Induktionsbevis og sum af række side 1/7

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Starte visningen fra side:

Download "Induktionsbevis og sum af række side 1/7"

Transkript

1 Iduktosbevs og sum af række sde /7 Skrver ma,,,...,,..., =, 2, 3, taler ma om e talfølge, eller blot e følge. Adre eksempler på følger er, -,, -,, -,..., (-) +,..., =, 2, 3,..., 2, 3, 4,...,,..., =, 2, 3,... + ( ),,,,...,,..., =, 2, 3, De almee form af e følge er a, a 2, a 3,..., a,... og ma ka opfatte e talfølge som e fukto af de aturlge tal d de reelle tal. De almdelge fuktoedtor TI-89, ka kke tege grafe for e følge. Tl det formål skal ma gå d MODE, fg., fg. og vælge SEQUENCE, fg.2 fg.2 Ma ka opfatte e talfølge som e fukto af de aturlge tal d de reelle tal. E gag mellem reges 0 tl de aturlge tal, tl tder kke. V vl kke her gå d e lægere overvejelse om dette, me tllade 0 at være med år det passer os, og kke med år det kke passer os. I tvvlstlfælde æves det udtrykkelgt om 0 er med eller ej

2 Iduktosbevs og sum af række sde 2/7 Når ma så går d y= -edtore ser skærme ud som på fg.3 fg.3 I eksemplet på fg.3 er følge a = dtastet, med begydelsesbetgelse a = Ma ser at Texas Istrumets har valgt betegelse u, u2, u3, osv. Tallee, 2, 3, osv. efter u betyder at det er første følge, ade følge, trede følge, osv., lgesom skrvemåde for fuktoer (y, y2, osv.). Nedeuder u står u: et står for tal altså begydelses-. På fg.3 er u=. Det betyder at begydelsesværde for følge er sat tl og er altså det samme som a = Øsker ma at se grafe følger ma blot de ormale procedure: Gå d F2 og sæt parametree som vst på fg.4 (eller vælg zoomft) fg.4 Resultatet ses på fg.5: fg.5 I forbdelse med rækker er ma ofte teresseret at fde ud af om ma ka fde summe af des elemeter, altså at fde e uedelg sum. Ma skrver da a + a 2 + a a +... Skal ma fx fde summe af de seks første tal

3 Iduktosbevs og sum af række sde 3/7 ka ma aturlgvs blot lægge dem samme hovedet, eller bruge e lommereger. Aderledes forholder det sg hvs det er summe af de 600 eller 6000 første tal som skal fdes. Det er gaske vst mulgt at lægge tallee samme hovedet eller ved at bruge e lommereger, me det vl tage et pæt stykke td. Så derfor vl v se på om kke der skulle være e gevej. Ved at skrve på e aderledes måde ses, at det er der: = ( + 6) + (2 + 5) + (3 + 4) = = 3 7 = 2 Fduse er altså at parre talee, så det første og det sdste kommer samme, det adet og det æstsdste kommer samme, osv. Ved dee metode får v samme sum for hvert par af tal, og v får halvt så mage summer som v har tal tl at begyde med. Hvs der er et lge atal tal. V ka på dee måde skrve summe af de seks første tal som ½ 6 (6 + ) Me hvad u hvs det er summe af de syv første tal? Som ovefor skrver v = ( ) + 7 = ½ 6 (6 + ) + 7 = ½ 6 (6 + ) + (6 + ) = (6 + ) (½ 6 + ) = 7 ½(6 + 2) = ½ 7 8 = ½ 7 (7 + ) dvs. e formel af samme form som der gjaldt for 6. Det lader tl at det er lgegyldgt om der er et lge eller et ulge atal. I begge tlfælde tør v tro på at summe af de første tal s ka fdes således: s = ½ ( + ) V ka bevse påstade ved et argumet mage tl ovefor 2, me v vl hellere bruge e ade fremgagsmåde, kaldet et duktosbevs. 2 Formles gyldghed drekte: s = s + s = ( ) + ( ) 2 s = (+)+(2+-)+... alt led 2 s = (+) s = ½(+)

4 Iduktosbevs og sum af række sde 4/7 For = er det ldt kustgt at tale om e sum, me v vl allgevel tllade os at gøre det, og rege med at summe er. Bruges formle tlfældet =, fås ½ (+) = ½ 2 =. Formle og drekte regg gver altså det samme, og formle er derfor rgtg tlfældet =. For = 2 har v + 2 = 3, og formle gver ½ 2 (2 + ) = 3, så formle er også rgtg her. Opgave Vs at formle gver det rgtge tlfældee = 4 og = 5. Opgave 2 Vs, ved at efterlge argumetet ovefor, at hvs formle er rgtg for = 7, så er de det også for = 8. Me hvad med = 9, 0,,...? Hvs v skal rege efter hvert tlfælde, er der kke meget fdus at have e formel. Så v ser på tlfældet +, det v atager at formle er gyldg for. V atager altså at der gælder s = = ½ ( + ) og vl gere fde et udtryk for s + : s + = ( + ) = ( )+( + ) = s + ( + ) I dette udtryk ka v bruge vores formel for s da v jo har ataget at de gælder. Derfor får v s + = ½ ( + ) + ( + ) og sættes + udefor paretes, har v s + = ( + )(½ + ) = ( + )½ ( + 2) = ½( + )(( + ) + ) Formle har altså samme udseede for og +. Dvs. at de gælder for + år de gælder for. Me u ved v at de gælder for =. Derfor gælder de også for = + = 2. Me så gælder de også for = 2 + = 3, hvorefter de gælder for = 3 + = 4, osv. Der udløses e kædereakto eller e lave om ma vl, og v kokluderer at formle gælder for et hvlketsomhelst aturlgt tal, og dermed for alle aturlge tal. Et bevs af de type som v lge har geemført, kaldes for et duktosbevs, og at bevse e sætg ved hjælp af et duktosbevs, kaldes at bevse ved dukto. De almee stuato er, at ma har e påstad som afhæger af, p():. Først vser ma at påstade er sad for =, dvs. at p() er sad. 2. Derefter vser ma, at hvs påstade er sad for, så er de det også for +, eller, hvad der kommer ud på det samme, at p() er sad medfører at p(+) er sad. 3. Af og 2 slutter ma at påstade gælder for alle!.

