Projekt 5.2. Anvendelse af Cavalieris princip i areal- og rumfangsberegninger

Størrelse: px
Starte visningen fra side:

Download "Projekt 5.2. Anvendelse af Cavalieris princip i areal- og rumfangsberegninger"

Transkript

1 Hvad e matematik? B, i-bog Pojekte: Kapitel 5. Pojekt 5.. Anvendelse af Cavalieis pincip i aeal- og umfangsbeegninge Pojekt 5.. Anvendelse af Cavalieis pincip i aeal- og umfangsbeegninge Den gundlæggende metode til beegning af aeale af figue, de e bestemt af kumme kuve, a siden oldtiden væe at tilnæme disse med polygone. Dette kaldte man at lave kvadatu. Mest beømt e fosøgene på at løse ciklens kvadatu. Det e som bekendt umuligt at løse vis man kun må anvende passe og lineal. Men vis opgaven ikke e at studee matematikkens gundlag, men mee paktisk at bestemme aeale og umfang, så lykkedes det alleede i oldtiden at kvadee mange figue og at udlede mange af de fomle vi kende fo aeale og umfang af pæne, symmetiske figue som kugle, kegle og pyamide. Eksempel: Yde og inde polygone om en tekant (Dette afsnit indeolde mateiale fa afsnit. i kapitel 5 i gundbogen, side 6-8.) Lad os fo bede at fostå det følgende illustee, vodan man i modene matematik abejde med følge af yde og inde polygone. i vælge et meget simpelt eksempel. i a givet en etvinklet tekant med gundlinje (den ene katete) lig med og øjden (den anden katete) lig med 8. I dette tilfælde kende vi fomlen fo aealet og kan udegne dette elt pæcist: Det blive. Men vodan ville vi gøe, vis vi ikke kendte en fomel? i tegne tekanten i et koodinatsystem som vist på illustationen, og tegne to sæt af smalle øje ektangle af bedde b, se illustationen. Tilsammen udgø disse ektangle dels en inde polygon, dels en yde. Øvelse Agumente nu ud fa tegningen fo følgende:. Foskellen på den yde og den inde polygon e summen af de små ektangle. Disse små ektangle kan stables, så vi a ét ektangel, vo øjden e lig med tekantens øjde på 8.. Aealet af dette ektangel e 8 b 4. Tegne vi flee og flee ektangle, dvs. lade vi bedden b blive minde og minde, så vil foskellen næme sig. 5. Aealet af tekanten kan defo tilnæmes med summen af alle de smalle ektangle. 6. I modene matematik vil vi sige: Nå b, så vil polygonenes aeal næme sig tekantens aeal. 7. Udegne vi en ække endelige summe, fx med 5,, elle ektangle, så kan vi måske se et mønste og demed se, vilket tal polygonenes aeal næme sig. I 65 udsende den fanske matematike Bonaventua Fancesco Cavaliei ( ) et væk de skulle få afgøende betydning fo udviklingen af integalegningen. I stedet fo at se på en poces, som b i ovenstående eksempel, kaste Cavaliei sig ud i uendeligeden og gå staks elt til gænsen. L&R Uddannelse A/S ognmagegade DK-48 Købenavn K Tlf: 45

2 Hvad e matematik? B, i-bog Pojekte: Kapitel 5. Pojekt 5.. Anvendelse af Cavalieis pincip i aeal- og umfangsbeegninge Han sige, at tekanten bestå af uendeligt mange lodette linje, de ve fo sig ikke a nogen bedde. De e udelelige ( indivisible ). Dette e elt i tåd med Euklid, de sagde, at en linje e længde uden bedde. Men vodan få man et aeal ud af linjene? Hvis linjene bae a en anelse bedde, vil summen af alle linjene give et uendeligt aeal. Og a linjene ingen bedde kan de ikke bidage til aealet, så aealet e. Men Cavaliei avde alligevel fat i en vigtig pointe: En uendelig sum af uendeligt små støelse kan godt give noget endeligt. Matematikken va bae ikke udviklet til at åndtee dette. Han foeslog samme metode til at beegne umfang, nemlig at se en umlig figu som en stabel af uendeligt mange plane. Cavaliei ( ) Eksempel: Cavalieis pincip Cavaliei indføte samtidig det pincip, de siden e opkaldt efte am, nemlig at vis to figue bestå af samme linjestykke (elle samme plane stykke), så a de samme aeal (elle samme umfang) uanset linjestykkene (elle de plane stykke) ligge foskudt. Det kan illustees dels med ans egen tegning af to plane figue med samme aeal, dels af to umlige stable: Tegning fa Cavalieis 7-binds væk Geometia indivisibilius continuoum fa 65: De to figue a samme aeal, da linjene pavis e lige stoe. Illustation af Cavalieis pincip i ummet: De to stable a samme umfang, da de plane stykke pavis e ens. Øvelse a) Pøv at anvende Cavalieis pincip til at agumentee fo, at følgende to paallelogamme, ABCD og ADEF, a samme aeal: b) I eksemplet med yde og inde polygone om en tekant anvendte vi faktisk en metode de svae til Cavalieis pincip. Hvo va det? De to stable af mønte kan måske give dig en ide. L&R Uddannelse A/S ognmagegade DK-48 Købenavn K Tlf: 45

