Impulsbevarelse ved stød

Størrelse: px
Starte visningen fra side:

Download "Impulsbevarelse ved stød"

Transkript

1 Iulsbevaelse ved stød Iulsbevaelse ved stød Indhold Iulsbevaelse ved stød.... Centalt stød.... Elastisk stød Uelastisk stød Iulsbevaelse ved stød Centalt elastisk stød Centalt fuldstændig uelastisk stød Eksele og ogave...6

2 Iulsbevaelse ved stød. Centalt stød Vi skal i det følgende beskæftige os ed de lovæssighede de gælde, nå to legee støde saen i et centalt stød. Centalt, betyde at legeene fø og efte stødet bevæge sig langs sae ette linie. Nedenfo e skitseet de te fase af et centalt stød. To legee ed assene og bevæge sig hen iod hinanden ed hastighedene u og u. Stødet: De to legee åvike hinanden ed kæfte F og. Heved defoee de to legee hinanden. F De to legee fjene sig nu fa hinanden ed hastighedene v og v. Eventuelt kan de to legee væe tykket saen til et legee, de bevæge sig ed dees fælles hastighed v v. Beæk, at alle vaiable fo. legee ha indeks (, og tilsvaende fo legee. Beæk endvidee at alle hastighede fø stødet betegnes ed bogstavet u, en hastighedene efte stødet betegnes ed bogstavet v. (Vigtigt fo oveblikket Vi antage, at de ikke foekoe gnidningskæfte ed undelaget, således at de eneste kæfte, de åvike de to legee, e de kæfte, hvoed de åvike hinanden. Vi betagte nu to inciielt foskellige situatione.. Elastisk stød De to legee vil unde stødet defoee hinanden, og dees kinetiske enegi vil unde stødet væe delvis odannet til otentiel enegi, en å gund af elasticiteten vil den otentielle enegi igen blive odannet til kinetisk enegi. Et elastisk stød e defo defineet ved at den kinetiske enegi e bevaet. Et elastisk stød kan f.eks. (ed god tilnæelse ealisees, nå to billad kugle støde saen. 3. Uelastisk stød Et fuldstændig uelastisk stød e kaakteiseet ved, at de to legee abejde sig (uelastisk ind i hinanden, og efte stødet fotsætte so et legee, ed dees fælles hastighed. Et fuldstændig uelastisk stød, kan f.eks. ealisees ved at skyde et ojektil ind i en tæklods, hvo det blive siddende.

3 Iulsbevaelse ved stød 3 De fleste stød vil nok væe en elleting elle de to tilfælde, hvo legeene nok e adskilt efte stødet, en hvo de e et tab i kinetisk enegi å gund af fiktion. Nå den kinetiske enegi ikke e bevaet kaldes stødet fo uelastisk. På tods af foskelligheden i de te tye af stød, vil vi alligevel vise, at de gælde en og sae lovæssighed fo de alle. Dette kaldes fo iulsbevaelse (bevægelsesængdebevaelse. 4. Iulsbevaelse ved stød Vi betagte defo et centalt stød, de kan væe enhve af de te tye. Vi antage at stødet vae tidsuet Δt. I dette tidsu antages at legeene åvike hinanden ed kæftene: F og F. Ifølge Newtons 3. lov e F og F til ethvet tidsunkt lige stoe og odsat ettede: F F Unde stødet få legee ( en hastighedstilvækst: v v u og legee ( få en hastighedstilvækst: v v u. De to legees (gennesnitlige acceleation unde stødet, kan da bestees ved at dividee hastighedstilvæksten ed Δt. Vi oskive defo Newtons. lov fo de to legee unde stødet: (. v v F a F a Ved anvendelse af Newtons 3. lov: v v (.3 F F ( v u ( v u Odnes leddene i den sidste ligning, så hastighedene fø stødet stå å venste side og hastighedene efte stødet, stå å høje side, få an: (.4 v + v u + u Man definee et legees iuls (bevægelsesængde so oduktet af et legees asse og dets hastighed. Iuls betegnes ed bogstavet. Iulsen e lige so hastigheden en vekto. (.5 v Af (.4ses, at suen af de to legees iuls efte stødet e lig ed suen af de to legees iuls fø stødet. Dette kaldes fo (.6 Iulsbevaelse ved vekselvikning (stød elle to legee

4 Iulsbevaelse ved stød 4 Beæk, at da vi egne ed vektoe, ha vi intet antaget o, at stødet va elastisk elle centalt. Iulsbevaelsen gælde uindskænket, også i de tilfælde, hvo den ekaniske enegi ikke e bevaet. Næst efte enegibevaelse e iulsbevaelse nok den vigtigste lovæssighed i fysikken. Af definitionsligningen (.5 ses, at iuls ha SI-enheden kg /s. Vil vi nu betagte det cental elastiske og det fuldstændig uelastiske stød i detalje. 5. Centalt elastisk stød Kun fo at lette egningene, genneføe vi ekselet ed den antagelse at legee ( e i hvile fø stødet, så u 0. Resultatene fo det geneelle tilfælde e anføt bagefte. Vi doe endvidee vektosybolene, idet de e tale o etlinede bevægelse, ens hastighedene fotsat skal egnes ed fotegn. Fo det elastiske stød gælde både iulsbevaelse og bevaelse af den kinetiske enegi. (.6 I : u v + v (Iulsbevaelse, hvo u 0 II : u v + v (Bevaelse af den kinetiske enegi Af disse (to ligninge ed to ubekendte, kan an beegne hastighedene v og v efte stødet. Da det ikke e lineæe ligninge, gøes det ved følgende oskivninge, (so e vist en ikke foklaet i detalje: I : + v (.7 II : ( u v + v ( u v I : ( u v + v ( u v ( u v II : + v I det sidste udtyk dividees da I o i II. (I skal dog beholdes, hvis vi skal egne ensbetydende I : ( u v v I : ( u v v II : ( u + v v II u + v v v 0 : I : u v 0 I : ( u v ( u + v II : v 0 II : v u + v De sidste to ligninge e to lineæe ligninge ed to ubekendte, og de løses å sædvanlig vis. (.8 v u v u v 0 v u

5 Iulsbevaelse ved stød 5 Af udtykkene (.8, hastighedene efte stødet v og v defo beegnes, nå hastigheden fø stødet u sat assene og e kendte. Løsningen ed v 0, ha ingen fysisk inteesse, da det betyde at legeene ikke støde saen, en fotsætte ed dees esektive hastighede. (Men det e en løsning til ligningene. Af udtykkene fegå, at v altid e ensettet ed u, ens v e ensettet ed u, hvis > (edløb og odsat ettet u, hvis < (efleksion. Hvis, se an, at v u og at v 0. De to legee bytte hastighede, et fænoen, de e velkendt fa billad sil. Hvis vi nu antage at e uendelig sto i fohold til (en bold ae et gulv, så kende vi esultatet, so også kan vises ud fa ligningene (.7, ved at dividee ed i tælle og nævne, og anvende at foholdet : e nul. v u u v u + + Gulvet blive liggende, og bolden singe tilbage ed den sae hastighed. Vi ha taget dettte ed, fodi vi skal anvende esultatet i den kinetiske olekylteoi, hvo olekyle støde od væggen af en beholde. Det geneelle tilfælde, hvo begge legee e i bevægelse fø stødet, kan løses efte den sae etode, ved anvendelse af lidt ateatisk snilde. Resultatet e: I : u + u v + v (Iulsbevaelse, hvo u <> 0 0 II : u + u v + v (Bevaelse af den kinetiske enegi c ( u + u ( u + u (.8 v u v u Indsættes u 0, ses efte en inde eduktion, at an genfindeesultatet (.7 6. Centalt fuldstændig uelastisk stød Ved det fuldstændig uelastiske stød e den kinetiske enegi ikke bevaet ved stødet, en den fælles hastighed v v v efte stødet kan beegnes ud fa iulssætningen. Vi antage føst, at u 0. (.9 u v + v u v

