Kompendie Komplekse tal

Størrelse: px
Starte visningen fra side:

Download "Kompendie Komplekse tal"

Transkript

1 Kompedie Komplekse tal Prebe Holm "!#!%$'&($)+*-,. cos(s + t) )0/ si(s + t) Trigoometri er måske ikke så relevat, år ma såda umiddelbart sakker om komplekse tal. Me faktisk avedes de trigoometriske fuktioer til komplekse tal. Jeg har derfor valgt at friske disse to formler op: 98 cos (s + t) = cos (s) cos (t) si (s) si (t) 1'43 si (s + t) = si (s) cos (t) + cos (s) si (t) :<;>=?;@;AA';B&C,ADFE#G#*IHJ&(;@=K*%;LE#MONJDP,QH RS;T* UVXW7YKZ 7[?\ ]^]`_X_a]cbed7_ R x 9f :<;>H0)+ghEcA';@H RS;B&(,ADFE#G%*%HJ&C;T=K*I;i$kjNmlocp4DPEcA',*I;* U VaWqY?Z y C z Im(z) Re(z) 5([sr%tquwvK_a]^xCyz]#bed{_ R x Det komplekse tal z repræseteres på forskellige måder. Bl.a. de rektagulære form: z = x + yi hvor i repræseterer imagiærdele af tallet. i er også defieret som: i = 1

2 7} ~ + 4 oƒj 9 4 e ˆ +ŠI Œ Œ C OŽK # k)+aš =".)0=Kg Et komplekst tal ka også repræseteres polært. Til det skal vi avede ogle adre begreber: œž aÿ Modules af et komplekst tal "svarer til"lægde af e vektor: Modulus af z = x + yi ka skrives: Re(z) + Im(z) x + y œž aÿ ª «s C±³²^ S² µ s«s² s ž ¹ 9 `²²^º? Argumetet for et komplekst tal z svarer egetlig til de vikel φ mellem x-akse og de vektor som repræseterer det komplekse tal. Ma skriver arg(z). Hovedargumetet Arg for z er de værdi af arg(z) som ligger i itervallet 0 < Arg(z) π Argumetet for z arg(z) ka fides ved at tage arcta til imagiærdele delt med reeldele: arg(z) = arcta imagiærdel reeldel Dog skal ma bemærke at tages ka syde og give falske vikler. Derfor skal ma huske at følgede skal være opfyldt: cos θ = Re(z) z si θ = Im(z) z Det er automatisk opfyldt, hvis ma husker på edeståede: arg(z) = arcta imagiærdel reeldel + pπ, p {0, 1, } p = 0, år reeldel og imagiærdel positiv p = 1, år reeldel egativ p =, år reeldel positiv og imagiærdel egativ På de måde fider ma automatisk hovedargumetet for z. œž aÿ X» ¼ C±½ S ž C±³²^ 9¾ + ž Àw«µ s«der er lidt diskussio om, hvorvidt ma skriver de polære form (arg(z) = θ og z = M). De polære form ka skrives såda: eller såda: z = z arg(z) z = M θ z = z e arg(z)i z = Me θi 5

3 Ö Ç Á ÃÄ+ TÃ' m IŽ Ã` Ši %ÅÆ Œ C OŽK # eller for de sags skyld såda: z = z (cos arg(z) + i si arg(z)) z = M(cos θ + i si θ) De sidste her, meer jeg, blot er e omregigsmetode fra polær form til rektagulær form og ikke e egetlig opskrivigsform af det komplekse tal. ÈÊÉ É ËË ÌÍÎÏ ÐÑT QmwË ÒÓÔk T Õ Hvis z = a + bi w = c + di så er: w + z = a + c + (b + d)i z w = a c + (b d)i ØÏ Ë Ë#ÙË` ÌÓÔ ` Õ For multiplikatio ka følgede siges: gag paratesere ud og sæt i lig med -1 dvs. at hvis z = a + bi og w = c + di så er: z w = (a + bi)(c + di) = a c + a di + b ci + b d i = a c b d + (a d + b c)i f ÚÛG#AÄ&?$'EcA$'H, &?$')+*Ê,Q. &C,AE%MÜEm)+Aš¹=Ô.)0=Kgh;TA Hvis z hos z = r og arg(z) = θ me w hos w = s og arg(w) = φ så er z w = r s og arg(z w) = arg(z) + arg(w) Geerelt ka skrives:»t œž œ Ýw SÞ@¾ arg(z w) = arg(z) + arg(w) z w = r s Hvis vektore z og w er repræseteret ved: z = r(cos θ + i si θ) w = s(cos φ + i si φ) ß

4 ~ˆà%Ã4á à CÃ` Ši %ÅÆ Œ C OŽK # så er: Re(z) = r cos θ Im(z) = r si θ Re(w) = s cos φ Im(w) = s si φ produktet af disse to komplekse tal er derfor givet ved: z w = r(cos θ + i si θ) s(cos φ + i si φ) z w = r s((cos θ cos φ si θ si φ) + i(si θ cos φ + cos θ si φ)) Ved brug af de trigoometriske additiosformler fås: z w = r s(cos(θ + φ) + i si(θ + φ)) z w = r s cos(θ + φ) + i r s si(θ + φ) Det ka herudaf ses at modulus for det komplekse tal z w er: z w = r s edvidere ka det også ses at argumetet til z er: arg(z w) = i r s si(θ + φ) â ã ËåäËTË æóôk T Õ For at kue dividere et komplekst tal, skal ma kede til begrebet "komplekst kojugeret". Et kompleks kojugeret tal, er blot et kompleks tal, hvor de imagiære del gages med -1: Hvis w = c + di så er de komplekst kojugerede værdi w = c di. Hvis: så er z w : z = a + bi w = c + di z w = a + bi c + di (a + bi)(c di) = (c + di)(c di) ac + bd + (bc + cd)i = c + d ac + bd bc + cd = c + + d c + d i NB! For regig i C, som ku ivolverer additio, subtraktio, multiplikatio og divisio gælder de samme regler som i R. NB! Brug aldrig uligheder så som i C. ç