3 Hvad e matematik? B, i-bog Pojekte: Kapitel 5. Pojekt 5.. Anvendelse af Cavalieis pincip i aeal- og umfangsbeegninge Nå man agumente med uendelige støelse på denne måde e de mange fælde. Hvis vi foestille os i teoien, at vi a tegnet alle de udelelige linje i figuene ovenfo, vodan ved vi så at de e lige mange, så vi kan pae sammen to og to? Fx e de jo lige mange ele tal og lige tal, fo vi kan pae med, med 4, med 6 osv. Men vo blev de ulige tal af? Den følgende øvelse umme et agument mod Cavaliei fa en af ans kitikee. Øvelse Agumente ud fa Cavalieis pincip fo, at den venste og øje etvinklede tekant a samme aeal. Cavalieis idee fik isæ betydning som inspiation fo ande matematikee. Ikke mindst den engelske matematike Jon Wallis va stækt inspieet af Cavaliei og ovetog fa am ideen med at dele en punktmængde op i uendeligt mange linje, og bestemme aealet af punktmængden ved at summee linjenes bidag. Det edegø an detaljeet fo i sit ovedvæk Aitmetica infinitoum fa 656. Som titlen angive kaste også Wallis sig ud i uendeligeden, og i følgende beømte citat fa væket indføes uendeligedstegnet fo føste gang i matematikistoien: Som udgangspunkt foestille jeg mig (i oveensstemmelse med Bonaventua Cavalieis Geometi fo det udelelige) at enve plan så at sige e opbygget af et uendeligt antal paallelle linje. Elle ettee jeg foetække at se det som et uendeligt antal paallelogamme ve med en fælles øjde, vo ve øjde kan opfattes som af ele øjden, dvs. som en uendelig lille del af den samlede øjde (vo vi lade betegne et uendeligt stot tal), vofo den samlede øjde af dem alle netop svae til øjden fo figuen. Rumfang af kegle, pyamide og kugle i kan beegne umfanget af en ække figue ved en metode, de e beslægtet med den metode Wallis og ande af integalegningens føste teoetikee anvendte, og som minde om den metode vi anvendte i 5. til at beegne længde af kuve. Lad os betagte en kegle og placee den i et koodinatsystem, så den ligge ned med. aksen som symmetiakse. Keglens spids ligge i,. Keglens øjde kaldes. Keglens bund e en cikel med en adius på og den skæe. aksen i,. I det tvæsnit, de ligge i koodinatsystemet, følge kanten af keglen en linje gennem punktene, og,. Linjen a ligningen: y x i betagte keglen som sammensat af uendeligt mange uendeligt tynde cylindestykke. Radius i en sådan cylinde e ude, vo bunden ligge, og i et tilfældigt x e adius netop y x. Højden af cylindeen kaldes π adius x x. Så e umfanget af det lille cylindestykke: L&R Uddannelse A/S ognmagegade DK-48 Købenavn K Tlf: 45

4 Hvad e matematik? B, i-bog Pojekte: Kapitel 5. Pojekt 5.. Anvendelse af Cavalieis pincip i aeal- og umfangsbeegninge π x x Indsæt udtykket fo adius Rumfanget af keglen e nu summen af alle disse små tynde cylindeskive. Opfatte vi x som et uendeligt lille stykke, vi betegne med dx, så bestå summen af uendeligt mange bidag. En sådan uendelig sum udegnes netop som integalet. Dette gå vi dybee ind i i A-bogen, men e få altså følgende esultat: π x dx π x dx Udnyt potensegel π x dx Udnyt egneegel fo integale π x Udegn det det bestemte integal π Udegn det det bestemte integal Reduce π π Reduce Dette e fomlen fo umfanget af en kegle Øvelse 4 Bestem umfanget af en kegle, de a en adius i bunden på 5 og en øjde på. Øvelse 5 Anvend samme teknik til at bestemme umfanget af en pyamide, vo gundfladen e et kvadat med sidelængde l og øjde a) Læg pyamiden vandet, som vi gjode med keglen. En af pyamidens sidelinje gå fa, til, l. Bestem en ligning fo denne. b) Pyamiden opfattes nu som sammensat af tynde kasse med kvadatisk bund med sidelængde lig med y og øjde lig med x. Bestem umfanget af en sådan lille kasse. c) Nå vi opfatte pyamiden som sammensat af uendeligt mange uendeligt tynde kasse med øjde dx, så kan summen af alle disse bidag til pyamidens umfang opskives som et integal. Gø det og vis, at pyamidens umfang blive: l Øvelse 6 Anvend samme teknik til at bestemme umfanget af en kugle med adius. Kuglen lægges med centum i, og et tvæsnit af kuglen ligge så fa - til på x-aksen. a) is, at alvciklen i den positive alvplan kan beskives ved vaiabelsammenængen: y x b) Kuglen opfattes nu som sammensat af tynde cylindestykke med adius lig med y og cylindeøjde lig med x. Bestem umfanget af en sådan lille cylindeskive. L&R Uddannelse A/S ognmagegade DK-48 Købenavn K Tlf: 45

5 Hvad e matematik? B, i-bog Pojekte: Kapitel 5. Pojekt 5.. Anvendelse af Cavalieis pincip i aeal- og umfangsbeegninge c) Nå vi opfatte kuglen som sammensat af uendeligt mange uendeligt tynde cylindestykke med cylindeøjde dx, så kan summen af alle disse bidag til kuglens umfang opskives som et integal. Gø det og vis, at kuglens umfang blive: 4 π d) Agumente nu fo, at fomlen fo umfanget af en kugle med adius e: 4 π enten ved at genenmføe ovenstående udegninge med adius, elle ved at agumente ud fa skaleing: N adius blive gange så sto, så blive aeale ganget op med og umgang med. Øvelse 7 Bestem umfanget af en kugle med adius 6. L&R Uddannelse A/S ognmagegade DK-48 Købenavn K Tlf: 45

Projekt 1.8 Design en optimal flaske

Projekt 1.8 Design en optimal flaske ISBN 978-87-7066-9- Pojekte: Kapitel Vaiabelsammenænge. Pojekt.8 Design en optimal flaske Pojekt.8 Design en optimal flaske Fimaet PatyKids ønske at elancee dees enegidik Enegize. Den skal ave et nyt navn

Læs mere

Matematik på Åbent VUC

Matematik på Åbent VUC Matematik på Åent VUC Lektion 8 Geometi Indoldsfotegnelse Indoldsfotegnelse... Længdemål og omegning mellem længdemål... Omkeds og aeal af ektangle og kvadate... Omkeds og aeal af ande figue... Omegning

Læs mere

Annuiteter og indekstal

Annuiteter og indekstal Annuitete og indekstal 1 Opspaing og lån Mike Auebach Odense 2010 Hvis man betale til en opspaingskonto i en bank, kan man ikke buge entefomlen til at beegne, hvo mange penge, de vil stå på kontoen. På

Læs mere

HTX Holstebro Jacob Østergaard 20. oktober 2008 3. A Fysik A Accelererede Roterende Legemer 19:03:00

HTX Holstebro Jacob Østergaard 20. oktober 2008 3. A Fysik A Accelererede Roterende Legemer 19:03:00 1 Fomål 1. At bestemme acceleationen fo et legeme med et kendt inetimoment, nå det ulle ned ad et skåplan - i teoi og paksis.. I teoi og paksis at bestemme acceleationen fo et legeme med kendt inetimoment,

Læs mere

De dynamiske stjerner

De dynamiske stjerner De dynamiske stjene Suppleende note Kuglesymmetiske gasmasse Figu 1 Betelgeuse (Alfa Oionis) e en ød kæmpestjene i stjenebilledet Oion. Den e så sto, at den anbagt i voes solsystem ville nå næsten ud til

Læs mere

Julestjerner af karton Design Beregning Konstruktion

Julestjerner af karton Design Beregning Konstruktion Julestjene af katon Julestjene af katon Design Beegning Konstuktion Et vilkåligt antal takke En vilkålig afstand fa entum ud til spidsene En vilkålig afstand fa entum ud til toppunktene i "indakkene" En