6 Iulsbevaelse ved stød 6 Vi udegne denæst tilvæksten i kinetisk enegi. (.0 E kin u ( u + v u ( + ( + E kin + u So det fegå af (.0, så e tilvæksten i kinetisk enegi altid negativ. De ske altid et tab i kinetisk enegi ved et uelastisk stød. Det geneelle tilfælde, hvo begge legee e i bevægelse fø stødet, kan udegnes å lignende vis: (. I : u + u v + v u + u v E kin ( v u u (. E kin ( u u 7. Eksele og ogave.3 Ekseel. Hastigheden af et ojektil Et ojektil fa et gevæ ed assen 0 g, skydes ind i en tæklods ed assen k 3,0 kg, hvo den blive siddende. Klodsen e anbagt å et bod, og blive so følge af stødet flyttet en stækning s 5,0, hvoefte den blive bagt til standsning, so følge af fiktionen ed undelaget. Gnidningskoefficienten elle bod og klods e ålt til: µ 0,0. a beegn klodsens hastighed v lige efte, at ojektilet haat. b Beegn ojektilets hastighed. cbeegn tabet i kinetisk enegi og angiv tabet i ocent. dhvoledes osættes den kinetiske enegi. Løsning: a Vi anvende abejdssætningen: Den esulteende kafts (gnidningskaftens abejde e lig ed tilvæksten i kinetisk enegi. F gnidning s 0 ( + v k v F gnidning + Indsættes hei F gnidning µ( + k g, finde an ed indsatte talvædie. k s 0,0 3,0 kg 9,8 / s 5,0 v 4,43 / s 3,0 kg

7 Iulsbevaelse ved stød 7 b Vi anvende iulssætningen fo fuldstændig uelastisk stød u ( v k + k u Indsættes den fundne vædi fo v, finde an: u 669 /s. v c Vi anvende 0,0 kg 3,0 kg 3 E kin E kin (669 / s 4,45 J + 3,0 kg 0 u E 4,45 4,48 kin d 00% 99,3% ½ u Dette tab i kinetisk enegi osættes til vae i klodsen.4 Ogave. En lastbil, so veje 6 ton, støde fontalt saen ed en esonvogn, de veje 700 kg. Lastbilens hastighed fø saenstødet e 60 k/h og esonbilens hastighed fø saenstødet e -80 k/h. Saenstødet antages at væe centalt og fuldstændig uelastisk. a Beegn de to vognes fælles hastighed lige efte stødet, og beegn hastighedstilvæksten fo begge køetøje. b Idet an antage at saenstødet vae 0,5 sek, skal an udegne, hvo stoe acceleatione føeen i lastbilen og esonbilen e udsat fo unde saenstødet. c Unde den antagelse, at de begge veje 80 kg og at de begge sidde i sele, skal an beegne den kaft, so selen åvikes ed. d Oegnet til tyngdekaft, hvo sto en asse vil det svae til i de to tilfælde.

Gravitationsfeltet. r i

Gravitationsfeltet. r i Gavitationsfeltet Den stoe bitiske fysike Isaac Newton opdagede i 600-tallet massetiltækningsloven, som sige, at to masse m og i den indbydes afstand påvike hinanden med en kaft af følgende støelse, hvo

Læs mere

Annuiteter og indekstal

Annuiteter og indekstal Annuitete og indekstal 1 Opspaing og lån Mike Auebach Odense 2010 Hvis man betale til en opspaingskonto i en bank, kan man ikke buge entefomlen til at beegne, hvo mange penge, de vil stå på kontoen. På

Læs mere

TEORETISK OPGAVE 3. Hvorfor er stjerner så store?

TEORETISK OPGAVE 3. Hvorfor er stjerner så store? TEORETISK OPGAVE 3 Hvofo e stjene så stoe? En stjene e en kuglefomet samling vam gas De fleste stjene skinne pga fusion af hydogen til helium i dees entale omåde I denne opgave skal vi anvende klassisk

Læs mere

Elektrostatisk energi

Elektrostatisk energi Elektomagnetisme ide 1 af 8 Elektostatik Elektostatisk enegi Fo et legeme, de bevæge sig fa et punkt til et andet, e tilvæksten i potentiel enegi høende til en konsevativ 1 kaft F givet ved minus det abejde,

Læs mere

Annuiteter og indekstal

Annuiteter og indekstal Annuitete og indekstal Mike Auebach Odense, 2010 1 OPSPARING OG LÅN Hvis man betale til en opspaingskonto i en bank, kan man ikke buge entefomlen til at beegne, hvo mange penge, de vil stå på kontoen.

Læs mere

Projekt 0.5 Euklids algoritme, primtal og primiske tal

Projekt 0.5 Euklids algoritme, primtal og primiske tal Pojekt 0.5 Euklids algoitme, pimtal og pimiske tal Betegnelse. Mængden af hele tal (positive, negative og nul) betegnes. At et tal a e et helt tal angives med: aî, de læses a tilhøe. Nå vi ha to vilkålige

Læs mere

HTX Holstebro Jacob Østergaard 20. oktober 2008 3. A Fysik A Accelererede Roterende Legemer 19:03:00

HTX Holstebro Jacob Østergaard 20. oktober 2008 3. A Fysik A Accelererede Roterende Legemer 19:03:00 1 Fomål 1. At bestemme acceleationen fo et legeme med et kendt inetimoment, nå det ulle ned ad et skåplan - i teoi og paksis.. I teoi og paksis at bestemme acceleationen fo et legeme med kendt inetimoment,

Læs mere

Privatøkonomi og kvotientrækker KLADDE. Thomas Heide-Jørgensen, Rosborg Gymnasium & HF, 2017

Privatøkonomi og kvotientrækker KLADDE. Thomas Heide-Jørgensen, Rosborg Gymnasium & HF, 2017 Pivatøkonomi og kvotientække KLADDE Thomas Heide-Jøgensen, Rosbog Gymnasium & HF, 2017 Indhold 1 Endelige kvotientække 3 1.1 Hvad e en ække?............................ 3 1.2 Kvotientække..............................