5 ê è J+ Jé Å ŽQŠ%Ã'Š L %ÅÆ Œ C OŽK # ëêkìóp Ë ÍíÓÆk T Hvis et komplekst tal opløftes til et adet tal, hvor er et heltal 1 så er z = z z...z Det vil ma blive ret træt af, hvis blot er lidt større ed 5. Derfor ka ma avede flg.: z = z arg(z ) = arg(z) Ma ka jo så altid fide hovedargumetet udfra selve argumetet ved at fide det tal som ved multiplikatio kommer tættes på argumetet, evt. lidt større da hovedargumetet skal ligge mellem π. og π î ïð$w,*%!%;t* I C gælder der, at der for ethvert z 0 har ligige w = z to løsiger: w 1 og w : Hvis z = r(cos θ + i si θ), dvs. z = r, arg(z) = θ så er de to løsiger w 1 = r(cos θ + i si θ ) w = r(cos θ + π + i si θ + π ) Eller på polær form: î 98 ïð$ *ño&(; w 1 = r e i θ w = r e i( θ + π ) Ligige w = z, z givet, har (hvis z ), løsiger. Hvis z = r og arg(z) = θ så: w 1 = r(cos θ + i si θ ) w = r(cos θ + π w = r(cos θ + ( 1)π + i si θ + π ) + i si θ + ( 1)π ) Eller på polær form: w 1 = r e i θ w = r e i( θ + π ) w 3 = r e i( θ + π ) ò

6 õ ó à# +ŠO + ( Ô Œ C# ŠI ŒŠŽ Ã' % ÅcŠ% Ž Ã` Š w k = r e i( θ +(k 1) π ) w = r e i( θ +( 1) π ) ö ä#éñ QÙT QÉÑ æóæ Hvis z = x + yi så er kvadratrode givet ved: hvor A = x+ x +y y x + yi = A + i A Når x + yi er et reelt tal < 0 (dvs. y = 0 og x < 0), så bliver A = 0, og da giver formle ige meig. Derimod ka ma fide z (år z er et reelt egativt tal) ved flg.: z = x hvor x er et positivt reelt tal. = i x ø ã ùk T Ñ Ë`Ó Ï wë Hvis ma ser på de komplekse ekspoetialfuktio, fider ma ud af at de sædvalige idetitet stadig gælder: e z e w = e z+w, z, w C Derfor bliver: arg(e z e w ) = arg(e z ) + arg(e w ) og e z e w = e z e w = e z+w û

Matematik A. Studentereksamen. Forberedelsesmateriale. Forsøg med digitale eksamensopgaver med adgang til internettet.

Matematik A. Studentereksamen. Forberedelsesmateriale. Forsøg med digitale eksamensopgaver med adgang til internettet. Matematik A Studetereksame Forsøg med digitale eksamesopgaver med adgag til iterettet Forberedelsesmateriale Vejledede opgave Forår 0 til stx-a-net MATEMATIK Der skal afsættes 6 timer af holdets sædvalige

Læs mere

MOGENS ODDERSHEDE LARSEN. Komplekse tal

MOGENS ODDERSHEDE LARSEN. Komplekse tal MOGENS ODDERSHEDE LARSEN Komplekse tal a b. udgave 004 FORORD Dette otat giver e kort idførig i teorie for komplekse tal, regeregler, røddere i polyomier bl.a. med heblik på avedelser ved løsig af lieære

Læs mere

Nøgleord og begreber Komplekse tal Test komplekse tal Polære koordinater Kompleks polarform De Moivres sætning

Nøgleord og begreber Komplekse tal Test komplekse tal Polære koordinater Kompleks polarform De Moivres sætning Oversigt [S] App. I, App. H.1 Nøgleord og begreber Komplekse tal Test komplekse tal Polære koordinater Kompleks polarform De Moivres sætning Test komplekse tal Komplekse rødder Kompleks eksponentialfunktion

Læs mere

KOMPLEKSE TAL x-klasserne Gammel Hellerup Gymnasium

KOMPLEKSE TAL x-klasserne Gammel Hellerup Gymnasium KOMPLEKSE TAL x-klassere Gammel Hellerup Gymasium Februar 09 ; Michael Symaski ; m@ghg.dk Idholdsfortegelse E kort historie om imagiært og virkeligt... Tallegemet De Komplekse Tal... Idførelse af realdel

Læs mere

KOMPLEKSE TAL x-klasserne Gammel Hellerup Gymnasium

KOMPLEKSE TAL x-klasserne Gammel Hellerup Gymnasium KOMPLEKSE TAL x-klassere Gammel Hellerup Gymasium Idholdsfortegelse E kort historie om imagiært og virkeligt... Tallegemet De Komplekse Tal... Idførelse af realdel og imagiærdel samt i... 8 Subtraktio,

Læs mere

Elementær Matematik. Polynomier

Elementær Matematik. Polynomier Elemetær Matematik Polyomier Ole Witt-Hase 2008 Køge Gymasium Idhold 1. Geerelle polyomier...1 2. Divisio med hele tal....1 3. Polyomiers divisio...2 4. Polyomiers rødder....4 5. Bestemmelse af røddere

Læs mere

Komplekse tal Matematik og naturfag i verdensklasse, 2004. Komplekse tal

Komplekse tal Matematik og naturfag i verdensklasse, 2004. Komplekse tal Komplekse tl Mtemtik og turfg i verdesklsse, 004 Komplekse tl Dette mterile er ereget til udervisig i mtemtik i gymsiet. Der forudsættes kedsk til løsig f degrdsligiger, trigoometri og e lille smule vektorregig.

Læs mere

Komplekse tal. x 2 = 1 (2) eller

Komplekse tal. x 2 = 1 (2) eller Komplekse tal En tilegnelse af stoffet i dette appendix kræver at man løser opgaverne Komplekse tal viser sig uhyre nyttige i fysikken, f.eks til løsning af lineære differentialligninger eller beskrivelse

Læs mere

Uge 37 opgaver. Opgave 1. Svar : Starter med at definere sup (M) og inf (M) :

Uge 37 opgaver. Opgave 1. Svar : Starter med at definere sup (M) og inf (M) : Uge 37 opgaver Opgave Svar : a) Starter med at defiere sup (M) og if (M) : Kigge u på side 3 i kompedie og aveder aksiom (.3) Kotiuitetsaksiomet A = x i x 2 < 2 Note til mig selv : Har søgt på ordet (iequalities)

Læs mere

Matematikkens mysterier - på et obligatorisk niveau. 7. Ligninger, polynomier og asymptoter

Matematikkens mysterier - på et obligatorisk niveau. 7. Ligninger, polynomier og asymptoter Matematikkes mysterier - på et obligatorisk iveau af Keeth Hase 7. Ligiger, polyomier og asymptoter Hvad er e asymotote? Og hvorda fides de? 7. Ligiger, polyomier og asymptoter Idhold 7.0 Idledig 7.1 Udsag

Læs mere

MM501 forelæsningsslides

MM501 forelæsningsslides MM501 forelæsningsslides uge 37, 2010 Produceret af Hans J. Munkholm 2009 bearbejdet af Jessica Carter 2010 1 Hvad er et komplekst tal? Hvordan regner man med komplekse tal? Man kan betragte udvidelsen

Læs mere

Løsningsforslag til skriftlig eksamen i Kombinatorik, sandsynlighed og randomiserede algoritmer (DM528)