Læs mere

Projekt 0.5 Euklids algoritme, primtal og primiske tal

Projekt 0.5 Euklids algoritme, primtal og primiske tal Pojekt 0.5 Euklids algoitme, pimtal og pimiske tal Betegnelse. Mængden af hele tal (positive, negative og nul) betegnes. At et tal a e et helt tal angives med: aî, de læses a tilhøe. Nå vi ha to vilkålige

Læs mere

Gravitationsfeltet. r i

Gravitationsfeltet. r i Gavitationsfeltet Den stoe bitiske fysike Isaac Newton opdagede i 600-tallet massetiltækningsloven, som sige, at to masse m og i den indbydes afstand påvike hinanden med en kaft af følgende støelse, hvo

Læs mere

MATEMATIK på Søværnets officerskole

MATEMATIK på Søværnets officerskole MOGENS ODDERSHEDE LARSEN MATEMATIK på Søvænets officeskole (opeativ linie). udgave 9 FORORD Bogen gennemgå det pensum, som e beskevet i fagplanen af 9. Det e en foudsætning, at de studeende ha et solidt

Læs mere

Alt hvad du nogensinde har ønsket at vide om... Del 2. Frank Nasser 2006-2007

Alt hvad du nogensinde har ønsket at vide om... Del 2. Frank Nasser 2006-2007 Alt hvad du nogensinde ha ønsket at vide om... VEKTORER Del 2 Fank Nasse 2006-2007 - 1 - Indledning Vi skal i denne lille note gennemgå det basale teoi om vektoe i planen og i ummet. Stoffet e pæcis det

Læs mere

Trigonometri. teori mundtlig fremlæggelse C 2. C v. B v. A v

Trigonometri. teori mundtlig fremlæggelse C 2. C v. B v. A v Tigonometi teoi mundtlig femlæggelse 2 v v B v B Indhold 1. Sætning om ensvinklede teknte og målestoksfohold (uden bevis)... 2 2. Vinkelsummen i en teknt... 2 3. Pythgos sætning om ETVINKLEDE TEKNTE...

Læs mere

Arealet af en sfærisk trekant m.m.

Arealet af en sfærisk trekant m.m. ealet af en sfæisk tekant m.m. Tillæg til side 103 104 i Matematik højniveau 1 fa TRI, af Eik Vestegaad. Sfæisk tokant Givet en kugle. En plan, de passee igennem kuglens centum, skæe kuglen i en såkaldt

Læs mere

Indhold (med link til dokumentet her) Introduktion til låntyper. Begreber. Thomas Jensen og Morten Overgård Nielsen

Indhold (med link til dokumentet her) Introduktion til låntyper. Begreber. Thomas Jensen og Morten Overgård Nielsen Thomas Jensen og Moten Ovegåd Nielsen Annuitetslån I bogens del 2 kan du læse om Pocent og ente (s. 41-66). Vi vil i mateialet he gå lidt videe til mee kompliceede entebeegninge i fobindelse med annuitetslån.

Læs mere

Elektrostatisk energi

Elektrostatisk energi Elektomagnetisme ide 1 af 8 Elektostatik Elektostatisk enegi Fo et legeme, de bevæge sig fa et punkt til et andet, e tilvæksten i potentiel enegi høende til en konsevativ 1 kaft F givet ved minus det abejde,

Læs mere

Forløb om annuitetslån

Forløb om annuitetslån Matema10k C-niveau, Fdenlund Side 1 af 7 Foløb om annuitetslån Dette mateiale fokusee på den tpe lån de betegnes annuitetslån. Emnet kan buges som en del af det suppleende stof, og mateialet kan anvendes

Læs mere

Kap. 1: Logaritme-, eksponential- og potensfunktioner. Grundlæggende egenskaber.

Kap. 1: Logaritme-, eksponential- og potensfunktioner. Grundlæggende egenskaber. - 4 - Kap. : Logaitme-, eksponential- og potensfunktione. Gundlæggende egenskabe... Logaitmefunktione. Definition... Ved en logaitmefunktion fostå vi en funktion f, som opfylde følgende te kav: ) Dm(f)

Læs mere

Indholdsfortegnelse. Matematik A. Projekt 6 - Centralperspektiv. Stine Andersen og Morten Kristensen

Indholdsfortegnelse. Matematik A. Projekt 6 - Centralperspektiv. Stine Andersen og Morten Kristensen HTX Næstved Matematik A 8 2 Indholdsfotegnelse Indholdsfotegnelse... 2 Indledning... 3 Poblemstilling... 4 Teoi... 5 Vektoe i planet... 5 Vektobestemmelse... 5 Vinkel mellem to vektoe... 6 Vektokoodinate...

Læs mere

Cykelfysik. Om udveksling og kraftoverførsel

Cykelfysik. Om udveksling og kraftoverførsel Cykelfysik 1/7 Cykelfysik Om udvekslig og kaftoveføsel Idhold 2. Kaftoveføsel og abejde...2 3. Abejde ved cykelkøsel...4 4. Regeeksemple fo e acecykel...5 5. Det e hådt at køe op ad bakke...6 6. Simple

Læs mere

MOGENS ODDERSHEDE LARSEN MATEMATIK

MOGENS ODDERSHEDE LARSEN MATEMATIK MOGENS ODDERSHEDE LARSEN MATEMATIK fa C- til A- niveau. udgave FORORD Denne bog e beegnet fo studeende, som ha behov fo at epetee elle opgadee dees matematiske viden fa C elle B- niveau til A-niveau Bogen

Læs mere

Med disse betegnelser gælder følgende formel for en annuitetsopsparing:

Med disse betegnelser gælder følgende formel for en annuitetsopsparing: Matema10k C-iveau, Fydelud Side 1 af 10 Auitetsopspaig De fides mage måde at spae op på. Vi vil he se på de såkaldte auitetsopspaig. Emet ka buges som e del af det suppleede stof, og det ka avedes som

Læs mere

Projekt 0.5 Euklids algoritme og primiske tal

Projekt 0.5 Euklids algoritme og primiske tal Pojekt 0.5 Euklids algoitme og pimiske tal BETEGNELSER. Mængden af hele tal (positive, negative og nul) betegnes. At et tal a e et helt tal angives med: aî, de læses a tilhøe. Nå vi ha to vilkålige hele

Læs mere

Opsparing og afvikling af gæld

Opsparing og afvikling af gæld Opspaig og afviklig af gæld Opspaig Eksempel 1 Lad os state med at se på et eksempel. 100 Euo idbetales å i tæk på e koto, de foetes med 3 % p.a. Vi ha tidligee beeget e såda kotos udviklig skidt fo skidt:

