kurset, at I kan det bagefter - for det forventer KMS/GST jo, at praktiserende landinspektører kan. 2 sider fra KMS/GST om Det danske kvadratnet. Tænk over, hvad der skal til for at opdele landet på den måde. Hvad er et kvadrat på den runde Jord? Eller er det mon noget, der hører til kortet? Igen er det nok ikke noget, I kan læse nu, men det kan I nok, når kurset er forbi. Hjemmeopgaver : 1. Omregn følgende vinkler, som er givet i grader, til radianer: θ 1 = 30, θ 2 = 180, θ 3 = 90, θ 4 = 110 (Facit: θ 1 = π/6, θ 2 = π, θ 3 = π/2 og θ 4 = 1, 920) 2. Tegn en cirkel med radius 1 og centrum i (0, 0) i et koordinatsystem. Indtegn en linie, som danner en vinkel v paa ca. 30 med x-aksen. Marker de liniestykker, der har længde cos(v) og sin(v). 3. Brug tegningen fra før. Hvor kan man måle vinklens størrelse i radianer? Hvor måler man tan(v) 4. Cotangens optræder i litteratur om projektioner. Den er defineret: cot(v) = cos(v). Hvor kan man aflæse sin(v) denne størrelse? 5. Find en parameterfremstilling for linjen l i R 3 gennem punkterne (1, 2, 3) og (3, 7, 4). 6. Findes der flere parameterfremstillinger for den samme linie? 7. Find koordinaterne til skæringspunktet mellem linien l fra opgave 1, og x y-planen. Opgaver: 1. Her er et andet argument for, at man ikke kan undgå forvanskninger ved afbildninger fra en kugle til en plan: På en kugle med radius R ser vi på "den sfæriske

4 Figur 1: En sfærisk cirkel - og nej, tegningen er ikke ret god... cirkel med sfærisk radius r"og centrum i kuglens nordpol. Den sfæriske radius er den afstand, man måler langs kuglens overflade - se tegningen. Denne cirkel er en breddecirkel ( alle punkter på cirklen har samme breddevinkel/breddegrad ϕ). Vis, at denne breddecirkel har radius R sin R r og en omkreds på 2π R sin R r (VINK: r måler buestykket svarende til vinklen π/2 ϕ i en cirkel med radius R. Så breddevinklen ϕ er π/2 R r (målt i radianer). ) Derimod har en plan cirkel med radius r jo en omkreds på 2π r. Hvorfor følger det nu, at der ikke findes en afbildning med konstant målforhold? Beregn forskellen mellem omkreds af cirklen med radius r på kuglen og i planen (procentisk afvigelse) for hhv. r = 0.5R, 0.1R, 0.01R. 2. Den stereografiske planprojektion fremkommer ved at trække en linje fra Sydpolen gennem det punkt på kuglefladen, man ønsker at afbilde. Det afbildes i skæringspunktet mellem linjen og en plan, som er tangent til Nordpolen. En modificeret version af denne projektion bruges som UPS-system som supplement til UTM i Arktis og Antarktis. Diskuter vha. skitsen fordele og ulemper af denne projektion. Hvordan kan man lave om på projektionen, så den giver gode resultater på vore breddegrader? 3. En analytisk beskrivelse for den stereografiske projektion: Vi anbringer kuglen med radius 1 i et koordinatsystem, sådan at Nordpolen får koordinaterne N = (0, 0, 1) og sydpolen S = (0, 0, 1). Vis, at et punkt med geografiske koordinater

5 Figur 2: Kort med den stereografiske azimutalprojektion. (λ, ϕ) projiceres på et punkt med plane koordinater (u, v) = (2 cos ϕ 1 + sin ϕ cos λ, 2 cos ϕ sin λ). 1 + sin ϕ Vink: Det gælder om at finde skæringspunktet mellem en plan P og en linje l. P er den plan, som er parallel med x-y-planen og går igennem Nordpolen, og l er linjen gennem Sydpolen og punktet (cos ϕ cos λ, cos ϕ sin λ, sin ϕ). For at finde skæringspunktet, kan man f.eks. skrive parameterfremstillingen for linjen op, og finde den værdi af parameteren, hvor z = 1. Beregn længden (omkredsen) af en breddecirkel B ϕ (se opgaverne fra sidste kursusgang, hvis I ikke kan huske, hvad det er) med breddevinkel ϕ. Beregn derefter længden af billedet af denne breddecirkel ved stereografisk projektion. Vink: Billedet af breddecirklen B ϕ er en cirkel ( overvej det). Find radius af B ϕ og af billedet af B ϕ og find så omkredsen af de to cirkler. Hvad siger det om målestoksforholdet? 1 4. Danmark ligger omkring punktet Q med geografiske koordinater (λ, ϕ) = (10, 56 ). Hvad er de kartesiske ((X, Y, Z)) koordinater til det punkt? Hvilket punkt skal man projicere fra, hvis man vil lave stereografisk projektion på planen gennem Q? Hvad er ligningen for den plan, man skal projicere på? 1 (Bonusoplysning: Formlen for projektionen kan vha. trigonometriske formler omregnes til (u, v) = (2 tan ( π 4 ϕ 2 ) cos λ, 2 tan ( π 4 ϕ ) sin λ). 2 I skal ikke lave omregningen!! Men det er godt at vide, hvis man skulle støde ind i den formel et sted.)