Løsningsforslag til skriftlig eksamen i Kombinatorik, sandsynlighed og randomiserede algoritmer (DM528) Løsigsforslag til skriftlig eksame i Kombiatorik, sadsylighed og radomiserede algoritmer (DM58) Istitut for Matematik & Datalogi Syddask Uiversitet Madag de 3 Jauar 011, kl. 9 13 Alle sædvalige hjælpemidler

Læs mere

Komplekse tal. Mikkel Stouby Petersen 27. februar 2013

Komplekse tal. Mikkel Stouby Petersen 27. februar 2013 Komplekse tal Mikkel Stouby Petersen 27. februar 2013 1 Motivationen Historien om de komplekse tal er i virkeligheden historien om at fjerne forhindringerne og gøre det umulige muligt. For at se det, vil

Læs mere

Introduktion til uligheder

Introduktion til uligheder Itroduktio til uligheder Dette er e itroduktio til ogle basale uligheder om det aritmetiske geemsit, det geometriske geemsit, det harmoiske geemsit og det kvadratiske geemsit. Først skal vi ved fælles

Læs mere

Renteformlen. Erik Vestergaard

Renteformlen. Erik Vestergaard Reteformle Erik Vestergaard 2 Erik Vestergaard www.matematikfysik.dk Erik Vestergaard, 2010. Billeder: Forside: istock.com/ilbusca Side 4: istock.com/adresrimagig Desude ege illustratioer. Erik Vestergaard

Læs mere

vejer (med fortegn). Det vil vi illustrere visuelt og geometrisk for (2 2)-matricer og (3 3)-matricer i enote 6.

vejer (med fortegn). Det vil vi illustrere visuelt og geometrisk for (2 2)-matricer og (3 3)-matricer i enote 6. enote 5 enote 5 Determiater I dee enote ser vi på kvadratiske matricer. Deres type er altså for 2, se enote 4. Det er e fordel, me ikke absolut ødvedigt, at kede determiatbegrebet for (2 2)-matricer på

Læs mere

FUNKTIONER del 1 Funktionsbegrebet Lineære funktioner Eksponentialfunktioner Logaritmefunktioner Rentesregning Indekstal

FUNKTIONER del 1 Funktionsbegrebet Lineære funktioner Eksponentialfunktioner Logaritmefunktioner Rentesregning Indekstal FUNKTIONER del Fuktiosbegrebet Lieære fuktioer Ekspoetialfuktioer Logaritmefuktioer Retesregig Idekstal -klassere Gammel Hellerup Gymasium November 08 ; Michael Szymaski ; mz@ghg.dk Idholdsfortegelse FUNKTIONSBEGREBET...

Læs mere

MOGENS ODDERSHEDE LARSEN. Fourieranalyse

MOGENS ODDERSHEDE LARSEN. Fourieranalyse MOGENS ODDERSHEDE LARSEN Fourieraalyse. udgave 7 FORORD Dette otat giver e kort idførig i teorie for fourierrækker og fouriertrasformatio. Det forudsættes i dette otat, at ma har rådighed over matematiklommeregere

Læs mere

Komplekse Tal. 20. november 2009. UNF Odense. Steen Thorbjørnsen Institut for Matematiske Fag Århus Universitet

Komplekse Tal. 20. november 2009. UNF Odense. Steen Thorbjørnsen Institut for Matematiske Fag Århus Universitet Komplekse Tal 20. november 2009 UNF Odense Steen Thorbjørnsen Institut for Matematiske Fag Århus Universitet Fra de naturlige tal til de komplekse Optælling af størrelser i naturen De naturlige tal N (N

Læs mere

Den flerdimensionale normalfordeling

Den flerdimensionale normalfordeling De flerdimesioale ormalfordelig Stokastiske vektorer Ved e stokastisk vektor skal vi forstå e vektor, hvor de ekelte kompoeter er sædvalige stokastiske variable. For de stokastiske vektor Y = Y,..., Y

Læs mere

Komplekse tal. Mike Auerbach. Tornbjerg Gymnasium, Odense 2015

Komplekse tal. Mike Auerbach. Tornbjerg Gymnasium, Odense 2015 Komplekse tal Mike Auerbach Tornbjerg Gymnasium, Odense 2015 Indhold 1 Vinkelmål og trigonometriske funktioner 2 1.1 Radianer................................................ 2 1.2 Cosinus og sinus som

Læs mere

- et værktøj til fejlrettende QR-koder. Projekt 0.3 Galois-legemerne. Indhold. Hvad er matematik? A, i-bog

- et værktøj til fejlrettende QR-koder. Projekt 0.3 Galois-legemerne. Indhold. Hvad er matematik? A, i-bog Projekt 0.3 Galois-legemere GF é ëp û - et værktøj til fejlrettede QR-koder Idhold De karakteristiske egeskaber ved de tre mest almidelige talsystemer, og... De kommutative, associative og distributive

Læs mere

og Fermats lille sætning

og Fermats lille sætning Projekter: Kaitel 0. Projekt 0. Modulo-regig, restklassegruer og Fermats lille sætig Projekt 0. Modulo-regig, restklassegruere ( { 0 }, ) og Fermats lille sætig Vi aveder moduloregig og restklasser mage

Læs mere

Komplekse tal og algebraens fundamentalsætning.

Komplekse tal og algebraens fundamentalsætning. Komplekse tal og algebraens fundamentalsætning. Michael Knudsen 10. oktober 2005 1 Ligningsløsning Lad N = {0,1,2,...} betegne mængden af de naturlige tal og betragt ligningen ax + b = 0, a,b N,a 0. Findes

Læs mere

Analyse 1, Prøve maj 2009

Analyse 1, Prøve maj 2009 Aalyse, Prøve 5. maj 009 Alle hevisiger til TL er hevisiger til Kalkulus (006, Tom Lidstrøm). Direkte opgavehevisiger til Kalkulus er agivet med TLO, ellers er alle hevisiger til steder i de overordede

Læs mere

Projekt 1.3 Brydningsloven

Projekt 1.3 Brydningsloven Projekt 1.3 Brydigslove Når e bølge, fx e lysbølge, rammer e græseflade mellem to stoffer, vil bølge ormalt blive spaltet i to: Noget af bølge kastes tilbage (spejlig), hvor udfaldsvikle u er de samme

Læs mere

og Fermats lille Projekt 0.4 Modulo-regning, restklassegrupperne sætning ..., 44, 20,4,28,52,... Hvad er matematik? 3 ISBN

og Fermats lille Projekt 0.4 Modulo-regning, restklassegrupperne sætning ..., 44, 20,4,28,52,... Hvad er matematik? 3 ISBN Projekt 0.4 Modulo-regig, restklassegruppere sætig ( p 0, ) og Fermats lille Vi aveder moduloregig og restklasser mage gage om dage, emlig år vi taler om tid, om hvad klokke er, om hvor lag tid der er