Læs mere

11: Det skjulte univers

11: Det skjulte univers : Det skjulte unives Jeg nævnte tilbage i kapitel 2, at de e en foklaing på, at univeset ha den oveodnede stuktu, som det ha. Men dengang manglede vi foudsætningene fo at fostå foklaingene. Siden ha elativitetsteoien

Læs mere

Nr Atom nummer nul Fag: Fysik A Udarbejdet af: Michael Bjerring Christiansen, Århus Statsgymnasium, august 2009

Nr Atom nummer nul Fag: Fysik A Udarbejdet af: Michael Bjerring Christiansen, Århus Statsgymnasium, august 2009 N. -9 Atom numme nul Fag: Fysik A Udabejdet af: Michael Bjeing Chistiansen, Åhus Statsgymnasium, august 9 Spøgsmål til atiklen 1. Hvofo vil det væe inteessant, hvis man fo eksempel finde antikulstof i

Læs mere

praktiske. Der er lavet adskillige undersøgelser at skelne i mellem: ulaboratorieundersøgelser og ufeltundersøgelser.

praktiske. Der er lavet adskillige undersøgelser at skelne i mellem: ulaboratorieundersøgelser og ufeltundersøgelser. Betonø ha den støste vandføingskapacitet Et afløbssystems opgave e at lede vand samt uenhede til ensningsanlæg elle ecipient. Evnen til at gøe dette afhænge af systemets hydauliske egenskabe næmee betegnet

Læs mere

TEORETISK OPGAVE 3. Hvorfor er stjerner så store?

TEORETISK OPGAVE 3. Hvorfor er stjerner så store? TEORETISK OPGAVE 3 Hvofo e stjene så stoe? En stjene e en kuglefomet samling vam gas De fleste stjene skinne pga fusion af hydogen til helium i dees entale omåde I denne opgave skal vi anvende klassisk

Læs mere

Januar2003/ AM Rentesregning - LÅN & OPSPARING 1/8. Aftager med...% Gange med (1...%) r:=...% Før aftager med...% og bliver til Efter, dvs.

Januar2003/ AM Rentesregning - LÅN & OPSPARING 1/8. Aftager med...% Gange med (1...%) r:=...% Før aftager med...% og bliver til Efter, dvs. Jaua2003/ AM Retesegig - LÅN & OPSPARING 1/8 PROCENT Po cet betyde p. 100" altså hudededele p% = p 100 Decimaltal Ved omskivig fa pocet til decimaltal flyttes kommaet to pladse mod veste 5%=0,05 0,1%=0,001

Læs mere

Hvis man vil lægge 15% til 600, så kan det gøres ved at udregne, hvor meget 15% af 600 er lig med og lægge det til det oprindelige beløb:

Hvis man vil lægge 15% til 600, så kan det gøres ved at udregne, hvor meget 15% af 600 er lig med og lægge det til det oprindelige beløb: 0BRetesegig BTæk i femskivigsfaktoe! I dette tillæg skal vi se, at begebet femskivigsfaktoe e yttigt til at fostå og løse foskellige poblemstillige idefo pocet- og etesegig. 3B. Lægge pocet til elle tække

Læs mere

TDC A/S Nørregade 21 0900 København C. Afgørelse om fastsættelse af WACC i forbindelse med omkostningsdokumentation af priserne i TDC s standardtilbud

TDC A/S Nørregade 21 0900 København C. Afgørelse om fastsættelse af WACC i forbindelse med omkostningsdokumentation af priserne i TDC s standardtilbud TC A/S Nøegade 21 0900 København C Afgøelse om fastsættelse af WACC i fobindelse med omkostningsdokumentation af pisene i TC s standadtilbud Sagsfemstilling en 29. juni 2006 modtog TC s notat om den beegningsmæssige

Læs mere

Magnetisk dipolmoment

Magnetisk dipolmoment Kvantemekanik 9 Side 1 af 9 Magnetisk dipolmoment Klassisk Ifølge EM udtyk (8.16) e det magnetiske dipolmoment af en ladning q i en cikulæ bane med adius givet ved μ = IA (9.1) v q > 0 μ L hvo A = π I

Læs mere

Projekt 4. Anlægsøkonomien i Storebæltsforbindelsen hvordan afdrages

Projekt 4. Anlægsøkonomien i Storebæltsforbindelsen hvordan afdrages Pojekt 4. Alægsøkoomie i Stoebæltsfobidelse hvoda afdages lå? Dette pojekt hadle om, hvoda økoomie va skuet samme, da ma byggede Stoebæltsfobidelse. Stoe alægspojekte e æste altid helt elle delvist låefiasieet.

Læs mere

Rentesregning: Lektion A1. Forrentningsfaktor, Diskonteringsfaktor, og Betalingsrækker. Overordnede spørgsmål i Rentesregning. Peter Ove Christensen

Rentesregning: Lektion A1. Forrentningsfaktor, Diskonteringsfaktor, og Betalingsrækker. Overordnede spørgsmål i Rentesregning. Peter Ove Christensen Rentesegning: Lektion A1 Foentningsfakto, Diskonteingsfakto, og Pete Ove Chistensen Foå 2012 1 / 49 Oveodnede spøgsmål i Rentesegning Hvoledes kan betalinge sammenlignes, nå betalingene e tidsmæssigt adskilte?

Læs mere

Procent og eksponentiel vækst - supplerende eksempler

Procent og eksponentiel vækst - supplerende eksempler Eksemple til iveau F, E og D Pocet og ekspoetiel vækst - suppleede eksemple Pocete og decimaltal... b Vækst-fomle... d Fa side f og femefte vises eksemple på bug af vækstfomle. Fomle skives omalt på dee

Læs mere

Regional Udvikling, Miljø og Råstoffer. Jordforurening - Offentlig høring Forslag til nye forureningsundersøgelser og oprensninger 2016

Regional Udvikling, Miljø og Råstoffer. Jordforurening - Offentlig høring Forslag til nye forureningsundersøgelser og oprensninger 2016 Regional Udvikling, Miljø og Råstoffe Jodfouening - Offentlig høing Foslag til nye foueningsundesøgelse og opensninge 2016 Decembe 2015 Food En jodfouening kan skade voes fælles gundvand, voes sundhed

Læs mere

Metode til beregning af varmetransmissionskoefficient (U-værdi) for ovenlys

Metode til beregning af varmetransmissionskoefficient (U-værdi) for ovenlys Metode til beenin af vametansmissionskoefficient (U-vædi) fo oven Nævæende notat beskive en metode til beenin af vametansmissionskoefficienten fo oven. Pincippet i beeninspoceduen tae udanspunkt i beeninsmetoden