Læs mere

3.0 Rørberegninger. VIDENSYSTEM.dk Bygningsinstallationer Varme Fordelingssystem 3.0 Rørberegning. 3.1 Rørberegningers forudsætninger

3.0 Rørberegninger. VIDENSYSTEM.dk Bygningsinstallationer Varme Fordelingssystem 3.0 Rørberegning. 3.1 Rørberegningers forudsætninger VIDENSYSTEM.dk Bygningsinstallatione Vae Fodelingssyste 3.0 Røbeegning 3.0 Røbeegninge 3.1 Røbeegningens foudsætninge 3. Tyktabsbeegning geneelt 3.3 Paktiske hjælpeidle 3.4 Beegningspincip fo tostengsanlæg

Læs mere

De dynamiske stjerner

De dynamiske stjerner De dynamiske stjene Suppleende note Kuglesymmetiske gasmasse Figu 1 Betelgeuse (Alfa Oionis) e en ød kæmpestjene i stjenebilledet Oion. Den e så sto, at den anbagt i voes solsystem ville nå næsten ud til

Læs mere

Hvis man vil lægge 15% til 600, så kan det gøres ved at udregne, hvor meget 15% af 600 er lig med og lægge det til det oprindelige beløb:

Hvis man vil lægge 15% til 600, så kan det gøres ved at udregne, hvor meget 15% af 600 er lig med og lægge det til det oprindelige beløb: 0BRetesegig BTæk i femskivigsfaktoe! I dette tillæg skal vi se, at begebet femskivigsfaktoe e yttigt til at fostå og løse foskellige poblemstillige idefo pocet- og etesegig. 3B. Lægge pocet til elle tække

Læs mere

DesignMat Den komplekse eksponentialfunktion og polynomier

DesignMat Den komplekse eksponentialfunktion og polynomier DesignMat Den komlekse eksonentialfunktion og olynomie Peben Alsholm Uge 8 Foå 009 Den komlekse eksonentialfunktion. Definitionen Definitionen Den velkendte eksonentialfunktion x! e x vil vi ofte ligesom

Læs mere

Cykelfysik. Om udveksling og kraftoverførsel

Cykelfysik. Om udveksling og kraftoverførsel Cykelfysik 1/7 Cykelfysik Om udvekslig og kaftoveføsel Idhold 2. Kaftoveføsel og abejde...2 3. Abejde ved cykelkøsel...4 4. Regeeksemple fo e acecykel...5 5. Det e hådt at køe op ad bakke...6 6. Simple

Læs mere

Alt hvad du nogensinde har ønsket at vide om... Del 2. Frank Nasser 2006-2007

Alt hvad du nogensinde har ønsket at vide om... Del 2. Frank Nasser 2006-2007 Alt hvad du nogensinde ha ønsket at vide om... VEKTORER Del 2 Fank Nasse 2006-2007 - 1 - Indledning Vi skal i denne lille note gennemgå det basale teoi om vektoe i planen og i ummet. Stoffet e pæcis det

Læs mere

Indholdsfortegnelse. Matematik A. Projekt 6 - Centralperspektiv. Stine Andersen og Morten Kristensen

Indholdsfortegnelse. Matematik A. Projekt 6 - Centralperspektiv. Stine Andersen og Morten Kristensen HTX Næstved Matematik A 8 2 Indholdsfotegnelse Indholdsfotegnelse... 2 Indledning... 3 Poblemstilling... 4 Teoi... 5 Vektoe i planet... 5 Vektobestemmelse... 5 Vinkel mellem to vektoe... 6 Vektokoodinate...

Læs mere

Projekt 0.5 Euklids algoritme og primiske tal

Projekt 0.5 Euklids algoritme og primiske tal Pojekt 0.5 Euklids algoitme og pimiske tal BETEGNELSER. Mængden af hele tal (positive, negative og nul) betegnes. At et tal a e et helt tal angives med: aî, de læses a tilhøe. Nå vi ha to vilkålige hele

Læs mere

Trigonometri. teori mundtlig fremlæggelse C 2. C v. B v. A v

Trigonometri. teori mundtlig fremlæggelse C 2. C v. B v. A v Tigonometi teoi mundtlig femlæggelse 2 v v B v B Indhold 1. Sætning om ensvinklede teknte og målestoksfohold (uden bevis)... 2 2. Vinkelsummen i en teknt... 2 3. Pythgos sætning om ETVINKLEDE TEKNTE...

Læs mere

Projekt 5.2. Anvendelse af Cavalieris princip i areal- og rumfangsberegninger

Projekt 5.2. Anvendelse af Cavalieris princip i areal- og rumfangsberegninger Hvad e matematik? B, i-bog Pojekte: Kapitel 5. Pojekt 5.. Anvendelse af Cavalieis pincip i aeal- og umfangsbeegninge Pojekt 5.. Anvendelse af Cavalieis pincip i aeal- og umfangsbeegninge Den gundlæggende

Læs mere

Kvantemekanik 10 Side 1 af 9 Brintatomet I. Sfærisk harmoniske ( ) ( ) ( ) ( )

Kvantemekanik 10 Side 1 af 9 Brintatomet I. Sfærisk harmoniske ( ) ( ) ( ) ( ) Kvantemekanik 0 Side af 9 Bintatomet I Sfæisk hamoniske Ifølge udtyk (9.7) e Lˆ Lˆ og de eksistee således et fuldstændigt sæt af = 0 samtidige egenfunktione fo ˆL og L ˆ de som antydet i udtyk (9.8) kan

Læs mere

MOGENS ODDERSHEDE LARSEN MATEMATIK

MOGENS ODDERSHEDE LARSEN MATEMATIK MOGENS ODDERSHEDE LARSEN MATEMATIK fa C- til A- niveau. udgave FORORD Denne bog e beegnet fo studeende, som ha behov fo at epetee elle opgadee dees matematiske viden fa C elle B- niveau til A-niveau Bogen

Læs mere

Projekt 1.8 Design en optimal flaske

Projekt 1.8 Design en optimal flaske ISBN 978-87-7066-9- Pojekte: Kapitel Vaiabelsammenænge. Pojekt.8 Design en optimal flaske Pojekt.8 Design en optimal flaske Fimaet PatyKids ønske at elancee dees enegidik Enegize. Den skal ave et nyt navn

Læs mere

Den stigende popularitet af de afdragsfrie lån har ad flere omgange fået skylden for de kraftigt stigende boligpriser de senere år.

Den stigende popularitet af de afdragsfrie lån har ad flere omgange fået skylden for de kraftigt stigende boligpriser de senere år. 16. septembe 8 Afdagsfie lån og pisstigninge på boligmakedet Den stigende populaitet af de afdagsfie lån ha ad flee omgange fået skylden fo de kaftigt stigende boligpise de senee å. Set ove en længee peiode

Læs mere

Kap. 1: Logaritme-, eksponential- og potensfunktioner. Grundlæggende egenskaber.