6 5. Hvad er geografiske koordinater (længde og breddegrader) egentlig: Indtegn et punkt på kuglefladen på figur 2 og indtegn de vinkler, der er længde- og breddegraderne til punktet. Hvad er Z-koordinaten til et punkt med geografiske koordinater (λ, ϕ)? Hvad er X og Y koordinaterne? Facit til opgaverne: %, 0,17%, 1, % 2. Længden af B ϕ er 2π cos ϕ. Projektionen af B ϕ har længde 4π cos ϕ 1+sin ϕ. Målestoksforholdet langs B ϕ er altså 2 1+sin ϕ 3. Q = (0, , 0, , 0, ). Man projicerer fra punktet Q på planen med ligning 0, x + 0, y + 0, z = 1 4. (X, Y, Z) = (R cos(ϕ) cos(λ), R cos(ϕ) sin(λ), R sin(ϕ)). Næste gang: Kortprojektioner, kapitel 6. Første fundamentalform og målforhold. Venlig hilsen Lisbeth Fajstrup

AALBORG UNIVERSITET LANDINSPEKTØR- MATEMATISK GRUNDLAG LISBETH FAJSTRUP. IVER OTTOSEN. - om formiddagen i hvert fald. Ellers er den parallelforskudt:

AALBORG UNIVERSITET LANDINSPEKTØR- MATEMATISK GRUNDLAG LISBETH FAJSTRUP. IVER OTTOSEN. - om formiddagen i hvert fald. Ellers er den parallelforskudt: Generelt om kurset: Kurset består af flere elementer: Forelæsninger - to timer, Øvelser: Opgaveregning. Arbejde hjemme med Litteraturen Repetitionsopgaver - matematik fra gymnasiet eller første studieår,

Læs mere

ONSDAG 19/4(AA) AALBORG UNIVERSITET LANDINSPEKTØR- MATEMATISK GRUNDLAG. 8:15-ca. 10:15 - forelæsning. (med en pause midt i selvfølgelig.

ONSDAG 19/4(AA) AALBORG UNIVERSITET LANDINSPEKTØR- MATEMATISK GRUNDLAG. 8:15-ca. 10:15 - forelæsning. (med en pause midt i selvfølgelig. Generelt om kurset: Kurset består af flere elementer: Forelæsninger - to timer, Øvelser: Opgaveregning. Arbejde hjemme med Litteraturen Repetitionsopgaver - matematik fra gymnasiet eller første studieår,

Læs mere

Kortprojektioner L mm Problemformulering

Kortprojektioner L mm Problemformulering Kortprojektioner L4 2016 1.mm Problemformulering Lisbeth Fajstrup Institut for Matematiske Fag Aalborg Universitet L4 april 2016 Lisbeth Fajstrup (AAU) Kortprojektioner L4 2016 April 2016 1 / 36 Kursusholder

Læs mere

Kortprojektioner og forvanskninger. Lisbeth Fajstrup Institut for Matematiske Fag Aalborg Universitet

Kortprojektioner og forvanskninger. Lisbeth Fajstrup Institut for Matematiske Fag Aalborg Universitet Kortprojektioner og forvanskninger Lisbeth Fajstrup Institut for Matematiske Fag Aalborg Universitet Juni 2006 Chapter 1 Forord Disse noter er skrevet til landinspektørstudiet ved Aalborg Universitet.

Læs mere

Kortprojektioner L mm Analytisk beskrivelse af egenskaber ved kort Første fundamentalform og forvanskninger.

Kortprojektioner L mm Analytisk beskrivelse af egenskaber ved kort Første fundamentalform og forvanskninger. Kortprojektioner L4 2016 2.mm Analytisk beskrivelse af egenskaber ved kort Første fundamentalform og forvanskninger. Lisbeth Fajstrup Institut for Matematiske Fag Aalborg Universitet L4 April 2016 Lisbeth

Læs mere

Matematik A Vejledende opgaver 5 timers prøven

Matematik A Vejledende opgaver 5 timers prøven Højere Teknisk Eksamen 007 Matematik A Vejledende opgaver 5 timers prøven Undervisningsministeriet Prøvens varighed er 5 timer. Opgavebesvarelsen skal dokumenteres/begrundes. Opgavebesvarelsen skal udformes

Læs mere

Projekt 5.5 Sfærisk geometri og introduktion til kortprojektioner

Projekt 5.5 Sfærisk geometri og introduktion til kortprojektioner Projekt 5.5 Sfærisk geometri og introduktion til kortprojektioner Et almindeligt 3D-koordinatsystem er som et 2D-koordinatsystem, hvor der blot er rejst en tredje akse vinkelret på planen i punktet (0,0),

Læs mere

2.9. Dette er en god simpel projektion for områder nær Ækvator. Hvad er den inverse afbildning, f -1?

2.9. Dette er en god simpel projektion for områder nær Ækvator. Hvad er den inverse afbildning, f -1? 2.9 2.4 Kortprojektioner og kort. Den matematiske baggrund for kortprojektioner er differentialgeometri. Det basale begreb her er mangfoldighed, dvs. om ethvert punkt ligger en omegn, der ligner en del

Læs mere

Temaopgave: Parameterkurver Form: 6 timer med vejledning Januar 2010

Temaopgave: Parameterkurver Form: 6 timer med vejledning Januar 2010 Temaopgave: Parameterkurver Form: 6 timer med vejledning Januar 1 Parameterkurver Vi har tidligere set på en linjes parameterfremstilling, feks af typen: 1 OP = t +, hvor t R, og hvor OP er stedvektor

Læs mere

Hvis man ønsker mere udfordring, kan man springe de første 10 opgaver over. 1, og et punkt er givet ved: (2, 1)

Hvis man ønsker mere udfordring, kan man springe de første 10 opgaver over. 1, og et punkt er givet ved: (2, 1) Plangeometri Hvis man ønsker mere udfordring, kan man springe de første 10 opgaver over. Opgave 1 To linjer er givet ved ligningerne: x y 0 og x b y 4 0, hvor b er en konstant. a) Beregn konstanten b således,

Læs mere

VEKTOR I RUMMET PROJEKT 1. Jacob Weng & Jeppe Boese. Matematik A & Programmering C. Avedøre-værket. Roskilde Tekniske Gymnasium 3.4. Fag.

VEKTOR I RUMMET PROJEKT 1. Jacob Weng & Jeppe Boese. Matematik A & Programmering C. Avedøre-værket. Roskilde Tekniske Gymnasium 3.4. Fag. VEKTOR I RUMMET PROJEKT 1 Fag Matematik A & Programmering C Tema Avedøre-værket Jacob Weng & Jeppe Boese Roskilde Tekniske Gymnasium 3.4 07-10-2010 1 Vektor i rummet INDLEDNING Projektet omhandler et af

Læs mere

2. Projektion. Hver af disse kan igen fremstilles som ortografisk-, stereografisk- eller central-projektion.

2. Projektion. Hver af disse kan igen fremstilles som ortografisk-, stereografisk- eller central-projektion. Kortprojektioner En kortprojektion kan defineres som en systematisk metode til overførsel af punkter fra jordkloden til kortet. Da jordens overflade er en dobbeltkrum flade i modsætning til kortets plane

Læs mere

Hvis man ønsker mere udfordring, kan man springe de første 10 opgaver over. , og et punkt er givet ved: P (2, 1).

