Gödel: Über formal unentschiedbare Sätze der Principia Mathematica und verwandter Systeme I, 1931

Størrelse: px
Starte visningen fra side:

Download "Gödel: Über formal unentschiedbare Sätze der Principia Mathematica und verwandter Systeme I, 1931"

Transkript

1 Kommentar til 1 Gödel: Über formal unentschiedbare Sätze der Principia Mathematica und verwandter Systeme I, 1931 Denne afhandling af den 24-årige Kurt Gödel er blevet en klassiker. Det er vist den eneste moderne matematiske afhandling som menigmand kender af omtale. Dens resultater er af populærjournalistiken blevet tolket som "matematikkens sammenbrud", - ja, som "den menneskelige tankes fallit". Gödel viser først at der i enhver matematisk teori, som omfatter aritmetikken, findes udsagn som hverken kan bevises eller modbevises. Hvis et sådant, eller dets negation, skal bevises, må der føjes flere aksiomer til teorien. Der er intet mærkeligt i dette. En smule overraskende er måske nok Gödel's andet resultat: for en teori som omfatter aritmetikken kan et bevis for at den er modsigelsesfri ikke formaliseres indenfor teorien selv. Der skal altså flere aksiomer til for at bevise at teorien er modsigelsesfri end der er i teorien selv. Men selv om man havde et bevis for at teorien er modsigelsesfri, som var formaliseret indenfor teorien selv, ville det ikke uden videre bevise at teorien er modsigelsesfri. Thi hvis der er en modsigelse i teorien, kan ethvert udsagn jo bevises (se...), og dermed også udsagnet "teorien er modsigelsesfri". Et bevis for at teorien er modsigelsesfri har kun værdi, hvis der kun gøres brug af helt harmløse aksiomer, dvs. aksiomer af endelig karakter. At teorien kan bevises at være modsigelsesfri, hvis man gør brug af flere aksiomer end der er i teorien, er Gentzen's bevis et eksempel på (...). Gödel's afhandling er på 26 sider og har 4 afsnit. Vi skitserer indholdet af hver af disse, og til sidst skitserer vi beviset for Church s uafgørbarhedssætning. 1 er den citerede indledning. Gödel nævner at det udsagn han vil konstruere, som hverken kan bevises eller modbevises, er inspireret af Richard's paradoks. Dette paradoks (Richard, 1905) kan formuleres således: Vi ordner alle sproglige udsagn, hvori der indgår netop eet (variabelt) naturlige tal n, på rad og række (efter et leksikografisk princip). Det k-te udsagn betegnes E k (n). Vi betragter nu udsagnet "E n (n) er falsk". Da dette er et sprogligt udsagn, hvori der indgår netop eet (variabelt) naturlige tal n, må det være blandt E k -erne. Lad os antage at det har nummer q, altså E q (n) = "E n (n) er falsk". Men heraf følger (for n = q) at hvis E q (q) er sand er E q (q) falsk, og omvendt. Paradoksaliteten beror på, at i det naturlige sprog findes der ikke et sandhedsbegreb således at ethvert udsagn kan tildeles en sandhedsværdi sand/

2 falsk (se tredie bog,...). I 2 sættes det formale begrebsapparat op, og Gödel beviser at "i en teori som omfatter aritmetikken og som er ω-modsigelsesfri (se nedenfor), findes der et udsagn som hverken kan bevises eller modbevises". 2 Beviset føres ved at aritmetisere metamatematikken: enhver formal term, ethvert formalt udsagn og ethvert bevis tildeles et naturligt tal, herved kan ethvert metamatematisk udsagn omformes til et formalt aritmetisk udsagn. Gödel giver hvert af tegnene i den formale teori et nummer (som er et naturligt tal). Enhver tegnstreng, altså specielt enhver term og ethvert udsagn, kun nu tildeles et naturligt tal, nemlig 2 n 1 3 n 2 5 n 3 7 n 4 11 n 5... (k-te primtal) n k, hvis tegnstrengen består af k tegn, og det første tegn har nummer n 1, det andet tegn har nummer n 2, osv. Et naturligt tal n er ikke nødvendigvis et Gödelnummer, men hvis det er et sådant, vil vi betegne den tilsvarende tegnstreng G n. Tilsvarende kan ethvert bevis, som jo er en følge af udsagn, tildeles et nummer. Alle beviser kan opstilles på rad og række ved hjælp af et leksikografisk princip. Gödelnummeret til det k-te bevis betegnes B k. Gödel kalder en talteoretisk relation R(x 1,..., x n ) (x 1,..., x n naturlige tal) rekursiv, hvis den kan dannes ved en særlig iterativ procedure. I årene fremkom der forskellige forslag til en definition af begrebet effektiv beregnelighed for en talteoretisk relation R(x 1,..., x n ). Dvs. en regneprocedure ved hjælp af hvilken man, for et givet sæt (x 1,..., x n ) af naturlige tal, kan afgøre om udsagnet R(x 1,..., x n ) er sandt eller falsk. Bl.a. generel rekursiv (Gödel, 1934), λ-definerbar (Church og Kleene, ) og Turing-beregnelig (Turing, l936). Det viste sig at disse definitioner er ensbetydende. Dette førte Church til at fremsætte den tese at "alle tilstrækkelig rummelige definitioner af effektiv beregnelighed er ensbetydende". En regneprocedure udformet som et computerprogram, i et tilstrækkelig rummeligt computersprog, er altså ensbetydende med disse definitioner. En relation som er rekursiv i Gödel's forstand kaldes idag simpel rekursiv. Gödel beviser at for enhver rekursiv relation R(x 1,..., x n ), findes et formalt udsagn r(x 1,..., x n ) således at a. (R(x 1,..., x n ) er sand) (r(x 1,..., x n ) er et teorem), b. (R(x 1,..., x n ) er falsk) ( r(x 1,..., x n ) er et teorem), her skal vi strengt taget i r(x 1,..., x n ) erstatte x 1,..., x n med deres Gödelnumre. Alle udsagn p(x), med een variabel x som gennemløber de naturlige tal, kan opstilles på rad og række ved hjælp af et leksikografisk princip. Gödel kalder et sådant udsagn "ein Klassenzeichen". Det n-te udsagn betegnes R(n). Funk-