Læs mere

Noter om polynomier, Kirsten Rosenkilde, Marts Polynomier

Noter om polynomier, Kirsten Rosenkilde, Marts Polynomier Noter om polyomier, Kirste Rosekilde, Marts 2006 1 Polyomier Disse oter giver e kort itroduktio til polyomier, og de fleste sætiger æves ude bevis. Udervejs er der forholdsvis emme opgaver, mes der til

Læs mere

Branchevejledning. ulykker indenfor. lager. området. Branchearbejdsmiljørådet for transport og engros

Branchevejledning. ulykker indenfor. lager. området. Branchearbejdsmiljørådet for transport og engros Brachevejledig ulykker idefor lager området Brachearbejdsmiljørådet for trasport og egros Baggrud Udersøgelser på lager- og trasportområdet har vist, at beskrivelse af hædelsesforløbet ved udfyldelse

Læs mere

Talfølger og -rækker

Talfølger og -rækker Da Beltoft og Klaus Thomse Aarhus Uiversitet 2009 Talfølger og -rækker Itroduktio til Matematisk Aalyse Zeos paradoks om Achilleus og skildpadde Achilleus løber om kap med e skildpadde. Achilleus løber

Læs mere

Forslag til besvarelser af opgaver m.m. i ε-bogen, Matematik for lærerstuderende

Forslag til besvarelser af opgaver m.m. i ε-bogen, Matematik for lærerstuderende Forslag til besvarelser af opgaver m.m. i ε-boge, Matematik for lærerstuderede Dette er førsteudgave af opgavebesvarelser udarbejdet i sommere 008. Dokumetet ideholder forslag til besvarelser af de fleste

Læs mere

Formelskrivning i Word 2. Sådan kommer du i gang 4. Eksempel med skrivning af brøker 5. Brøker skrevet med småt 6. Hævet og sænket skrift 6

Formelskrivning i Word 2. Sådan kommer du i gang 4. Eksempel med skrivning af brøker 5. Brøker skrevet med småt 6. Hævet og sænket skrift 6 Dee udgave er til geemkig på ettet. Boge ka købes for kr. 5 hos EH-Mat. E y og udvidet udgave med title»symbol- og formelskrivig«er udkommet september 00. Se mere om de her. Idholdsfortegelse Formelskrivig

Læs mere

3y MA, Steen Toft Jørgensen side 1/5 Helsingør Gymnasium. Definitioner, formler, sætninger og ideen i beviserne så det er muligt at huske beviserne.

3y MA, Steen Toft Jørgensen side 1/5 Helsingør Gymnasium. Definitioner, formler, sætninger og ideen i beviserne så det er muligt at huske beviserne. 3y MA, Stee Toft Jørgese side /5 Helsigør Gymasium Vektorregig i 3D Formålet er at skabe overblik over emet. Boge Mat3A af Jes Carstese, kapitel 3 og 4, side 83-5. Defiitioer, formler, sætiger og idee

Læs mere

Introduktion til uligheder

Introduktion til uligheder Itroduktio til uligheder, marts 0, Kirste Rosekilde Itroduktio til uligheder Dette er e itroduktio til ogle basale uligheder om det aritmetiske geemsit, det geometriske geemsit, det harmoiske geemsit og

Læs mere

DATV: Introduktion til optimering og operationsanalyse, 2007. Bin Packing Problemet

DATV: Introduktion til optimering og operationsanalyse, 2007. Bin Packing Problemet DATV: Itroduktio til optimerig og operatiosaalyse, 2007 Bi Packig Problemet David Pisiger, Projektopgave 2 Dette er de ade obligatoriske projektopgave på kurset DATV: Itroduktio til optimerig og operatiosaalyse.

Læs mere

Supplerende noter II til MM04

Supplerende noter II til MM04 Supplerede oter II til MM4 N.J. Nielse 1 Uiform koverges af følger af fuktioer Vi starter med følgede defiitio: Defiitio 1.1 Lad S være e vilkårlig mægde og (X, d et metrisk rum. E følge (f af fuktioer

Læs mere

Komplekse tal. Jan Scholtyßek 29.04.2009

Komplekse tal. Jan Scholtyßek 29.04.2009 Komplekse tal Jan Scholtyßek 29.04.2009 1 Grundlag Underlige begreber er det, der opstår i matematikken. Blandt andet komplekse tal. Hvad for fanden er det? Lyder...komplekst. Men bare roligt. Så komplekst

Læs mere

Inden der siges noget om komplekse tal, vil der i dette afsnit blive gennemgået en smule teori om trigonometriske funktioner.

Inden der siges noget om komplekse tal, vil der i dette afsnit blive gennemgået en smule teori om trigonometriske funktioner. Komplekse tal Mike Auerbach Odense 2012 1 Vinkelmål og trigonometriske funktioner Inden der siges noget om komplekse tal, vil der i dette afsnit blive gennemgået en smule teori om trigonometriske funktioner.

Læs mere

SCT. KNUDS GYMNASIUM KOMPLEKSE TAL. Opgaver til noterne kan findes her. PDF. Facit til opgaverne kan findes her. PDF. Henrik S. Hansen, version 3.

SCT. KNUDS GYMNASIUM KOMPLEKSE TAL. Opgaver til noterne kan findes her. PDF. Facit til opgaverne kan findes her. PDF. Henrik S. Hansen, version 3. SCT. KNUDS GYMNASIUM KOMPLEKSE TAL Opgaver til noterne kan findes her. PDF Facit til opgaverne kan findes her. PDF Henrik S. Hansen, version 3.1 0 Indhold Tallenes udvikling... 1 Tallenes udvikling...