5 Iduktosbevs og sum af række sde 5/7 (Ma ser ofte at! også omfatter 0; det er som regel kke oget problem. I vores eksempel er det på de ade sde ok ldt kustgt at tale om summe af de ul første tal; me tllægger ma dee sum værde 0, så passer formle). Opgave 3 Vs, at +..., 2 =! {} Opgave 4 Der fdes et tal k, således at formle (2+) 2 - = (2-k) 2 + k gælder for alle hele postve tal. Bestem k og bevs formle. På TI-89 er der e fukto som ka berege summer 3. De befder sg F3, 4 og har symbolet Σ, fg.6. Fg.6 Sytakse er, fg.7: Σ(udtryk, varabel, edre græse, øvre græse). Fg.7 3 På TI s hjemmesde ka ma dowloade e maual tl TI-89/92+/Voyage. Adresse er

6 Iduktosbevs og sum af række sde 6/7 Vl ma fx fde summe af de første 0 tal, skrver ma Σ(,,, 0) trykker på ENTER, og straks har ma svaret 55. Opgave 5 Prøv at skrve j stedet for, altså Σ (j, j,, 0), og bemærk hvad der sker. Eller k stedet for j. Er det afgørede om ma bruger, j eller k? I matematkke bruges øvrgt e otato som mder meget om TI-89'eres: = = Opgave 6 Fd summe af de første tal vha. TI-89. Opgave 7 Brug TI-89 tl at fde summe af kvadratet på de første hele tal, altså Bevs ved dukto, at det er rgtgt at dee sum er ( + )( 2+ ) 6 Forsøg også her at udskfte med j eller k. Og prøv så med. Hvad sker? Hvorda opfatter TI-89 symbolet Σ( 2,,, )? Opgave 8 Ma kalder a + aq + aq 2 + aq aq - for e (edelg) kvotetrække. Årsage tl dette av er, at forholdet, kvotete, mellem to på hade følgede led er kostat: a a + aq = = q aq Fd summe vha. TI-89, og vs ved dukto at det er rgtgt. Opgave 9 a og q har samme betydg som opg.8. Hvs ma ku ser på værder af q som (umersk) er mdre ed, og lader vokse, hvlke græseværd får ma så for gåede mod?

7 Iduktosbevs og sum af række sde 7/7 Opgave 0 Fd et udtryk for = 3 og bevs at det er rgtgt. V har tdlgere vst, at dfferetalkvotete af et produkt er ( f f ) = ( f ) f + f ( f ) Opgave Vs ved dukto, at ( f f f... f ) = ( f ) f f... f + f ( f ) f... f f f f...( f ) I specaltlfældet f (x) = f 2 (x) = f 3 (x) =... = f (x) = x, har v ( x ) = x x... x + x x... x + x x... x + x x x... = x Opgave 2 Vs dee formel drekte vha. et duktosbevs. Vk. For = står der (x) = x - = x 0 = ; her er formle altså ok. For = 2 står der (x 2 ) = 2x 2- = 2x = 2x; så også dette tlfælde passer formle. Vs u, at formle gælder for + år det atages at de gælder for. Opgave 3 Vs, at vkelsumme e -kat, 3, er ( 2) 80 Opgave 4 Vs, at summe af de første ulge tal er 2, altså at (2 ) = 2 Opgave 5 Vs, at 2 +, =, 2, 3,...

Kvalitet af indsendte måledata

Kvalitet af indsendte måledata Notat ELT2004-112 Aktørafregg Dato: 23. aprl 2004 Sagsr.: 5584 Dok.r.: 185972 v1 Referece: NIF/AFJ Kvaltet af dsedte måledata I Damark er det etvrksomhederes opgave at måle slutforbrug, produkto og udvekslg

Læs mere

Videregående Algoritmik. David Pisinger, DIKU. Reeksamen, April 2005

Videregående Algoritmik. David Pisinger, DIKU. Reeksamen, April 2005 Vderegåede Algortmk Davd Psger, DIKU Reeksame, Aprl 5 Bsecto problemet Gvet e uvægtet graf G = (V, E) samt et heltal k. E bsecto af grafe G er e opdelg af kudere V to lge store mægder S og T. MAX-BISECTION

Læs mere

Men tilbage til regression og Chi-i-anden. test. Begge begreber refererer til normalfordelingen med middelværdi μ og spredning σ.

Men tilbage til regression og Chi-i-anden. test. Begge begreber refererer til normalfordelingen med middelværdi μ og spredning σ. χ test matematkudervsge χ - test gymasets matematkudervsg I jauar ummeret 8 af LMFK bladet havde jeg e artkel, hvor jeg harcelerede ldt over, at regresso og sær χ fordelg havde fudet dpas matematkudervsge

Læs mere

FACITLISTE TIL KOMPLEKSE TAL

FACITLISTE TIL KOMPLEKSE TAL FACITLISTE TIL KOMPLEKSE TAL Kaptel Opgave Opgave Opgave Det emmeste check af lgge er at opløfte begge sder tl. potes. Bombells metode gver følgede lgger: a a b = 5 ( ) b a b = 09 = 7. Løs dem med et CAS

Læs mere

IKKE-KONTINUERTE (DISKRETE) STOKASTISKE VARIABLE MIDDELVÆRDI, VARIANS, SPREDNING FORDELINGER: HYPERGEOMETRISK, BINOMIAL, POISSON

IKKE-KONTINUERTE (DISKRETE) STOKASTISKE VARIABLE MIDDELVÆRDI, VARIANS, SPREDNING FORDELINGER: HYPERGEOMETRISK, BINOMIAL, POISSON IE-ONTINUERTE (DISRETE) STOASTISE VARIABLE MIDDELVÆRDI, VARIANS, SPREDNING FORDELINGER: HYPERGEOMETRIS, BINOMIAL, POISSON Edelgt sadsylghedsfelt V reeterer: Et sadsylghedsfelt ( P ) U, kaldes edelgt, hvs

Læs mere

Elementær Matematik. Sandsynlighedsregning

Elementær Matematik. Sandsynlighedsregning lemetær Matematk Sadsylghedsregg Ole Wtt-Hase Køge Gymasum 008 INDHOLD KAP. KOMBINATORIK.... MULTIPLIKATIONS- OG ADDTIONSPRINCIPPT.... PRMUTATIONR... 3. KOMBINATIONR...3 KAP. NDLIGT SANDSYNLIGHDSFLT...7.

Læs mere

BEVISER TIL KAPITEL 7

BEVISER TIL KAPITEL 7 BEVISER TIL KAPITEL 7 A. Komplemetærhædelse Det er klart, at e hædelse A og de komplemetære hædelse A udgør hele udfaldsrummet U, dvs. A A = Da fås P(U = U P(A A = P (A + P(A = da de to hædelser er dsjukte

Læs mere

Vi ønsker også at teste hypoteser om parametrene. F.eks: Kan µ tænkes at være 0 (eller anden fast, kendt værdi)? Eksempel: dollarkurser

Vi ønsker også at teste hypoteser om parametrene. F.eks: Kan µ tænkes at være 0 (eller anden fast, kendt værdi)? Eksempel: dollarkurser Uge 37 I Teoretsk Statstk, 9.sept. 003. Fordelger kyttet tl N-ford. Gvet: uafhægge observatoer af samme N(µ,σ )-fordelte stokastske varabel. Formelt: X,X,,X uafhægge, alle N(µ,σ )-fordelt. Mddelværd µ

Læs mere

FORDELINGER: HYPERGEOMETRISK FORDELING, BINOMIALFORDELING MIDDELVÆRDI DEFINITION. X er en stokastisk variabel på et endeligt sandsynlighedsfelt ( )

FORDELINGER: HYPERGEOMETRISK FORDELING, BINOMIALFORDELING MIDDELVÆRDI DEFINITION. X er en stokastisk variabel på et endeligt sandsynlighedsfelt ( ) FORDELINGER: HYERGEOMETRIS FORDELING, BINOMIALFORDELING MIDDELVÆRDI Mddelværd MIDDELVÆRDI (TYS: ERWARTUNGSWERT ) DEFINITION X er e stokastsk varabel på et edelgt sadsylghedsfelt U, ( ) Mddelværde af X

Læs mere

Scorer FCK "for mange" mål i det sidste kvarter?