3 tionen "n Gödelnummeret af R(n)" kan defineres i den formale teori. Udsagnet R(n)(m) betegnes [R(n):m]. Relationen R(m, n) = "B m er ikke et bevis for [R(n):n]" er rekursiv, derfor findes der et formalt udsagn r(m, n) således at a. "B m er ikke et bevis for [R(n):n]" r(m, n) er et teorem b. "B m er et bevis for [R(n):n]" r(m, n) er et teorem. 3 Udsagnet " m: r(m, n)" har een fri variabel, og er derfor R(q) for et naturligt tal q. Altså [R(q):n] = " m: r(m, n)", og derfor [R(q):q] = " m: r(m, q)". Gödel kalder en teori ω-modsigelsesfri, hvis der ikke findes et udsagn p(n) således at 1. ( n IN: p(n)) er et teorem og 2. p(n) er et teorem for ethvert n IN (husk at hvis " n IN: p(n)" er et teorem er p(n) et teorem for ethvert n, men det omvendte gælder ikke, jvf. logisk aksiom... side...). Hvis teorien er ω-modsigelsesfri er den modsigelsesfri. Thi hvis den var kontradiktorisk, ville ethvert formalt udsagn jo være et teorem, derfor ville den ikke kunne være ω-modsigelsesfri. Af det ovenstående følger nu: 1. Hvis teorien er modsigelsesfri kan [R(q):q] ikke bevises. Bevis: Hvis [R(q): q] var et teorem, ville findes et m' således at B m' var et bevis for [R(q):q]. Derfor ville, ifølge b, r(m', q) være et teorem, men dette strider mod at " m: r(m, q)" er et teorem. 2. Hvis teorien er ω-modsigelsesfri kan [R(q):q] ikke bevises. Bevis: Hvis teorien er ω-modsigelsesfri er den modsigelsesfri. Derfor kan, ifølge 1., [R(q): q] ikke bevises, dvs. for ethvert m er Bm ikke et bevis for [R(q):q]. Ifølge a er r(m, q) derfor et teorem for ethvert m. Hvis nu [R(q):q] kunne bevises, ville ( m: r(m, q)) være et teorem, men dette strider imod at teorien er ω- modsigelsesfri. Hvis teorien er modsigelsesfri kan " m: r(m, q)" altså ikke bevises, men r(m, q) er ikke destomindre et teorem for ethvert m. Hvis vi føjer " ( m: r(m, q))" til teorien som et nyt aksiom, får vi en teori som er stadig er modsigelsesfri (vis dette!), men ikke ω-modsigelsesfri, idet det både gælder at ( m: r(m, q)) er et teorem og at r(m, q) er et teorem for ethvert m. For at bevise at [R(q):q] ikke kan bevises, forudsætter Gödel at teorien er modsigelsesfri, men for at bevise at [R(q):q] ikke kan bevises, behøver Gödel en kraftigere forudsætning, nemlig at teorien er ω-modsigelsesfri. I 1936 viste Rosser at man kan nøjes med at forudsætte at teorien er modsigelsesfri.

4 4 I 3 viser Gödel at enhver rekursiv relation er aritmetisk, dvs. den kan dannes alene ved hjælp af aritmetikkens tegn. Det følger heraf at i udsagnet " m: r(m, q)", kan r(m, q) erstattes med et aritmetisk udsagn s(m), således at hvis " m: r(m, q)" kan bevises da kan også " m: s(m)" bevises, og omvendt. Hvis altså teorien (som omfatter aritmetikken) er ω-modsigelsesfri, findes et aritmetisk udsagn som hverken kan bevises eller modbevises. Desuden viser Gödel at udsagnet " m: r(m, q)", kan erstattes med et udsagn " x: F(x)" i den rene prædikat kalkyle (se...), således at hvis " m: r(m, q)" kan bevises da kan også " x: F(x)" bevises, og omvendt. Hvis altså teorien (som omfatter aritmetikken) er ω-modsigelsesfri, findes et udsagn i den rene prædikat kalkyle som hverken kan bevises eller modbevises. I 4 skitseres beviset til "ein merkwürdiges Resultat". Nemlig at "for en teori som omfatter aritmetikken kan et bevis for at den er modsigelsesfri ikke formaliseres indenfor teorien selv". Et komplet bevis er langt og indviklet - det blev udarbejdet af Hilbert og Bernay i At "teorien er modsigelsesfri" betyder at "der findes et udsagn som ikke kan bevises". Dette metamatematiske udsagn kan formaliseres som " k: G k udsagn m: B m ikke bevis for k". Gödel argumenterer nu for at beviset i 3, for at "hvis teorien er modsigelsesfri da kan udsagnet [R(q):q] ikke bevises", kan omformes til et formalt aritmetisk bevis. Udsagnet "( k: G k udsagn m: B m ikke bevis for k) ( m: B m bevis for [R(q):q])" er altså et teorem. Men da det allerede er bevist at hvis teorien er modsigelsesfri da kan udsagnet [R(q):q] ikke bevises, følger heraf at præmissen " k: G k udsagn m: B m ikke bevis for k" ikke kan bevises hvis teorien er modsigelsesfri. Til sidst nævner Gödel at forudsætningen i 3, at teorien er ω-modsigelsesfri, nu kan erstattes med "at teorien er kontradiktorisk kan ikke bevises i teorien selv", thi da er udsagnet " k: G k udsagn m: B m ikke bevis for k" et eksempel på et udsagn som hverken kan bevises eller modbevises. I 1936 beviste Church at enhver teori, som omfatter aritmetikken eller den rene prædikat kalkyle, er uafgørbar. Dvs. der findes ikke en effektiv beregningsprocedure, ved hjælp af hvilken man kan afgøre om et givet udsagn har et bevis eller ej. I tilfældet hvor teorien omfatter aritmetikken, går Church således til værks: Alle computerprogrammer som udfører beregninger med naturlige tal, således at såvel input som (evt.) output er ét tal, opstilles på rad og række ved hjælp af et leksikografisk ordningsprincip. Det k-te program betegnes P k. Hvis tallet m er input i P k, kan der ske 1. programmet går ikke igang, 2. programmet går igang men kører i det uendelige, 3. programmet går igang og

5 standser efter endelig mange udregninger, output er et tal n. Lad udsagnet T(k, m, n) være givet ved: T(k, m, n) er sandt hvis og kun hvis 3. gælder, og lad funktionen t: IN IN være givet ved t(m) = n + 1 hvis T(m, m, n) er sandt, og t(m) = 0 hvis der ikke findes noget n således at T(m, m, n) er sandt. 5 Denne funktion er ikke beregnelig. Bevis: Hvis t var beregnelig, ville der findes et tal q således at P q beregner den, dvs. T(q, m, t(m)) ville være sandt for ethvert m. Specielt ville T(q, q, t(q)) være sandt. Men dette ville medføre at t(p) = t(p) + 1 (da n er entydigt bestemt ved k og m, hvis T(k, m, n) er sandt). Det følger umiddelbart heraf at det ikke, ved en beregnings-procedure, kan afgøres om udsagnet " n: T(m, m, n) er sandt" (med én variabel m) er sandt eller falsk. Ifølge et tidligere nævnt resultat af Gödel, findes et formalt udsagn r(m, n) således at a. T(m, m, n) er sandt r(m, n) er et teorem b. T(m, m, n) er falsk r(m, n) er et teorem, og af dette følger at ( n: T(m, m, n) er sandt) (( n: r(m, n)) er et teorem). Hvis teorien var både ω-modsigelsesfri og afgørbar, ville sandhedsværdien af udsagnet "( n: r(m, n)) er et teorem" (med én fri variabel m) være beregnelig. Og dette ville medføre at sandhedsværdien af udsagnet " n:t(m, m, n) er sandt" var beregnelig, men det har vi lige vist at den ikke er.