Læs mere

Etiske dilemmaer i fysioterapeutisk praksis

Etiske dilemmaer i fysioterapeutisk praksis side 06 fysioteapeuten n. 06 apil 2008 AF: FYSIOTERAPEUT, PH.D.-STUDERENDE JEANETTE PRÆSTEGAARD j.paestegaad@oncable.dk Foto: GITTE SKOV fafo.fysio.dk Etiske dilemmae i fysioteapeutisk paksis Hvis vi ikke

Læs mere

Vektorer i planen. Fem opgavesæt. for gymnasiets standardforsøg i matematik. 2004 Karsten Juul

Vektorer i planen. Fem opgavesæt. for gymnasiets standardforsøg i matematik. 2004 Karsten Juul Vektoe i planen Fem opgavesæt fo gymnasiets standadfosøg i matematik 004 Kasten Juul Vektoe i planen Opgavesæt n 1 af 5 Dette opgavesæt deje sig om det gundlæggende om vektoe VP 1 I et koodinatsystem i

Læs mere

Den stigende popularitet af de afdragsfrie lån har ad flere omgange fået skylden for de kraftigt stigende boligpriser de senere år.

Den stigende popularitet af de afdragsfrie lån har ad flere omgange fået skylden for de kraftigt stigende boligpriser de senere år. 16. septembe 8 Afdagsfie lån og pisstigninge på boligmakedet Den stigende populaitet af de afdagsfie lån ha ad flee omgange fået skylden fo de kaftigt stigende boligpise de senee å. Set ove en længee peiode

Læs mere

Plasticitetsteori for jord som Coulomb materiale

Plasticitetsteori for jord som Coulomb materiale Downloaded fo obit.dtu.dk on: Nov 3, 05 Plasticitetsteoi fo jod so Coulob ateiale Jantzen, Thoas; Nielsen, Mogens Pete Publication date: 007 Docuent Vesion Publishe final vesion (usually the publishe pdf)

Læs mere

1. Indledning... 1 2. Lineær iteration... 2

1. Indledning... 1 2. Lineær iteration... 2 Hvad e matematik? B, i og ISBN 978 87 766 494 3 Pojekte: Kapitel Pojekt.3 Lieæe Iteatiospocesse Idhold 1. Idledig... 1 2. Lieæ iteatio... 2 2.1 Lieæ vækst... 2 2.2 Ekspoetiel vækst... 2 2.3 Foskudt ekspoetiel

Læs mere

Impulsbevarelse ved stød

Impulsbevarelse ved stød Iulsbevaelse ved stød Iulsbevaelse ved stød Indhold Iulsbevaelse ved stød.... Centalt stød.... Elastisk stød... 3. Uelastisk stød... 4. Iulsbevaelse ved stød...3 5. Centalt elastisk stød...4 6. Centalt

Læs mere

Matematisk formelsamling til A-niveau - i forsøget med netadgang til skriftlig eksamen 1

Matematisk formelsamling til A-niveau - i forsøget med netadgang til skriftlig eksamen 1 Mtemtisk fomelsmling til A-niveu - i fosøget med netdgng til skiftlig eksmen Food Mtemtisk fomelsmling til A-niveu e udejdet fo t give et smlet ovelik ove de fomle og det symolspog, de knytte sig til kenestoffet

Læs mere

Beregningsprocedure for de energimæssige forhold for forsatsvinduer

Beregningsprocedure for de energimæssige forhold for forsatsvinduer Beeninspocedue fo de eneimæssie fohold fo fosatsvindue Nævæende dokument beskive en pocedue til bestemmelse, af de eneimæssie fohold fo fosatsvindue. Det skal notees, at beeninen e baseet på en foeløbi

Læs mere

3.0 Rørberegninger. VIDENSYSTEM.dk Bygningsinstallationer Varme Fordelingssystem 3.0 Rørberegning. 3.1 Rørberegningers forudsætninger

3.0 Rørberegninger. VIDENSYSTEM.dk Bygningsinstallationer Varme Fordelingssystem 3.0 Rørberegning. 3.1 Rørberegningers forudsætninger VIDENSYSTEM.dk Bygningsinstallatione Vae Fodelingssyste 3.0 Røbeegning 3.0 Røbeegninge 3.1 Røbeegningens foudsætninge 3. Tyktabsbeegning geneelt 3.3 Paktiske hjælpeidle 3.4 Beegningspincip fo tostengsanlæg

Læs mere

Frivillige dyrkningsaftaler i indsatsområder

Frivillige dyrkningsaftaler i indsatsområder Miljøpojekt N. 812 2003 Fivillige dykningsaftale i indsatsomåde Gundlag og mulighede belyst ud fa kvælstofpoblematikken Egon Noe og Andes Højlund Nielsen Danmaks JodbugsFoskning Helene Simoni Thoup og

Læs mere

grib chancen 1/3 sæt ord på din drøm

grib chancen 1/3 sæt ord på din drøm gib chancen sæt od på din døm DR e på mange måde alleede i vedensklasse. Og vi skal væe det hele vejen undt. DR i vedensklasse handle om samab: Hvodan skal vi samab i femtiden? Og hvilke vædie skal vi

Læs mere

Elektromagnetisme 1 Side 1 af 11 Elektrostatik 1. Elektrisk ladning

Elektromagnetisme 1 Side 1 af 11 Elektrostatik 1. Elektrisk ladning Elektomagnetisme 1 Side 1 af 11 Elektostatik 1 Elektisk ladning Stof e opbygget af potone (, neutone ( n og elektone ( og bestå defo p + mestendels af ladede patikle, men langt, langt støstedelen af denne

Læs mere

Erhvervs- og Selskabsstyrelsen

Erhvervs- og Selskabsstyrelsen Ehvevs- og Selskabsstyelsen Måling af viksomhedenes administative byde ved afegning af moms, enegiafgifte og udvalgte miljøafgifte Novembe 2004 Rambøll Management Nøegade 7A DK-1165 København K Danmak

Læs mere

Danmarks Tekniske Museum. Det kunstige øje - om mikroskopet og dets verden

Danmarks Tekniske Museum. Det kunstige øje - om mikroskopet og dets verden Danmaks Tekniske Museum O P T I K & L Det kunstige øje - om mikoskopet og dets veden Y S Til læeen At bille både e fysik og kultuhistoie, e fo mange bøn en velbevaet hemmelighed. Dette til tods fo at alle

Læs mere

Vi ser altså, at der er situationer, hvor vi ikke kan afgøre, om vi befinder os i et tyngdefelt eller langt ude i rummet fjernt fra alle kræfter:

Vi ser altså, at der er situationer, hvor vi ikke kan afgøre, om vi befinder os i et tyngdefelt eller langt ude i rummet fjernt fra alle kræfter: 5 Tyngdekaften Nu hvo vi (fohåbentlig) ha fået et begeb om ummets og tidens sammenflettede natu, skal vi vende tilbage til en ting, som vi ganske kot blev konfonteet med i begyndelsen af foige kapitel.

