David Kallestrup, Aarhus School of Engineering, SRP-forløb ved Maskinteknisk retning 1

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Starte visningen fra side:

Download "David Kallestrup, Aarhus School of Engineering, SRP-forløb ved Maskinteknisk retning 1"

Transkript

1 1 Pendul David Kallestrup, Aarhus School of Engineering, SRP-forløb ved Maskinteknisk retning Hvad er et pendul? En matematiker og en ingeniør ser tit ens på mange ting, men ofte er der forskelle mellem de to verdner, dette gælder blandt andet for pendulet. Det simple pendul, er en matematisk forsimplet måde at regne på det virkelige/fysiske pendul. det simple pendul er al massen samlet i ét uendeligt lille punkt, hvilket naturligvis ikke er tilfældet for virkelighedens pendul. forsøg 1 skal det undersøges hvordan svingningstiden T varierer for den simple beregningsmodel, i forhold til det fysiske pendul. For at kunne bestemme den teoretiske svingningstid for et frit pendul gælder følgende formel for svingningstiden: T = 2π ω (1.1) hvor ω er vinkelhastigheden. Figur 1.1: Påvirkninger på et simpelt pendul 1.2 Vinkelhastigheden for et simpelt pendul Figur 1.1 viser et frit-legeme-diagram af det simple pendul, dvs. at den situation man ønsker at beskrive indtegnes med de kendte kræfter. Det kan ses, at de kræfter som påvirker det ophængte pendul, er snorkraften (på engelsk Tension) T, og tyngdekraften F = mg. Vær opmærksom på, at y-aksen er parallel med snorkraften. Svingningstiden kan så bestemmes ved at bruge Newtons 2. lov for bevægelse: Fx = ma (1.2)

2 2 Kapitel 1 / Pendul her betyder F x summen af alle påvirkende kræfter i x-aksens retning, og vinkelaccelerationen er a = L θ. (1.3) Læg mærke til, at der ikke sker nogen acceleration i y-retningen og at der her heller ingen kraftpåvirkning er. Tyngdekraften skrives som: F = mg (1.4) med g værende tyngdeaccelerationen. Ved at kombinere ligning (1.3), (1.4) og figur 1.1 på forrige side fås følgende: ma = F x = mg sin θ m Lθ = mg sin(θ) for små udsving gælder at sin(θ) θ m Lθ = mgθ Lθ = gθ θ = gθ L (1.5) Ligning (1.5) er en 2. ordens differentialligning med løsningen: ω 2 = g L g ω = L (1.6) her indsat som led i svingningstiden som vi beskrev i ligning (1.1) på forrige side til T = 2π 1 g L L = 2π g (1.7) 1.3 Det fysiske pendul For at kunne regne på opførslen for et fysisk pendul, skal konceptet masseinertimoment, skrevet som, indføres. Summen af momenter M udtrykt ved vinkelaccelerationen α bliver nu: M = α (1.8)

3 1.4 Svingningstiden for det fysiske pendul 3 af 10 Et masseinertimoment for et pendul skal findes omkring omdrejningsaksen (der hvor pendulet er fastgjort) og afhænger af følgende parametre: L: Længden fra omdrejningspunkt til pendul m: massen af pendulet og pendulets facon/dimension, fx firkantet, cylinder eller lign.. Masseinertimomentet kan være svært at bestemme, og derfor kan der med fordel slås op i tabeller for at finde de rigtige formler for forskellige former. Hvis pendulet er en cylinder gør følgende formel sig gældende: = 1 4 mr mh2 + ml 2 (1.9) hvor m er cyinderloddets masse, h er cylinderens højde og L er stadig afstanden fra omdrejningspunktet til monteringspunktet på toppen af pendulet. Bemærk snoren er i denne beregningsmodel ikke medtaget, dette kan gøres fordi der anvendes en, i forhold til loddets masse, let sytråd i forsøget. En kraftigere snor vil give en mere kompliceret formel. 1.4 Svingningstiden for det fysiske pendul Som for det simple pendul opstilles bevægelsesligningen for pendulet, vinkelaccelerationen kaldes stadig for θ. Med ligning (1.8) på forrige side kan vinkelhastigheden ω bestemmes. θ = mgl sin(θ) for små udsving af θ gælder sin(0) θ θ = mglθ hvilket kan reduceres ned til 0 = mgl θ + θ (1.10) ω 2 = mgl mlg θ + θ ω = (1.11) Når ω er kendt, betyder det, at vi igen kan bruge formel ligning (1.1) på side 1 til at regne svingningstiden ud som. 1 T = 2π mgl ) T = wπ mgl (1.12)

4 4 Kapitel 1 / Pendul Figur 1.2: Vindmodstanden R på pendulet 1.5 Vindmodstanden på et simpelt pendul På figur 1.2 er vindmodstanden tegnet som påvirkning på det matematiske pendul. Vindmodstandens kraftpåvirkning virker altid modsatrettet af tyngdekraften. For at regne vindmodstanden på det simple pendul, antages at vindmodstanden stiger proportionalt med hastigheden. At vi kan gøre som netop beskrevet betyder at vi kan udtrykke kraften R som: R = kl d θ d t R = klθ (1.13) hvor k er en konstant. Lige som for det simple pendul tidligere opstilles bevægelsesligningen for systemet: Se fx Dynamics af J.L. Meriam og L.G. Kraige

5 1.5 Vindmodstanden på et simpelt pendul 5 af 10 Fx = ma R mg sin θ = mlθ klθ mg sin θ = mlθ θ ml + klθ mgθ = 0 θ + θ k m θ g L = 0 (1.14) Ligning (1.14) har den fulde løsning hvori y(t) = A 0 exp ct sin(ωt + φ) (1.15) A 0 : er amplituden for den første svingning hvor pendulet slippes c: er en konstantφ: er faseforskydningsvinklen Det ses altså at amplituden for pendulsvingningerne aftager eksponentielt under påvirkning af modstanden fra luften.

6

7 David Kallestrup, Aarhus School of Engineering, SRP-forløb ved Maskinteknisk retning 7 2 Forsøgsvejledning Formål Formålet med dette forsøg er først at bestemme svingningstiden for et pendul og herefter sammenligne svingningstider for et simpelt og et fysisk pendul. 2.2 Apparatur for at kunne udføre forsøget, skal følgende materialer anvendes: Pendul Lod i metal Videokamera + stativ Excel el. lign. Videoafspiller med tidsvisning til 0.01 sek. nøjagtighed. Medbring selv en computer med programmer til databehandling, det giver mulighed for at få videoerne med hjem, og mulighed for at gense data om nødvendigt. Følgende program er gratis og opfylder kravet om tidsvisning men der er helt sikkert andre alternativer, der er lige så gode. 2.3 Fremgangsmåde ndstil pendul og kamera så pendul er i fokus og afstanden mellem pendul og kamera er acceptabel. ndstil lod til den ønskede starthøjde Start kameraet Sving pendul Optag mindst 5 komplette svingninger Analyser data Gentag for forskellige højder.