t a l e n t c a m p d k Matematiske Metoder Anders Friis Anne Ryelund 25. oktober 2014 Slide 1/42

t a l e n t c a m p d k Matematiske Metoder Anders Friis Anne Ryelund 25. oktober 2014 Slide 1/42 Slide 1/42 Hvad er matematik? 1) Den matematiske metode 2) Hvad vil det sige at bevise noget? 3) Hvor begynder det hele? 4) Hvordan vælger man et sæt aksiomer? Slide 2/42 Indhold 1 2 3 4 Slide 3/42 Mængder

Læs mere

Elementær Matematik. Mængder og udsagn

Elementær Matematik. Mængder og udsagn Elementær Matematik Mængder og udsagn Ole Witt-Hansen 2011 Indhold 1. Mængder...1 1.1 Intervaller...4 2. Matematisk Logik. Udsagnslogik...5 3. Åbne udsagn...9 Mængder og Udsagn 1 1. Mængder En mængde er

Læs mere

Gödels ufuldstændighedssætninger

Gödels ufuldstændighedssætninger Gödels ufuldstændighedssætninger Thomas Bolander, DTU Informatik Matematik: Videnskaben om det uendelige 2 Folkeuniversitetet i København, efteråret 2011 Thomas Bolander, FUKBH 11 s. 1/21 Gödels ufuldstændighedssætning

Læs mere

Ufuldstændighed, mængdelære og beregnelighed

Ufuldstændighed, mængdelære og beregnelighed Ufuldstændighed, mængdelære og beregnelighed Thomas Bolander, DTU Informatik Matematik: Videnskaben om det uendelige Folkeuniversitetet i København, efteråret 2009 Thomas Bolander, FUKBH 09 s. 1/27 Sidste

Læs mere

1 < 2 og 1 > 2 (2.1) er begge udsagn. Det første er sandt det andet er falsk. Derimod er

1 < 2 og 1 > 2 (2.1) er begge udsagn. Det første er sandt det andet er falsk. Derimod er Kapitel 2 Logik Dette kapitel omhandler matematiske udsagn og prædikater. I et formelt kursus om logik opstiller man helt præcise regler for hvilke tegnstrenge, der kan tillades i opbygningen af udsagn

Læs mere

Noter til Perspektiver i Matematikken

Noter til Perspektiver i Matematikken Noter til Perspektiver i Matematikken Henrik Stetkær 25. august 2003 1 Indledning I dette kursus (Perspektiver i Matematikken) skal vi studere de hele tal og deres egenskaber. Vi lader Z betegne mængden

Læs mere

Gödels ufuldstændighedssætninger

Gödels ufuldstændighedssætninger Gödels ufuldstændighedssætninger Thomas Bolander, DTU Informatik Matematik: Videnskaben om det uendelige Folkeuniversitetet i København, efteråret 2009 Thomas Bolander, FUKBH 09 s. 1/27 Gödels første ufuldstændighedssætning

Læs mere

Noter om primtal. Erik Olsen

Noter om primtal. Erik Olsen Noter om primtal Erik Olsen 1 Notation og indledende bemærkninger Vi lader betegne de hele tal, og Z = {... 3, 2, 1, 0, 1, 2, 3...} N = {0, 1, 2, 3...} Z være de positive hele tal. Vi minder her om et

Læs mere

Undersøgende aktivitet om primtal. Af Petur Birgir Petersen

Undersøgende aktivitet om primtal. Af Petur Birgir Petersen Undersøgende aktivitet om primtal. Af Petur Birgir Petersen Definition: Et primtal er et naturligt tal større end 1, som kun 1 og tallet selv går op i. Eksempel 1: Tallet 1 ikke et primtal fordi det ikke

Læs mere

Selvreference i begrænsningsresultaterne

Selvreference i begrænsningsresultaterne Selvreference i begrænsningsresultaterne Thomas Bolander, IMM, DTU. tb@imm.dtu.dk To pointer: (1) Der skal kun meget lidt udover selvreference til for at få de klassiske logiske begrænsningsresultater.

Læs mere

Hvad er et tal? Dan Saattrup Nielsen

Hvad er et tal? Dan Saattrup Nielsen 12 Det filosofiske hjørne Hvad er et tal? Dan Saattrup Nielsen Det virker måske som et spøjst spørgsmål, men ved nærmere eftertanke virker det som om, at alle vores definitioner af tal refererer til andre

Læs mere

Matematisk Metode. Jesper Lützen og Ian Kiming

Matematisk Metode. Jesper Lützen og Ian Kiming Matematisk Metode Jesper Lützen og Ian Kiming 17. oktober 2008 ii Contents Introduktion. Den aksiomatisk-deduktive metode ix 1 Logik 1 1.1 Udsagn og prædikater........................ 1 1.2 Sammensatte

Læs mere

Logik. Af Peter Harremoës Niels Brock

Logik. Af Peter Harremoës Niels Brock Logik Af Peter Harremoës Niels Brock December 2009 1 Indledning Disse noter om matematisk logik er en videreudbygning af det, som står i bogen MAT A [1]. Vi vil her gå lidt mere systematisk frem og være

Læs mere

Eksempel på den aksiomatisk deduktive metode

Eksempel på den aksiomatisk deduktive metode Eksempel på den aksiomatisk deduktive metode Et rigtig godt eksempel på et aksiomatisk deduktivt system er Euklids Elementer. Euklid var græker og skrev Elemeterne omkring 300 f.kr. Værket består af 13

Læs mere

01017 Diskret Matematik E12 Alle bokse fra logikdelens slides

01017 Diskret Matematik E12 Alle bokse fra logikdelens slides 01017 Diskret Matematik E12 Alle bokse fra logikdelens slides Thomas Bolander 1 Udsagnslogik 1.1 Formler og sandhedstildelinger symbol står for ikke eller og ( A And) hvis... så... hvis og kun hvis...