Kap. 1: Logaritme-, eksponential- og potensfunktioner. Grundlæggende egenskaber. - 4 - Kap. : Logaitme-, eksponential- og potensfunktione. Gundlæggende egenskabe... Logaitmefunktione. Definition... Ved en logaitmefunktion fostå vi en funktion f, som opfylde følgende te kav: ) Dm(f)

Læs mere

MATEMATIK på Søværnets officerskole

MATEMATIK på Søværnets officerskole MOGENS ODDERSHEDE LARSEN MATEMATIK på Søvænets officeskole (opeativ linie). udgave 9 FORORD Bogen gennemgå det pensum, som e beskevet i fagplanen af 9. Det e en foudsætning, at de studeende ha et solidt

Læs mere

Øvelsesvejledning: δ 15 N og δ 13 C for negle.

Øvelsesvejledning: δ 15 N og δ 13 C for negle. AMS 4C Daterings Laboratoriet Institut for Fysik og Astronoi Øvelsesvejledning: δ 5 N og δ 3 C for negle. Under besøget skal I udføre tre eksperientelle øvelser : Teltronrør - afbøjning af ladede partikler

Læs mere

Procent og eksponentiel vækst - supplerende eksempler

Procent og eksponentiel vækst - supplerende eksempler Eksemple til iveau F, E og D Pocet og ekspoetiel vækst - suppleede eksemple Pocete og decimaltal... b Vækst-fomle... d Fa side f og femefte vises eksemple på bug af vækstfomle. Fomle skives omalt på dee

Læs mere

SUPERLEDNING af Michael Brix Pedersen

SUPERLEDNING af Michael Brix Pedersen UPERLEDNING af Mihael Bix Pedesen Indledning I denne note foudsættes kendskab til de eleentæe egenskabe ved hödingeligningen (se fx Refeene [] elle [3], lidt eleentæe egenskabe ved koplekse tal og Eules

Læs mere

CO 2. -regnskab For virksomheden Jammerbugt Kommune

CO 2. -regnskab For virksomheden Jammerbugt Kommune -egnskab Fo viksomheden Jammebugt Kommune Fosidebilledet vise Ryå, de gå ove sine bedde -egnskab fo Jammebugt Kommune Jammebugt Kommune indgik d. 9. oktobe 2009 en klimakommuneaftale med Danmaks Natufedningsfoening.

Læs mere

Januar2003/ AM Rentesregning - LÅN & OPSPARING 1/8. Aftager med...% Gange med (1...%) r:=...% Før aftager med...% og bliver til Efter, dvs.

Januar2003/ AM Rentesregning - LÅN & OPSPARING 1/8. Aftager med...% Gange med (1...%) r:=...% Før aftager med...% og bliver til Efter, dvs. Jaua2003/ AM Retesegig - LÅN & OPSPARING 1/8 PROCENT Po cet betyde p. 100" altså hudededele p% = p 100 Decimaltal Ved omskivig fa pocet til decimaltal flyttes kommaet to pladse mod veste 5%=0,05 0,1%=0,001

Læs mere

Matematik på Åbent VUC

Matematik på Åbent VUC Matematik på Åent VUC Lektion 8 Geometi Indoldsfotegnelse Indoldsfotegnelse... Længdemål og omegning mellem længdemål... Omkeds og aeal af ektangle og kvadate... Omkeds og aeal af ande figue... Omegning

Læs mere

Plasticitetsteori for jord som Coulomb materiale

Plasticitetsteori for jord som Coulomb materiale Downloaded fo obit.dtu.dk on: Nov 3, 05 Plasticitetsteoi fo jod so Coulob ateiale Jantzen, Thoas; Nielsen, Mogens Pete Publication date: 007 Docuent Vesion Publishe final vesion (usually the publishe pdf)

Læs mere

Forløb om annuitetslån

Forløb om annuitetslån Matema10k C-niveau, Fdenlund Side 1 af 7 Foløb om annuitetslån Dette mateiale fokusee på den tpe lån de betegnes annuitetslån. Emnet kan buges som en del af det suppleende stof, og mateialet kan anvendes

Læs mere

Indhold (med link til dokumentet her) Introduktion til låntyper. Begreber. Thomas Jensen og Morten Overgård Nielsen

Indhold (med link til dokumentet her) Introduktion til låntyper. Begreber. Thomas Jensen og Morten Overgård Nielsen Thomas Jensen og Moten Ovegåd Nielsen Annuitetslån I bogens del 2 kan du læse om Pocent og ente (s. 41-66). Vi vil i mateialet he gå lidt videe til mee kompliceede entebeegninge i fobindelse med annuitetslån.

Læs mere

Elektromagnetisme 1 Side 1 af 11 Elektrostatik 1. Elektrisk ladning

Elektromagnetisme 1 Side 1 af 11 Elektrostatik 1. Elektrisk ladning Elektomagnetisme 1 Side 1 af 11 Elektostatik 1 Elektisk ladning Stof e opbygget af potone (, neutone ( n og elektone ( og bestå defo p + mestendels af ladede patikle, men langt, langt støstedelen af denne

Læs mere

praktiske. Der er lavet adskillige undersøgelser at skelne i mellem: ulaboratorieundersøgelser og ufeltundersøgelser.

praktiske. Der er lavet adskillige undersøgelser at skelne i mellem: ulaboratorieundersøgelser og ufeltundersøgelser. Betonø ha den støste vandføingskapacitet Et afløbssystems opgave e at lede vand samt uenhede til ensningsanlæg elle ecipient. Evnen til at gøe dette afhænge af systemets hydauliske egenskabe næmee betegnet

Læs mere

Elektromagnetisme 1 Side 1 af 11 Elektrostatik 1. Elektrisk ladning

Elektromagnetisme 1 Side 1 af 11 Elektrostatik 1. Elektrisk ladning Elektomagnetisme 1 Side 1 af 11 Elektostatik 1 Elektisk ladning Stof e opbygget af potone ( ), neutone ( n ) og elektone ( ) og bestå defo p + mestendels af ladede patikle, men den altovevejende del af

Læs mere

VI SEJREDE! Vi kom, vi så,

VI SEJREDE! Vi kom, vi så, Vi kom, vi så, VI SEJREDE! Pojekt JCI Julehjælp Svendbog Hjælp os med at hjælpe ande 2011 afsluttede indsamlingen til tængte bønefamilie i Svendbog med sto succes! Søndag d. 18. dec. va sidste indsamlingsdag

Læs mere

Regional Udvikling, Miljø og Råstoffer. Jordforurening - Offentlig høring Forslag til nye forureningsundersøgelser og oprensninger 2016

Regional Udvikling, Miljø og Råstoffer. Jordforurening - Offentlig høring Forslag til nye forureningsundersøgelser og oprensninger 2016 Regional Udvikling, Miljø og Råstoffe Jodfouening - Offentlig høing Foslag til nye foueningsundesøgelse og opensninge 2016 Decembe 2015 Food En jodfouening kan skade voes fælles gundvand, voes sundhed

Læs mere

Magnetisk dipolmoment

Magnetisk dipolmoment Kvantemekanik 9 Side 1 af 9 Magnetisk dipolmoment Klassisk Ifølge EM udtyk (8.16) e det magnetiske dipolmoment af en ladning q i en cikulæ bane med adius givet ved μ = IA (9.1) v q > 0 μ L hvo A = π I