8 8 Kapitel 2 / Forsøgsvejledning Databehandling Via videooptagelserne bestemmes svingningstiden til de forskellige længder. Først sammenlignes den målte svingningstid med den teoretiske. For et simpelt pendul er denne givet ved g ω = L (2.1) Da forsøget ikke er lavet med et simpelt pendul, ses også på forskellen mellem svingningstiderne for et simpelt pendul og et fysisk pendul. Herudfra vurderes det, om den simple beregningsmetoder er acceptabel at anvende beregningsmodellen for et matematisk pendul. Svingningstiden for et fysisk pendul er givet ved T = 2 Π mgl Start altså med at bestemme masseinertimomentet for loddet. Husk at masseinertimomentet også er afhængigt af snorlængden og derfor også skal ændres for hver måling. Der bør udføres minimum 5 forsøg.

9 David Kallestrup, Aarhus School of Engineering, SRP-forløb ved Maskinteknisk retning 9 3 Forsøgsvejledning Formål Formålet med dette forsøg er at bekræfte, at amplituden for pendulets svingninger aftager eksponentielt, når det påvirkes af vindmodstand. 3.2 Apperatur For at udføre forsøges skal følgende anvendes: Pendul Lod i kork Videokamera + stativ Excel eller ligende Et videoafspilnings program det kan vise tiden ned til to decimaler Baggrund til pendul med 1x1cm firkanter 3.3 Fremgangsmåde 1. Sæt baggrunden op bag pendulet og sørg for, at snoren er ud for en af de lodrette streger på baggrunden 2. Opstil kamera og stativ 3. Start kamera 4. Sving pendul - hold det stille i udgangsposistionen, da denne placering skal benyttes senere 5. Analyser data 3.4 Databehandling Ved hjælp af videooptagelsen og baggrunden kan pendulets placering ved hver svingning bestemmes. Først aflæses højden på begyndelsessvingningen denne har tiden: t = 0. For de næste 5 svingninger(som minimum) aflæs da tid og amplitude.

10 10 Kapitel 3 / Forsøgsvejledning 2 husk det er tiden relativt til t = 0 ved begyndelsessvingningen og ikke t fra videoafspilleren. Herefter plottes data og det skulle gerne ses, at amplituderne aftager eksponentielt.

Faldmaskine. , får vi da sammenhængen mellem registreringen af hullerne : t = 2 r 6 v

Faldmaskine. , får vi da sammenhængen mellem registreringen af hullerne : t = 2 r 6 v Faldmaskine Rapport udarbejdet af: Morten Medici, Jonatan Selsing, Filip Bojanowski Formål: Formålet med denne øvelse er opnå en vis indsigt i, hvordan den kinetiske energi i et roterende legeme virker

Læs mere

FY01 Obligatorisk laboratorieøvelse. Matematisk Pendul. Jacob Christiansen Afleveringsdato: 10. april 2003 Morten Olesen Andreas Lyder

FY01 Obligatorisk laboratorieøvelse. Matematisk Pendul. Jacob Christiansen Afleveringsdato: 10. april 2003 Morten Olesen Andreas Lyder FY01 Obligatorisk laboratorieøvelse Matematisk Pendul Hold E: Hold: D12 Jacob Christiansen Afleveringsdato: 10. april 2003 Morten Olesen Andreas Lyder Indholdsfortegnelse Indholdsfortegnelse 1 Formål...3

Læs mere

Studieretningsopgave

Studieretningsopgave Virum Gymnasium Studieretningsopgave Harmoniske svingninger i matematik og fysik Vejledere: Christian Holst Hansen (matematik) og Bodil Dam Heiselberg (fysik) 30-01-2014 Indholdsfortegnelse Indledning...

Læs mere

Svingninger og bølger

Svingninger og bølger Fysik/kemi Viborg private Realskole Elevforsøg i 10. klasse Svingninger og bølger Pendulet svinger SIDE 2 1051 Formål At bestemme sammenhængen mellem pendulets længde og dets svingningstid. Materialer

Læs mere

KØBENHAVNS UNIVERSITET NATURVIDENSKABELIG BACHELORUDDANNELSE

KØBENHAVNS UNIVERSITET NATURVIDENSKABELIG BACHELORUDDANNELSE KØBENHAVNS UNIVERSITET NATURVIDENSKABELIG BACHELORUDDANNELSE Fysik 2, Klassisk Mekanik 2 Skriftlig eksamen 16. april 2009 Tilladte hjælpemidler: Medbragt litteratur, noter og lommeregner Besvarelsen må

Læs mere

Theory Danish (Denmark)

Theory Danish (Denmark) Q1-1 To mekanikopgaver (10 points) Læs venligst den generelle vejledning i en anden konvolut inden du går i gang. Del A. Den skjulte metalskive (3.5 points) Vi betragter et sammensat legeme bestående af

Læs mere

Arbejdet på kuglens massemidtpunkt, langs x-aksen, er lig med den resulterende kraft gange strækningen:

Arbejdet på kuglens massemidtpunkt, langs x-aksen, er lig med den resulterende kraft gange strækningen: Forsøgsopstilling: En kugle ligger mellem to skinner, og ruller ned af den. Vi måler ved hjælp af sensorer kuglens hastighed og tid ved forskellige afstand på rampen. Vi måler kuglens radius (R), radius

Læs mere

KØBENHAVNS UNIVERSITET NATURVIDENSKABELIG BACHELORUDDANNELSE

KØBENHAVNS UNIVERSITET NATURVIDENSKABELIG BACHELORUDDANNELSE KØBENHAVNS UNIVERSITET NATURVIDENSKABELIG BACHELORUDDANNELSE Fysik 2, Klassisk mekanik 2 - ny og gammel ordning Skriftlig eksamen 25. januar 2008 Tillae hjælpemidler: Medbragt litteratur, noter og lommeregner

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet Danmarks Tekniske Universitet Side 1 af 11 sider Skriftlig prøve, lørdag den 22. august, 2015 Kursus navn Fysik 1 Kursus nr. 10916 Varighed: 4 timer Tilladte hjælpemidler: Alle hjælpemidler tilladt "Vægtning":

Læs mere

Lærerorientering til opgaver pa Bakken og i Dyrehaven:

Lærerorientering til opgaver pa Bakken og i Dyrehaven: Lærerorientering til opgaver pa Bakken og i Dyrehaven: Opgaverne er alle bygget op efter samme koncept; eleverne laver observationer i Dyrehaven og på Bakken og bruger derefter observationerne til at lave

Læs mere

RKS Yanis E. Bouras 21. december 2010

RKS Yanis E. Bouras 21. december 2010 Indhold 0.1 Indledning.................................... 1 0.2 Løsning af 2. ordens linære differentialligninger................ 2 0.2.1 Sætning 0.2............................... 2 0.2.2 Bevis af sætning

Læs mere

Tallene angivet i rapporten som kronologiske punkter refererer til de i opgaven stillede spørgsmål.