Scorer FCK for mange mål i det sidste kvarter? Uge 7 I Teoretsk Statstk, 9. aprl 2004. Hvor er v? Hvor var v: opstllg af statstske modeller Hvor skal v he: tro om estmato og test 2. Eksempel: FCK Estmato (tutvt) Test Maksmum lkelhood estmato Scorer

Læs mere

Pearsons formel for χ 2 test. Den teoretiske forklaring

Pearsons formel for χ 2 test. Den teoretiske forklaring Pearsos formel for χ test De teoretse forlarg Ole Wtt-Hase 04 Idhold. Normalfordelge og χ.... Pearsos formel for χ test... 3. Forlarg på Pearsos formel....4 Pearsos formel for χ test. Normalfordelge og

Læs mere

Kombinatorik. 1 Kombinationer. Indhold

Kombinatorik. 1 Kombinationer. Indhold Kombator, marts 04, Krste Roselde Georg Mohr-Kourrece Kombator Kombator går ud på at tælle atallet af ombatoer af et eller adet, og for at ue tælle atallet af ombatoer smart har ma brug for forsellge tællestrateger

Læs mere

x-klasserne Gammel Hellerup Gymnasium

x-klasserne Gammel Hellerup Gymnasium SANDSYNLIGHEDSREGNING OG KOMBINATORIK x-klassere Gammel Hellerup Gymasum Idholdsfortegelse SANDSYNLIGHEDSREGNING... 3 Sadsylghedsfelt... 3 Edelge sadsylghedsfelter (sadsylghedsfordelger):... 3 Uedelge

Læs mere

Repetition. Forårets højdepunkter

Repetition. Forårets højdepunkter Repetto Forårets højdepukter Forårets højdepukter Smpel Leær Regresso Smpel leær regresso: Mdste kvadraters metode Kovaras og Korrelato Scatterplot Scatterplot kf Advertsg Epedtures (X ad Sales (Y Et scatterplot

Læs mere

Økonometri 1. For mange variable i modellen. For få variable. Dagens program. Den multiple regressionsmodel 21. september 2004

Økonometri 1. For mange variable i modellen. For få variable. Dagens program. Den multiple regressionsmodel 21. september 2004 Dages program Økoometr De multple regressosmodel. september 004 Emet for dee forelæsg er stadg de multple regressosmodel (Wooldrdge kap. 3.4-3.5) Praktske bemærkg Opsamlg fra sdst Irrelevate varable og

Læs mere

Økonometri 1. Funktionel form. Funktionel form (fortsat) Dagens program. Den simple regressionsmodel 14. september 2005

Økonometri 1. Funktionel form. Funktionel form (fortsat) Dagens program. Den simple regressionsmodel 14. september 2005 Dages program Økoometr De smple regressosmodel 4. september 5 Dee forelæsg drejer sg stadg om de smple regressosmodel (Wooldrdge kap.4-.6) Fuktoel form Hvorår er OLS mddelret? Varase på OLS estmatore Regressosmodelle

Læs mere

Økonometri 1. Instrumentvariabelestimation 26. november Plan for IV gennemgang. Exogenitetsantagelsen. Exogenitetsantagelsen for OLS

Økonometri 1. Instrumentvariabelestimation 26. november Plan for IV gennemgang. Exogenitetsantagelsen. Exogenitetsantagelsen for OLS y = cy ( c 0 ) Pla for IV geemgag Økoometr Istrumetvarabelestmato 6. ovember 004 F9: Hvad er IV estmato: Bvarat model, et strumet: Kap.5. + afst -4 ote. F0: IV estmato det multple tlfælde (eksakt detfceret):

Læs mere

FY01 Obligatorisk laboratorieøvelse. O p t i k. Jacob Christiansen Afleveringsdato: 3. april 2003 Morten Olesen Andreas Lyder

FY01 Obligatorisk laboratorieøvelse. O p t i k. Jacob Christiansen Afleveringsdato: 3. april 2003 Morten Olesen Andreas Lyder FY0 Oblgatorsk laboratoreøvelse O p t k Hold E: Hold: D Jacob Chrstase Alevergsdato: 3. aprl 003 Morte Olese Adreas Lyder Idholdsortegelse Idholdsortegelse Forål...3 Måleresultater...4. Salelser...4. Spredelse...5.3

Læs mere

1.0 FORSIKRINGSFORMER

1.0 FORSIKRINGSFORMER eam Lv forskrgsakteselskab Bereggsgrudlaget sgrp217 tl præmeberegg for gruppeforskrg e-am Lv forskrgsakteselskab 1. FORIKRINGFORMER 1.1 Oblgatorske ordger Alle gruppeforskrgsordger teget på dette grudlag

Læs mere

Elementær Matematik. Polynomier

Elementær Matematik. Polynomier Elemetær Matematik Polyomier Ole Witt-Hase 2008 Køge Gymasium Idhold 1. Geerelle polyomier...1 2. Divisio med hele tal....1 3. Polyomiers divisio...2 4. Polyomiers rødder....4 5. Bestemmelse af røddere

Læs mere

Eksempel: PEFR. Epidemiologi og biostatistik. Uge 1, tirsdag. Erik Parner, Institut for Biostatistik.

Eksempel: PEFR. Epidemiologi og biostatistik. Uge 1, tirsdag. Erik Parner, Institut for Biostatistik. Epdemolog og bostatstk. Uge, trsdag. Erk Parer, Isttut for Bostatstk. Geerelt om statstk Dataaalyse - Deskrptv statstk - Statstsk feres Sammelgg af to grupper med kotuerte data - Geemst og spredg - Parametre

Læs mere

Statistik Lektion 14 Simpel Lineær Regression. Simpel lineær regression Mindste kvadraters metode Kovarians og Korrelation

Statistik Lektion 14 Simpel Lineær Regression. Simpel lineær regression Mindste kvadraters metode Kovarians og Korrelation Statstk Lekto 4 Smpel Leær Regresso Smpel leær regresso Mdste kvadraters metode Kovaras og Korrelato Scatterplot Scatterplot kf Advertsg Epedtures ( ad Sales ( Et scatterplot vser par (, af observatoer.