Læs mere

Opsparing og afvikling af gæld

Opsparing og afvikling af gæld Opspaig og afviklig af gæld Opspaig Eksempel 1 Lad os state med at se på et eksempel. 100 Euo idbetales å i tæk på e koto, de foetes med 3 % p.a. Vi ha tidligee beeget e såda kotos udviklig skidt fo skidt:

Læs mere

STATISTIKNOTER Simple multinomialfordelingsmodeller

STATISTIKNOTER Simple multinomialfordelingsmodeller STATISTIKNOTER Simple multinomialfodelingsmodelle Jøgen Lasen IMFUFA Roskilde Univesitetscente Febua 1999 IMFUFA, Roskilde Univesitetscente, Postboks 260, DK-4000 Roskilde. Jøgen Lasen: STATISTIKNOTER:

Læs mere

Rentesregning: Lektion A1. Forrentningsfaktor, Diskonteringsfaktor, og Betalingsrækker. Overordnede spørgsmål i Rentesregning. Peter Ove Christensen

Rentesregning: Lektion A1. Forrentningsfaktor, Diskonteringsfaktor, og Betalingsrækker. Overordnede spørgsmål i Rentesregning. Peter Ove Christensen Rentesegning: Lektion A1 Foentningsfakto, Diskonteingsfakto, og Pete Ove Chistensen Foå 2012 1 / 49 Oveodnede spøgsmål i Rentesegning Hvoledes kan betalinge sammenlignes, nå betalingene e tidsmæssigt adskilte?

Læs mere

TDC A/S Nørregade 21 0900 København C. Afgørelse om fastsættelse af WACC i forbindelse med omkostningsdokumentation af priserne i TDC s standardtilbud

TDC A/S Nørregade 21 0900 København C. Afgørelse om fastsættelse af WACC i forbindelse med omkostningsdokumentation af priserne i TDC s standardtilbud TC A/S Nøegade 21 0900 København C Afgøelse om fastsættelse af WACC i fobindelse med omkostningsdokumentation af pisene i TC s standadtilbud Sagsfemstilling en 29. juni 2006 modtog TC s notat om den beegningsmæssige

Læs mere

Elektrodynamik. Christian Andersen. 15. juni 2010. Indhold 1. 1 Indledning 3

Elektrodynamik. Christian Andersen. 15. juni 2010. Indhold 1. 1 Indledning 3 Elektodynamik Chistian Andesen 15. juni 010 Indhold Indhold 1 1 Indledning 3 Elektostatik 3.1 Det elektiske felt............................. 3. Divegens og Cul af E-felte...................... 3.3 Elektisk

Læs mere

11: Det skjulte univers

11: Det skjulte univers : Det skjulte unives Jeg nævnte tilbage i kapitel 2, at de e en foklaing på, at univeset ha den oveodnede stuktu, som det ha. Men dengang manglede vi foudsætningene fo at fostå foklaingene. Siden ha elativitetsteoien

Læs mere

Kort om. Potenssammenhænge. 2011 Karsten Juul

Kort om. Potenssammenhænge. 2011 Karsten Juul Kot om Potenssmmenhænge 011 Ksten Juul Dette hæfte indeholde pensum i potenssmmenhænge, heunde popotionle og omvendt popotionle vible, fo gymnsiet og hf. Indhold 1. Ligning og gf fo potenssmmenhænge...

Læs mere

Nr Atom nummer nul Fag: Fysik A Udarbejdet af: Michael Bjerring Christiansen, Århus Statsgymnasium, august 2009

Nr Atom nummer nul Fag: Fysik A Udarbejdet af: Michael Bjerring Christiansen, Århus Statsgymnasium, august 2009 N. -9 Atom numme nul Fag: Fysik A Udabejdet af: Michael Bjeing Chistiansen, Åhus Statsgymnasium, august 9 Spøgsmål til atiklen 1. Hvofo vil det væe inteessant, hvis man fo eksempel finde antikulstof i

Læs mere

Erhvervs- og Selskabsstyrelsen

Erhvervs- og Selskabsstyrelsen Ehvevs- og Selskabsstyelsen Måling af viksomhedenes administative byde ved afegning af moms, enegiafgifte og udvalgte miljøafgifte Novembe 2004 Rambøll Management Nøegade 7A DK-1165 København K Danmak

Læs mere

Skråplan. Dan Elmkvist Albrechtsen, Edin Ikanović, Joachim Mortensen. 8. januar Hold 4, gruppe n + 1, n {3}, uge 50-51

Skråplan. Dan Elmkvist Albrechtsen, Edin Ikanović, Joachim Mortensen. 8. januar Hold 4, gruppe n + 1, n {3}, uge 50-51 Skråplan Dan Elkvist Albrechtsen, Edin Ikanović, Joachi Mortensen Hold 4, gruppe n + 1, n {3}, uge 50-51 8. januar 2008 Figurer Sider ialt: 5 Indhold 1 Forål 3 2 Teori 3 3 Fregangsåde 4 4 Resultatbehandling

Læs mere

Sabatiers princip (elevvejledning)

Sabatiers princip (elevvejledning) Sabaties pincip (elevvejledning) Væ på toppen af vulkanen Sammenligning af katalysatoe Fomål I skal måle hvo godt foskellige stoffe vike som katalysato fo udvikling af oxygen fa hydogenpeoxid. I skal sammenligne

Læs mere

Arealet af en sfærisk trekant m.m.

Arealet af en sfærisk trekant m.m. ealet af en sfæisk tekant m.m. Tillæg til side 103 104 i Matematik højniveau 1 fa TRI, af Eik Vestegaad. Sfæisk tokant Givet en kugle. En plan, de passee igennem kuglens centum, skæe kuglen i en såkaldt

Læs mere

p o drama vesterdal idræt musik kunst design

p o drama vesterdal idræt musik kunst design musik dama kunst design filmedie idæt pojektpocespobieenpos itpoblempovokationpodu kt p on to p ot estpobablypogessivpodu ktionpovinspomotionp otesepologpoevefipofil Vestedal Efteskole // Gl. Assensvej

Læs mere

AKTUEL ANALYSE. Nye tider på boligmarkedet 24. januar 2007

AKTUEL ANALYSE. Nye tider på boligmarkedet 24. januar 2007 AKTUEL ANALYSE Nye tie på boligmakeet 24. janua 2007 De høje pisstigningstakte på boligmakeet e løjet af, og meget tale fo en fotsat afæmpning i en kommene ti. Sien boligmakeet vente i 1993, e pisene vokset

Læs mere

rekommandation overspændingsafledere til højspændingsnet. Member of DEHN group Udarbejdet af: Ernst Boye Nielsen & Peter Mathiasen,

rekommandation overspændingsafledere til højspændingsnet. Member of DEHN group Udarbejdet af: Ernst Boye Nielsen & Peter Mathiasen, ekommandation ovespændingsafledee til højspændingsnet Udabejdet af: Enst Boye Nielsen & Pete Mathiasen, DESITEK A/S Denne publikation e en ekommandation fo valg af ovespændingsafledee til højspændingsnet