Tallene angivet i rapporten som kronologiske punkter refererer til de i opgaven stillede spørgsmål. Labøvelse 2, fysik 2 Uge 47, Kalle, Max og Henriette Tallene angivet i rapporten som kronologiske punkter refererer til de i opgaven stillede spørgsmål. 1. Vi har to forskellige størrelser: a: en skive

Læs mere

KØBENHAVNS UNIVERSITET NATURVIDENSKABELIG BACHELORUDDANNELSE

KØBENHAVNS UNIVERSITET NATURVIDENSKABELIG BACHELORUDDANNELSE KØBENHAVNS UNIVERSITET NATURVIDENSKABELIG BACHELORUDDANNELSE Fysik 2, Klassisk mekanik 2 - ny og gammel ordning Vejledende eksamensopgaver 16. januar 2008 Tilladte hjælpemidler: Medbragt litteratur, noter

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet Danmarks Tekniske Universitet Side 1 af 9 sider Skriftlig prøve, torsdag den 24. maj, 2007, kl. 9:00-13:00 Kursus navn: Fysik 1 Kursus nr. 10022 Tilladte hjælpemidler: Alle hjælpemidler er tilladt. "Vægtning":

Læs mere

Dynamik. 1. Kræfter i ligevægt. Overvejelser over kræfter i ligevægt er meget vigtige i den moderne fysik.

Dynamik. 1. Kræfter i ligevægt. Overvejelser over kræfter i ligevægt er meget vigtige i den moderne fysik. M4 Dynamik 1. Kræfter i ligevægt Overvejelser over kræfter i ligevægt er meget vigtige i den moderne fysik. Fx har nøglen til forståelsen af hvad der foregår i det indre af en stjerne været betragtninger

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet Danmarks Tekniske Universitet Side 1 af 13 sider Skriftlig prøve, lørdag den 23. maj, 2015 Kursus navn Fysik 1 Kursus nr. 10916 Varighed: 4 timer Tilladte hjælpemidler: Alle hjælpemidler tilladt "Vægtning":

Læs mere

PETERTROELSENTEKNISKGYMNASI UMHADERSLEVHTXPETERTROELSE NTEKNISKGYMNASIUMHADERSLEV HTXPETERTROELSENTEKNISKGYMN ASIUMHADERSLEVHTXPETERTROEL

PETERTROELSENTEKNISKGYMNASI UMHADERSLEVHTXPETERTROELSE NTEKNISKGYMNASIUMHADERSLEV HTXPETERTROELSENTEKNISKGYMN ASIUMHADERSLEVHTXPETERTROEL PETERTROELSENTEKNISKGYMNASI UMHADERSLEVHTXPETERTROELSE NTEKNISKGYMNASIUMHADERSLEV HTXPETERTROELSENTEKNISKGYMN ASIUMHADERSLEVHTXPETERTROEL Dæmpede svingninger SENTEKNISKGYMNASIUMHADERSLE Studieretningsprojekt

Læs mere

Kræfter og Energi. Nedenstående sammenhæng mellem potentiel energi og kraft er fundamental og anvendes indenfor mange af fysikkens felter.

Kræfter og Energi. Nedenstående sammenhæng mellem potentiel energi og kraft er fundamental og anvendes indenfor mange af fysikkens felter. Kræfter og Energi Jacob Nielsen 1 Nedenstående sammenhæng mellem potentiel energi og kraft er fundamental og anvendes indenfor mange af fysikkens felter. kraften i x-aksens retning hænger sammen med den

Læs mere

Pendulbevægelse. Måling af svingningstid: Jacob Nielsen 1

Pendulbevægelse. Måling af svingningstid: Jacob Nielsen 1 Pendulbevægelse Jacob Nielsen 1 Figuren viser svingningstiden af et pendul i sekunder som funktion af udsvinget i grader. For udsving mindre end 20 grader er svingningstiden med god tilnærmelse konstant.

Læs mere

Jævn cirkelbevægelse udført med udstyr fra Vernier

Jævn cirkelbevægelse udført med udstyr fra Vernier Fysikøvelse - Erik Vestergaard www.matematikfysik.dk 1 Jævn cirkelbevægelse udført med udstyr fra Vernier Formål Formålet med denne øvelse er at eftervise følgende formel for centripetalkraften på et legeme,

Læs mere

Dæmpet harmonisk oscillator

Dæmpet harmonisk oscillator FY01 Obligatorisk laboratorieøvelse Dæmpet harmonisk oscillator Hold E: Hold: D1 Jacob Christiansen Afleveringsdato: 4. april 003 Morten Olesen Andreas Lyder Indholdsfortegnelse Indholdsfortegnelse 1 Formål...3

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet Danmarks Tekniske Universitet Side 1 af 9 sider Skriftlig prøve, lørdag den 13. december, 2014 Kursus navn Fysik 1 Kursus nr. 10916 Varighed: 4 timer Tilladte hjælpemidler: Alle tilladte hjælpemidler på

Læs mere

GUX. Matematik Niveau B. Prøveform b

GUX. Matematik Niveau B. Prøveform b GUX Matematik Niveau B Prøveform b August 014 GUX matematik B august 014 side 0 af 5 Matematik B Prøvens varighed er 4 timer. Delprøven uden hjælpemidler består af opgaverne 1 til 6 med i alt 6 spørgsmål.