Læs mere

Statistisk analyse. Vurdering af usikkerhed i forbindelse med statistiske opgørelser forudsætter:

Statistisk analyse. Vurdering af usikkerhed i forbindelse med statistiske opgørelser forudsætter: Statstsk aalyse Vurderg af uskkerhed forbdelse med statstske opgørelser forudsætter: Kvattatve mål for varato og spredg forbdelse med statstske opgørelser varas og stadardafvgelse Kvattatve mål for tlfældgheder

Læs mere

Projekt 4.8 De reelle tal og 1. hovedsætning om kontinuerte funktioner

Projekt 4.8 De reelle tal og 1. hovedsætning om kontinuerte funktioner Projekter: Kapitel 4 Projekt 48 De reelle tal og hovedsætig om kotiuerte fuktioer Projekt 48 De reelle tal og hovedsætig om kotiuerte fuktioer Kotiuitet og kotiuerte fuktioer Ord som kotiuert og kotiuerlig

Læs mere

Kvantitative metoder 2

Kvantitative metoder 2 Program for dag: Kvattatve metoder Iferes de leære regressosmodel 9. marts 007 Opsamlg vedr. feres e leær regressosmodel uder Gauss-Markov atagelser (W.4-5) Eksempel med flere restrktoer (F-test) Lagrage

Læs mere

hvor i er observationsnummeret, som løber fra 1 til stikprøvestørrelsen n, X i

hvor i er observationsnummeret, som løber fra 1 til stikprøvestørrelsen n, X i Normalfordeliger For at e stokastisk variabel X ka være ormalfordelt, skal X agive værdie af e eller ade målig, f.eks. tid, lægde, vægt, beløb osv. Notatioe er: Xi ~ N( μ, σ hvor i er observatiosummeret,

Læs mere

Simpel Lineær Regression - repetition

Simpel Lineær Regression - repetition Smpel Leær Regresso - repetto Spørgsmål: Afhæger leært af?. Model: β + β + ε ε d N(0, σ 0 ) Sstematsk kompoet + Stokastsk kompoet Estmato - repetto Vha. Mdste Kvadraters Metode fder v regressosle hvor

Læs mere

Renteformlen. Erik Vestergaard

Renteformlen. Erik Vestergaard Reteformle Erik Vestergaard 2 Erik Vestergaard www.matematikfysik.dk Erik Vestergaard, 2010. Billeder: Forside: istock.com/ilbusca Side 4: istock.com/adresrimagig Desude ege illustratioer. Erik Vestergaard

Læs mere

Noter om kombinatorik, Kirsten Rosenkilde, februar 2008 1. Kombinatorik

Noter om kombinatorik, Kirsten Rosenkilde, februar 2008 1. Kombinatorik Noter om ombiatori, Kirste Roseilde, februar 008 Kombiatori Disse oter er e itrodutio til ombiatori og starter helt fra bude, så e del af det idledede er siert edt for dig allerede, me der ommer også hurtigt

Læs mere

vejer (med fortegn). Det vil vi illustrere visuelt og geometrisk for (2 2)-matricer og (3 3)-matricer i enote 6.

vejer (med fortegn). Det vil vi illustrere visuelt og geometrisk for (2 2)-matricer og (3 3)-matricer i enote 6. enote 5 enote 5 Determiater I dee enote ser vi på kvadratiske matricer. Deres type er altså for 2, se enote 4. Det er e fordel, me ikke absolut ødvedigt, at kede determiatbegrebet for (2 2)-matricer på

Læs mere

Økonometri 1. Definition og motivation. Definition og motivation. Dagens program. Den multiple regressionsmodel 21. september 2005

Økonometri 1. Definition og motivation. Definition og motivation. Dagens program. Den multiple regressionsmodel 21. september 2005 Dages program Økoometr De multple regressosmodel. september 005 Emet for dee forelæsg er de multple regressosmodel (Wooldrdge kap 3.-3.3+appedx E.-E.) Defto og motvato Fortolkg af parametree de multple

Læs mere

ORDEN OG UDVALG: KUNSTEN AT TÆLLE KOMBINATORIK N H

ORDEN OG UDVALG: KUNSTEN AT TÆLLE KOMBINATORIK N H ORDEN OG UDVALG: UNSTEN AT TÆLLE OMBINATORI Edeligt symmetrisk sadsylighedsfelt I et edeligt symmetrisk sadsylighedsfelt ( P ) U, ka sadsylighede for e give hædelse H, hvor altså H U, som bekedt bereges

Læs mere

Matematik A. Studentereksamen. Forberedelsesmateriale. Forsøg med digitale eksamensopgaver med adgang til internettet.

Matematik A. Studentereksamen. Forberedelsesmateriale. Forsøg med digitale eksamensopgaver med adgang til internettet. Matematik A Studetereksame Forsøg med digitale eksamesopgaver med adgag til iterettet Forberedelsesmateriale Vejledede opgave Forår 0 til stx-a-net MATEMATIK Der skal afsættes 6 timer af holdets sædvalige

Læs mere

Betænkning om kommunernes udgiftsbehov. Bilag (med metodediskussion af professor Anders Milhøj)

Betænkning om kommunernes udgiftsbehov. Bilag (med metodediskussion af professor Anders Milhøj) Betækg om kommueres udgftsbehov Blag (med metodedskusso af professor Aders Mlhøj) Betækg r. 36 Oktober 998 Kommueres Udgftsbehov Betækg om kommueres udgftsbehov - Redegørelse fra arbejdsgruppe uder Idergsmsterets

Læs mere

Binomialfordelingen. Erik Vestergaard

Binomialfordelingen. Erik Vestergaard Bnomalfordelngen Erk Vestergaard Erk Vestergaard www.matematkfysk.dk Erk Vestergaard,. Blleder: Forsde: Stock.com/gnevre Sde : Stock.com/jaroon Sde : Stock.com/pod Desuden egne fotos og llustratoner. Erk

Læs mere

Kogebog: 5. Beregn F d

Kogebog: 5. Beregn F d tattk 8. gag KONFIDENINERVALLER Kofdetervaller: kaptel Valg og tet af fordelgfukto tattk 8. gag. KONFIDEN INERVALLER Et kofde terval udtrykker tervallet hvor de rgtge værd af parametere K, med γ % adylghed

Læs mere

Motivation. En tegning

Motivation. En tegning Motivatio Scatter-plot at det mådelige salg mod det måedlige reklamebudget. R: plot(salg ~ budget, data = salg) Økoometri Lektio Simpel Lieær Regressio salg 400 450 500 550 20 25 30 35 40 45 50 budget

Læs mere

Brugen af R 2 i gymnasiet

Brugen af R 2 i gymnasiet Bruge af R gymaset Per Bruu Brockhoff, DTU Compute, Erst Hase, KU Matematk og Claus Thor Ekstrøm, KU Bostatstk Der lader tl at være e vs forvrrg bladt og ueghed mellem forskellge faggrupper omkrg R værde,

Læs mere

De reelle tal. Morten Grud Rasmussen 5. november Se Sætning 3.6 og 3.7 for forskellige formuleringer af egenskaben og dens negation.