Læs mere

Den sproglige vending i filosofien

Den sproglige vending i filosofien ge til forståelsen af de begreber, med hvilke man udtrykte og talte om denne viden. Det blev kimen til en afgørende ændring af forståelsen af forholdet mellem empirisk videnskab og filosofisk refleksion,

Læs mere

Bevisteknikker. Bevisteknikker (relevant både ved design og verifikation) Matematisk induktion. Matematisk induktion uformel beskrivelse

Bevisteknikker. Bevisteknikker (relevant både ved design og verifikation) Matematisk induktion. Matematisk induktion uformel beskrivelse Bevisteknikker Bevisteknikker (relevant både ved design og verifikation) Bevisførelse ved modstrid (indirekte bevis) Antag, at det givne teorem er falsk Konkluder, at dette vil føre til en modstrid Teorem:

Læs mere

Thomas Bolander og Helge Elbrønd Jensen. 7. marts 2005

Thomas Bolander og Helge Elbrønd Jensen. 7. marts 2005 Om Gödels sætning Thomas Bolander og Helge Elbrønd Jensen 7. marts 2005 Resumé Gödels sætning er en af det 20. århundredes mest berømte matematiske sætninger. Den er kendt langt ud over de professionelle

Læs mere

Matematiske metoder - Opgavesæt

Matematiske metoder - Opgavesæt Matematiske metoder - Opgavesæt Anders Friis, Anne Ryelund, Mads Friis, Signe Baggesen 24. maj 208 Beskrivelse af opgavesættet I dette opgavesæt vil du støde på opgaver, der er markeret med enten 0, eller

Læs mere

BOSK F2012, 1. del: Prædikatslogik

BOSK F2012, 1. del: Prædikatslogik ε > 0. δ > 0. x. x a < δ f (x) L < ε February 8, 2012 Prædikater Vi skal lære om prædikatslogik lad os starte med prædikater. Et prædikat er et orakel der svarer ja eller nej. Eller mere præcist: Prædikater

Læs mere

Bevisteknikker (relevant både ved design og verifikation)

Bevisteknikker (relevant både ved design og verifikation) Bevisteknikker 1 Bevisteknikker (relevant både ved design og verifikation) Bevisførelse ved modstrid (indirekte bevis) Antag, at det givne teorem er falsk Konkluder, at dette vil føre til en modstrid Teorem:

Læs mere

Primtal - hvor mange, hvordan og hvorfor?

Primtal - hvor mange, hvordan og hvorfor? Johan P. Hansen 1 1 Institut for Matematiske Fag, Aarhus Universitet Gult foredrag, EULERs Venner, oktober 2009 Disposition 1 EUKLIDs sætning. Der er uendelig mange primtal! EUKLIDs bevis Bevis baseret

Læs mere

Gödels ufuldstændighedssætninger

Gödels ufuldstændighedssætninger Gödels ufuldstændighedssætninger Thomas Bolander, DTU Informatik UNF foredrag, HCØ, 13. april 2010 Thomas Bolander, UNF, F10 s. 1/34 Introduktion En populær formulering af Gödel s (første) ufuldstændighedssætning

Læs mere

Tal. Vi mener, vi kender og kan bruge følgende talmængder: N : de positive hele tal, Z : de hele tal, Q: de rationale tal.

Tal. Vi mener, vi kender og kan bruge følgende talmængder: N : de positive hele tal, Z : de hele tal, Q: de rationale tal. 1 Tal Tal kan forekomme os nærmest at være selvfølgelige, umiddelbare og naturgivne. Men det er kun, fordi vi har vænnet os til dem. Som det vil fremgå af vores timer, har de mange overraskende egenskaber

Læs mere

Henrik Bulskov Styltsvig

Henrik Bulskov Styltsvig Matematisk logik Henrik Bulskov Styltsvig Datalogiafdelingen, hus 42.1 Roskilde Universitetscenter Universitetsvej 1 Postboks 260 4000 Roskilde Telefon: 4674 2000 Fax: 4674 3072 www.dat.ruc.dk Disposition

Læs mere

Potensrækker. Morten Grud Rasmussen 1 10. november 2015. Definition 1 (Potensrække). En potensrække er en uendelig række på formen

Potensrækker. Morten Grud Rasmussen 1 10. november 2015. Definition 1 (Potensrække). En potensrække er en uendelig række på formen Potensrækker Morten Grud Rasmussen 1 10 november 2015 Definition og konvergens af potensrækker Definition 1 Potensrække) En potensrække er en uendelig række på formen a n pz aq n, 1) hvor afsnittene er

Læs mere

Filosofisk logik og argumentationsteori. Peter Øhrstrøm Institut for Kommunikation Aalborg Universitet

Filosofisk logik og argumentationsteori. Peter Øhrstrøm Institut for Kommunikation Aalborg Universitet Filosofisk logik og argumentationsteori Peter Øhrstrøm Institut for Kommunikation Aalborg Universitet Nogle vigtige kendetegn på god videnskab rationalitet systematik éntydighed (klarhed) kontrollérbarhed

Læs mere

Baggrundsnote om logiske operatorer

Baggrundsnote om logiske operatorer Baggrundsnote om logiske operatorer Man kan regne på udsagn ligesom man kan regne på tal. Regneoperationerne kaldes da logiske operatorer. De tre vigtigste logiske operatorer er NOT, AND og. Den første

Læs mere

Hvad er svært ved beviser for gymnasieelever - og kan vi gøre noget ved det?

Hvad er svært ved beviser for gymnasieelever - og kan vi gøre noget ved det? Hvad er svært ved beviser for gymnasieelever - og kan vi gøre noget ved det? Fredag den 18. marts 2011 13:00-14:15 Auditorium F, bygn. 1534 Matematiklaboratoriet, bygn. 1536 Hvad er svært ved beviser?

Læs mere

Appendiks 6: Universet som en matematisk struktur

Appendiks 6: Universet som en matematisk struktur Appendiks 6: Universet som en matematisk struktur En matematisk struktur er et meget abstrakt dyr, der kan defineres på følgende måde: En mængde, S, af elementer {s 1, s 2,,s n }, mellem hvilke der findes

Læs mere

Beregnbarhed, diagonalisering og matematikkens grundlag

Beregnbarhed, diagonalisering og matematikkens grundlag Beregnbarhed, diagonalisering og matematikkens grundlag Stig Andur Pedersen Afdelingen Filosofi og Videnskabsteori, RUC 1 Matematikkens grundlagsproblemer Omkring år 1900 havde matematikken udviklet metoder

Læs mere

Hvad er formel logik?

Hvad er formel logik? Kapitel 1 Hvad er formel logik? Hvad er logik? I daglig tale betyder logisk tænkning den rationelt overbevisende tænkning. Og logik kan tilsvarende defineres som den rationelle tænknings videnskab. Betragt

Læs mere

Brug og Misbrug af logiske tegn

Brug og Misbrug af logiske tegn Brug og Misbrug af logiske tegn Frank Nasser 20. april 2011 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Bemærk:

Læs mere

Analyse 2. Gennemgå bevis for Sætning Supplerende opgave 1. Øvelser. Sætning 1. For alle mængder X gælder #X < #P(X).