Læs mere

DATV: Introduktion til optimering og operationsanalyse, 2007. Følsomhed af Knapsack Problemet

DATV: Introduktion til optimering og operationsanalyse, 2007. Følsomhed af Knapsack Problemet DATV: Itroduktio til optimerig og operatiosaalyse, 2007 Følsomhed af Kapsack Problemet David Pisiger, Projektopgave 1 Dette er de første obligatoriske projektopgave på kurset DATV: Itroduktio til optimerig

Læs mere

Projekt 4.8 De reelle tal og 1. hovedsætning om kontinuerte funktioner

Projekt 4.8 De reelle tal og 1. hovedsætning om kontinuerte funktioner Projekter: Kapitel 4 Projekt 48 De reelle tal og hovedsætig om kotiuerte fuktioer Projekt 48 De reelle tal og hovedsætig om kotiuerte fuktioer Kotiuitet og kotiuerte fuktioer Ord som kotiuert og kotiuerlig

Læs mere

FACITLISTE TIL KOMPLEKSE TAL

FACITLISTE TIL KOMPLEKSE TAL FACITLISTE TIL KOMPLEKSE TAL Kaptel Opgave Opgave Opgave Det emmeste check af lgge er at opløfte begge sder tl. potes. Bombells metode gver følgede lgger: a a b = 5 ( ) b a b = 09 = 7. Løs dem med et CAS

Læs mere

Tankegangskompetence. Kapitel 9 Algebraiske strukturer i skolen 353

Tankegangskompetence. Kapitel 9 Algebraiske strukturer i skolen 353 Takegagskompetece Hesigte med de følgede afsit er først og fremmest at skabe klarhed over de mere avacerede regeregler i skole og give resultatet i de almee form, der er karakteristisk for algebra. Vi

Læs mere

Lys og gitterligningen

Lys og gitterligningen Fysik rapport: Lys og gitterligige Forfatter: Bastia Emil Jørgese.z Øvelse blev udført osdag de 25. jauar 202 samme med Lise Kjærgaard Paulse 2 - Bastia Emil Jørgese Fysik rapport (4 elevtimer), februar

Læs mere

hvor i er observationsnummeret, som løber fra 1 til stikprøvestørrelsen n, X i

hvor i er observationsnummeret, som løber fra 1 til stikprøvestørrelsen n, X i Normalfordeliger For at e stokastisk variabel X ka være ormalfordelt, skal X agive værdie af e eller ade målig, f.eks. tid, lægde, vægt, beløb osv. Notatioe er: Xi ~ N( μ, σ hvor i er observatiosummeret,

Læs mere

Georg Mohr Konkurrencen Noter om uligheder. Søren Galatius Smith

Georg Mohr Konkurrencen Noter om uligheder. Søren Galatius Smith Georg Mohr Kokurrece Noter om uligheder Søre Galatius Smith. juli 2000 Resumé Kapitel geemgår visse metoder fra gymasiepesum, som ka bruges til at løse ulighedsopgaver, og ideholder ikke egetligt yt stof.

Læs mere

StudyGuide til Matematik B.

StudyGuide til Matematik B. StudyGuide til Matematik B. OVERSIGT. Dee study guide ideholder følgede afsit Geerel itroduktio. Emeliste. Eksame. Bilag 1: Udervisigsmiisteriets bekedtgørelse for matematik B. Bilag 2: Bilag 3: Uddrag

Læs mere

Termodynamik. Indhold. Termodynamik. Første og anden hovedsætning 1/18

Termodynamik. Indhold. Termodynamik. Første og anden hovedsætning 1/18 ermodyamik. Første og ade hovedsætig /8 ermodyamik Idhold. Isoterme og adiabatiske tilstadsædriger for gasser...3 3. ermodyamikkes. hovedsætig....5 4. Reversibilitet...6 5. Reversibel maskie og maksimalt

Læs mere

Branchevejledning. ulykker indenfor. godschauffør. området. Branchearbejdsmiljørådet for transport og engros

Branchevejledning. ulykker indenfor. godschauffør. området. Branchearbejdsmiljørådet for transport og engros Brachevejledig ulykker idefor godschauffør området Brachearbejdsmiljørådet for trasport og egros Baggrud Udersøgelser på lager- og trasportområdet har vist, at beskrivelse af hædelsesforløbet ved udfyldelse

Læs mere

Noter om komplekse tal

Noter om komplekse tal Noter om komplekse tal Preben Alsholm Januar 008 1 Den komplekse eksponentialfunktion Vi erindrer først om den sædvanlige og velkendte reelle eksponentialfunktion. Vi skal undertiden nde det nyttigt, at

Læs mere

Komplekse tal. enote 29. 29.1 Indledning

Komplekse tal. enote 29. 29.1 Indledning enote 29 1 enote 29 Komplekse tal I denne enote introduceres og undersøges talmængden C, de komplekse tal. Da C betragtes som en udvidelse af R forudsætter enoten almindeligt kendskab til de reelle tal,

Læs mere

Den hurtige Fouriertransformation. Jean Baptiste Joseph Fourier ( )

Den hurtige Fouriertransformation. Jean Baptiste Joseph Fourier ( ) De hurtige Fouriertrasformatio Jea Baptiste Joseph Fourier (768-83) Polyomier Polyomium: p + 2 3 4 ( x) = 5 + 2x + 8x + 3x 4x Geerelt: p(x) = eller! " i= a i x i p(x) = a + a x + a 2 x 2 +!+ a! x! 2 Evaluerig

Læs mere

Claus Munk. kap. 1-3

Claus Munk. kap. 1-3 Claus Muk kap. 1-3 1 Dages forelæsig Grudlæggede itroduktio til obligatioer Betaligsrækker og låeformer Det daske obligatiosmarked Pris og kurs Effektive reter 2 1 Obligatioer Grudlæggede Itro Debitor

Læs mere

Dagens forelæsning. Claus Munk. kap. 1-3. Obligationer Grundlæggende Intro. Obligationer Grundlæggende Intro. Obligationer Grundlæggende Intro

Dagens forelæsning. Claus Munk. kap. 1-3. Obligationer Grundlæggende Intro. Obligationer Grundlæggende Intro. Obligationer Grundlæggende Intro Dages forelæsig Grudlæggede itroduktio til obligatioer Claus Muk kap. - 3 Betaligsrækker og låeformer Det daske obligatiosmarked Effektive reter 2 Obligatioer Grudlæggede Itro Obligatioer Grudlæggede Itro

Læs mere

Matematik 1 Semesteruge 5 6 (1. oktober oktober 2001) side 1 Komplekse tal Arbejdsplan

Matematik 1 Semesteruge 5 6 (1. oktober oktober 2001) side 1 Komplekse tal Arbejdsplan Matematik 1 Semesteruge 5 6 (1. oktober - 12. oktober 2001) side 1 Komplekse tal Arbejdsplan I semesterugerne 5 og 6 erstattes den regulære undervisning (forelæsninger og fællestimer) af selvstudium med

Læs mere

Projekt 9.1 Regneregler for stokastiske variable middelværdi, varians og spredning

Projekt 9.1 Regneregler for stokastiske variable middelværdi, varians og spredning Hvad er matematik? Projekter: Kaitel 9 Projekt 9 Regeregler for stokastiske variable middelværdi, varias og sredig Projekt 9 Regeregler for stokastiske variable middelværdi, varias og sredig Sætig : Regeregler

Læs mere

Om Følger og Rækker. Nyttige Grænseværdier. Nyttige Rækker. Carsten Lunde Petersen. lim. lim = 0. lim (1 + x n n )n = e x. n n n.