Læs mere

Pension og Tilbagetrækning - Ikke-parametrisk Estimation af Heterogenitet

Pension og Tilbagetrækning - Ikke-parametrisk Estimation af Heterogenitet Pension og Tilbagetækning - Ikke-paametisk Estimation af Heteogenitet Søen Anbeg De Økonomiske Råds Sekataiat, DØRS Pete Stephensen Danish Rational Economic Agents Model, DREAM DREAM Abedspapi 23:2 foeløbig

Læs mere

Om Gear fra Technoingranaggi Riduttori Tilføjelser til TR s katalogmateriale

Om Gear fra Technoingranaggi Riduttori Tilføjelser til TR s katalogmateriale ...when motos must be contolled Om Gea fa Technoinganaggi Riduttoi Tilføjelse til TR s katalogmateiale ISO 9 cetificeing: Technoinganaggi Riduttoi følge ISO 9 pincippene i dees kvalitetsstying. Alle dele

Læs mere

Den Naturvidenskabelige Bacheloreksamen Københavns Universitet. Fysik september 2006

Den Naturvidenskabelige Bacheloreksamen Københavns Universitet. Fysik september 2006 Den Naturvidenskabelige acheloreksamen Københavns Universitet Fysik 1-14. september 006 Første skriftlige evaluering 006 Opgavesættet består af 4 opgaver med i alt 9 spørgsmål. Skriv tydeligt navn og fødselsdato

Læs mere

PRINCIPIA. stort. småt. SelvTryk. m F. r _. z l. f A y. - g _ g _ g _.

PRINCIPIA. stort. småt. SelvTryk. m F. r _. z l. f A y. -  g _ g _ g _. PRINCIPIA m F g=mg i stot g g g g g M og småt z l v i x v i y m v i z v i f aeal A y x SelvTyk clausmuenchow@mail.stofanet.dk - http://home.stofanet.dk/mue Indholdsfotegnelse. Indledning. Kinematik på

Læs mere

Bevægelse op ad skråplan med ultralydssonde.

Bevægelse op ad skråplan med ultralydssonde. Bevægelse op ad skråplan med ultralydssonde. Formål: a) At finde en formel for accelerationen i en bevægelse op ad et skråplan, og at prøve at eftervise denne formel, ud fra en lille vinkel og vægtskål

Læs mere

KØBENHAVNS UNIVERSITET NATURVIDENSKABELIG BACHELORUDDANNELSE

KØBENHAVNS UNIVERSITET NATURVIDENSKABELIG BACHELORUDDANNELSE KØBENHAVNS UNIVERSITET NATURVIDENSKABELIG BACHELORUDDANNELSE Fysik 2, Klassisk Mekanik 2 Skriftlig eksamen 16. april 2009 Tilladte hjælpemidler: Medbragt litteratur, noter og lommeregner Besvarelsen må

Læs mere

Med disse betegnelser gælder følgende formel for en annuitetsopsparing:

Med disse betegnelser gælder følgende formel for en annuitetsopsparing: Matema10k C-iveau, Fydelud Side 1 af 10 Auitetsopspaig De fides mage måde at spae op på. Vi vil he se på de såkaldte auitetsopspaig. Emet ka buges som e del af det suppleede stof, og det ka avedes som

Læs mere

Beregningsprocedure for de energimæssige forhold for forsatsvinduer

Beregningsprocedure for de energimæssige forhold for forsatsvinduer Beeninspocedue fo de eneimæssie fohold fo fosatsvindue Nævæende dokument beskive en pocedue til bestemmelse, af de eneimæssie fohold fo fosatsvindue. Det skal notees, at beeninen e baseet på en foeløbi

Læs mere

Projekt 4. Anlægsøkonomien i Storebæltsforbindelsen hvordan afdrages

Projekt 4. Anlægsøkonomien i Storebæltsforbindelsen hvordan afdrages Pojekt 4. Alægsøkoomie i Stoebæltsfobidelse hvoda afdages lå? Dette pojekt hadle om, hvoda økoomie va skuet samme, da ma byggede Stoebæltsfobidelse. Stoe alægspojekte e æste altid helt elle delvist låefiasieet.

Læs mere

2. ordens differentialligninger. Svingninger.

2. ordens differentialligninger. Svingninger. arts 011, LC. ordens differentialligninger. Svingninger. Fjederkonstant k = 50 kg/s s X S 80 kg F1 F S er forlængelsen af fjederen, når loddets vægt belaster fjederen. X er den påtvungne forlængelse af

Læs mere

Institut for Matematik, DTU: Gymnasieopgave. Appetitvækker : Togdynamik.

Institut for Matematik, DTU: Gymnasieopgave. Appetitvækker : Togdynamik. Togaik side 1 Institut for Mateatik, DTU: Gynasieopgave Appetitvækker : Togaik. Teori: Erik Øhlenschlæger, Grundlæggende Fysik 1 For Adgangskursus og HTX, Gyldendal 1993,. udgave, siderne 73-75, 94-95

Læs mere

Kontakt: - en anden tid et andet tempo! A13 Hobro. Løgstør. Skive. Bjerregrav Hjarbæk Fjord. Skals A13. Hobro/Randers Viborg. Kulturarvsforbindelsen

Kontakt: - en anden tid et andet tempo! A13 Hobro. Løgstør. Skive. Bjerregrav Hjarbæk Fjord. Skals A13. Hobro/Randers Viborg. Kulturarvsforbindelsen Hvolis Jenaldelandsby og Kultuavsfobindelsen, Skive Heedsvejen 135 Veste Bjeegav 9632 Møldup www.jenaldelandsby.dk hvolis@vibog.dk A13 Hobo Løgstø Bjeegav Hjabæk Fjod Skals OL Kontakt: - en anden tid et

Læs mere

Etiske dilemmaer i fysioterapeutisk praksis

Etiske dilemmaer i fysioterapeutisk praksis side 06 fysioteapeuten n. 06 apil 2008 AF: FYSIOTERAPEUT, PH.D.-STUDERENDE JEANETTE PRÆSTEGAARD j.paestegaad@oncable.dk Foto: GITTE SKOV fafo.fysio.dk Etiske dilemmae i fysioteapeutisk paksis Hvis vi ikke

Læs mere

PÆDAGOGISK KVALITETSEVALUERING

PÆDAGOGISK KVALITETSEVALUERING PÆDAGOGISK KVALITETSEVALUERING - E N M E T O D E, D E R V I R K E R I P R A K S I S HVAD ER PÆDAGOGISK KVALITETSEVALUERING? Pædagogisk Kvalitetsevalueing gø det attaktivt fo ledelse og pesonale at gå pædagogikken

Læs mere

Cisgene bygplanter. planteforskning.dk Bioteknologi

Cisgene bygplanter. planteforskning.dk Bioteknologi plantefoskning.dk Cisgene bygplante Nyttige egenskabe kan tilføes til femtidens afgøde ved hjælp af genetisk modifikation uden indsættelse af atsfemmede gene. Den nye stategi anvendes bl.a. til udvikling

Læs mere

At score mål på hjørnespark

At score mål på hjørnespark At scoe ål på hjønespk Ole Witt Hnsen, lekto eeitus undevisningens udvikling i gnsiet Indtil 988 hvilede fsikundevisningen i gnsiet på det teoetiske, so n søgte t bekæfte genne deonsttionsfosøg elle fsikøvelse,

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet Danmarks Tekniske Universitet Side 1 af 11 sider Skriftlig prøve, lørdag den 12. december, 2015 Kursus navn Fysik 1 Kursus nr. 10916 Varighed: 4 timer Tilladte hjælpemidler: Alle hjælpemidler tilladt "Vægtning":

Læs mere

KICK- START STANDE FORÅRETS SALG ENTRÉ GRATIS. Endnu ledige FOR JERES MESSEGÆSTER. - mød over 20.000 købedygtige nordjyder!