Hvis man ønsker mere udfordring, kan man springe de første 10 opgaver over. , og et punkt er givet ved: P (2, 1). Plangeometri Hvis man ønsker mere udfordring, kan man springe de første 10 opgaver over Opgave 1 To linjer er givet ved ligningerne: x y 0 og x b y 4 0, hvor b er en konstant a) Beregn konstanten b således,

Læs mere

Delmængder af Rummet

Delmængder af Rummet Delmængder af Rummet Frank Nasser 11. juli 2011 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Indhold 1 Introduktion

Læs mere

Teorien. solkompasset

Teorien. solkompasset Teorien bag solkompasset Preben M. Henriksen 31. juli 2007 Indhold 1 Indledning 2 2 Koordinatsystemer 2 3 Solens deklination 4 4 Horisontalsystemet 5 5 Solkompasset 9 6 Appendiks 11 6.1 Diverse formler..............................

Læs mere

Rumfangs. umfangsberegning. Rumfang af en cylinder. På illustrationen til højre er indtegnet en lineær funktion indenfor et afgrænset interval, hvor

Rumfangs. umfangsberegning. Rumfang af en cylinder. På illustrationen til højre er indtegnet en lineær funktion indenfor et afgrænset interval, hvor Rumfang af en cylinder På illustrationen til øjre er indtegnet en lineær funktion indenfor et afgrænset interval, vor 0;. Funktionen () kan skrives på formen: = (vor a er en konstant) Det markerede grå

Læs mere

Kortprojektioner L mm Optimale projektioner. Afstandskorrektion. System 34.

Kortprojektioner L mm Optimale projektioner. Afstandskorrektion. System 34. Kortprojektioner L4 2016 5.mm Optimale projektioner. Afstandskorrektion. System 34. Lisbeth Fajstrup Institut for Matematiske Fag Aalborg Universitet L4 maj 2016 Lisbeth Fajstrup (AAU) Kortprojektioner

Læs mere

Den bedste dåse, en optimeringsopgave

Den bedste dåse, en optimeringsopgave bksp-20-15e Side 1 af 7 Den bedste dåse, en optimeringsopgave Mange praktiske anvendelser af matematik drejer sig om at optimere en variabel ved at vælge en passende kombination af andre variable. Det

Læs mere

Afstandsformlerne i Rummet

Afstandsformlerne i Rummet Afstandsformlerne i Rummet Frank Nasser 12. april 2011 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Bemærk:

Læs mere

Variabel- sammenhænge

Variabel- sammenhænge Variabel- sammenhænge Udgave 2 2009 Karsten Juul Dette hæfte kan bruges som start på undervisningen i variabelsammenhænge for stx og hf. Hæftet er en introduktion til at kunne behandle to sammenhængende

Læs mere

Eksamensspørgsmål: Trekantberegning

Eksamensspørgsmål: Trekantberegning Eksamensspørgsmål: Trekantberegning Indhold Definition af Sinus og Cosinus... 1 Bevis for Sinus- og Cosinusformlerne... 3 Tangens... 4 Pythagoras s sætning... 4 Arealet af en trekant... 7 Vinkler... 8

Læs mere

Afstand fra et punkt til en linje

Afstand fra et punkt til en linje Afstand fra et punkt til en linje Frank Villa 6. oktober 2014 Dette dokument er en del af MatBog.dk 2008-2012. IT Teaching Tools. ISBN-13: 978-87-92775-00-9. Se yderligere betingelser for brug her. Indhold

Læs mere

Kortprojektioner L mm Længde og vinkelmåling på flader. Konforme og arealtro kort.

Kortprojektioner L mm Længde og vinkelmåling på flader. Konforme og arealtro kort. Kortprojektioner L4 2016 3.mm Længde og vinkelmåling på flader. Konforme og arealtro kort. Lisbeth Fajstrup Institut for Matematiske Fag Aalborg Universitet L4 maj 2016 Lisbeth Fajstrup (AAU) Kortprojektioner

Læs mere

Trigonometri. for 8. klasse. Geert Cederkvist

Trigonometri. for 8. klasse. Geert Cederkvist Trigonometri Ved konstruktion af bygningsærker, hor der kræes stor nøjagtighed, er der ofte brug for, at man kan beregne sider og inkler i geometriske figurer. Alle polygoner kan deles op i trekanter,

Læs mere

Oplæg til Studieretningsprojekt i Matematik og Naturgeografi Kortprojektioner i matematisk og geografisk perspektiv

Oplæg til Studieretningsprojekt i Matematik og Naturgeografi Kortprojektioner i matematisk og geografisk perspektiv 0. April 2007 Oplæg til Studieretningsprojekt i Matematik og Naturgeografi Kortprojektioner i matematisk og geografisk perspektiv Af Astrid Pørtner Nielsen & Lise Danelund Introduktion: Formålet med projektet

Læs mere

Nyt om projektioner. Kortforsyningsseminar, d. 25/3-2010. Simon Lyngby Kokkendorff Referencenetområdet, KMS

Nyt om projektioner. Kortforsyningsseminar, d. 25/3-2010. Simon Lyngby Kokkendorff Referencenetområdet, KMS Nyt om projektioner Kortforsyningsseminar, d. 25/3-2010 Simon Lyngby Kokkendorff Referencenetområdet, KMS Indhold Lidt om kortprojektioner generelt DKTM: Hvorfor, hvordan... Web Mercator hvad er det? Kortprojektioner

Læs mere

GEOMETRI-TØ, UGE 11. Opvarmningsopgave 2, [P] 6.1.1 (i,ii,iv). Udregn første fundamentalform af følgende flader