De reelle tal. Morten Grud Rasmussen 5. november Se Sætning 3.6 og 3.7 for forskellige formuleringer af egenskaben og dens negation. De reelle tal Morte Grud Rasmusse 5. ovember 2015 Ordede mægder Defiitio 3.1 (Ordet mægde). pm, ăq kaldes e ordet mægde såfremt: For alle x, y P M gælder etop ét af følgede: x ă y, x y, y ă x @x, y, z

Læs mere

Finanskalkulationer Side 1/19 Steen Toft Jørgensen. Finanskalkulationer. avanceret rentesregning. matematiske modeller i økonomi

Finanskalkulationer Side 1/19 Steen Toft Jørgensen. Finanskalkulationer. avanceret rentesregning. matematiske modeller i økonomi Faskalkulatoe Sde /9 Stee Toft Jøgese Faskalkulatoe avaceet etesegg matematske modelle økoom Idholdsfotegelse: Kaptel : Rete Retebegebet Omkostge Retefomle Effektv ete Kotuet foetg Tdsdagam Flytg af kaptal

Læs mere

Tankegangskompetence. Kapitel 9 Algebraiske strukturer i skolen 353

Tankegangskompetence. Kapitel 9 Algebraiske strukturer i skolen 353 Takegagskompetece Hesigte med de følgede afsit er først og fremmest at skabe klarhed over de mere avacerede regeregler i skole og give resultatet i de almee form, der er karakteristisk for algebra. Vi

Læs mere

Noter om kombinatorik, Kirsten Rosenkilde, februar Kombinatorik

Noter om kombinatorik, Kirsten Rosenkilde, februar Kombinatorik Noter om ombiatori, Kirste Roseilde, februar 008 Kombiatori Disse oter er e itrodutio til ombiatori og starter helt fra bude, så e del af det idledede er siert edt for dig allerede, me der ommer også hurtigt

Læs mere

SERVICE BLUEPRINTS KY selvbetjening 2013

SERVICE BLUEPRINTS KY selvbetjening 2013 SERVICE BLUEPRINTS KY selvbetjenng 2013 EFTER Desgn by Research BRUGERREJSE Ada / KONTANTHJÆLP Navn: Ada Alder: 35 år Uddannelse: cand. mag Matchgruppe: 1 Ada er opvokset Danmark med bosnske forældre.

Læs mere

Økonometri 1. Heteroskedasticitet 27. oktober Økonometri 1: F12 1

Økonometri 1. Heteroskedasticitet 27. oktober Økonometri 1: F12 1 Økonometr 1 Heteroskedastctet 27. oktober 2006 Økonometr 1: F12 1 Dagens program: Heteroskedastctet (Wooldrdge kap. 8.3-4) Sdste gang: I dag: Konsekvenser af heteroskedastctet for OLS Korrekton af varansen

Læs mere

9. Binomialfordelingen

9. Binomialfordelingen 9. Biomialfordelige 9.. Gekedelse Hvert forsøg ka ku resultere i to mulige udfald; succes og fiasko. I modsætig til poissofordelige er atallet af forsøg edeligt. 9.. Model X : Stokastisk variabel, der

Læs mere

1 Løsning og mindste kvadraters løsninger af lineære ligningssystemer

1 Løsning og mindste kvadraters løsninger af lineære ligningssystemer Løsg og mdste kadraters løsger af leære lggssystemer Def. Lære lggssystemer Et leært lggssystem er et system af m lgger ubekedte, hor dsse ka skres som: a a... a b 2 2... a a... a b m m2 2 m m Dsse systemer

Læs mere

Inertimoment for arealer

Inertimoment for arealer 13-08-006 Søren Rs nertmoment nertmoment for arealer Generelt Defntonen på nertmoment kan beskrves som Hvor trægt det er at få et legeme tl at rotere eller Hvor stort et moment der skal tlføres et legeme

Læs mere

Kvadratisk 0-1 programmering. David Pisinger

Kvadratisk 0-1 programmering. David Pisinger Kvadratisk - programmerig David Pisiger 27-8 MAX-CUT problemet Givet e ikke-orieteret graf G = (V, E) er MAX-CUT problemet defieret som MAX-CUT = {< G > : fid et sit S, T i grafe G som maksimerer atal

Læs mere

og Fermats lille sætning

og Fermats lille sætning Projekter: Kaitel 0. Projekt 0. Modulo-regig, restklassegruer og Fermats lille sætig Projekt 0. Modulo-regig, restklassegruere ( { 0 }, ) og Fermats lille sætig Vi aveder moduloregig og restklasser mage

Læs mere

Projekt 1.3 Brydningsloven

Projekt 1.3 Brydningsloven Projekt 1.3 Brydigslove Når e bølge, fx e lysbølge, rammer e græseflade mellem to stoffer, vil bølge ormalt blive spaltet i to: Noget af bølge kastes tilbage (spejlig), hvor udfaldsvikle u er de samme

Læs mere

Matematikkens mysterier - på et obligatorisk niveau. 7. Ligninger, polynomier og asymptoter

Matematikkens mysterier - på et obligatorisk niveau. 7. Ligninger, polynomier og asymptoter Matematikkes mysterier - på et obligatorisk iveau af Keeth Hase 7. Ligiger, polyomier og asymptoter Hvad er e asymotote? Og hvorda fides de? 7. Ligiger, polyomier og asymptoter Idhold 7.0 Idledig 7.1 Udsag

Læs mere

Formelskrivning i Word 2. Sådan kommer du i gang 4. Eksempel med skrivning af brøker 5. Brøker skrevet med småt 6. Hævet og sænket skrift 6

Formelskrivning i Word 2. Sådan kommer du i gang 4. Eksempel med skrivning af brøker 5. Brøker skrevet med småt 6. Hævet og sænket skrift 6 Dee udgave er til geemkig på ettet. Boge ka købes for kr. 5 hos EH-Mat. E y og udvidet udgave med title»symbol- og formelskrivig«er udkommet september 00. Se mere om de her. Idholdsfortegelse Formelskrivig

Læs mere

24. januar Epidemiologi og biostatistik. Forelæsning 1 Uge 1, tirsdag. Niels Trolle Andersen, Afdelingen for Biostatistik.