Læs mere

Harmonisk oscillator. Dan Elmkvist Albrechtsen, Edin Ikanović, Joachim Mortensen Hold 4, gruppe n + 1, n {3}, uge 46-47

Harmonisk oscillator. Dan Elmkvist Albrechtsen, Edin Ikanović, Joachim Mortensen Hold 4, gruppe n + 1, n {3}, uge 46-47 Harmonisk oscillator Dan Elmkvist Albrechtsen, Edin Ikanović, Joachim Mortensen Hold 4, gruppe n + 1, n {3}, uge 46-47 28. november 2007 Indhold 1 Formål 2 2 Teori 2 3 Fremgangsmåde 3 4 Resultatbehandling

Læs mere

Nb: der kan komme mindre justeringer af denne plan.

Nb: der kan komme mindre justeringer af denne plan. Efterårets øvelser, blok 2 Fysik2 Introduktion Fysik 2 øvelser består af 3 øvelser hvori der indgår måling af de fundamentale størrelser: længde, tid og masse. Alle øvelserne handler på en eller anden

Læs mere

KØBENHAVNS UNIVERSITET NATURVIDENSKABELIG BACHELORUDDANNELSE

KØBENHAVNS UNIVERSITET NATURVIDENSKABELIG BACHELORUDDANNELSE KØBENHAVNS UNIVERSITET NATURVIDENSKABELIG BACHELORUDDANNELSE Fysik 2, Klassisk Mekanik 2 Skriftlig eksamen 23. januar 2009 Tilladte hjælpemidler: Medbragt litteratur, noter og lommeregner Besvarelsen må

Læs mere

Oscillator. Af: Alexander Rosenkilde Alexander Bork Christian Jensen

Oscillator. Af: Alexander Rosenkilde Alexander Bork Christian Jensen Oscillator Af: Alexander Rosenkilde Alexander Bork Christian Jensen Oscillator øvelse Formål Øvelse med oscillator, hvor frekvensen bestemmes, for den frie og dæmpede svingning. Vi vil tilnærme data fra

Læs mere

Bevægelse i to dimensioner

Bevægelse i to dimensioner Side af 7 Bevægelse i to dimensioner Når man beskriver bevægelse i to dimensioner, som funktion af tiden, ser man bevægelsen som var den i et almindeligt koordinatsystem (med x- og y-akse). Ud fra dette

Læs mere

Anvendelse af matematik til konkrete beregninger

Anvendelse af matematik til konkrete beregninger Anvendelse af matematik til konkrete beregninger ved J.B. Sand, Datalogisk Institut, KU Praktisk/teoretisk PROBLEM BEREGNINGSPROBLEM og INDDATA LØSNINGSMETODE EVT. LØSNING REGNEMASKINE Når man vil regne

Læs mere

FYSIK RAPPORT. Fysiske Kræfter. Tim, Emil, Lasse & Kim

FYSIK RAPPORT. Fysiske Kræfter. Tim, Emil, Lasse & Kim FYSIK RAPPORT Fysiske Kræfter Tim, Emil, Lasse & Kim Indhold Indledning... 2 Newtons love... 3 1. Lov: Inertiloven... 3 2. Lov: Kraftloven... 3 3. Lov: Loven om aktion/reaktion... 3 Kræfter... 4 Formler:...

Læs mere

Opgaveformuleringer til studieprojekt - Matematik og andet/andre fag:

Opgaveformuleringer til studieprojekt - Matematik og andet/andre fag: Opgaveformuleringer til studieprojekt - Matematik og andet/andre fag: Fag: Matematik/Historie Emne: Det gyldne snit og Fibonaccitallene Du skal give en matematisk behandling af det gyldne snit. Du skal

Læs mere

Bevægelse op ad skråplan med ultralydssonde.

Bevægelse op ad skråplan med ultralydssonde. Bevægelse op ad skråplan med ultralydssonde. Formål: a) At finde en formel for accelerationen i en bevægelse op ad et skråplan, og at prøve at eftervise denne formel, ud fra en lille vinkel og vægtskål

Læs mere

Faldmaskine. Esben Bork Hansen Amanda Larssen Martin Sven Qvistgaard Christensen. 23. november 2008

Faldmaskine. Esben Bork Hansen Amanda Larssen Martin Sven Qvistgaard Christensen. 23. november 2008 Faldmakine Eben Bork Hanen Amanda Laren Martin Sven Qvitgaard Chritenen 23. november 2008 Indhold Formål 3 2 Optilling 3 2. Materialer............................... 3 2.2 Optilling...............................

Læs mere

Matematik A Vejledende opgaver 5 timers prøven

Matematik A Vejledende opgaver 5 timers prøven Højere Teknisk Eksamen 007 Matematik A Vejledende opgaver 5 timers prøven Undervisningsministeriet Prøvens varighed er 5 timer. Opgavebesvarelsen skal dokumenteres/begrundes. Opgavebesvarelsen skal udformes

Læs mere

FORSØGSVEJLEDNING. Kasteparablen

FORSØGSVEJLEDNING. Kasteparablen Fysik i idræt - Idræt i fysik 006 FORSØGSVEJLEDNING Kasteparablen Formål: At bestemme kastelængden (x-positionen) for kast ed forskellige afleeringsinkler: o Ca. 30 o. o Ca. 45 o. o Ca. 60 o. og ed brug

Læs mere

Udledning af Keplers love

Udledning af Keplers love Udledning af Keplers love Kristian Jerslev 8. december 009 Resumé Her præsenteres en udledning af Keplers tre love ud fra Newtonsk tyngdekraft. Begyndende med en analyse af et to-legeme problem vil jeg

Læs mere

1 Løsningsforslag til årsprøve 2009

1 Løsningsforslag til årsprøve 2009 1 Løsningsforslag til årsprøve 009 Opgave 1 Figur 1 viser en tegning af en person der står på en skrænt og smider en sten ud over vandet. Vandet har overflade i t-aksen. Stenen følger grafen for funktionen

Læs mere

Aalborg Universitet. Skriftlig eksamen i Grundlæggende Mekanik og Termodynamik. Tirsdag d. 27. maj 2014 kl

Aalborg Universitet. Skriftlig eksamen i Grundlæggende Mekanik og Termodynamik. Tirsdag d. 27. maj 2014 kl Aalborg Universitet Skriftlig eksamen i Grundlæggende Mekanik og Termodynamik Tirsdag d. 27. maj 2014 kl. 9 00-13 00 Ved bedømmelsen vil der blive lagt vægt på argumentationen (som bør være kort og præcis),

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet Danmarks Tekniske Universitet Side 1 af 10 sider Skriftlig prøve, lørdag den 23. maj, 2015 Kursus navn Fysik 1 Kursus nr. 10916 Varighed: 4 timer Tilladte hjælpemidler: Alle hjælpemidler tilladt "Vægtning":

Læs mere

INERTIMOMENT for stive legemer

INERTIMOMENT for stive legemer Projekt: INERTIMOMENT for stive legemer Formålet med projektet er at træne integralregning og samtidig se en ikke-triviel anvendelse i fysik. 0. Definition af inertimoment Inertimomentet angives med bogstavet

Læs mere

Eksamen i fysik 2016

Eksamen i fysik 2016 Eksamen i fysik 2016 NB: Jeg gør brug af DATABOG fysik kemi, 11. udgave, 4. oplag & Fysik i overblik, 1. oplag. Opgave 1 Proptrækker Vi kender vinens volumen og masse. Enheden liter omregnes til kubikmeter.