GEOMETRI-TØ, UGE 11. Opvarmningsopgave 2, [P] 6.1.1 (i,ii,iv). Udregn første fundamentalform af følgende flader GEOMETRI-TØ, UGE Hvis I falder over tryk- eller regne-fejl i nedenstående, må I meget gerne sende rettelser til fuglede@imf.au.dk. Opvarmningsopgave, [P] 5... Find parametriseringer af de kvadratiske flader

Læs mere

UTM/ETRS89: Den primære kortprojektion i Danmark

UTM/ETRS89: Den primære kortprojektion i Danmark UTM/ETRS89: Den primære kortprojektion i Danmark Geodætisk systembeskrivelse Geomatics Notes 1 Version 1 2017-04-01 Geomatics Notes 1. Version 1, 2017-04-01 Geodætisk systembeskrivelse: UTM/ETRS89: Den

Læs mere

Projekt 6.5 Ellipser brændpunkter, brændstråler og praktisk anvendelse i en nyrestensknuser

Projekt 6.5 Ellipser brændpunkter, brændstråler og praktisk anvendelse i en nyrestensknuser Projekt 65 Ellipser brændpunkter brændstråler og praktisk anvendelse i en nyrestensknuser Ellipsens ligning undersgte vi kapitel i bog B I det flgende skal vi undersge ellipser som banekurver og vise hvorledes

Læs mere

Grundlæggende Opgaver

Grundlæggende Opgaver Grundlæggende Opgaver Opgave 1 En retvinklet trekant har sine vinkelspidser i (,4),(4, 4) og (, 4). a) Hvor store er kateterne? b) Hvor store er hypotenusen? c) Beregn trekantens areal. d) Bestem kateterne,

Læs mere

Forslag til løsning af Opgaver til analytisk geometri (side 338)

Forslag til løsning af Opgaver til analytisk geometri (side 338) Forslag til løsning af Opgaver til analytisk geometri (side 8) Opgave Linjerne har ligningerne: a : y x 9 b : x y 0 y x 8 c : x y 8 0 y x Der må gælde: a b, da Skæringspunkt mellem a og b:. Det betyder,

Læs mere

Geometri med Geometer I

Geometri med Geometer I f Frans Kappel Øvre, Morsø Gymnasium Geometri med Geometer I Markeringspil: Klik på et objekt (punkt, linje, cirkel) for at markere det. Hvis du trykker Shift samtidig kan du markere flere objekter eller

Læs mere

1. Vis, at hvis realdelen af en holomorf (analytisk) funktion er konstant (på et åbent område) er funktionen konstant.

1. Vis, at hvis realdelen af en holomorf (analytisk) funktion er konstant (på et åbent område) er funktionen konstant. Matematik F2 - sæt 2 af 7 blok 4 f(z)dz = 0 1 I denne uge vil vi studere Cauchy-Riemann betingelserne, potensrækker, konvergenskriterier og flertydige funktioner. Vi skal også se på integration langs en

Læs mere

Højere Teknisk Eksamen maj 2008. Matematik A. Forberedelsesmateriale til 5 timers skriftlig prøve NY ORDNING. Undervisningsministeriet

Højere Teknisk Eksamen maj 2008. Matematik A. Forberedelsesmateriale til 5 timers skriftlig prøve NY ORDNING. Undervisningsministeriet Højere Teknisk Eksamen maj 2008 HTX081-MAA Matematik A Forberedelsesmateriale til 5 timers skriftlig prøve NY ORDNING Undervisningsministeriet Fra onsdag den 28. maj til torsdag den 29. maj 2008 Forord

Læs mere

Matematiske hjælpemidler. Koordinater. 2.1 De mange bredder.

Matematiske hjælpemidler. Koordinater. 2.1 De mange bredder. 2. Matematiske hjælpemidler. Koordinater. 2.1 De mange bredder. 2.1 I Figur 1.1 i kapitel 1 er der vist et ideelt Kartesiske eller Euklidiske koordinatsystem, med koordinater ( X, Y, Z) = ( X 1, X 2, X

Læs mere

AAU Landinspektøruddannelsen

AAU Landinspektøruddannelsen AAU Landinspektøruddannelsen Universal Mercator Projektion Mads Hvolby, Nellemann & Bjørnkjær 2003 UTM Projektion Indhold Forord Generelt UTM-Projektiionen UTM-Nettet Specifikationer for UTM-Projektionen

Læs mere

Areal. Et af de ældste skrifter om matematik, der findes, hedder Rhind Papyrus. NTRO

Areal. Et af de ældste skrifter om matematik, der findes, hedder Rhind Papyrus. NTRO Areal Et af de ældste skrifter om matematik, der findes, hedder Rhind Papyrus. NTRO Det stammer fra Egypten og er ca. 3650 år gammelt. I Rhind Papyrus findes optegnelser, der viser, hvordan egypterne beregnede

Læs mere

Vejledende Matematik B

Vejledende Matematik B Vejledende Matematik B Prøvens varighed er 4 timer. Alle hjælpemidler er tilladt. Af opgaverne 8A, 8B, 8C og 8D skal kun to afleveres til bedømmelse. Hvis flere end to opgaver afleveres, bedømmes kun besvarelsen

Læs mere

Geometriopgaver. Pladeudfoldning Geometriopgaver - 1 -

Geometriopgaver. Pladeudfoldning Geometriopgaver - 1 - 2009 Geometriopgaver Pladeudfoldning Geometriopgaver Teknisk Isolering AMUSYD 06 02 2009-1 - Indholdsfortegnelse OPGAVE 1 - A, B, C, D.... 3 OPGAVE 1 A REKTANGEL DEL VED FORSØG... 3 OPGAVE 1 B PARALLELOGRAM...

Læs mere

Dynamiske konstruktioner med et dynamisk geometriprogram En øvelsessamling

Dynamiske konstruktioner med et dynamisk geometriprogram En øvelsessamling Dynamiske konstruktioner med et dynamisk geometriprogram En øvelsessamling Disse opgaver er i sin tid udarbejdet til programmerne Geometer, og Geometrix. I dag er GeoGebra (af mange gode grunde, som jeg

Læs mere

DTU Campus Service DTU - BYGHERRERÅDGIVNING IKT Beskrivelse af DTU LOK koordinatsystemet. Den oprindelige definition af DTU-LOK er desværre gået tabt.