Analyse 2. Gennemgå bevis for Sætning Supplerende opgave 1. Øvelser. Sætning 1. For alle mængder X gælder #X < #P(X). Analyse 2 Øvelser Rasmus Sylvester Bryder 3. og 6. september 2013 Gennemgå bevis for Sætning 2.10 Sætning 1. For alle mængder X gælder #X < #P(X). Bevis. Der findes en injektion X P(X), fx givet ved x

Læs mere

Grundlæggende Matematik

Grundlæggende Matematik Grundlæggende Matematik Hayati Balo, AAMS August 2012 1. Matematiske symboler For at udtrykke de verbale udsagn matematisk korrekt, så det bliver lettere og hurtigere at skrive, indføres en række matematiske

Læs mere

Logik. Helge Elbrønd Jensen og Tom Høholdt Fortolket af Michael Elmegård og Øistein Wind-Willassen.

Logik. Helge Elbrønd Jensen og Tom Høholdt Fortolket af Michael Elmegård og Øistein Wind-Willassen. Logik Helge Elbrønd Jensen og Tom Høholdt Fortolket af Michael Elmegård og Øistein Wind-Willassen. 25. juni 2014 2 Indhold 1 Matematisk Logik 5 1.1 Udsagnslogik.................................... 5 1.2

Læs mere

Matematiske metoder - Opgaver

Matematiske metoder - Opgaver Matematiske metoder - Opgaver Anders Friis, Anne Ryelund 25. oktober 2014 Logik Opgave 1 Find selv på tre udtalelser (gerne sproglige). To af dem skal være udsagn, mens det tredje ikke må være et udsagn.

Læs mere

Sikre Beregninger. Kryptologi ved Datalogisk Institut, Aarhus Universitet

Sikre Beregninger. Kryptologi ved Datalogisk Institut, Aarhus Universitet Sikre Beregninger Kryptologi ved Datalogisk Institut, Aarhus Universitet 1 Introduktion I denne note skal vi kigge på hvordan man kan regne på data med maksimal sikkerhed, dvs. uden at kigge på de tal

Læs mere

Raymond Queneau. Litteraturens grundlag

Raymond Queneau. Litteraturens grundlag Raymond Queneau Litteraturens grundlag Efter at have overværet en forelæsning i Halle af Wiener (ikke Norbert, selvfølgelig) om Desargues og Pappus teoremer mumlede David Hilbert tænksomt, mens han ventede

Læs mere

Opspaltning i primfaktorer

Opspaltning i primfaktorer 1 Opspaltning i primfaktorer Et program som kan undersøge om et tal er et primtal, eller finde hvilke primtal det er sammensat af, er det allerførste program enhver talentusiast laver. For den tid jo er

Læs mere

t a l e n t c a m p d k Talteori Anne Ryelund Anders Friis 16. juli 2014 Slide 1/36

t a l e n t c a m p d k Talteori Anne Ryelund Anders Friis 16. juli 2014 Slide 1/36 Slide 1/36 sfaktorisering Indhold 1 2 sfaktorisering 3 4 5 Slide 2/36 sfaktorisering Indhold 1 2 sfaktorisering 3 4 5 Slide 3/36 1) Hvad er Taleteori? sfaktorisering Slide 4/36 sfaktorisering 1) Hvad er

Læs mere

Gödels ufuldstændighedssætninger

Gödels ufuldstændighedssætninger Gödels ufuldstændighedssætninger Thomas Bolander, DTU Compute UNF foredrag, HCØ, 16. september 2014 (c_e)l[^ga=f]2 (F[_E_B])L[=A,_Ac]L[=E,_B,_E]- [E,B,E]2L[F,=B,=E]2 L[^F,C=F] Thomas Bolander, UNF, 16/9-2014

Læs mere

16. december. Resume sidste gang

16. december. Resume sidste gang 16. december Resume sidste gang Abstrakt problem, konkret instans, afgørlighedsproblem Effektiv kodning (pol. relateret til binær kodning) Sprog L : mængden af instanser for et afgørlighedsproblem hvor

Læs mere

Naturvidenskab. En fællesbetegnelse for videnskaberne om naturen, dvs. astronomi, fysik, kemi, biologi, naturgeografi, biofysik, meteorologi, osv

Naturvidenskab. En fællesbetegnelse for videnskaberne om naturen, dvs. astronomi, fysik, kemi, biologi, naturgeografi, biofysik, meteorologi, osv Naturvidenskab En fællesbetegnelse for videnskaberne om naturen, dvs. astronomi, fysik, kemi, biologi, naturgeografi, biofysik, meteorologi, osv Naturvidenskab defineres som menneskelige aktiviteter, hvor

Læs mere

1 Beregnelighed. 1.1 Disposition. 1.2 Præsentation. Def. TM. Def. RE/R. Def. 5 egenskaber for RE/R. Def. NSA. Bevis. NSA!RE. Def. SA. Bevis. SA!

1 Beregnelighed. 1.1 Disposition. 1.2 Præsentation. Def. TM. Def. RE/R. Def. 5 egenskaber for RE/R. Def. NSA. Bevis. NSA!RE. Def. SA. Bevis. SA! 1 Beregnelighed 1.1 Disposition Def. TM Def. RE/R Def. 5 egenskaber for RE/R Def. NSA Bevis. NSA!RE Def. SA Bevis. SA!R Bevis. SA RE Def. Beslutningsproblem Arg. Self-Accepting er uløselig 1.2 Præsentation

Læs mere

Matematisk induktion

Matematisk induktion Induktionsbeviser MT01.0.07 1 1 Induktionsbeviser Matematisk induktion Sætninger der udtaler sig om hvad der gælder for alle naturlige tal n N, kan undertiden bevises ved matematisk induktion. Idéen bag

Læs mere

Eksempel 2: Forløb med inddragelse af argumentation

Eksempel 2: Forløb med inddragelse af argumentation Eksempel 2: Forløb med inddragelse af Læringsmål i forhold til Analyse af (dansk, engelsk, kult) 1. Hvad er (evt. udgangspunkt i model) 2. Argumenter kommer i bølger 3. Evt. argumenttyper 4. God Kobling:

Læs mere

Talteori II. C-serien består af disse arbejdskort: C1 Talteori på forskellige klassetrin C2 Den pythagoræiske tripelsætning

Talteori II. C-serien består af disse arbejdskort: C1 Talteori på forskellige klassetrin C2 Den pythagoræiske tripelsætning 1 Talteori er ikke direkte nævnt i Fælles Mål 2009 som et fagområde, alle skal arbejde med. Det betyder dog ikke, at talteori nødvendigvis må vælges fra som indhold i skolen. Faktisk kan det tænkes, at

Læs mere

Diskrete Matematiske Metoder. Jesper Lützen

Diskrete Matematiske Metoder. Jesper Lützen Diskrete Matematiske Metoder Jesper Lützen Juni 2013 ii Indhold Introduktion. ix 0.1 Den aksiomatisk-deduktive metode................. ix 0.2 Diskret matematik; hvad er det?.................. x 1 Tal,

Læs mere

Matematik YY Foråret Kapitel 1. Grupper og restklasseringe.