Læs mere

VUC Vestsjælland Syd, Slagelse Nr. 1 Institution: Projekt Trigonometri

VUC Vestsjælland Syd, Slagelse Nr. 1 Institution: Projekt Trigonometri VUC Vestsjælland Syd, Slagelse Nr. 1 Institution: 333247 2015 Anders Jørgensen, Mark Kddafi, David Jensen, Kourosh Abady og Nikolaj Eriksen 1. Indledning I dette projekt, vil man kunne se definitioner

Læs mere

Skråplan. Dan Elmkvist Albrechtsen, Edin Ikanović, Joachim Mortensen. 8. januar Hold 4, gruppe n + 1, n {3}, uge 50-51

Skråplan. Dan Elmkvist Albrechtsen, Edin Ikanović, Joachim Mortensen. 8. januar Hold 4, gruppe n + 1, n {3}, uge 50-51 Skråplan Dan Elkvist Albrechtsen, Edin Ikanović, Joachi Mortensen Hold 4, gruppe n + 1, n {3}, uge 50-51 8. januar 2008 Figurer Sider ialt: 5 Indhold 1 Forål 3 2 Teori 3 3 Fregangsåde 4 4 Resultatbehandling

Læs mere

Supplerende. Fysik A. Gnidningskræfter, differentialligninger, vektorer og usikkerhedsberegninger. Mike Auerbach

Supplerende. Fysik A. Gnidningskræfter, differentialligninger, vektorer og usikkerhedsberegninger. Mike Auerbach Supplerende Fysik A Gnidningskræfter, differentialligninger, vektorer og usikkerhedsberegninger. Mike Auerbach www.mathematicus.dk Disse noter er blevet til, fordi luftmodstand er kernestof i fysik på

Læs mere

Skriftlig eksamen BioMatI (MM503)

Skriftlig eksamen BioMatI (MM503) INSTITUT FOR MATEMATIK OG DATALOGI SYDDANSK UNIVERSITET, ODENSE Skriftlig eksamen BioMatI (MM503) 14. januar 2009 2 timer med alle sædvanlige hjælpemidler, inklusive brug af lommeregner/computer. OPGAVESÆTTET

Læs mere

Aalborg Universitet. Skriftlig eksamen i Grundlæggende Mekanik og Termodynamik. Tirsdag d. 11. august 2015 kl

Aalborg Universitet. Skriftlig eksamen i Grundlæggende Mekanik og Termodynamik. Tirsdag d. 11. august 2015 kl Aalborg Universitet Skriftlig eksamen i Grundlæggende Mekanik og Termodynamik Tirsdag d. 11. august 2015 kl. 9 00-13 00 Ved bedømmelsen vil der blive lagt vægt på argumentationen (som bør være kort og

Læs mere

6. Regression. Hayati Balo,AAMS. 1. Nils Victor-Jensen, Matematik for adgangskursus, B-niveau 1

6. Regression. Hayati Balo,AAMS. 1. Nils Victor-Jensen, Matematik for adgangskursus, B-niveau 1 6. Regression Hayati Balo,AAMS Følgende fremstilling er baseret på 1. Nils Victor-Jensen, Matematik for adgangskursus, B-niveau 1 6.0 Indledning til funktioner eller matematiske modeller Mange gange kan

Læs mere

MM501 forelæsningsslides

MM501 forelæsningsslides MM50 forelæsningsslides uge 36, 2009 Produceret af Hans J. Munkholm Nogle talmængder s. 3 N = {, 2, 3, } omtales som de naturlige tal eller de positive heltal. Z = {0, ±, ±2, ±3, } omtales som de hele

Læs mere

MATEMATIK A-NIVEAU. Anders Jørgensen & Mark Kddafi. Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 2012

MATEMATIK A-NIVEAU. Anders Jørgensen & Mark Kddafi. Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 2012 MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 01 Kapitel 3 Ligninger & formler 016 MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver

Læs mere

2. ordens differentialligninger. Svingninger.

2. ordens differentialligninger. Svingninger. arts 011, LC. ordens differentialligninger. Svingninger. Fjederkonstant k = 50 kg/s s X S 80 kg F1 F S er forlængelsen af fjederen, når loddets vægt belaster fjederen. X er den påtvungne forlængelse af

Læs mere

Det er ikke personligt

Det er ikke personligt Det er ikke personligt Hans Harhoff Andersen 18. september 2013 Forudsætninger for dette kursus Forudsætninger for dette kursus Forudsætninger for dette kursus Fysik Forudsætninger for dette kursus Fysik

Læs mere

Aalborg Universitet. Skriftlig eksamen i Grundlæggende Mekanik og Termodynamik. Tirsdag d. 31. maj 2016 kl

Aalborg Universitet. Skriftlig eksamen i Grundlæggende Mekanik og Termodynamik. Tirsdag d. 31. maj 2016 kl Aalborg Universitet Skriftlig eksamen i Grundlæggende Mekanik og Termodynamik Tirsdag d. 31. maj 2016 kl. 9 00-13 00 Ved bedømmelsen vil der blive lagt vægt på argumentationen (som bør være kort og præcis),

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Termin hvori undervisningen afsluttes: maj-juni 2014 Studenterkurset

Læs mere

Løsninger til udvalgte opgaver i opgavehæftet

Løsninger til udvalgte opgaver i opgavehæftet V3. Marstal solvarmeanlæg a) Den samlede effekt, som solfangeren tilføres er Solskinstiden omregnet til sekunder er Den tilførte energi er så: Kun af denne er nyttiggjort, så den nyttiggjorte energi udgør

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet Danmarks Tekniske Universitet Side 1 af 8 sider Skriftlig prøve, den 24. maj 2005 Kursus navn: Fysik 1 Kursus nr.: 10022 Tilladte hjælpemidler: Alle hjælpemidler tilladt. "Vægtning": Besvarelsen vægtes