DTU Campus Service DTU - BYGHERRERÅDGIVNING IKT Beskrivelse af DTU LOK koordinatsystemet. Den oprindelige definition af DTU-LOK er desværre gået tabt. Notat DTU Campus Service DTU - BYGHERRERÅDGIVNING IKT Beskrivelse af DTU LOK koordinatsystemet 17. februar 2015 Projekt nr. 210914 Dokument nr. 1212704515 Version 5 Udarbejdet af MMKS 1 INDLEDNING Da DTU

Læs mere

Matematik A. Studentereksamen. Forsøg med digitale eksamensopgaver med adgang til internettet

Matematik A. Studentereksamen. Forsøg med digitale eksamensopgaver med adgang til internettet Matematik A Studentereksamen Forsøg med digitale eksamensopgaver med adgang til internettet frs102-matn/a-12082010 Torsdag den 12. august 2010 kl. 09.00-14.00 Opgavesættet er delt i to dele. Delprøve

Læs mere

Lektion 6 Logaritmefunktioner

Lektion 6 Logaritmefunktioner Lektion 6 Logaritmefunktioner Den naturlige logaritmefunktion Andre logaritmefunktioner log() Regneregler Integration ln() =, ln(e) = ln(a b) = ln(a) + ln(b) ln(a r ) = r ln(a) d = ln + C En berømt grænseværdi

Læs mere

Matematik. på Åbent VUC. Trin 2 Xtra eksempler. Trigonometri, boksplot, potensfunktioner, to ligninger med to ubekendte

Matematik. på Åbent VUC. Trin 2 Xtra eksempler. Trigonometri, boksplot, potensfunktioner, to ligninger med to ubekendte Matematik på Åbent VUC Trin Xtra eksempler Trigonometri, boksplot, potensfunktioner, to ligninger med to ubekendte Trigonometri Sinus og cosinus Til alle vinkler hører der to tal, som kaldes cosinus og

Læs mere

Løsningsforslag 7. januar 2011

Løsningsforslag 7. januar 2011 Løsningsforslag 7. januar 2011 May 9, 2012 Opgave 1 (5%) Funktionen f er givet ved forskriften f(x) = ln(x 2) + x 2. a) Bestem definitionsmængden for f. b) Beregn f (x). a) Definitionsmængden Logaritmen

Læs mere

Pendulbevægelse. Måling af svingningstid: Jacob Nielsen 1

Pendulbevægelse. Måling af svingningstid: Jacob Nielsen 1 Pendulbevægelse Jacob Nielsen 1 Figuren viser svingningstiden af et pendul i sekunder som funktion af udsvinget i grader. For udsving mindre end 20 grader er svingningstiden med god tilnærmelse konstant.

Læs mere

Facitliste til Trigonometri i praksis 8.-9. klasse Erik Bilsted 1.udgave, 1. oplag

Facitliste til Trigonometri i praksis 8.-9. klasse Erik Bilsted 1.udgave, 1. oplag [1] Facitliste til Trigonometri i praksis 8.-9. klasse Erik Bilsted 1.udgave, 1. oplag 2009 Alinea København Kopiering af denne bog er kun tilladt ifølge aftale med COPY-DAN Forlagsredaktion: Heidi Freiberg

Læs mere

https://www.uvm.dk/~/media/uvm/filer/udd/folke/pdf14/nov/141127_initiativer_til_videreudvikling _af_folkeskolens_proever.pdf

https://www.uvm.dk/~/media/uvm/filer/udd/folke/pdf14/nov/141127_initiativer_til_videreudvikling _af_folkeskolens_proever.pdf Digitalt prøvesæt Dette er et opgavesæt, som jeg har forsøgt at forestille mig, det kan se ud, hvis det skal leve op til ordene i det der er initiativ 3 i rækken af initiativer til videreudvikling af folkeskolens

Læs mere

I det følgende betragter vi en kugleflade med radius r. Lad os minde om, at overfladearealet af kuglen er F = 4π

I det følgende betragter vi en kugleflade med radius r. Lad os minde om, at overfladearealet af kuglen er F = 4π Sfærisk geometri 26. Sfæriske trekanter 1 Den sædvanlige plangeometri handler, som navnet antyder, om geometri på en»plan«flade. Som model af den virkelige verden er plangeometrien udmærket, blot man holder

Læs mere

bruge en formel-samling

bruge en formel-samling Geometri Længdemål og omregning mellem længdemål... 56 Omkreds og areal af rektangler og kvadrater... 57 Omkreds og areal af andre figurer... 58 Omregning mellem arealenheder... 6 Nogle geometriske begreber

Læs mere

Introduktion til cosinus, sinus og tangens

Introduktion til cosinus, sinus og tangens Introduktion til cosinus, sinus og tangens Jes Toft Kristensen 24. maj 2010 1 Forord Her er en lille introduktion til cosinus, sinus og tangens. Det var et af de emner jeg selv havde svært ved at forstå,

Læs mere

Opgave 1 Opskriv følgende vinkler i radianer 180, 90, 135, 270, 60, 30.

Opgave 1 Opskriv følgende vinkler i radianer 180, 90, 135, 270, 60, 30. Opgaver Polære koordinater Opgave 1 Opskriv følgende vinkler i radianer 180, 90, 15, 70, 60, 0. Opgave Bestem sin π Opgave. Et punkt p i xy-planen er givet ved de kartesiske koordinater,. Bestem p s polære

Læs mere

Opgaver om koordinater

Opgaver om koordinater Opgaver om koordinater Formålet med disse opgaver er dels at træne noget matematik, dels at give oplysninger om og træning i brug af Mathcad: Matematik: Øge grundlæggende indsigt vedrørende koordinater

Læs mere

Tal, funktioner og grænseværdi

Tal, funktioner og grænseværdi Tal, funktioner og grænseværdi Skriv færdig-eksempler der kan udgøre en væsentlig del af et forløb der skal give indsigt vedrørende begrebet grænseværdi og nogle nødvendige forudsætninger om tal og funktioner