Om Følger og Rækker. Nyttige Grænseværdier. Nyttige Rækker. Carsten Lunde Petersen. lim. lim = 0. lim (1 + x n n )n = e x. n n n. IMFUFA Carste Lude Peterse Om Følger og Ræer Nyttige Græseværdier lim = 1 lim! = x = 0! lim lim (1 + x ) = e x! lim = e 1 Nyttige Ræer 1 p < p > 1 1 log p ( + 1) < p > 1 x = = x 1 x for x < 1 og Z, diverget

Læs mere

antal gange krone sker i første n kast = n

antal gange krone sker i første n kast = n 1 Uge 15 Teoretisk Statistik, 5. april 004 1. Store tals lov Eksempel: møtkast Koverges i sadsylighed Tchebychevs ulighed Sætig: Store tals lov. De cetrale græseværdisætig 3. Approksimatio af sadsyligheder

Læs mere

Meningsmålinger KLADDE. Thomas Heide-Jørgensen, Rosborg Gymnasium & HF, 2017

Meningsmålinger KLADDE. Thomas Heide-Jørgensen, Rosborg Gymnasium & HF, 2017 Meigsmåliger KLADDE Thomas Heide-Jørgese, Rosborg Gymasium & HF, 2017 Idhold 1 Meigsmåliger 2 1.1 Idledig................................. 2 1.2 Hvorda skal usikkerhede forstås?................... 3 1.3

Læs mere

Giv eksempler på hvordan forskellige ligningstyper (lineære, eksponentielle eller potens) løses.

Giv eksempler på hvordan forskellige ligningstyper (lineære, eksponentielle eller potens) løses. Eksamesspørgsmål MAT C, 017-018. (Foreløbig udgave, små ædriger ka forekomme) Spørgsmål 1: Ligiger Du skal redegøre for løsig af ligiger og heruder behadle omformigsreglere for ligiger. Giv eksempler på

Læs mere

Dagens program. Estimation: Kapitel Eksempler på middelrette og/eller konsistente estimator (de sidste fra sidste forelæsning)

Dagens program. Estimation: Kapitel Eksempler på middelrette og/eller konsistente estimator (de sidste fra sidste forelæsning) Dages program Estimatio: Kapitel 9.4-9.7 Eksempler på middelrette og/eller kosistete estimator (de sidste fra sidste forelæsig) Ko desiterval for store datasæt kap. 9.4 Ko desiterval for små datasæt kap.

Læs mere

Giv eksempler på hvordan forskellige ligningstyper (lineære, eksponentielle eller potens) løses.

Giv eksempler på hvordan forskellige ligningstyper (lineære, eksponentielle eller potens) løses. Eksamesspørgsmål matematik C, sommer 018. (Foreløbig udgave, små ædriger ka forekomme) Spørgsmål 1: Ligiger Du skal redegøre for løsig af ligiger og heruder behadle omformigsreglere for ligiger. Giv eksempler

Læs mere

DesignMat Komplekse tal

DesignMat Komplekse tal DesignMat Komplekse tal Preben Alsholm Uge 7 Forår 010 1 Talmængder 1.1 Talmængder Talmængder N er mængden af naturlige tal, 1,, 3, 4, 5,... Z er mængden af hele tal... 5, 4, 3,, 1, 0, 1,, 3, 4, 5,....

Læs mere

1. De karakteristiske egenskaber ved de tre mest almindelige talsystemer, og... 2

1. De karakteristiske egenskaber ved de tre mest almindelige talsystemer, og... 2 Projekt 0.3 Galois-legemere GF p - et værktøj til fejlrettede QR-koder Idhold. De karakteristiske egeskaber ved de tre mest almidelige talsystemer, og.... De kommutative, associative og distributive lov

Læs mere

Komplekse tal og rækker

Komplekse tal og rækker Komplekse tal og rækker John Olsen 1 Indledning Dette sæt noter er forelæsningsnoter til foredraget Komplekse tal og rækker. Noterne er beregnet til at blive brugt sammen med foredraget. I afsnit 2 bliver

Læs mere

Baggrundsnote til sandsynlighedsregning

Baggrundsnote til sandsynlighedsregning Baggrudsote til sadsylighedsregig Kombiatorik. Multiplikatiospricippet E mægde beståede af forskellige elemeter kaldes her e -mægde. Elemetere i e m-mægde og elemetere i e -mægde ka parres på i alt m forskellige

Læs mere

Komplekse tal. enote Indledning

Komplekse tal. enote Indledning enote 1 1 enote 1 Komplekse tal I denne enote introduceres og undersøges talmængden C, de komplekse tal. Da C betragtes som en udvidelse af R, forudsætter enoten almindeligt kendskab til de reelle tal,

Læs mere

Estimation og test i normalfordelingen

Estimation og test i normalfordelingen af Birger Stjerholm Made Samfudlitteratur 07 Etimatio og tet i ormalfordelige Dee tekt ideholder et overblik over ogle grudlæggede pricipper for etimatio og tet i ormalfordelige i hyppigt forekommede ituatioer:

Læs mere

Projekt 3.2 Anlægsøkonomien i Storebæltsforbindelsen. Indhold. Hvad er matematik? 1 ISBN

Projekt 3.2 Anlægsøkonomien i Storebæltsforbindelsen. Indhold. Hvad er matematik? 1 ISBN Projekt 3.2 Alægsøkoomie i Storebæltsforbidelse Dette projekt hadler, hvorda økoomie var skruet samme, da ma byggede storebæltsforbidelse. Store alægsprojekter er æste altid helt eller delvist låefiasieret.

Læs mere

cos(t), v(t) = , w(t) = e t, z(t) = e t.

cos(t), v(t) = , w(t) = e t, z(t) = e t. Aalyse Øvelser Rasmus Sylvester Bryder. og. oktober 3 Bevis for Cotiuity lemma Theorem. Geemgås af Michael Staal-Olse. Bevis for Lemma.8 Dee har vi faktisk allerede vist; se Opgave 9.5 fra Uge. Det er

Læs mere

Administartive oplysninger.