24. januar Epidemiologi og biostatistik. Forelæsning 1 Uge 1, tirsdag. Niels Trolle Andersen, Afdelingen for Biostatistik. Epidemiologi og biostatistik. Forelæsig Uge, tirsdag. Niels Trolle Aderse, Afdelige for Biostatistik. Geerelt om kurset: - Formål - Forelæsiger - Øvelser - Forelæsigsoter - Bøger - EpiBasic: http://www.biostat.au.dk/teachig/software

Læs mere

Analyse 1, Prøve maj 2009

Analyse 1, Prøve maj 2009 Aalyse, Prøve 5. maj 009 Alle hevisiger til TL er hevisiger til Kalkulus (006, Tom Lidstrøm). Direkte opgavehevisiger til Kalkulus er agivet med TLO, ellers er alle hevisiger til steder i de overordede

Læs mere

Statistik Lektion 7. Hypotesetest og kritiske værdier Type I og Type II fejl Styrken af en test Sammenligning af to populationer

Statistik Lektion 7. Hypotesetest og kritiske værdier Type I og Type II fejl Styrken af en test Sammenligning af to populationer Statistik Lektio 7 Hpotesetest og kritiske værdier Tpe I og Tpe II fejl Strke af e test Sammeligig af to populatioer 1 Tri I e Hpotesetest E hpotesetest består af 5 elemeter: I. Atagelser Primært hvilke

Læs mere

Regressions modeller Hvad regresserer vi på og hvorfor? Anders Stockmarr Axelborg statistikgruppe 6/

Regressions modeller Hvad regresserer vi på og hvorfor? Anders Stockmarr Axelborg statistikgruppe 6/ Regressos modeller Hvad regresserer v på og hvorfor? Aders Sockmarr Aelborg saskgruppe 6/ 0 Geerel Regresso Y f( ) ε f er e UKENDT fuko der beskrver relaoe mellem de uafhægge varabel og de afhægge varabel

Læs mere

FOLKEMØDE-ARRANGØR SÅDAN!

FOLKEMØDE-ARRANGØR SÅDAN! FOLKEMØDE-ARRANGØR SÅDAN! Bornholms Regonskommune står for Folkemødets praktske rammer. Men det poltske ndhold selve festvalens substans blver leveret af parter, organsatoner, forennger, vrksomheder og

Læs mere

Definition: Normalfordelingen. siges at være normalfordelt med middelværdi µ og varians σ 2, hvor µ og σ er reelle tal og σ > 0.

Definition: Normalfordelingen. siges at være normalfordelt med middelværdi µ og varians σ 2, hvor µ og σ er reelle tal og σ > 0. Repetitio: Normalfordelige Ladmåliges fejlteori Lektio Trasformatio af stokastiske variable - kkb@math.aau.dk http://people.math.aau.dk/ kkb/udervisig/lf13 Istitut for Matematiske Fag Aalborg Uiversitet

Læs mere

13. februar Resumé: En statistisk analyse resulterer ofte i : Et estimat ˆ θ med en tilhørende se( ˆ θ )

13. februar Resumé: En statistisk analyse resulterer ofte i : Et estimat ˆ θ med en tilhørende se( ˆ θ ) 3. februar 003 Epidemiologi og biostatistik. Uge, torag d. 3. februar 003 Morte Frydeberg, Istitut for Biostatistik. Type og type fejl Nogle specielle metoder: Test i RxC tabeller Test i x tabeller Fishers

Læs mere

Forberedelse til den obligatoriske selvvalgte opgave

Forberedelse til den obligatoriske selvvalgte opgave MnFremtd tl OSO 10. klasse Forberedelse tl den oblgatorske selvvalgte opgave Emnet for dn oblgatorske selvvalgte opgave (OSO) skal tage udgangspunkt dn uddannelsesplan og dt valg af ungdomsuddannelse.

Læs mere

Tabsberegninger i Elsam-sagen

Tabsberegninger i Elsam-sagen Tabsberegnnger Elsam-sagen Resumé: Dette notat beskrver, hvordan beregnngen af tab foregår. Første del beskrver spot tabene, mens anden del omhandler de afledte fnanselle tab. Indhold Generelt Tab spot

Læs mere

NOTAT: Benchmarking: Roskilde Kommunes serviceudgifter i regnskab 2013

NOTAT: Benchmarking: Roskilde Kommunes serviceudgifter i regnskab 2013 Beskæftgelse, Socal og Økonom Økonom og Ejendomme Sagsnr. 260912 Brevd. 1957603 Ref. LAOL Dr. tlf. 4631 3152 lasseo@rosklde.dk NOTAT: Benchmarkng: Rosklde Kommunes servceudgfter regnskab 2013 19. august

Læs mere

NOTAT:Benchmarking: Roskilde Kommunes serviceudgifter i regnskab 2014

NOTAT:Benchmarking: Roskilde Kommunes serviceudgifter i regnskab 2014 Beskæftgelse, Socal og Økonom Økonom og Ejendomme Sagsnr. 271218 Brevd. 2118731 Ref. KASH Dr. tlf. 4631 3066 katrnesh@rosklde.dk NOTAT:Benchmarkng: Rosklde Kommunes servceudgfter regnskab 2014 17. august

Læs mere

2. Sandsynlighedsregning

2. Sandsynlighedsregning 2. Sandsynlghedsregnng 2.1. Krav tl sandsynlgheder (Sandsynlghedens aksomer) Hvs A og B er hændelser, er en sandsynlghed, hvs: 1. 0 ( A) 1 n 2. ( A ) 1 1 3. ( A B) ( A) + ( B), hvs A og B ngen udfald har

Læs mere

Gamle eksamensopgaver. Diskret Matematik med Anvendelser (DM72) & Diskrete Strukturer(DM504)

Gamle eksamensopgaver. Diskret Matematik med Anvendelser (DM72) & Diskrete Strukturer(DM504) Gamle eksamesopgaver Diskret Matematik med Avedelser (DM72) & Diskrete Strukturer(DM504) Istitut for Matematik& Datalogi Syddask Uiversitet, Odese Alle sædvalige hjælpemidler(lærebøger, otater etc.), samt

Læs mere

Noter om polynomier, Kirsten Rosenkilde, Marts Polynomier

Noter om polynomier, Kirsten Rosenkilde, Marts Polynomier Noter om polyomier, Kirste Rosekilde, Marts 2006 1 Polyomier Disse oter giver e kort itroduktio til polyomier, og de fleste sætiger æves ude bevis. Udervejs er der forholdsvis emme opgaver, mes der til

Læs mere

Sandsynlighedsregning i biologi

Sandsynlighedsregning i biologi Om begrebet sadsylighed Sadsylighedsregig i biologi Hvis vi kaster e almidelig, symmetrisk terig, er det klart for de fleste af os, hvad vi meer, år vi siger, at sadsylighede for at få e femmer er 1/6.