Læs mere

Aalborg Universitet - Adgangskursus. Eksamensopgaver. Matematik B til A

Aalborg Universitet - Adgangskursus. Eksamensopgaver. Matematik B til A Aalborg Universitet - Adgangskursus Eksamensopgaver Matematik B til A Undervisningsministeriet Universitetsafdelingen ADGANGSEKSAMEN Til ingeniøruddannelserne Matematik A xxdag den y.juni 00z kl. 9.00

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj 2009 Institution Herningsholm Gymnasium Uddannelse Fag og niveau Lærer(e) Hold HTX Matematik B og A (1.år)

Læs mere

Teknologi & Kommunikation

Teknologi & Kommunikation Side 1 af 6 Indledning Denne note omhandler den lineære funktion, hvis graf i et koordinatsystem er en ret linie. Funktionsbegrebet knytter to størrelser (x og y) sammen, disse to størrelser er afhængige

Læs mere

8.1 Lav en ordbog med tegninger og/eller definitioner af de geometriske begreber:

8.1 Lav en ordbog med tegninger og/eller definitioner af de geometriske begreber: 8. 8.1 Lav en ordbog med tegninger og/eller definitioner af de geometriske begreber: Kvadrat Rektangel Parallelogram Trapez Ligebenet trekant Ligesidet trekant Retvinklet trekant Rombe Polygon Ellipse

Læs mere

Repetition til eksamen. fra Thisted Gymnasium

Repetition til eksamen. fra Thisted Gymnasium Repetition til eksamen fra Thisted Gymnasium 20. oktober 2015 Kapitel 1 Introduktion til matematikken 1. Fortegn Husk fortegnsregnereglerne for multiplikation og division 2. Hierarki Lær sætningen om regnearternes

Læs mere

Lektion 5 Det bestemte integral

Lektion 5 Det bestemte integral a f(x) dx = F (b) F (a) Lektion 5 Det bestemte integral Definition Integralregningens Middelværdisætning Integral- og Differentialregningens Hovedsætning Beregning af bestemte integraler Regneregler Areal

Læs mere

GIS geografi, landinspektør, plan & miljø 1. semester

GIS geografi, landinspektør, plan & miljø 1. semester GIS geografi, landinspektør, plan & miljø 1. semester 1982 1992 Programmet for i dag: Stedbestemmelse. Hvordan beskrives, hvor tingene er, og hvordan taler vi om det? 2002 Alle mennesker ved altid, hvor

Læs mere

Vejledende Matematik A

Vejledende Matematik A Vejledende Matematik A Prøvens varighed er 5 timer. Alle hjælpemidler er tilladt. Af opgaverne 10A, 10B, 10C og 10D skal kun én opgave afleveres til bedømmelse. Hvis flere end én opgave afleveres, bedømmes

Læs mere

Matematik C. Cirkler. Skrevet af Jacob Larsen 3.år HTX Slagelse Udgivet i samarbejde med Martin Gyde Poulsen 3.år HTX Slagelse.

Matematik C. Cirkler. Skrevet af Jacob Larsen 3.år HTX Slagelse Udgivet i samarbejde med Martin Gyde Poulsen 3.år HTX Slagelse. Cirkler Skrevet af Jacob Larsen 3.år HTX Slagelse Udgivet i samarbejde med Martin Gyde Poulsen 3.år HTX Slagelse Side Indholdsfortegnelse Cirklen ligning Tegning af cirkler Skæring mellem cirkel og x-aksen

Læs mere

Geometri i plan og rum

Geometri i plan og rum INTRO I kapitlet arbejder eleverne med plane og rumlige figurers egenskaber og med deres anvendelse som geometriske modeller. I den forbindelse kommer de bl.a. til at beskæftige sig med beregninger af

Læs mere

Programmering C. Casper Hermansen Klasse 2.7 Programmering C. Navn: Casper Hermansen. Klasse: 2.7. Fag: Programmering C

Programmering C. Casper Hermansen Klasse 2.7 Programmering C. Navn: Casper Hermansen. Klasse: 2.7. Fag: Programmering C Navn: Casper Hermansen Klasse: 2.7 Fag: Skole: Roskilde tekniske gymnasium Side 1 af 16 Indhold Indledende aktivitet... 3 Projektbeskrivelse:... 3 Krav:... 3 Målgrupper:... 3 Problemformulering:... 3 Diskussion

Læs mere

MATEMATIK B-NIVEAU STX081-MAB

MATEMATIK B-NIVEAU STX081-MAB MATEMATIK B-NIVEAU STX081-MAB Delprøven uden hjælpemidler Opgave 1 Indsættes h = 2 og x = i (x + h) 2 h(h + 2x), så fås (x + h) 2 h(h + 2x) = ( + 2) 2 2(2 + 2 ) = 5 2 2 8 = 25 16 = 9 Hvis man i stedet

Læs mere

Projekt 10.1 Er der huller i Euklids argumentation? Et moderne aksiomsystem (især for A)

Projekt 10.1 Er der huller i Euklids argumentation? Et moderne aksiomsystem (især for A) Projekt 10.1 Er der huller i Euklids argumentation? Et moderne aksiomsystem (især for A) Indhold Introduktion... 2 Hilberts 16 aksiomer Et moderne, konsistent og fuldstændigt aksiomsystem for geometri...

Læs mere

Navneregning. Aktivitet Emne Klassetrin Side

Navneregning. Aktivitet Emne Klassetrin Side VisiRegn ideer 2 Navneregning Inge B. Larsen ibl@dpu.dk INFA juli 2001 Indhold: Aktivitet Emne Klassetrin Side Vejledning til Navneregning 2-5 Elevaktiviteter til Navneregning 2.1 Værdifulde navne M-Æ

Læs mere

RUMGEOMETRI-programmet D3GEO til TI-82 og TI-83

RUMGEOMETRI-programmet D3GEO til TI-82 og TI-83 RUMGEOMETRI-programmet D3GEO til TI-8 og TI-83 Af Frans Morville. Programmet har menuer i to niveauer organiseret efter de oplysninger, der opgivet (kendte) og som skal bruges i beregninger. Overskrifterne

Læs mere

Grønland. Matematik A. Højere teknisk eksamen

Grønland. Matematik A. Højere teknisk eksamen Grønland Matematik A Højere teknisk eksamen Onsdag den 12. maj 2010 kl. 9.00-14.00 Matematik A Prøvens varighed er 5 timer. Alle hjælpemidler er tilladt. Ved valgopgaver må kun det anførte antal afleveres

Læs mere

Vi går ud fra, at vi kender udgangspunktets position det kunne f.eks. være en europæisk havn.