Læs mere

Matematiske modeller Forsøg 1

Matematiske modeller Forsøg 1 Matematiske modeller Forsøg 1 At måle absorbansen af forskellige koncentrationer af brilliant blue og derefter lave en standardkurve. 2 ml pipette 50 og 100 ml målekolber Kuvetter Engangspipetter Stamopløsning

Læs mere

Svingninger & analogier

Svingninger & analogier Fysik B, 2.år, TGK, forår 2006 Svingninger & analogier Dette forsøg løber som tre sammenhængende forløb, der afvikles som teoretisk modellering og praktiske forsøg i fysiklaboratorium: Lokale 43. Der er

Læs mere

Koblede svingninger. Thomas Dan Nielsen Troels Færgen-Bakmar Mads Sørensen juni 2005

Koblede svingninger. Thomas Dan Nielsen Troels Færgen-Bakmar Mads Sørensen juni 2005 Koblee svingninger Thomas Dan Nielsen 20041151 Troels Færgen-Bakmar 20041116 Mas Sørensen 20040795 1. juni 2005 Institut for Fysik og Astronomi Det Naturvienskabelige Fakultet Aarhus Universitet Inhol

Læs mere

Jordskælvs svingninger i bygninger.

Jordskælvs svingninger i bygninger. Jordsælvssvingninger side 1 Institut for Matemati, DTU: Gymnasieopgave Jordsælvs svingninger i bygninger. Jordsælv. Figur 1. Forlaring på de tetonise bevægelser. Jordsælv udløses når de tetonise plader

Læs mere

Enkelt og dobbeltspalte

Enkelt og dobbeltspalte Enkelt og dobbeltsalte Jan Scholtyßek 4.09.008 Indhold 1 Indledning 1 Formål 3 Teori 3.1 Enkeltsalte.................................. 3. Dobbeltsalte................................. 3 4 Fremgangsmåde

Læs mere

Den Naturvidenskabelige Bacheloreksamen Københavns Universitet. Fysik september 2006

Den Naturvidenskabelige Bacheloreksamen Københavns Universitet. Fysik september 2006 Den Naturvidenskabelige acheloreksamen Københavns Universitet Fysik 1-14. september 006 Første skriftlige evaluering 006 Opgavesættet består af 4 opgaver med i alt 9 spørgsmål. Skriv tydeligt navn og fødselsdato

Læs mere

DET GYLDNE TÅRN. Men i Danmark er vi tøsedrenge sammenlignet med udlandet. Her er vores bud på en Top 6 (2010) over verdens vildeste forlystelser:

DET GYLDNE TÅRN. Men i Danmark er vi tøsedrenge sammenlignet med udlandet. Her er vores bud på en Top 6 (2010) over verdens vildeste forlystelser: DET GYLDNE TÅRN En forlystelse, der er så høj som Det gyldne Tårn, er meget grænseoverskridende for mange mennesker. Det handler ikke kun om den kraft man udsættes for, og hvad den gør ved kroppen. Det

Læs mere

HØJERE FORBEREDELSESEKSAMEN DECEMBER 2008 MATEMATIK B-NIVEAU. Fredag den 12. december Kl HFE083-MAB

HØJERE FORBEREDELSESEKSAMEN DECEMBER 2008 MATEMATIK B-NIVEAU. Fredag den 12. december Kl HFE083-MAB HØJERE FORBEREDELSESEKSAMEN DECEMBER 2008 MATEMATIK B-NIVEAU Fredag den 12. december 2008 Kl. 09.00 13.00 HFE083-MAB Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-5 med

Læs mere

Matrx-vektor produkt Mikkel H. Brynildsen Lineær Algebra

Matrx-vektor produkt Mikkel H. Brynildsen Lineær Algebra Matrx-vektor produkt [ ] 1 2 3 1 0 2 1 10 4 Rotationsmatrix Sæt A θ = [ ] cosθ sinθ sinθ cosθ At gange vektor v R 2 med A θ svarer til at rotere vektor v med vinkelen θ til vektor w: [ ][ ] [ ] [ ] cosθ

Læs mere

Projektopgave 1. Navn: Jonas Pedersen Klasse: 3.4 Skole: Roskilde Tekniske Gymnasium Dato: 5/ Vejleder: Jørn Christian Bendtsen Fag: Matematik

Projektopgave 1. Navn: Jonas Pedersen Klasse: 3.4 Skole: Roskilde Tekniske Gymnasium Dato: 5/ Vejleder: Jørn Christian Bendtsen Fag: Matematik Projektopgave 1 Navn: Jonas Pedersen Klasse:.4 Skole: Roskilde Tekniske Gymnasium Dato: 5/9-011 Vejleder: Jørn Christian Bendtsen Fag: Matematik Indledning Jeg har i denne opgave fået følgende opstilling.

Læs mere

Her skal vi se lidt på de kræfter, der påvirker en pil når den affyres og rammer sit mål.

Her skal vi se lidt på de kræfter, der påvirker en pil når den affyres og rammer sit mål. a. Buens opbygning Her skal vi se lidt på de kræfter, der påvirker en pil når den affyres og rammer sit mål. Buen påvirker pilen med en varierende kraft, der afhænger meget af buens opbygning. For det

Læs mere

Lektion 12. højere ordens lineære differentiallininger. homogene. inhomogene. eksempler

Lektion 12. højere ordens lineære differentiallininger. homogene. inhomogene. eksempler Lektion 12 2. ordens lineære differentialligninger homogene inhomogene eksempler højere ordens lineære differentiallininger 1 Anden ordens lineære differentialligninger med konstante koefficienter A. Homogene

Læs mere

Øvelsesvejledning RG Stående bølge. Individuel rapport. At undersøge bølgens hastighed ved forskellige resonanser.

Øvelsesvejledning RG Stående bølge. Individuel rapport. At undersøge bølgens hastighed ved forskellige resonanser. Stående bølge Individuel rapport Forsøgsformål At finde resonanser (stående bølger) for fiskesnøre. At undersøge bølgens hastighed ved forskellige resonanser. At se hvordan hastigheden afhænger af belastningen

Læs mere

Øvelser 10. KlasseCenter Vesthimmerland Kaj Mikkelsen

Øvelser 10. KlasseCenter Vesthimmerland Kaj Mikkelsen Indhold Længdebølger og tværbølger... 2 Forsøg med frembringelse af lyd... 3 Resonans... 4 Ørets følsomhed over for lydfrekvenser.... 5 Stående tværbølger på en snor.... 6 Stående lydbølger i resonansrør.