Læs mere

Projekt 1.8 Design en optimal flaske

Projekt 1.8 Design en optimal flaske ISBN 978-87-7066-9- Projekter: Kapitel Variabelsammenænge. Projekt.8 Design en optimal flaske Projekt.8 Design en optimal flaske Firmaet PartyKids ønsker at relancere deres energidrik Energizer. Den skal

Læs mere

Retningsbestemt lydgiver

Retningsbestemt lydgiver Retningsbestemt lygive Intouktion Ve uenøs musik e et isæ e ybe tone, e høes i sto afstan fa scenen, og et kan væe geneene fo en kunstneiske ufolelse på en naboscene elle fo beboelse i en vis afstan fa

Læs mere

rekommandation overspændingsafledere til højspændingsnet. Member of DEHN group Udarbejdet af: Ernst Boye Nielsen & Peter Mathiasen,

rekommandation overspændingsafledere til højspændingsnet. Member of DEHN group Udarbejdet af: Ernst Boye Nielsen & Peter Mathiasen, ekommandation ovespændingsafledee til højspændingsnet Udabejdet af: Enst Boye Nielsen & Pete Mathiasen, DESITEK A/S Denne publikation e en ekommandation fo valg af ovespændingsafledee til højspændingsnet

Læs mere

VI SEJREDE! Vi kom, vi så,

VI SEJREDE! Vi kom, vi så, Vi kom, vi så, VI SEJREDE! Pojekt JCI Julehjælp Svendbog Hjælp os med at hjælpe ande 2011 afsluttede indsamlingen til tængte bønefamilie i Svendbog med sto succes! Søndag d. 18. dec. va sidste indsamlingsdag

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undvisningsbskivls Stamoplysning til bug vd pøv til gymnasial uddannls Tmin Tmin hvo undvisningn afslutts (Juni 2016) Institution Uddannls Rybns HTX Fag og nivau Matmatik B/A Læ Jack Sandbæk Hold 1.c Ovsigt

Læs mere

SUNDHEDSHUS TOLDBODEN, VIBORG

SUNDHEDSHUS TOLDBODEN, VIBORG SUNDHEDSHUS TOLDODEN, VIORG [Et modene flebugehus med suveæn placeing] OK GROUP OFFIEPRK TOLDODEN SPRRE GDE Inde ingvej Tog busstation Toldbodgade Regionshospital, Vibog E47 Udendøs ophold foan kantinen

Læs mere

Appendiks B: Korrosion og restlevetid for trådbindere

Appendiks B: Korrosion og restlevetid for trådbindere Appendiks B: Koosion og esleveid fo ådbindee I de følgende omales koosionspocessene fo ådbindee og hvodan man beegne esleveiden fo en koodee ådbinde. Tådbindee ha i idens løb væe udfø af: messing (en legeing

Læs mere

Kort om. Potenssammenhænge. 2011 Karsten Juul

Kort om. Potenssammenhænge. 2011 Karsten Juul Kot om Potenssmmenhænge 011 Ksten Juul Dette hæfte indeholde pensum i potenssmmenhænge, heunde popotionle og omvendt popotionle vible, fo gymnsiet og hf. Indhold 1. Ligning og gf fo potenssmmenhænge...

Læs mere

Helikopterprojekt Vejprospektering mellem Sisimiut og Sønderstrømfjord

Helikopterprojekt Vejprospektering mellem Sisimiut og Sønderstrømfjord Helikoptepojekt Vejpospekteing mellem Sisimiut og Søndestømfjod 7.-. august 006 Hold Emil Stüup-Toft, s060480 Vivi Pedesen, s06048 János Hethey, s03793 Moten Bille Adeldam, s00334 Rettelsesblad til tykt

Læs mere

Trivselsundersøgelse 2010

Trivselsundersøgelse 2010 Tivselsundesøgelse, byggeteknike, kot-og landmålingseknike, psteknolog og bygni (Intenatal) Pinsesse Chalottes Gade 8 København N T: Indhold Indledning... Metode... Tivselsanalyse fo bygni... Styke og

Læs mere

CO 2. -regnskab For virksomheden Jammerbugt Kommune

CO 2. -regnskab For virksomheden Jammerbugt Kommune -egnskab Fo viksomheden Jammebugt Kommune Fosidebilledet vise Ryå, de gå ove sine bedde -egnskab fo Jammebugt Kommune Jammebugt Kommune indgik d. 9. oktobe 2009 en klimakommuneaftale med Danmaks Natufedningsfoening.

Læs mere

Matematik A. Studentereksamen

Matematik A. Studentereksamen Matematik A Studentereksamen 2stx101-MAT/A-01062010 Tirsdag den 1. juni 2010 kl. 9.00-14.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål. Delprøven

Læs mere

( ) ( ) ( ) Størrelsesorden for funktionerne a x, x a og ln(x) (opgaveforløb v/ Bjørn Grøn og John Schächter) > ( )

( ) ( ) ( ) Størrelsesorden for funktionerne a x, x a og ln(x) (opgaveforløb v/ Bjørn Grøn og John Schächter) > ( ) Støelsesoden fo funktionene, og ln() Side f 5 Støelsesoden fo funktionene, og ln() (opgvefoløb v/ Bjøn Gøn og John Schächte) Intoduktion I dette foløb vil vi dels få et edskb til t smmenligne, hvo hutigt

Læs mere

Kontakt: - en anden tid et andet tempo! A13 Hobro. Løgstør. Skive. Bjerregrav Hjarbæk Fjord. Skals A13. Hobro/Randers Viborg. Kulturarvsforbindelsen

Kontakt: - en anden tid et andet tempo! A13 Hobro. Løgstør. Skive. Bjerregrav Hjarbæk Fjord. Skals A13. Hobro/Randers Viborg. Kulturarvsforbindelsen Hvolis Jenaldelandsby og Kultuavsfobindelsen, Skive Heedsvejen 135 Veste Bjeegav 9632 Møldup www.jenaldelandsby.dk hvolis@vibog.dk A13 Hobo Løgstø Bjeegav Hjabæk Fjod Skals OL Kontakt: - en anden tid et