Vi går ud fra, at vi kender udgangspunktets position det kunne f.eks. være en europæisk havn. Om Bestikregning Bestikregning går ud på, at man forsøger at finde ud af hvor man er ved at benytte sig af følgende oplysninger: a. Udgangspunktets position (breddegrad og længdegrad) b. Hvilken retning

Læs mere

Reelle tal. Symbolbehandlingskompetencen er central gennem arbejdet med hele kapitlet i elevernes arbejde med tal og regneregler.

Reelle tal. Symbolbehandlingskompetencen er central gennem arbejdet med hele kapitlet i elevernes arbejde med tal og regneregler. Det første kapitel i grundbogen til Kolorit i 9. klasse handler om de reelle tal. Første halvdel af kapitlet har karakter af at være opsamlende i forhold til, hvad eleverne har arbejdet med på tidligere

Læs mere

06 Formler i retvinklede trekanter del 2

06 Formler i retvinklede trekanter del 2 06 Formler i retvinklede trekanter del 2 I del 2 udledes (nogle af) de generelle formler, der gælder for sinus, cosinus og tangens i retvinklede trekanter. Sætning 1 For enhver vinkel v gælder der BEVIS

Læs mere

I dag: Digital projektering -formål. Give jer et indblik i, hvad det betyder at projektere digitalt, og hvad det kræver især med hensyn til data.

I dag: Digital projektering -formål. Give jer et indblik i, hvad det betyder at projektere digitalt, og hvad det kræver især med hensyn til data. I dag: Digital projektering -formål Give jer et indblik i, hvad det betyder at projektere digitalt, og hvad det kræver især med hensyn til data. Dagens emner Hvad er et digitalt kort? Digitale grunddata

Læs mere

Opgave 1 Alle tallene er reelle tal, så opgaven er at finde den mindste talmængde, som resultaterne tilhører.

Opgave 1 Alle tallene er reelle tal, så opgaven er at finde den mindste talmængde, som resultaterne tilhører. Opgave 1 Alle tallene er reelle tal, så opgaven er at finde den mindste talmængde, som resultaterne tilhører. A. Q B. R (sidelængden er 5, som er irrational) C. Q Opgave 2 A. 19 = 1 19 24 = 2 3 3 36 =

Læs mere

Matematikopgaver niveau C-B-A STX-HTX

Matematikopgaver niveau C-B-A STX-HTX Matematikopgaver niveau C-B-A STX-HTX Niels Junge Niels Junge 1 Indhold 1. Algebra...4 Opgave 1.1...4 Opgave 1.2...4 Opgave 1.3...4 Opgave 1.4...5 Opgave 1.5...5 Opgave 1.6...5 Opgave 1.7...5 Opgave 1.8...6

Læs mere

Vektorer i 3D. 1. Grundbegreber. 1. Koordinater. Enhedsvektorerne. Vektor OP. De ortogonale enhedsvektorer kaldes for: Hvis punkt p har koordinaterne:

Vektorer i 3D. 1. Grundbegreber. 1. Koordinater. Enhedsvektorerne. Vektor OP. De ortogonale enhedsvektorer kaldes for: Hvis punkt p har koordinaterne: Vektorer i 3D. Grundegreer. Koordinater z k P OP i 0 j x y Enhedsvektorerne De ortogonale enhedsvektorer kaldes for: i, j og k Vektor OP Hvis punkt p har koordinaterne: P ( a a a3 ) Så har vektor OP koordinaterne:

Læs mere

Matematik Eksamensprojekt

Matematik Eksamensprojekt Matematik Eksamensprojekt Casper Wandrup Andresen, 2.F I dette projekt arbejdes der bl.a. med parabler, vektorer, funktioner, sinus, cosinus, tangens, differentialregning, integralregning samt de øvrige/resterende

Læs mere

Inverse funktioner og Sektioner

Inverse funktioner og Sektioner Inverse funktioner og Sektioner Frank Nasser 15. april 2011 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Bemærk:

Læs mere

Opgave 1 10. Opgave 2 Andengradsligningen løses, idet. Opgave 3. 11 er en løsning til ligningen, da:

Opgave 1 10. Opgave 2 Andengradsligningen løses, idet. Opgave 3. 11 er en løsning til ligningen, da: 7. marts 0 FVU AVU HF X FAG : Matematik B ark nr. antal ark 8 Opgave 0 a b 5 a b 5 = b 3 er en løsning til ligningen, da: = 9 = 3 Opgave Andengradsligningen løses, idet a = b = 3 c = 4 d (diskriminanten)

Læs mere

Kapitel 4. Trigonometri. Matematik C (må anvendes på Ørestad Gymnasium) Kapitel 4

Kapitel 4. Trigonometri. Matematik C (må anvendes på Ørestad Gymnasium) Kapitel 4 Matematik C (må anvendes på Ørestad Gymnasium) Trigonometri Den del af matematik, der beskæftiger sig med figurer og deres egenskaber, kaldes for geometri. Selve ordet geometri er græsk og betyder jord(=geo)måling(=metri).

Læs mere

Tegning og figurer. 1 Tegn med GeoGebra. Du skal bruge Computer. Tablet. 2 Rundt om og indeni Du skal bruge Målebånd. Kvadratpapir.