Læs mere

Kasteparabler i din idræt øvelse 1

Kasteparabler i din idræt øvelse 1 Kasteparabler i din idræt øvelse 1 Vi vil i denne første øvelse arbejde med skrå kast i din idræt. Du skal lave en optagelse af et hop, kast, spark eller slag af en person eller genstand. Herefter skal

Læs mere

Komplekse tal. Mikkel Stouby Petersen 27. februar 2013

Komplekse tal. Mikkel Stouby Petersen 27. februar 2013 Komplekse tal Mikkel Stouby Petersen 27. februar 2013 1 Motivationen Historien om de komplekse tal er i virkeligheden historien om at fjerne forhindringerne og gøre det umulige muligt. For at se det, vil

Læs mere

Kræfter og Arbejde. Frank Nasser. 21. april 2011

Kræfter og Arbejde. Frank Nasser. 21. april 2011 Kræfter og Arbejde Frank Nasser 21. april 2011 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Bemærk: Dette er

Læs mere

Aalborg Universitet - Adgangskursus. Eksamensopgaver. Matematik B til A

Aalborg Universitet - Adgangskursus. Eksamensopgaver. Matematik B til A Aalborg Universitet - Adgangskursus Eksamensopgaver Matematik B til A Undervisningsministeriet Universitetsafdelingen ADGANGSEKSAMEN Til ingeniøruddannelserne Matematik A xxdag den y.juni 00z kl. 9.00

Læs mere

Lineære modeller. Taxakørsel: Et taxa selskab tager 15 kr. pr. km man kører i deres taxa. Hvis vi kører 2 km i taxaen koster turen altså

Lineære modeller. Taxakørsel: Et taxa selskab tager 15 kr. pr. km man kører i deres taxa. Hvis vi kører 2 km i taxaen koster turen altså Lineære modeller Opg.1 Taxakørsel: Et taxa selskab tager 15 kr. pr. km man kører i deres taxa. Hvis vi kører 2 km i taxaen koster turen altså Hvor meget koster det at køre så at køre 10 km i Taxaen? Sammenhængen

Læs mere

Ideliste til projekter med kommentarer

Ideliste til projekter med kommentarer Ideliste til projekter med kommentarer Vedrørende projektfasen i uge 42-44 2014. Følgende er en samling af mere eller mindre løse ideer til projekter som kan bruges som inspiration før definition af jeres

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet Danmarks Tekniske Universitet Side 1 af 4 sider Skriftlig prøve, den 29. maj 2006 Kursus navn: Fysik 1 Kursus nr. 10022 Tilladte hjælpemidler: Alle "Vægtning": Eksamenssættet vurderes samlet. Alle svar

Læs mere

Deformation af stålbjælker

Deformation af stålbjælker Deformation af stålbjælker Af Jimmy Lauridsen Indhold 1 Nedbøjning af bjælker... 1 1.1 Elasticitetsmodulet... 2 1.2 Inertimomentet... 4 2 Formelsamling for typiske systemer... 8 1 Nedbøjning af bjælker

Læs mere

6 Plasmadiagnostik 6.1 Tætheds- og temperaturmålinger ved Thomsonspredning

6 Plasmadiagnostik 6.1 Tætheds- og temperaturmålinger ved Thomsonspredning 49 6 Plasmadiagnostik Plasmadiagnostik er en fællesbetegnelse for de forskellige typer måleudstyr, der benyttes til måling af plasmaers parametre og egenskaber. I fusionseksperimenter er der behov for

Læs mere

Temaøvelse i differentialligninger Biokemiske Svingninger

Temaøvelse i differentialligninger Biokemiske Svingninger Temaøvelse i differentialligninger Biokemiske Svingninger Rev. 12. november 2009 I denne temaøvelse studerer vi en simpel model for gærglykolyse. Vi starter i Del 1 med at beskrive modellen. Denne model

Læs mere

Klassisk kaos. Kaotiske systemer. Visse regulariteter universalitet

Klassisk kaos. Kaotiske systemer. Visse regulariteter universalitet Klassisk kaos Deterministiske bevægelsesligninger kan under visse omstændigheder udvise løsninger som er uforudsigelige, dvs. løsninger der opfører sig kaotisk: Faserum Forudsigelige Integrable systemer

Læs mere

Den frie og dæmpede oscillator

Den frie og dæmpede oscillator Ida Nissen - 80385 Maria Wulff - 140384 Jacob Bjerregaard - 7098 Morten Badensø - 40584 Fysik Lab.øvelser Uge Den frie og dæmpede oscillator Formål Formålet med denne øvelse er at studere den harmoniske

Læs mere

Puls og g-påvirkning. Efterbehandlingsark 1. Hjertet som en pumpe. Begreber: Sammenhæng mellem begreberne: Opgave 1. Opgave 2

Puls og g-påvirkning. Efterbehandlingsark 1. Hjertet som en pumpe. Begreber: Sammenhæng mellem begreberne: Opgave 1. Opgave 2 Efterbehandlingsark 1 Hjertet som en pumpe Begreber: Puls = hjertets frekvens = antal slag pr. minut Slagvolumen = volumen af det blod, der pumpes ud ved hvert hjerteslag Minutvolumen = volumen af det

Læs mere

Vi undersøger et fysisk pendul, dvs. et sammensat, stift legeme og sammenholder målte og beregnede værdier for inertimomenter.

Vi undersøger et fysisk pendul, dvs. et sammensat, stift legeme og sammenholder målte og beregnede værdier for inertimomenter. Fysisk pendul Nummer 135610 Emne Mekanik, stive legemer Version 2016.06.03 / HS Type Elevøvelse Foreslås til gyma p. 1/5 Formål Vi undersøger et fysisk pendul, dvs. et sammensat, stift legeme og sammenholder

Læs mere

7 QNL 2PYHQGWSURSRUWLRQDOLWHW +27I\VLN. 1 Intro I hvilket af de to glas er der mest plads til vand?: Hvorfor?:

7 QNL 2PYHQGWSURSRUWLRQDOLWHW +27I\VLN. 1 Intro I hvilket af de to glas er der mest plads til vand?: Hvorfor?: 1 Intro I hvilket af de to glas er der mest plads til vand?: Hvorfor?: Angiv de variable: Check din forventning ved at hælde lige store mængder vand i to glas med henholdsvis store og små kugler. Hvor