Læs mere

Talfølger og -rækker

Talfølger og -rækker Da Beltoft og Klaus Thomse Aarhus Uiversitet 2009 Talfølger og -rækker Itroduktio til Matematisk Aalyse Zeos paradoks om Achilleus og skildpadde Achilleus løber om kap med e skildpadde. Achilleus løber

Læs mere

Lys og gitterligningen

Lys og gitterligningen Fysik rapport: Lys og gitterligige Forfatter: Bastia Emil Jørgese.z Øvelse blev udført osdag de 25. jauar 202 samme med Lise Kjærgaard Paulse 2 - Bastia Emil Jørgese Fysik rapport (4 elevtimer), februar

Læs mere

30. august Epidemiologi og biostatistik. Forelæsning 3 Uge 2, torsdag d. 8. september 2005 Michael Væth, Afdeling for Biostatistik.

30. august Epidemiologi og biostatistik. Forelæsning 3 Uge 2, torsdag d. 8. september 2005 Michael Væth, Afdeling for Biostatistik. 30. august 005 Epidemiologi og biostatistik. Forelæsig 3 Uge, torag d. 8. september 005 Michael Væth, Afdelig for Biostatistik. Mere om kategoriske data Test for uafhægighed I RxC tabeller Test for uafhægighed

Læs mere

FRIE ABELSKE GRUPPER. Hvis X er delmængde af en abelsk gruppe, har vi idet vi som sædvanligt i en abelsk gruppe bruger additiv notation at:

FRIE ABELSKE GRUPPER. Hvis X er delmængde af en abelsk gruppe, har vi idet vi som sædvanligt i en abelsk gruppe bruger additiv notation at: FRIE ABELSKE GRUPPER. IAN KIMING Hvs X er delmængde af en abelsk gruppe, har v det v som sædvanlgt en abelsk gruppe bruger addtv notaton at: X = {k 1 x 1 +... + k t x t k Z, x X} (jfr. tdlgere sætnng angående

Læs mere

Bjørn Grøn. Analysens grundlag

Bjørn Grøn. Analysens grundlag Bjør Grø Aalyses grudlag Aalyses grudlag Side af 4 Idholdsfortegelse Kotiuerte og differetiable fuktioer 3 Differetial- og itegralregiges udviklig 5 3 Hovedsætiger om differetiable fuktioer 8 Opgaver til

Læs mere

HVIS FOLK OMKRING DIG IKKE VIL LYTTE, SÅ KNÆL FOR DEM OG BED OM TILGIVELSE, THI SKYLDEN ER DIN. Fjordor Dostojevskij

HVIS FOLK OMKRING DIG IKKE VIL LYTTE, SÅ KNÆL FOR DEM OG BED OM TILGIVELSE, THI SKYLDEN ER DIN. Fjordor Dostojevskij HVIS FOLK OMKRING DIG IKKE VIL LYTTE, SÅ KNÆL FOR DEM OG BED OM TILGIVELSE, THI SKYLDEN ER DIN. Fjordor Dostojevskj Den store russske forfatter tænkte naturlgvs kke på markedsførng, da han skrev dsse lner.

Læs mere

Økonometri 1 Efterår 2006 Ugeseddel 9

Økonometri 1 Efterår 2006 Ugeseddel 9 Økonometr 1 Efterår 006 Ugeseddel 9 Program for øvelserne: Opsamlng på Ugeseddel 8 Gruppearbejde SAS øvelser Ugeseddel 9 består at undersøge, om der er heteroskedastctet vores model for væksten og så fald,

Læs mere

Kvantitative metoder 2

Kvantitative metoder 2 Dagens program: Heteroskedastctet (Wooldrdge kap. 8.4) Kvanttatve metoder Heteroskedastctet 6. aprl 007 Sdste gang: Konsekvenser af heteroskedastctet for OLS Whte s korrekton af OLS varansen Test for heteroskedastctet

Læs mere

Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab

Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab Statistik ved Bachelor-uddaelse i folkesudhedsvideskab Græseværdisætiger Det hadler om geemsit Statistikere elsker geemsit Det er oplagt e god ide at tage geemsit. Hvis jeg f.eks skal gætte på vægte af

Læs mere

Overlappende stationsoplande: Bestemmelse af passagerpotentialer

Overlappende stationsoplande: Bestemmelse af passagerpotentialer Resumé Overlappede statosoplade: Bestemmelse af passagerpotetaler Valdemar Warburg, stud.polyt., valde@post.com Ibe Rue, stud.polyt., berue@hotmal.com Ceter for Trafk og Trasport (CTT), Damarks Tekske

Læs mere

Projekt 2.3 Det gyldne snit og Fibonaccitallene

Projekt 2.3 Det gyldne snit og Fibonaccitallene Projekter: Kapitel Projekt.3 Det glde sit og Fiboaccitallee Forslag til hvorda klasses arbejde med projektet ka tilrettelægges: Forløbet:. Præsetatio af emet med vægt på det glde sit.. Grppere arbejder

Læs mere

Note til Spilteori Mikro 2. år 2. semester Erik Bennike. Note til Spilteori

Note til Spilteori Mikro 2. år 2. semester Erik Bennike. Note til Spilteori Note tl Splteor Mkro. år. semester Erk Beke Note tl Splteor Gos s. - Splteor eskæftger sg med sttoer hvor der er strtegsk fhægghed geter mellem. Nytte for de ekelte get fhæger således kke lee f ege hdlger

Læs mere

antal gange krone sker i første n kast = n

antal gange krone sker i første n kast = n 1 Uge 15 Teoretisk Statistik, 5. april 004 1. Store tals lov Eksempel: møtkast Koverges i sadsylighed Tchebychevs ulighed Sætig: Store tals lov. De cetrale græseværdisætig 3. Approksimatio af sadsyligheder

Læs mere

Løsninger til kapitel 7

Løsninger til kapitel 7 Løsiger til kapitel 7 Opgave 7.1 a) HpoStat giver resultatet: Pop. varias er ukedt, me 30, så Normalf. bruges approksimativt = 54,400 s 1.069,90 = 00,000 0,95 49,868 58,93 Dette betder, at med 95% sikkerhed

Læs mere

Analyse af bivariate data: korrelation og regression. korrelation. Korrelation og regression: Co-varians:

Analyse af bivariate data: korrelation og regression. korrelation. Korrelation og regression: Co-varians: ,,,,,,,,,, Stattk for bologer -, modul og : Korrelato og regreo: Aale af bvarate data: korrelato og regreo Korrelato: llutrerer v.h.a. e koeffcet hvlke grad to varable er dbrde afhægge: - (perfekt egatv

Læs mere

Asymptotisk optimalitet af MLE

Asymptotisk optimalitet af MLE Kapitel 4 Asymptotisk optimalitet af MLE Lad Y 1, Y 2,... være uafhægige, idetisk fordelte variable med værdier i et rum (Y,K). Vi har givet e model (ν θ ) θ Θ for fordelige af Y 1 (og dermed også for

Læs mere

Lineære Normale Modeller

Lineære Normale Modeller Note tl Leære Normale Modeller Bo Rosbjerg. marts 009 Tegger udført af Herk Ve Chrstese Idhold E smpel leær ormal model 5. Modelbestemmelse........................... 5. Mdste kvadraters estmat......................