Tegning og figurer. 1 Tegn med GeoGebra. Du skal bruge Computer. Tablet. 2 Rundt om og indeni Du skal bruge Målebånd. Kvadratpapir. Tegning og figurer 1 Tegn med GeoGebra Du skal bruge Computer Tablet KG 2 Rundt om og indeni Du skal bruge Målebånd Kvadratpapir Arbejdsark 23 24 KG Værksted 3: Byg huse. 25 26 27 Værksted 4: Tegn, hvad

Læs mere

MATEMATIK I HASLEBAKKER 14 OPGAVER

MATEMATIK I HASLEBAKKER 14 OPGAVER MATEMATIK I HASLEBAKKER 14 OPGAVER Matematik i Hasle Bakker Hasle Bakker er et oplagt mål for ekskursioner, der lægger op til, at eleverne åbner øjnene for de muligheder, naturen giver. Leg, bevægelse,

Læs mere

Dobbeltspalte-eksperimentet. Lad os først se lidt nærmere på elektroner, som skydes imod en skærm med en smal spalte:

Dobbeltspalte-eksperimentet. Lad os først se lidt nærmere på elektroner, som skydes imod en skærm med en smal spalte: Dobbeltspalte-eksperimentet Nogle af kvantemekanikkens særheder kan illustreres med det såkaldte dobbeltspalte-eksperiment, som er omtalt side 73 i Atomernes vilde verden. Rent historisk fandt man elektronen

Læs mere

Lineær Algebra, 2015 1. kursusgang

Lineær Algebra, 2015 1. kursusgang Lineær Algebra, 2015 1. kursusgang Lisbeth Fajstrup Institut for Matematiske Fag Aalborg Universitet LinAlg September 2015 Velkommen til Lineær algebra Kursusholder - Lisbeth Fajstrup. Kontor: Fredrik

Læs mere

Lektion 8s Geometri Opgaver

Lektion 8s Geometri Opgaver Matematik på Åbent VU Lektion 8s Geometri Indholdsfortegnelse Sammensatte figurer Kunstruktionsopgaver Trigonometri Lavet af Niels Jørgen ndreasen, VU Århus. Redigeret af Hans Pihl, KVU Lektion 8s Side

Læs mere

Matematikken bag Parallel- og centralprojektion

Matematikken bag Parallel- og centralprojektion Matematikken bag parallel- og centralojektion 1 Matematikken bag Parallel- og centralojektion Dette er et redigeret uddrag af lærebogen: Programmering med Delphi fra 2003 (570 sider). Delphi ophørte med

Læs mere

Matematik F2 Opgavesæt 2

Matematik F2 Opgavesæt 2 Opgaver uge 2 I denne uge kigger vi nærmere på Cauchy-Riemann betingelserne, potensrækker, konvergenskriterier og flertydige funktioner. Vi skal også se på integration langs en ve i den komplekse plan.

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) August 2015- juni 2017 ( 1 og 2. År) Rybners HTX Matematik B

Læs mere

Pladeudfoldning, Kanaler

Pladeudfoldning, Kanaler 2009 Pladeudfoldning Kanaler Teoretisk gennemgang af de grundlæggende færdigheder inden for Pladeudfoldning, Kanaler Teknisk Isolering AMUSYD 06 02 2009-1 - Indholdsfortegnelse Indholdsfortegnelse...2

Læs mere

Notat om håndtering af aktualitet i matrikulære sager

Notat om håndtering af aktualitet i matrikulære sager Notat om håndtering af aktualitet i matrikulære sager Ajourføring - Ejendomme J.nr. Ref. lahni/pbp/jl/ruhch Den 7. marts 2013 Introduktion til notatet... 1 Begrebsafklaring... 1 Hvorfor er det aktuelt

Læs mere

brikkerne til regning & matematik geometri trin 2 preben bernitt

brikkerne til regning & matematik geometri trin 2 preben bernitt brikkerne til regning & matematik geometri trin 2 preben bernitt brikkerne til regning & matematik geometri, trin 2 ISBN: 978-87-92488-16-9 1. Udgave som E-bog 2003 by bernitt-matematik.dk Kopiering er

Læs mere

Vejledning til Uddannelsesplan for elever i 10. klasse til ungdomsuddannelse eller anden aktivitet

Vejledning til Uddannelsesplan for elever i 10. klasse til ungdomsuddannelse eller anden aktivitet Vejledning til Uddannelsesplan for elever i 10. klasse til ungdomsuddannelse eller anden aktivitet Om uddannelsesplanen Uddannelsesplanen er din plan for fremtiden. Du skal bruge den til at finde ud af,

Læs mere

Danske koordinatsystemr (referencesystemer) MicroStation V8i. Begreber

Danske koordinatsystemr (referencesystemer) MicroStation V8i. Begreber Danske koordinatsystemr (referencesystemer) MicroStation V8i Begreber 1 Columbus tog fejl! - jorden er flad når vi tegner i MicroStation!!! Geodætiske begreber definition af jorden Jordens overflade Jordens

Læs mere

STUDENTEREKSAMEN AUGUST 2009 MATEMATIK A-NIVEAU. Onsdag den 12. august 2009. Kl. 09.00 14.00 STX092-MAA. Undervisningsministeriet

STUDENTEREKSAMEN AUGUST 2009 MATEMATIK A-NIVEAU. Onsdag den 12. august 2009. Kl. 09.00 14.00 STX092-MAA. Undervisningsministeriet STUDENTEREKSAMEN AUGUST 009 MATEMATIK A-NIVEAU Onsdag den 1. august 009 Kl. 09.00 14.00 STX09-MAA Undervisningsministeriet Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-5

Læs mere

Velkommen til 2. omgang af IT for let øvede

Velkommen til 2. omgang af IT for let øvede Velkommen til 2. omgang af IT for let øvede I dag Hjemmeopgave 1 Næste hjemmeopgave Eventuelt vinduer igen Mapper og filer på USB-stik Vi skal hertil grundet opgave 2 Internet Pause (og det bliver nok

Læs mere

Andengradsligninger i to og tre variable

Andengradsligninger i to og tre variable enote 0 enote 0 Andengradsligninger i to og tre variable I denne enote vil vi igen beskæftige os med andengradspolynomierne i to og tre variable som også er behandlet og undersøgt med forskellige teknikker

Læs mere

Arbejdsmiljøgruppens problemløsning

Arbejdsmiljøgruppens problemløsning Arbejdsmiljøgruppens problemløsning En systematisk fremgangsmåde for en arbejdsmiljøgruppe til løsning af arbejdsmiljøproblemer Indledning Fase 1. Problemformulering Fase 2. Konsekvenser af problemet Fase

Læs mere