Læs mere

Integralregning Infinitesimalregning

Integralregning Infinitesimalregning Udgave 2.1 Integralregning Infinitesimalregning Noterne gennemgår begreberne integral og stamfunktion, og anskuer dette som et redskab til bestemmelse af arealer under funktioner. Noterne er supplement

Læs mere

Pension og Tilbagetrækning - Ikke-parametrisk Estimation af Heterogenitet

Pension og Tilbagetrækning - Ikke-parametrisk Estimation af Heterogenitet Pension og Tilbagetækning - Ikke-paametisk Estimation af Heteogenitet Søen Anbeg De Økonomiske Råds Sekataiat, DØRS Pete Stephensen Danish Rational Economic Agents Model, DREAM DREAM Abedspapi 23:2 foeløbig

Læs mere

PÆDAGOGISK KVALITETSEVALUERING

PÆDAGOGISK KVALITETSEVALUERING PÆDAGOGISK KVALITETSEVALUERING - E N M E T O D E, D E R V I R K E R I P R A K S I S HVAD ER PÆDAGOGISK KVALITETSEVALUERING? Pædagogisk Kvalitetsevalueing gø det attaktivt fo ledelse og pesonale at gå pædagogikken

Læs mere

Elektromagnetisme 1 Side 1 af 11 Elektrostatik 1. Elektrisk ladning

Elektromagnetisme 1 Side 1 af 11 Elektrostatik 1. Elektrisk ladning Elektomagnetisme 1 Side 1 af 11 Elektostatik 1 Elektisk ladning Stof e opbygget af potone ( ), neutone ( n ) og elektone ( ) og bestå defo p + mestendels af ladede patikle, men den altovevejende del af

Læs mere

KICK- START STANDE FORÅRETS SALG ENTRÉ GRATIS. Endnu ledige FOR JERES MESSEGÆSTER. - mød over 20.000 købedygtige nordjyder!

KICK- START STANDE FORÅRETS SALG ENTRÉ GRATIS. Endnu ledige FOR JERES MESSEGÆSTER. - mød over 20.000 købedygtige nordjyder! DET NYE KICK- START FORÅRETS SALG - mød ove 20.000 købedygtige nodjyde! Eksklusive moms Nodjysk Ivæksætte Netvæk indbyde igen til Se side 4 GRATIS ENTRÉ FOR JERES MESSEGÆSTER Endnu ledige STANDE - SE STANDPLAN

Læs mere

SUPERLEDNING af Michael Brix Pedersen

SUPERLEDNING af Michael Brix Pedersen UPERLEDNING af Mihael Bix Pedesen Indledning I denne note foudsættes kendskab til de eleentæe egenskabe ved hödingeligningen (se fx Refeene [] elle [3], lidt eleentæe egenskabe ved koplekse tal og Eules

Læs mere

Cisgene bygplanter. planteforskning.dk Bioteknologi

Cisgene bygplanter. planteforskning.dk Bioteknologi plantefoskning.dk Cisgene bygplante Nyttige egenskabe kan tilføes til femtidens afgøde ved hjælp af genetisk modifikation uden indsættelse af atsfemmede gene. Den nye stategi anvendes bl.a. til udvikling

Læs mere

MATEMATIK A-NIVEAU. Anders Jørgensen & Mark Kddafi. Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 2012

MATEMATIK A-NIVEAU. Anders Jørgensen & Mark Kddafi. Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 2012 MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 01 Kapitel 3 Ligninger & formler 016 MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver

Læs mere

Praksis om miljøvurdering

Praksis om miljøvurdering Paksis om miljøvudeing Miljøvudeingsdage 2015 Nyee paksis på miljøvudeingsomådet Flemming Elbæk Flemming Elbæk, advokat, HD(Ø) Ansættelse: Advokatfuldmægtig, 2006-2008 Juist, Miljøministeiet, 2008-2012

Læs mere

diagnostik Skulder fysioterapeuten nr. 05 marts 2009

diagnostik Skulder fysioterapeuten nr. 05 marts 2009 side 08 fysioteapeuten n. 05 mats 2009 diagnostik Skulde Mogens Dam e oplægsholde på fagfestivalen d. 26.-28. mats 2009. Fysioteapeut Mogens Dam ha udvalgt en ække gængse diagnostiske test fo skuldepobleme.

Læs mere

Fagstudieordning for tilvalgsuddannelsen i Erhvervsøkonomi (2012-ordning)

Fagstudieordning for tilvalgsuddannelsen i Erhvervsøkonomi (2012-ordning) Fagstudieodning fo tilvalgsuddannelsen i Ehvevsøkonomi (2012-odning) 1 Indledning Til denne uddannelsesspecifikke fagstudieodning knytte sig også Rammestudieodning fo Det Samfundsvidenskabelige Fakultet,

Læs mere

Institut for Matematik, DTU: Gymnasieopgave. Det skrå kast. Teori: Erik Øhlenschlæger, Fysik for Diplomingeniører, Gyldendal 1996, side 13-14.

Institut for Matematik, DTU: Gymnasieopgave. Det skrå kast. Teori: Erik Øhlenschlæger, Fysik for Diplomingeniører, Gyldendal 1996, side 13-14. Det skå kast o ballistiske kue side 1 Institut fo Matematik, DTU: Gymnasieopae Det skå kast Teoi: Eik Øhlenschlæe, Fysik fo Diplomineniøe, Gyldendal 1996, side 13-14 Fa kastemaskine til pojektile Fiu 1

Læs mere

Trekantsberegning. for B- og A- niveau i stx og hf udgave 2. 2014 Karsten Juul

Trekantsberegning. for B- og A- niveau i stx og hf udgave 2. 2014 Karsten Juul Tekansbeegning fo - og - niea i sx og hf dgae l 34 8 014 Kasen Jl Indhold 1. Vinkle... 1. Tekans häjde og aeal... 1.1 HÄjde.... 1. HÄjde-gndlinje-fomel fo ekans aeal... 1.3 Eksemel ho aeal e kend... 1

Læs mere

Mujtaba og Farid Integralregning 06-08-2011

Mujtaba og Farid Integralregning 06-08-2011 Indholdsfortegnelse Integral regning:... 2 Ubestemt integral:... 2 Integrationsprøven:... 3 1) Integration af potensfunktioner:... 3 2) Integration af sum og Differens:... 3 3) Integration ved Multiplikation

Læs mere

Kortfattet. for gymnasiet og hf. 2010 Karsten Juul

Kortfattet. for gymnasiet og hf. 2010 Karsten Juul Kotfattet fo gymnasiet og hf 5 00 Kasten Jl Indhold. HÄjde og aeal.... Pythagoas' såtning... 3. Ensinklede tekante...4 4. Cosins og sins i etinklet tekant...6 5. Tangens i etinklet tekant...9 6. Vinkle...