KICK- START STANDE FORÅRETS SALG ENTRÉ GRATIS. Endnu ledige FOR JERES MESSEGÆSTER. - mød over 20.000 købedygtige nordjyder! DET NYE KICK- START FORÅRETS SALG - mød ove 20.000 købedygtige nodjyde! Eksklusive moms Nodjysk Ivæksætte Netvæk indbyde igen til Se side 4 GRATIS ENTRÉ FOR JERES MESSEGÆSTER Endnu ledige STANDE - SE STANDPLAN

Læs mere

Elektromagnetisme 9 Side 1 af 5 Magnetfelter 2. Biot og Savart

Elektromagnetisme 9 Side 1 af 5 Magnetfelter 2. Biot og Savart Eektomagnetisme 9 ide af 5 Magnetfete Biot og avat En aften i 8 havde fysikpofesso fa Københavns Univesitet Hans Chistian Østed inviteet venne og studeende hjem i pivaten fo at demonstee, at en stømføende

Læs mere

Bernoulli s lov. Med eksempler fra Hydrodynamik og aerodynamik. Indhold

Bernoulli s lov. Med eksempler fra Hydrodynamik og aerodynamik. Indhold Bernoulli s lov Med eksempler fra Indhold 1. Indledning...1 2. Strømning i væsker...1 3. Bernoulli s lov...2 4. Tømning af en beholder via en hane i bunden...4 Ole Witt-Hansen Køge Gymnasium 2008 Bernoulli

Læs mere

Dynamik. 1. Kræfter i ligevægt. Overvejelser over kræfter i ligevægt er meget vigtige i den moderne fysik.

Dynamik. 1. Kræfter i ligevægt. Overvejelser over kræfter i ligevægt er meget vigtige i den moderne fysik. M4 Dynamik 1. Kræfter i ligevægt Overvejelser over kræfter i ligevægt er meget vigtige i den moderne fysik. Fx har nøglen til forståelsen af hvad der foregår i det indre af en stjerne været betragtninger

Læs mere

Metode til beregning af varmetransmissionskoefficient (U-værdi) for ovenlys

Metode til beregning af varmetransmissionskoefficient (U-værdi) for ovenlys Metode til beenin af vametansmissionskoefficient (U-vædi) fo oven Nævæende notat beskive en metode til beenin af vametansmissionskoefficienten fo oven. Pincippet i beeninspoceduen tae udanspunkt i beeninsmetoden

Læs mere

VURDERING AF LØSNINGSFORSLAG I FORBINDELSE MED DEN EUROPÆISKE STATSGÆLDSKRISE

VURDERING AF LØSNINGSFORSLAG I FORBINDELSE MED DEN EUROPÆISKE STATSGÆLDSKRISE Modul 0: Speciale 0. semeste, cand.oecon Aalbog Univesitet Afleveet d. 30. maj 202 VURDERING AF LØSNINGSFORSLAG I FORBINDELSE MED DEN EUROPÆISKE STATSGÆLDSKRISE Vejlede: Finn Olesen Skevet af Henik Hanghøj

Læs mere

Fagstudieordning for tilvalgsuddannelsen i Erhvervsøkonomi (2012-ordning)

Fagstudieordning for tilvalgsuddannelsen i Erhvervsøkonomi (2012-ordning) Fagstudieodning fo tilvalgsuddannelsen i Ehvevsøkonomi (2012-odning) 1 Indledning Til denne uddannelsesspecifikke fagstudieodning knytte sig også Rammestudieodning fo Det Samfundsvidenskabelige Fakultet,

Læs mere

Trivselsundersøgelse 2010

Trivselsundersøgelse 2010 Tivselsundesøgelse, byggeteknike, kot-og landmålingseknike, psteknolog og bygni (Intenatal) Pinsesse Chalottes Gade 8 København N T: Indhold Indledning... Metode... Tivselsanalyse fo bygni... Styke og

Læs mere

Lorentz kraften og dens betydning

Lorentz kraften og dens betydning Lorentz kraften og dens betydning I dette tillæg skal i se, at der irker en kraft på en ladning, der beæger sig i et agnetfelt, og i skal se på betydninger heraf. Før i gør det, skal i dog kigge på begrebet

Læs mere

Misspecifikationer i modal-split modeller

Misspecifikationer i modal-split modeller Misspecifikaione i odal-spli odelle Rich J.H. Danaks Miløundesøgelse Afdelingen fo syseanalyse P.O. Box 358, DK-4000 Roskilde, Danak Tlf. +45 46301206 / Fax +45 46301212 / eail: h@du.dk Absak Økonoeiske

Læs mere

Vi ser altså, at der er situationer, hvor vi ikke kan afgøre, om vi befinder os i et tyngdefelt eller langt ude i rummet fjernt fra alle kræfter:

Vi ser altså, at der er situationer, hvor vi ikke kan afgøre, om vi befinder os i et tyngdefelt eller langt ude i rummet fjernt fra alle kræfter: 5 Tyngdekaften Nu hvo vi (fohåbentlig) ha fået et begeb om ummets og tidens sammenflettede natu, skal vi vende tilbage til en ting, som vi ganske kot blev konfonteet med i begyndelsen af foige kapitel.

Læs mere

Impuls og kinetisk energi

Impuls og kinetisk energi Impuls og kinetisk energi Peter Hoberg, Anton Bundgård, and Peter Kongstad Hold Mix 1 (Dated: 7. oktober 2015) 201405192@post.au.dk 201407987@post.au.dk 201407911@post.au.dk 2 I. INDLEDNING I denne øvelse

Læs mere

Appendiks B: Korrosion og restlevetid for trådbindere

Appendiks B: Korrosion og restlevetid for trådbindere Appendiks B: Koosion og esleveid fo ådbindee I de følgende omales koosionspocessene fo ådbindee og hvodan man beegne esleveiden fo en koodee ådbinde. Tådbindee ha i idens løb væe udfø af: messing (en legeing

Læs mere

Dimittendundersøgelse, 2009 Dato: 3. juni 2009

Dimittendundersøgelse, 2009 Dato: 3. juni 2009 Dimittendundesøgelse 2008-2009 Afspændingspædagoguddannelsen Dimittendundesøgelse, 2009 Dato: 3. juni 2009 Opsummeing af undesøgelse foetaget blandt dimittende fa Afspændingspædagoguddannelsen Datagundlag

Læs mere

Skema til evaluering af specifik indsats i et tema i henhold til lov om læreplaner

Skema til evaluering af specifik indsats i et tema i henhold til lov om læreplaner Skema til evalueing af specifik indsats i et tema i henhold til lov om læeplane De udfyldes et evalueingsskema p. tema p. aldesguppe. Institutionens navn:_katholt Målguppe:_3-6 å 2010 Antal bøn: 25 Tema:

Læs mere

Julestjerner af karton Design Beregning Konstruktion

Julestjerner af karton Design Beregning Konstruktion Julestjene af katon Julestjene af katon Design Beegning Konstuktion Et vilkåligt antal takke En vilkålig afstand fa entum ud til spidsene En vilkålig afstand fa entum ud til toppunktene i "indakkene" En

Læs mere

Lokalplanlægning. Lokalplanen er bindende for den enkelte grundejer, men handler kun om fremtidige forhold og giver ikke grundejerne handlepligt.