Administartive oplysninger. DGU r. Stamoplysiger LOOP Nr. Lokal betegelse Matrikkel Nr.: X koordiat Y Koordiat Z kote. 98.853 3.21.03.01 G1-1 6a/7c, Tåig by 552020,95 6207170,19 66,58 T Admiistartive oplysiger. koordiat oplysiger

Læs mere

Bjørn Grøn. Analysens grundlag

Bjørn Grøn. Analysens grundlag Bjør Grø Aalyses grudlag Aalyses grudlag Side af 4 Idholdsfortegelse Kotiuerte og differetiable fuktioer 3 Differetial- og itegralregiges udviklig 5 3 Hovedsætiger om differetiable fuktioer 8 Opgaver til

Læs mere

Sætning: Middelværdi og varians for linearkombinationer. Lad X 1,X 2,...,X n være stokastiske variable. Da gælder. Var ( a 0 + a 1 X a n X n

Sætning: Middelværdi og varians for linearkombinationer. Lad X 1,X 2,...,X n være stokastiske variable. Da gælder. Var ( a 0 + a 1 X a n X n Ladmåliges fejlteori Lektio 3 Estimatio af σ Dobbeltmåliger Geometrisk ivellemet Lieariserig - rw@math.aau.dk Istitut for Matematiske Fag Aalborg Uiversitet Repetitio: Middelværdi og Varias Sætig: Middelværdi

Læs mere

Asymptotisk optimalitet af MLE

Asymptotisk optimalitet af MLE Kapitel 4 Asymptotisk optimalitet af MLE Lad Y 1, Y 2,... være uafhægige, idetisk fordelte variable med værdier i et rum (Y,K). Vi har givet e model (ν θ ) θ Θ for fordelige af Y 1 (og dermed også for

Læs mere

Undersøgelse af numeriske modeller

Undersøgelse af numeriske modeller Udersøgelse af umeriske modeller Formål E del af målsætige med dette delprojekt er at give kedskab til de begræsiger, fejl og usikkerheder, som optræder ved modellerig. I de forbidelse er følgede udersøgelse

Læs mere

Sandsynlighedsteori 1.2 og 2 Uge 5.

Sandsynlighedsteori 1.2 og 2 Uge 5. Istitut for Matematiske Fag Aarhus Uiversitet De 27. jauar 25. Sadsylighedsteori.2 og 2 Uge 5. Forelæsiger: Geemgage af emere karakteristiske fuktioer og Mometproblemet afsluttes, og vi starter på afsittet

Læs mere

Men tilbage til regression og Chi-i-anden. test. Begge begreber refererer til normalfordelingen med middelværdi μ og spredning σ.

Men tilbage til regression og Chi-i-anden. test. Begge begreber refererer til normalfordelingen med middelværdi μ og spredning σ. χ test matematkudervsge χ - test gymasets matematkudervsg I jauar ummeret 8 af LMFK bladet havde jeg e artkel, hvor jeg harcelerede ldt over, at regresso og sær χ fordelg havde fudet dpas matematkudervsge

Læs mere

fhair 52.0"; ( ^ ^ as Z < ^ -» H S M 3

fhair 52.0; ( ^ ^ as Z < ^ -» H S M 3 fair 52.0"; (515 974 ^ ^ as ^ -» S M 3 > D Z (D Z Q LU LU > LU W CC LO CO > CD LJJ > LJJ O LL .. O ^ CO ^ ^ ui,"" 2.2 C d. ii "^ S Q ~ 2 & 2 ^ S i; 2 C O T3 Q _, - - ^ Z W O 1- ' O CM OOCMOOO'-'O'^'N

Læs mere

BILAG. til. Kommissionens forordning (EU) /

BILAG. til. Kommissionens forordning (EU) / EUROPA- KOMMISSIONEN Bruxelles, de XXX [ ](2015) XXX draft ANNEXES 1 to 8 BILAG til Kommissioes forordig (EU) / om fastsættelse af etregler om tilslutig af trasmissiossystemer med højspædigsjævstrøm og

Læs mere

Spørgsmål 3 (5 %) Bestem sandsynligheden for at et tilfældigt valgt vindue har en fejl ved listerne, når man ved at der er fejl i glasset.

Spørgsmål 3 (5 %) Bestem sandsynligheden for at et tilfældigt valgt vindue har en fejl ved listerne, når man ved at der er fejl i glasset. STATISTIK Skriftlig evaluerig, 3. semester, madag de 30. auar 006 kl. 9.00-3.00. Alle hælpemidler er tilladt. Opgaveløsige forsyes med av og CPR-r. OPGAVE Ved e produktio af viduer er der mulighed for,

Læs mere

DesignMat Den komplekse eksponentialfunktion og polynomier

DesignMat Den komplekse eksponentialfunktion og polynomier DesignMat Den komplekse eksponentialfunktion og polynomier Preben Alsholm Uge 8 Forår 010 1 Den komplekse eksponentialfunktion 1.1 Definitionen Definitionen Den velkendte eksponentialfunktion x e x vil

Læs mere

Besvarelser til Calculus Ordinær Eksamen Juni 2019

Besvarelser til Calculus Ordinær Eksamen Juni 2019 Besvarelser til Calculus Ordinær Eksamen - 14. Juni 2019 Mikkel Findinge Bemærk, at der kan være sneget sig fejl ind. Kontakt mig endelig, hvis du skulle falde over en sådan. Dette dokument har udelukkende

Læs mere

Mikroøkonomi, matematik og statistik Eksamenshjemmeopgave 14. 20. december 2007

Mikroøkonomi, matematik og statistik Eksamenshjemmeopgave 14. 20. december 2007 Mikroøkoomi, matematik og statistik Eksameshjemmeopgave 14. 20. december 2007 Helle Buzel, Tom Egsted og Michael H.J. Stæhr 14. december 2007 R E T N I N G S L I N I E R F O R E K S A M E N S H J E M M

Læs mere

Uddannelsesparathed. Vejledning om processerne ved vurdering af uddannelsesparathed (UPV) og ansøgning til ungdomsuddannelserne

Uddannelsesparathed. Vejledning om processerne ved vurdering af uddannelsesparathed (UPV) og ansøgning til ungdomsuddannelserne Uddaelsesparathed Vejledig om processere ved vurderig af uddaelsesparathed (UPV) og asøgig til ugdomsuddaelsere Uddaelsesparathed Vejledig om processere ved vurderig af uddaelsesparathed (UPV) og asøgig

Læs mere

Noter om kombinatorik, Kirsten Rosenkilde, februar Kombinatorik

Noter om kombinatorik, Kirsten Rosenkilde, februar Kombinatorik Noter om ombiatori, Kirste Roseilde, februar 008 Kombiatori Disse oter er e itrodutio til ombiatori og starter helt fra bude, så e del af det idledede er siert edt for dig allerede, me der ommer også hurtigt

Læs mere

De Platoniske legemer De fem regulære polyeder

De Platoniske legemer De fem regulære polyeder De Platoiske legemer De fem regulære polyeder Ole Witt-Hase jauar 7 Idhold. Polygoer.... Nogle topologiske betragtiger.... Eulers polyedersætig.... Typer af et på e kugleflade.... Toplasvikle i e regulær

Læs mere

Definition: Normalfordelingen. siges at være normalfordelt med middelværdi µ og varians σ 2, hvor µ og σ er reelle tal og σ > 0.