Matematik YY Foråret Kapitel 1. Grupper og restklasseringe. Matematik YY Foråret 2004 Elementær talteori Søren Jøndrup og Jørn Olsson Kapitel 1. Grupper og restklasseringe. Vi vil i første omgang betragte forskellige typer ligninger og søge efter heltalsløsninger

Læs mere

Skriftlig Eksamen Beregnelighed (DM517)

Skriftlig Eksamen Beregnelighed (DM517) Skriftlig Eksamen Beregnelighed (DM517) Institut for Matematik & Datalogi Syddansk Universitet Torsdag den 1 November 212, kl. 1 14 Alle sædvanlige hjælpemidler (lærebøger, notater etc.) samt brug af computer

Læs mere

Syllogistik teoretisk set

Syllogistik teoretisk set Syllogistik teoretisk set Peter Øhrstrøm August 2009 Syllogistikken som den er overleveret til os kommer først og fremmest fra middelalderlogikken, som systematisk og pædagogisk bearbejdede Aristoteles

Læs mere

Implikationer og Negationer

Implikationer og Negationer Implikationer og Negationer Frank Villa 5. april 2014 Dette dokument er en del af MatBog.dk 2008-2012. IT Teaching Tools. ISBN-13: 978-87-92775-00-9. Se yderligere betingelser for brug her. Indhold 1 Introduktion

Læs mere

Eksamen i Diskret Matematik

Eksamen i Diskret Matematik Eksamen i Diskret Matematik Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet 15. juni, 2015. Kl. 9-13. Nærværende eksamenssæt består af 12 nummererede sider med ialt 17 opgaver. Tilladte hjælpemidler:

Læs mere

Opgaver i logik, torsdag den 20. april

Opgaver i logik, torsdag den 20. april Opgaver i logik, torsdag den 20. april Opgave 1 Oversæt følgende udsagn til logiske udtryk. c) Hvis Jones ikke bliver valgt til leder af partiet, så vil enten Smith eller Robinson forlade kabinettet, og

Læs mere

Grundlæggende Matematik

Grundlæggende Matematik Grundlæggende Matematik Hayati Balo, AAMS Juli 2013 1. Matematiske symboler For at udtrykke de verbale udsagn matematisk korrekt, så det bliver lettere og hurtigere at skrive, indføres en række matematiske

Læs mere

Henrik Bulskov Styltsvig

Henrik Bulskov Styltsvig Introduktion til Fuzzy logik Henrik Bulskov Styltsvig Datalogiafdelingen, hus 42.1 Roskilde Universitetscenter Universitetsvej 1 Postboks 260 4000 Roskilde Telefon: 4674 2000 Fax: 4674 3072 www.dat.ruc.dk

Læs mere

Induktion: fra naturlige tal til generaliseret skønhed Dan Saattrup Nielsen

Induktion: fra naturlige tal til generaliseret skønhed Dan Saattrup Nielsen 36 Induktion: fra naturlige tal til generaliseret skønhed Dan Saattrup Nielsen En artikel om induktion, hvordan er det overhovedet muligt? Det er jo trivielt! Bevis ved induktion er en af de ældste matematiske

Læs mere

Fraktaler Mandelbrots Mængde

Fraktaler Mandelbrots Mængde Fraktaler Mandelbrots Mængde Foredragsnoter Af Jonas Lindstrøm Jensen Institut For Matematiske Fag Århus Universitet Indhold Indhold 1 1 Indledning 3 2 Komplekse tal 5 2.1 Definition.......................................

Læs mere

Aalborg University. Synopsis. Titel: Traveling Salesman Problem

Aalborg University. Synopsis. Titel: Traveling Salesman Problem Aalborg University Department of Computer Science. Fredrik Bajers Vej 7E, 9220 Aalborg Ø. Titel: Traveling Salesman Problem Projektperiode: 16. maj 2003 til 20. juni 2003 Semester: BOS03 Gruppebetegnelse:

Læs mere

Aksiomatiske systemer og Gödels sætninger. Jørgen Ebbesen

Aksiomatiske systemer og Gödels sætninger. Jørgen Ebbesen "0" 1 "ƒ" 3 " " 5 " " 7 " " 9 "(" 11 ")" 13 Aksiomatiske systemer og Gödels sætninger Jørgen Ebbesen Aksiomatiske systemer og Gödels sætninger. Her kan man fx tage udgangspunkt i et eller flere eksempler

Læs mere

16. marts P NP. Essentielle spørgsmål: NP P? Et problem Q kaldes NP -fuldstændigt 1 Q NP 2 R NP : R pol Q. Resume sidste gang

16. marts P NP. Essentielle spørgsmål: NP P? Et problem Q kaldes NP -fuldstændigt 1 Q NP 2 R NP : R pol Q. Resume sidste gang 16. marts Resume sidste gang Abstrakt problem konkret instans afgørlighedsproblem Effektiv kodning (pol. relateret til binær kodning) Sprog L : mængden af instanser for et afgørlighedsproblem hvor svaret

Læs mere

brikkerne til regning & matematik tal og algebra F+E+D preben bernitt

brikkerne til regning & matematik tal og algebra F+E+D preben bernitt brikkerne til regning & matematik tal og algebra F+E+D preben bernitt 1 brikkerne. Tal og algebra E+D 2. udgave som E-bog ISBN: 978-87-92488-35-0 2010 by bernitt-matematik.dk Kopiering af denne bog er

Læs mere

Archimedes Princip. Frank Nasser. 12. april 2011

Archimedes Princip. Frank Nasser. 12. april 2011 Archimedes Princip Frank Nasser 12. april 2011 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Bemærk: Dette er

Læs mere

Matematikkens fundament i krise

Matematikkens fundament i krise Matematikkens fundament i krise Videnskabsfagprojekt ved IMFUFA, RUC David Hilbert 1862-1943 Gottlob Frege Georg Cantor 1845-1918 Gottlob Frege Henri Poincaré 1854-1912 Gottlob Frege Bertrand Russell 1872-1970

Læs mere

P (n): rekursiv beregning af f n kræver f n beregninger af f 1. P (n) er sand for alle n 2.