Lokalplanlægning. Lokalplanen er bindende for den enkelte grundejer, men handler kun om fremtidige forhold og giver ikke grundejerne handlepligt. VORDINGBORG KOMMUNE NÆSTVEDVEJ N ALGADE MARIENBERGVEJ LOKALPLAN NR. C-2.2 Banegådsomådet, Vodingbog By Vodingbog august 2006 20 k. Lokalplanlægning Planloven indeholde bestemmelse om Byådets et og pligt

Læs mere

Beslutning. Gothersgade karréen. Nansensgade 94-96, Gothersgade 155-159, Nørre Farimagsgade 65-71.

Beslutning. Gothersgade karréen. Nansensgade 94-96, Gothersgade 155-159, Nørre Farimagsgade 65-71. Beslutig FÆLLES GÅRDHAVE Gothesgade kaée Nasesgade 94-96, Gothesgade 155-159, Nøe Faimagsgade 65-71. Bogeepæsetatioe ha XX. XX 20XX tuffet byfoyelsesbeslutig om idetig af e fælles gådhave. De fælles gådhave

Læs mere

grib chancen 1/3 sæt ord på din drøm

grib chancen 1/3 sæt ord på din drøm gib chancen sæt od på din døm DR e på mange måde alleede i vedensklasse. Og vi skal væe det hele vejen undt. DR i vedensklasse handle om samab: Hvodan skal vi samab i femtiden? Og hvilke vædie skal vi

Læs mere

Energi. Energi ind med solstråling ATMO- SFÆREN. Absorberet i i atmosfæren. Varmeindhold i atmosfæren. Homo technicus. 99,8% absorberet af jorden

Energi. Energi ind med solstråling ATMO- SFÆREN. Absorberet i i atmosfæren. Varmeindhold i atmosfæren. Homo technicus. 99,8% absorberet af jorden Energi Reflekteret af skyer, støv og jordoverfladen Energi ind ed solstråling Energi ud ed varestråling ATMO- SFÆREN Absorberet i i atosfæren Vareindhold i atosfæren Vinde Hoo technicus 99,8% absorberet

Læs mere

Trekantsberegning. for B- og A- niveau i stx og hf udgave 2. 2014 Karsten Juul

Trekantsberegning. for B- og A- niveau i stx og hf udgave 2. 2014 Karsten Juul Tekansbeegning fo - og - niea i sx og hf dgae l 34 8 014 Kasen Jl Indhold 1. Vinkle... 1. Tekans häjde og aeal... 1.1 HÄjde.... 1. HÄjde-gndlinje-fomel fo ekans aeal... 1.3 Eksemel ho aeal e kend... 1

Læs mere

LOKALPLAN NR. 360 HENRIETTELUND

LOKALPLAN NR. 360 HENRIETTELUND 1 LOKALPLAN NR. 360 HENRIETTELUND EN KORTFATTET BESKRIVELSE Beliggenhed Langs Kægade i Vop Lokalplanen omfatte et ca. 4,13 ha stot omåde fodelt på 4 pivate ejendomme beliggende fo foden af Tebbestp Bakke

Læs mere

Aalborg Universitet. Skriftlig eksamen i Grundlæggende Mekanik og Termodynamik. Tirsdag d. 11. august 2015 kl

Aalborg Universitet. Skriftlig eksamen i Grundlæggende Mekanik og Termodynamik. Tirsdag d. 11. august 2015 kl Aalborg Universitet Skriftlig eksamen i Grundlæggende Mekanik og Termodynamik Tirsdag d. 11. august 2015 kl. 9 00-13 00 Ved bedømmelsen vil der blive lagt vægt på argumentationen (som bør være kort og

Læs mere

Wear&Care Brugervejledning. A change for the better

Wear&Care Brugervejledning. A change for the better A change fo the bette Intoduktion Wea&Cae e en smat løsning, de give mulighed fo at følge fugtniveauet i bleen, så den kan skiftes efte behov. Infomationen gå fa en sende på bleen til modtageens smatphone

Læs mere

Elektromagnetisme 10 Side 1 af 12 Magnetisme. Magnetisering

Elektromagnetisme 10 Side 1 af 12 Magnetisme. Magnetisering Elektroagnetise 10 Side 1 af 12 Magnetisering Magnetfelter skabes af ladninger i bevægelse, altså af elektriske strøe. I den forbindelse skelnes elle to typer af agnetfeltskabende strøe: Frie strøe, der

Læs mere

Frivillige dyrkningsaftaler i indsatsområder

Frivillige dyrkningsaftaler i indsatsområder Miljøpojekt N. 812 2003 Fivillige dykningsaftale i indsatsomåde Gundlag og mulighede belyst ud fa kvælstofpoblematikken Egon Noe og Andes Højlund Nielsen Danmaks JodbugsFoskning Helene Simoni Thoup og

Læs mere

Heliumballoner og luftskibe Projektbeskrivelse og produktkrav

Heliumballoner og luftskibe Projektbeskrivelse og produktkrav liuballoner og luftskibe Projektbeskrivelse og produktkrav Forålet ed projektet er at undersøge fysikken i heliuballoner ved at anvende ateatiske odeller og perspektivere den naturfaglige indsigt ed luftfartens

Læs mere

LOKALPLAN 14-027 CENTER- OG BOLIGOMRÅDE VED JØRGEN STEINS VEJ, VESTBJERG

LOKALPLAN 14-027 CENTER- OG BOLIGOMRÅDE VED JØRGEN STEINS VEJ, VESTBJERG LOKALPLAN 14-027 CENTER- OG BOLIGOMRÅDE VED JØRGEN STEINS VEJ, VESTBJERG AALBORG KOMMUNE TEKNISK FORVALTNING JUNI 2001 Vejledning En lokalplan fastlægge bestemmelse fo, hvodan aeale, nye bygninge, beplantning,

Læs mere

Uddannelsesordning for uddannelsen til Gastronom

Uddannelsesordning for uddannelsen til Gastronom Uddannelsesodning fo uddannelsen til Gastonom Udstedelsesdato: 9. juni 2011 Udstedt af Det faglige Udvalg fo Gastonomuddannelsen i henhold til bekendtgøelse n. 329 af 28. apil 2009 om uddannelsene i den

Læs mere