Definition: Normalfordelingen. siges at være normalfordelt med middelværdi µ og varians σ 2, hvor µ og σ er reelle tal og σ > 0. Repetitio: Normalfordelige Ladmåliges fejlteori Lektio Trasformatio af stokastiske variable - kkb@math.aau.dk http://people.math.aau.dk/ kkb/udervisig/lf13 Istitut for Matematiske Fag Aalborg Uiversitet

Læs mere

Gamle eksamensopgaver. Diskret Matematik med Anvendelser (DM72) & Diskrete Strukturer(DM504)

Gamle eksamensopgaver. Diskret Matematik med Anvendelser (DM72) & Diskrete Strukturer(DM504) Gamle eksamesopgaver Diskret Matematik med Avedelser (DM72) & Diskrete Strukturer(DM504) Istitut for Matematik& Datalogi Syddask Uiversitet, Odese Alle sædvalige hjælpemidler(lærebøger, otater etc.), samt

Læs mere

Kompleks ligning 1. - en illustration af hvordan løsninger til ligningen z 5 + iz + 1 = 0 ser ud. 1. Oprette den frie variabel z.

Kompleks ligning 1. - en illustration af hvordan løsninger til ligningen z 5 + iz + 1 = 0 ser ud. 1. Oprette den frie variabel z. Kompleks ligning 1 - en illustration af hvordan løsninger til ligningen z 5 + iz + 1 = 0 ser ud Formål At give mulighed for at undersøge/illustrere hvordan et komplekst polynomium opfører sig, og hvordan

Læs mere

TIMEGLASSETS FASER: Introen er et foto og nogle spørgsmål til hele kapitlet. Meningen med introen er, at du og

TIMEGLASSETS FASER: Introen er et foto og nogle spørgsmål til hele kapitlet. Meningen med introen er, at du og TIMEGLASSETS FASER: INTRO Itroe er et foto og ogle spørgsmål til hele kapitlet. Meige med itroe er, at du og di klasse skal få e ide om, hvad kapitlet hadler om, og hvad I skal lære. Prøv at svare på spørgsmålee

Læs mere

SCT. KNUDS GYMNASIUM KOMPLEKSE TAL. Henrik S. Hansen, version 1.5

SCT. KNUDS GYMNASIUM KOMPLEKSE TAL. Henrik S. Hansen, version 1.5 SCT. KNUDS GYMNASIUM KOMPLEKSE TAL Henrik S. Hansen, version 1.5 Indhold Tallenes udvikling... 2 De naturlige tal... 2 De hele tal... 2 De rationale tal... 3 De reelle tal... 3 De komplekse tal... 4 Indledning...

Læs mere

Kursusnoter til BasisMat

Kursusnoter til BasisMat Kursusnoter til BasisMat Peter Beelen Søren Thomsen Peter Nørtoft Morten Brøns Im z=re iα z =r arg(z)=α Re e iπ + 1 = 0 INSTITUT FOR MATEMATIK OG COMPUTER SCIENCE DANMARKS TEKNISKE UNIVERSITET 2016 Indhold

Læs mere

DesignMat Uge 1 Gensyn med forårets stof

DesignMat Uge 1 Gensyn med forårets stof DesignMat Uge 1 Gensyn med forårets stof Preben Alsholm Efterår 2010 1 Hovedpunkter fra forårets pensum 11 Taylorpolynomium Taylorpolynomium Det n te Taylorpolynomium for f med udviklingspunkt x 0 : P

Læs mere

Facilitering ITU 15. maj 2012

Facilitering ITU 15. maj 2012 Faciliterig ITU 15. maj 2012 Facilitatio is like movig with the elemets ad sailig the sea Vejvisere Velkomst de gode idflyvig Hvad er faciliterig? Kedeteg ved rolle som facilitator Facilitatores drejebog

Læs mere

Estimation ved momentmetoden. Estimation af middelværdiparameter

Estimation ved momentmetoden. Estimation af middelværdiparameter Statistik og Sadsylighedsregig 1 STAT kapitel 4.2 4.3 Susae Ditlevse Istitut for Matematiske Fag Email: susae@math.ku.dk http://math.ku.dk/ susae Estimatio ved mometmetode Idimellem ka det være svært (eller

Læs mere

Projekt 0.4 Modulo-regning, restklassegrupperne ( lille sætning. {} 0, ) og Fermats { } ...,-44,-20,4,28,52,...

Projekt 0.4 Modulo-regning, restklassegrupperne ( lille sætning. {} 0, ) og Fermats { } ...,-44,-20,4,28,52,... Projekter: Kaitel 0. Projekt 0. Modulo-regig, restklassegruer og Fermats lille sætig Projekt 0. Modulo-regig, restklassegruere ( {} 0, ) og Fermats lille sætig Vi aveder moduloregig og restklasser mage

Læs mere

30. august Epidemiologi og biostatistik. Forelæsning 3 Uge 2, torsdag d. 8. september 2005 Michael Væth, Afdeling for Biostatistik.

30. august Epidemiologi og biostatistik. Forelæsning 3 Uge 2, torsdag d. 8. september 2005 Michael Væth, Afdeling for Biostatistik. 30. august 005 Epidemiologi og biostatistik. Forelæsig 3 Uge, torag d. 8. september 005 Michael Væth, Afdelig for Biostatistik. Mere om kategoriske data Test for uafhægighed I RxC tabeller Test for uafhægighed

Læs mere

Kvantemekanik 4 Side 1 af 11 Energi og tid. Hamiltonoperatoren

Kvantemekanik 4 Side 1 af 11 Energi og tid. Hamiltonoperatoren Kvateekaik 4 Side 1 af 11 ergi og tid Hailtooperatore Af KM3 fregik det, at ehver observabel er repræseteret ved e operator, f.eks. jf. udtryk (3.1) og (3.). Ispireret af det klassiske udtryk for kietisk

Læs mere

HALLO no en hjemme? Tema. + s. 28 Forstå dit barns hjerne

HALLO no en hjemme? Tema. + s. 28 Forstå dit barns hjerne HALLO o e hjemme? Eksperte forklarer, hvorfor det er så svært for små ører at høre efter. Se, hvorda det går, år Elie Holm tester de gode råd på si datter Liva, og få idblik i, hvad der sker i de lille

Læs mere

Dagens forelæsning. Claus Munk. kap. 4. Arbitrage. Obligationsprisfastsættelse. Ingen-Arbitrage princippet. Illustration af arbitrage

Dagens forelæsning. Claus Munk. kap. 4. Arbitrage. Obligationsprisfastsættelse. Ingen-Arbitrage princippet. Illustration af arbitrage Dages forelæsig Ige-Arbirage pricippe Claus Muk kap. 4 Nulkupoobligaioer Simpel og geerel boosrappig Forwardreer Obligaiosprisfassæelse Arbirage Værdie af e obligaio Nuidsværdie af obligaioes fremidige

Læs mere