P (n): rekursiv beregning af f n kræver f n beregninger af f 1. P (n) er sand for alle n 2. P (n): rekursiv beregning af f n kræver f n beregninger af f 1. P (n) er sand for alle n 2. Bevis ved stærk induktion. Basisskridt: P (2) er sand og P (3) er sand. Induktionsskridt: Lad k 2 og antag P

Læs mere

Formaliseringens grænser i matematik og logik

Formaliseringens grænser i matematik og logik i løbet af 1900-tallet afmonterede mange af de klippefaste videnskabelige overbevisninger fra 1800-tallet og erstattede dem med nye, mere præcise, men også mere relativerende lovmæssigheder. Det viste

Læs mere

Projekt 1.4 De reelle tal og 2. hovedsætning om kontinuitet

Projekt 1.4 De reelle tal og 2. hovedsætning om kontinuitet Projekt 1.4 De reelle tal og 2. hovedsætning om kontinuitet Mens den 1. hovedsætning om kontinuerte funktioner kom forholdsvis smertefrit ud af intervalrusebetragtninger, så er 2. hovedsætning betydeligt

Læs mere

Reeksamen i Diskret Matematik

Reeksamen i Diskret Matematik Reeksamen i Diskret Matematik Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet Torsdag den 9. august, 202. Kl. 9-3. Nærværende eksamenssæt består af 9 nummererede sider med ialt 2 opgaver.

Læs mere

TALTEORI Følger og den kinesiske restklassesætning.

TALTEORI Følger og den kinesiske restklassesætning. Følger og den kinesiske restklassesætning, december 2006, Kirsten Rosenkilde 1 TALTEORI Følger og den kinesiske restklassesætning Disse noter forudsætter et grundlæggende kendskab til talteori som man

Læs mere

π can never be expressed in numbers. William Jones og John Machins algoritme til beregning af π

π can never be expressed in numbers. William Jones og John Machins algoritme til beregning af π can never be expressed in numbers. William Jones og John Machins algoritme til beregning af. Oprindelsen til symbolet Første gang vi møder symbolet som betegnelse for forholdet mellem en cirkels omkreds

Læs mere

Den matematiske grundlagskrise 12. januar 2010. Søren Frejstrup Grav Petersen

Den matematiske grundlagskrise 12. januar 2010. Søren Frejstrup Grav Petersen Den matematiske grundlagskrise 12. januar 2010 Asger Haugstrup Helene Juncher Søren Frejstrup Grav Petersen Mikkel Nichlas Rauf Rasmus Sylvester Bryder Indhold 1 Problemformulering 2 2 Indledning 2 3 Logicisme

Læs mere

Turing og den universelle maskine

Turing og den universelle maskine Hilbert forestillede sig, undslipper ikke paradokserne: den fuldstændige formalisering er umulig. Reaktionerne var til at starte med stor forbløffelse. Logikkens og matematikkens fundamenter var pludselig

Læs mere

Projekt 7.10 Uendelighed Hilberts hotel

Projekt 7.10 Uendelighed Hilberts hotel Hvad er matematik? ISBN 909 Projekter: Kapitel Projekt 0 Uendelighed Hilberts hotel Projekt 0 Uendelighed Hilberts hotel (Materialet i dette projekt er hentet fra Hvad er matematik? A, indledningen til

Læs mere

Limitations in Formal Systems and Languages

Limitations in Formal Systems and Languages Limitations in Formal Systems and Languages Abstract This thesis has two major aims. The first is to demonstrate the centrality of Cantor s diagonal argument in the proofs of the classical limitation results

Læs mere

Opgaver hørende til undervisningsmateriale om Herons formel

Opgaver hørende til undervisningsmateriale om Herons formel Opgaver hørende til undervisningsmateriale om Herons formel 20. juni 2016 I Herons formel (Danielsen og Sørensen, 2016) er stillet en række opgaver, som her gengives. Referencer Danielsen, Kristian og

Læs mere

Gruppeteori. Michael Knudsen. 8. marts For at motivere indførelsen af gruppebegrebet begynder vi med et eksempel.

Gruppeteori. Michael Knudsen. 8. marts For at motivere indførelsen af gruppebegrebet begynder vi med et eksempel. Gruppeteori Michael Knudsen 8. marts 2005 1 Motivation For at motivere indførelsen af gruppebegrebet begynder vi med et eksempel. Eksempel 1.1. Lad Z betegne mængden af de hele tal, Z = {..., 2, 1, 0,

Læs mere

Skriftlig Eksamen Algoritmer og Datastrukturer 2 (2003-ordning)

Skriftlig Eksamen Algoritmer og Datastrukturer 2 (2003-ordning) Skriftlig Eksamen Algoritmer og Datastrukturer 2 (2003-ordning) Datalogisk Institut Aarhus Universitet Fredag den 28. maj 2004, kl. 9.00 13.00 Opgave 1 (20%) En (r, k) kryds-graf er en orienteret graf

Læs mere

De rigtige reelle tal

De rigtige reelle tal De rigtige reelle tal Frank Villa 17. januar 2014 Dette dokument er en del af MatBog.dk 2008-2012. IT Teaching Tools. ISBN-13: 978-87-92775-00-9. Se yderligere betingelser for brug her. Indhold 1 Introduktion

Læs mere

Om at løse problemer En opgave-workshop Beregnelighed og kompleksitet

Om at løse problemer En opgave-workshop Beregnelighed og kompleksitet Om at løse problemer En opgave-workshop Beregnelighed og kompleksitet Hans Hüttel 27. oktober 2004 Mathematics, you see, is not a spectator sport. To understand mathematics means to be able to do mathematics.

Læs mere

Mat H /05 Note 2 10/11-04 Gerd Grubb

Mat H /05 Note 2 10/11-04 Gerd Grubb Mat H 1 2004/05 Note 2 10/11-04 Gerd Grubb Nødvendige og tilstrækkelige betingelser for ekstremum, konkave og konvekse funktioner. Fremstillingen i Kapitel 13.1 2 af Sydsæters bog [MA1] suppleres her med

Læs mere

Lad os som eksempel se på samtidigt kast med en terning og en mønt:

Lad os som eksempel se på samtidigt kast med en terning og en mønt: SANDSYNLIGHEDSREGNING Stokastisk eksperiment Et stokastisk eksperiment er et eksperiment, hvor vi fornuftigvis ikke på forhånd kan have en formodning om resultatet af eksperimentet Til gengæld kan vi prøve

Læs mere

Kalkulus 2 - Grænseovergange, Kontinuitet og Følger

Kalkulus 2 - Grænseovergange, Kontinuitet og Følger Kalkulus - Grænseovergange, Kontinuitet og Følger Mads Friis 8. januar 05 Indhold Grundlæggende uligheder Grænseovergange 3 3 Kontinuitet 9 4 Følger 0 5 Perspektivering 4 Grundlæggende uligheder Sætning