Læs mere

Indeks over udviklingen i biltrafikken i Danmark

Indeks over udviklingen i biltrafikken i Danmark Ideks over udvklge bltrafkke Damark Afdelgsgeør Alla Crstese, Vejdrektoratet, og cvlgeør, p.d. Crsta Overgård ase, TetraPla A/S. Baggrud og formål. Baggrud Vejdrektoratet ar sde 978 regelmæssgt udgvet

Læs mere

TO-BE BRUGERREJSE // Personligt tillæg

TO-BE BRUGERREJSE // Personligt tillæg TO-BE BRUGERREJSE // Personlgt tllæg PROCES FØR SITUATION / HANDLING Pa er 55 år og bor en mndre by på Sjælland. Hun er på førtdspenson og har været det mange år på grund af problemer med ryggen efter

Læs mere

DATV: Introduktion til optimering og operationsanalyse, 2007. Bin Packing Problemet

DATV: Introduktion til optimering og operationsanalyse, 2007. Bin Packing Problemet DATV: Itroduktio til optimerig og operatiosaalyse, 2007 Bi Packig Problemet David Pisiger, Projektopgave 2 Dette er de ade obligatoriske projektopgave på kurset DATV: Itroduktio til optimerig og operatiosaalyse.

Læs mere

Situationen er illustreret på figuren nedenfor. Her er også afsat nogle eksempler: Punktet på α giver anledning til punktet Q

Situationen er illustreret på figuren nedenfor. Her er også afsat nogle eksempler: Punktet på α giver anledning til punktet Q 3, 45926535 8979323846 2643383279 50288497 693993750 5820974944 592307864 0628620899 8628034825 34270679 82480865 3282306647 0938446095 505822372 535940828 4874502 84027093 85205559 6446229489 549303896

Læs mere

Introduktion til uligheder

Introduktion til uligheder Itroduktio til uligheder, marts 0, Kirste Rosekilde Itroduktio til uligheder Dette er e itroduktio til ogle basale uligheder om det aritmetiske geemsit, det geometriske geemsit, det harmoiske geemsit og

Læs mere

Prøveeksamen Indtjening, konkurrencesituation og produktudvikling i danske virksomheder Kommenteret vejledende besvarelse

Prøveeksamen Indtjening, konkurrencesituation og produktudvikling i danske virksomheder Kommenteret vejledende besvarelse Økonometr Prøveeksamen Indtjenng, konkurrencestuaton og produktudvklng danske vrksomheder Kommenteret vejledende besvarelse Resultaterne denne besvarelse er fremkommet ved brug af eksamensnummer 7. Dne

Læs mere

Velkommen. Program. Statistik og Sandsynlighedsregning 2 Sandsynlighedstætheder og kontinuerte fordelinger på R. Praktiske ting og sager

Velkommen. Program. Statistik og Sandsynlighedsregning 2 Sandsynlighedstætheder og kontinuerte fordelinger på R. Praktiske ting og sager Program Statistik og Sadsylighedsregig 2 Sadsylighedstætheder og kotiuerte fordeliger på R Helle Sørese Uge 6, madag Velkomme I dag: Praktiske bemærkiger Hvad skal vi lave på SaSt2? Sadsylighedstætheder

Læs mere

Generelle lineære modeller

Generelle lineære modeller Geerelle lieære modeller Regressiosmodeller med é uafhægig itervalskala variabel: Y e eller flere uafhægige variable: X,..,X k De betigede fordelig af Y givet X,..,X k atages at være ormal med e middelværdi,

Læs mere

Dagens program. Estimation: Kapitel Eksempler på middelrette og/eller konsistente estimator (de sidste fra sidste forelæsning)

Dagens program. Estimation: Kapitel Eksempler på middelrette og/eller konsistente estimator (de sidste fra sidste forelæsning) Dages program Estimatio: Kapitel 9.4-9.7 Eksempler på middelrette og/eller kosistete estimator (de sidste fra sidste forelæsig) Ko desiterval for store datasæt kap. 9.4 Ko desiterval for små datasæt kap.

Læs mere

TO-BE BRUGERREJSE // Tænder

TO-BE BRUGERREJSE // Tænder TO-BE BRUGERREJSE // Tænder PROCES FØR SITUATION / HANDLING Jørgen er 75 år og folkepensonst. Da han er vanskelgt stllet økonomsk, har han tdlgere modtaget hjælp fra kommunen, bl.a. forbndelse med fodbehandlng

Læs mere

Kvantitative metoder 2

Kvantitative metoder 2 Kvanttatve metoder 2 Instrumentvarabel estmaton 14. maj 2007 KM2: F25 1 y = cy ( c 0) Plan for resten af gennemgangen F25: Instrumentvarabel (IV) estmaton: Introdukton tl endogentet og nstrumentvarabler

Læs mere

Kvantitative metoder 2

Kvantitative metoder 2 y = cy ( c 0) Plan for resten af gennemgangen Kvanttatve metoder Instrumentvarabel estmaton 4. maj 007 F5: Instrumentvarabel (IV) estmaton: Introdukton tl endogentet og nstrumentvarabler En regressor,

Læs mere

Statistik 8. gang 1 KONFIDENSINTERVALLER. Konfidensintervaller: kapitel 11. Valg og test af fordelingsfunktion

Statistik 8. gang 1 KONFIDENSINTERVALLER. Konfidensintervaller: kapitel 11. Valg og test af fordelingsfunktion Statistik 8. gag 1 KONIDENSINTERVALLER Kofidesitervaller: kapitel 11 Valg og test af fordeligsfuktio Statistik 8. gag 11. KONIDENS INTERVALLER Et kofides iterval udtrykker itervallet hvori de rigtige værdi

Læs mere

Lineær regressionsanalyse8

Lineær regressionsanalyse8 Lneær regressonsanalyse8 336 8. Lneær regressonsanalyse Lneær regressonsanalyse Fra kaptel 4 Mat C-bogen ved v, at man kan ndtegne en række punkter et koordnatsystem, for at afgøre, hvor tæt på en ret

Læs mere

1 Indeksberegninger. 1.1 Indeksberegningers formål og brug. 1.2 Typer af indeks

1 Indeksberegninger. 1.1 Indeksberegningers formål og brug. 1.2 Typer af indeks 7 Ideksberegger. Ideksbereggers formål og brug Damarks Sasks deks bruges l a gve e ekel og brugbar mål for udvklge værder, rser eller mægder over d. Hvs ma har e alrække over aal fødsler sde 9 ka ma dae

Læs mere

Estimation og test i normalfordelingen

Estimation og test i normalfordelingen af Birger Stjerholm Made Samfudlitteratur 07 Etimatio og tet i ormalfordelige Dee tekt ideholder et overblik over ogle grudlæggede pricipper for etimatio og tet i ormalfordelige i hyppigt forekommede ituatioer:

Læs mere