Læs mere

Københavns Universitet, Det naturvidenskabelige Fakultet. Afleveringsopgave 1

Københavns Universitet, Det naturvidenskabelige Fakultet. Afleveringsopgave 1 Københavns Universitet, Det naturvidenskabelige Fakultet 1 Lineær Algebra (LinAlg) Afleveringsopgave 1 Eventuelle besvarelser laves i grupper af - 3 personer og afleveres i to eksemplarer med 3 udfyldte

Læs mere

Det teknisk-naturvidenskabelige basisår Matematik 1A, Efterår 2005, Hold 3 Prøveopgave C

Det teknisk-naturvidenskabelige basisår Matematik 1A, Efterår 2005, Hold 3 Prøveopgave C Det teknisk-naturvidenskabelige basisår Matematik 1A, Efterår 2005, Hold 3 Prøveopgave C Opgaven består af tre dele, hver med en række spørgsmål, efterfulgt af en liste af teorispørgsmål. I alle opgavespørgsmålene

Læs mere

Resonans 'modes' på en streng

Resonans 'modes' på en streng Resonans 'modes' på en streng Indhold Elektrodynamik Lab 2 Rapport Fysik 6, EL Bo Frederiksen (bo@fys.ku.dk) Stanislav V. Landa (stas@fys.ku.dk) John Niclasen (niclasen@fys.ku.dk) 1. Formål 2. Teori 3.

Læs mere

Det teknisk-naturvidenskabelige basisår Matematik 1A, Efterår 2005, Hold 3 Prøveopgave A

Det teknisk-naturvidenskabelige basisår Matematik 1A, Efterår 2005, Hold 3 Prøveopgave A Det teknisk-naturvidenskabelige basisår Matematik 1A, Efterår 2005, Hold 3 Prøveopgave A Opgaven består af tre dele, hver med en række spørgsmål, efterfulgt af en liste af teorispørgsmål. I alle opgavespørgsmålene

Læs mere

En verden af fluider bevægelse omkring en kugle

En verden af fluider bevægelse omkring en kugle En verden af fluider bevægelse omkring en kugle Øvelsesvejledning til brug i Nanoteket Udarbejdet i Nanoteket, Institut for Fysik, DTU Rettelser sendes til Ole.Trinhammer@fysik.dtu.dk 29. marts 2012 Indhold

Læs mere

Hvorfor kører Michael Rasmussen så hurtigt op ad bakke? Og hvorfor vinder Tom Boonen spurterne?

Hvorfor kører Michael Rasmussen så hurtigt op ad bakke? Og hvorfor vinder Tom Boonen spurterne? Hvorfor kører Michael Rasmussen så hurtigt op ad bakke? Og hvorfor vinder Tom Boonen spurterne? - en fortælling om potensfunktioner 133 Af Seniorforsker Ken H. Andersen, DTU Aqua Tour de France søndag

Læs mere

Vinklens påvirkning på skuddet af Claus Kjeldsen

Vinklens påvirkning på skuddet af Claus Kjeldsen Vinklens påvirkning på skuddet af Claus Kjeldsen Indledning Det er velkendt, at mange skytter skyder over målet, når der skydes i kuperet terræn, eller fra bygninger, hvor man ikke skyder lige på målet

Læs mere

Det skrå kåst. Af Allan Tobias Langhoff, Nikolaj Egholk Jakobsen og Suayb Köse

Det skrå kåst. Af Allan Tobias Langhoff, Nikolaj Egholk Jakobsen og Suayb Köse Det skrå kåst Af Allan Tobias Langhoff, Nikolaj Egholk Jakobsen og Suayb Köse 19/12-2012 Matematik Opstil stedfunktionen s x (t) og s y (t) for den lodrette og den vandrette bevægelse, som funktion af

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet Danmarks Tekniske Universitet Side af 7 Skriftlig prøve, tirsdag den 6. december, 008, kl. 9:00-3:00 Kursus navn: ysik Kursus nr. 00 Tilladte hjælpemidler: Alle hjælpemidler er tilladt. "Vægtning": Besvarelsen

Læs mere

GUX. Matematik. A-Niveau. August 2015. Kl. 9.00-14.00. Prøveform a GUX152 - MAA

GUX. Matematik. A-Niveau. August 2015. Kl. 9.00-14.00. Prøveform a GUX152 - MAA GUX Matematik A-Niveau August 05 Kl. 9.00-4.00 Prøveform a GUX5 - MAA Matematik A Prøvens varighed er 5 timer. Prøven består af opgaverne til 0 med i alt 5 spørgsmål. De 5 spørgsmål indgår med lige vægt

Læs mere

Matematik A. Prøvens varighed er 5 timer. Alle hjælpemidler er tilladt. Ved valgopgaver må kun det anførte antal afleveres til bedømmelse.

Matematik A. Prøvens varighed er 5 timer. Alle hjælpemidler er tilladt. Ved valgopgaver må kun det anførte antal afleveres til bedømmelse. HTX Matematik A Fredag den 18. maj 2012 Kl. 09.00-14.00 GL121 - MAA - HTX 1 Matematik A Prøvens varighed er 5 timer. Alle hjælpemidler er tilladt. Ved valgopgaver må kun det anførte antal afleveres til

Læs mere

Aalborg Universitet. Skriftlig eksamen i Grundlæggende Mekanik og Termodynamik. Torsdag d. 7. august 2014 kl

Aalborg Universitet. Skriftlig eksamen i Grundlæggende Mekanik og Termodynamik. Torsdag d. 7. august 2014 kl Aalborg Universitet Skriftlig eksamen i Grundlæggende Mekanik og Termodynamik Torsdag d. 7. august 2014 kl. 9 00-13 00 Ved bedømmelsen vil der blive lagt vægt på argumentationen (som bør være kort og præcis),

Læs mere

Dansk Naturvidenskabsfestival Faldskærm i fart!

Dansk Naturvidenskabsfestival Faldskærm i fart! Dansk Naturvidenskabsfestival Faldskærm i fart! Mads Clausen Instituttet Sønderborg - 1 - Dette hæfte kan anvendes på en række forskellige måder: Som den første introduktion til fysik i gymnasiet/htx.

Læs mere

Projektopgave Observationer af stjerneskælv

Projektopgave Observationer af stjerneskælv Projektopgave Observationer af stjerneskælv Af: Mathias Brønd Christensen (20073504), Kristian Jerslev (20072494), Kristian Mads Egeris Nielsen (20072868) Indhold Formål...3 Teori...3 Hvorfor opstår der

Læs mere