Læs mere

Hjerner i et kar - Hilary Putnam. noter af Mogens Lilleør, 1996

Hjerner i et kar - Hilary Putnam. noter af Mogens Lilleør, 1996 Hjerner i et kar - Hilary Putnam noter af Mogens Lilleør, 1996 Historien om 'hjerner i et kar' tjener til: 1) at rejse det klassiske, skepticistiske problem om den ydre verden og 2) at diskutere forholdet

Læs mere

Banalitetens paradoks

Banalitetens paradoks MG- U D V I K L I N G - C e n t e r f o r s a m t a l e r, d e r v i r k e r E - m a i l : v r. m g u @ v i r k e r. d k w w w. v i r k e r. d k D e c e m b e r 2 0 1 2 Banalitetens paradoks Af Jonas Grønbæk

Læs mere

Kommentarer til den ægyptiske beregning Kommentarer til den ægyptiske beregning... 5

Kommentarer til den ægyptiske beregning Kommentarer til den ægyptiske beregning... 5 Hvad er matematik? C, i-bog ISBN 978 87 7066 499 8 Projekter: Kapitel - Projektet er delt i to små projekter, der kan laves uafhængigt af hinanden. Der afsættes fx - timer til vejledning med efterfølgende

Læs mere

Programmering. Det rent og skært nødvendige, det elementært nødvendige! Morten Dam Jørgensen

Programmering. Det rent og skært nødvendige, det elementært nødvendige! Morten Dam Jørgensen Programmering Det rent og skært nødvendige, det elementært nødvendige! Morten Dam Jørgensen Oversigt Undervisningen Hvad er programmering Hvordan er et program organiseret? Programmering og fysik Nobelprisen

Læs mere

5 hurtige til de voksne

5 hurtige til de voksne 16 Interview 5 hurtige til de voksne om intuitionisme Jingyu She og Maria Bekker-Nielsen Dunbar Hvad er det, du vil med matematik? Du vil gerne opbygge nogle modeller af et eller andet, som på en eller

Læs mere

Introduktion til prædikatlogik

Introduktion til prædikatlogik Introduktion til prædikatlogik Torben Braüner Datalogisk Afdeling Roskilde Universitetscenter 1 Plan Symbolisering af sætninger Syntaks Semantik 2 Udsagnslogik Sætningen er den mindste syntaktiske enhed

Læs mere

Affine rum. a 1 u 1 + a 2 u 2 + a 3 u 3 = a 1 u 1 + (1 a 1 )( u 2 + a 3. + a 3. u 3 ) 1 a 1. Da a 2

Affine rum. a 1 u 1 + a 2 u 2 + a 3 u 3 = a 1 u 1 + (1 a 1 )( u 2 + a 3. + a 3. u 3 ) 1 a 1. Da a 2 Affine rum I denne note behandles kun rum over R. Alt kan imidlertid gennemføres på samme måde over C eller ethvert andet legeme. Et underrum U R n er karakteriseret ved at det er en delmængde som er lukket

Læs mere

Projekt 7.9 Euklids algoritme, primtal og primiske tal

Projekt 7.9 Euklids algoritme, primtal og primiske tal Projekter: Kapitel 7 Projekt 79 Euklids algoritme, primtal og primiske tal Projekt 79 Euklids algoritme, primtal og primiske tal Projektet giver et kig ind i metodee i modee talteori Det kan udbygges med

Læs mere

Logisk set. Peter Øhrstrøm Institut for Kommunikation Aalborg Universitet. Sokrates dialoger blev beskrevet af Platon ( f.kr.

Logisk set. Peter Øhrstrøm Institut for Kommunikation Aalborg Universitet. Sokrates dialoger blev beskrevet af Platon ( f.kr. Logisk set Peter Øhrstrøm Institut for Kommunikation Aalborg Universitet Glimt af logikkens historie Sokrates dialoger blev beskrevet af Platon (427-347 f.kr.) logos dialog Aristoteles (384-322 f.kr) analytikken

Læs mere

Teoretiske Øvelsesopgaver:

Teoretiske Øvelsesopgaver: Teoretiske Øvelsesopgaver: TØ-Opgave 1 Subtraktion division i legemer: Er subtraktion division med elementer 0 i legemer veldefinerede, eller kan et element b have mere end ét modsat element -b eller mere

Læs mere

Fraktaler. Mandelbrots Mængde. Foredragsnoter. Af Jonas Lindstrøm Jensen. Institut For Matematiske Fag Århus Universitet

Fraktaler. Mandelbrots Mængde. Foredragsnoter. Af Jonas Lindstrøm Jensen. Institut For Matematiske Fag Århus Universitet Fraktaler Mandelbrots Mængde Foredragsnoter Af Jonas Lindstrøm Jensen Institut For Matematiske Fag Århus Universitet Indhold Indhold 1 1 Komplekse tal 3 1.1 Definition.......................................

Læs mere

Det er en af de hyppigst forekommende udregninger i den elementære talbehandling at beregne gennemsnit eller middeltal af en række tal.

Det er en af de hyppigst forekommende udregninger i den elementære talbehandling at beregne gennemsnit eller middeltal af en række tal. Tre slags gennemsnit Allan C. Malmberg Det er en af de hyppigst forekommende udregninger i den elementære talbehandling at beregne gennemsnit eller middeltal af en række tal. For mange skoleelever indgår

Læs mere

Divisorer. Introduktion. Divisorer og delelighed. Divisionsalgoritmen. Definition (Divisor) Lad d og n være hele tal. Hvis der findes et helt tal q så

Divisorer. Introduktion. Divisorer og delelighed. Divisionsalgoritmen. Definition (Divisor) Lad d og n være hele tal. Hvis der findes et helt tal q så Introduktion 1) Hvad er Taleteori? Læren om de hele tal Primtal 2) Formalistisk struktur Definition Lemma Divisorer Definition (Divisor) Lad d og n være hele tal Hvis der findes et helt tal q så d q =

Læs mere

83 - Karakterisation af intervaller

83 - Karakterisation af intervaller 83 - Karakterisation af intervaller I denne opgave skal du bevise, at hvis A er en delmængde af R med følgende egenskab: x, y, z R : x, y A og x < z < y z A (1) så er A enten et interval eller en mængde

Læs mere

Matematik. Matematiske kompetencer

Matematik. Matematiske kompetencer Matematiske kompetencer stille spørgsmål, som er karakteristiske for matematik og have blik for hvilke typer af svar, som kan forventes(tankegangskompetence) erkende, formulere, afgrænse og løse matematiske

Læs mere

Udvalgsaksiomet. Onsdag den 18. november 2009

Udvalgsaksiomet. Onsdag den 18. november 2009 Udvalgsaksiomet Onsdag den 18. november 2009 Eksempler Fourier udvikling af f(x)=x 4 3 5 10 2 1 1 2 0 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 1 2 3 4

Læs mere