Læs mere

Fysik A og Astronomi. Keplers love. Skrevet af Jacob Larsen 3.år HTX Slagelse Udgivet i samarbejde med Martin Gyde Poulsen 3.

Fysik A og Astronomi. Keplers love. Skrevet af Jacob Larsen 3.år HTX Slagelse Udgivet i samarbejde med Martin Gyde Poulsen 3. Keples lve Skeve af Jacb Lasen.å HTX Slagelse Udgive i samabejde med Main Gyde Pulsen.å HTX Slagelse 1 De Lve På baggund af den danske asnm Tych Bahes bsevaine. De va isæ paallaksemålinge af Mas placeing

Læs mere

Elektrodynamik. Christian Andersen. 15. juni 2010. Indhold 1. 1 Indledning 3

Elektrodynamik. Christian Andersen. 15. juni 2010. Indhold 1. 1 Indledning 3 Elektodynamik Chistian Andesen 15. juni 010 Indhold Indhold 1 1 Indledning 3 Elektostatik 3.1 Det elektiske felt............................. 3. Divegens og Cul af E-felte...................... 3.3 Elektisk

Læs mere

Ønskekøbing Kommune - netværksanalyse i den administrative organisation

Ønskekøbing Kommune - netværksanalyse i den administrative organisation Ønskekøbing Kommune - netvæksanalyse i den administative oganisation Hvodan vike det i paksis? Elektonisk spøgeskemaundesøgelse Svaene fa undesøgelsen kombinees med alleede eksisteende stamdata i minde

Læs mere

Hidsig debat om fleksjobreform Sygemeldte følges tæt i Jammerbugt Når stress ødelægger helbredet

Hidsig debat om fleksjobreform Sygemeldte følges tæt i Jammerbugt Når stress ødelægger helbredet magasin om det ummelige abejdsmaked N. 14 decembe 2010 4. ågang lige mulighede fo alle altid Hidsig debat om fleksjobefom Sygemeldte følges tæt i Jammebugt Nå stess ødelægge helbedet Indhold Fleksicuity

Læs mere

Geografi 8. klasse 2011/2012

Geografi 8. klasse 2011/2012 Geogafi 8. klasse 2011/2012 Ca. 75 lektione Åsplanen tage udgangspunkt i fælles mål fo faget geogafi. Det femgå af afkydsningslisten på de følgende side, hilke tinmål de il blie behandlet i de enkelte

Læs mere

Kommentarer til den ægyptiske beregning Kommentarer til den ægyptiske beregning... 5

Kommentarer til den ægyptiske beregning Kommentarer til den ægyptiske beregning... 5 Hvad er matematik? C, i-bog ISBN 978 87 7066 499 8 Projekter: Kapitel - Projektet er delt i to små projekter, der kan laves uafhængigt af hinanden. Der afsættes fx - timer til vejledning med efterfølgende

Læs mere

VURDERING AF LØSNINGSFORSLAG I FORBINDELSE MED DEN EUROPÆISKE STATSGÆLDSKRISE

VURDERING AF LØSNINGSFORSLAG I FORBINDELSE MED DEN EUROPÆISKE STATSGÆLDSKRISE Modul 0: Speciale 0. semeste, cand.oecon Aalbog Univesitet Afleveet d. 30. maj 202 VURDERING AF LØSNINGSFORSLAG I FORBINDELSE MED DEN EUROPÆISKE STATSGÆLDSKRISE Vejlede: Finn Olesen Skevet af Henik Hanghøj

Læs mere

Tredimensional grafik

Tredimensional grafik Teimensionl gfi 6 Ksten Juul Inhol I Homogene oointsæt og gngning f mtie sie Vi vil fose og eje figue i ummet og æne ees støelse Defo inføe vi homogene oointsæt og gngning f mtie II th sie Et olsninge

Læs mere

AN IC ESSENSITY NTA I N

AN IC ESSENSITY NTA I N H TI DI S NTS PU YNT T RS O C INGR RG AN IC SSNSITY COLOUR CAR STYLING SS R NCS NTA I N CO DUCD S BRUGSVJLDNING Favepocessen med SSNSITY Soft pemanent favning Den føste AMMONIAK- og LUGTFRI fave Med mee

Læs mere

INERTIMOMENT for stive legemer

INERTIMOMENT for stive legemer Projekt: INERTIMOMENT for stive legemer Formålet med projektet er at træne integralregning og samtidig se en ikke-triviel anvendelse i fysik. 0. Definition af inertimoment Inertimomentet angives med bogstavet

Læs mere

Rumgeometri Side 1 af 20

Rumgeometri Side 1 af 20 Rumgeometi Side af Idhold. Puktmægde i ummet..... Lije i ummet..... Pla... Paametefemstillige fo e pla i ummet e givet ved... Fa ligig til paametefemstillig... Fa paametefemstillig til ligig..... Kugle

Læs mere

MATEMATIK A-NIVEAU. Kapitel 1

MATEMATIK A-NIVEAU. Kapitel 1 MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 01 Kapitel 1 016 MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik 01

Læs mere

Dielektrisk forskydning

Dielektrisk forskydning Elektomagnetisme 4 ide 1 af 7 Dielektisk foskydning Betagt Gauss lov anvendt på et dielektikum: Q EndA ˆ =. (4.1) ε De af omsluttede ladninge Q bestå af: Polaisationsladninge, som e opstået ved indbydes

Læs mere

matematik grundbog trin 1 Demo preben bernitt grundbog trin 1 2004 by bernitt-matematik.dk 1

matematik grundbog trin 1 Demo preben bernitt grundbog trin 1 2004 by bernitt-matematik.dk 1 33 matematik grundbog trin 1 Demo preben bernitt grundbog trin 1 2004 by bernitt-matematik.dk 1 matematik grundbog trin 1 Demo-udgave 2003 by bernitt-matematik.dk Kopiering og udskrift af denne bog er

Læs mere

LOKALPLAN 14-027 CENTER- OG BOLIGOMRÅDE VED JØRGEN STEINS VEJ, VESTBJERG

LOKALPLAN 14-027 CENTER- OG BOLIGOMRÅDE VED JØRGEN STEINS VEJ, VESTBJERG LOKALPLAN 14-027 CENTER- OG BOLIGOMRÅDE VED JØRGEN STEINS VEJ, VESTBJERG AALBORG KOMMUNE TEKNISK FORVALTNING JUNI 2001 Vejledning En lokalplan fastlægge bestemmelse fo, hvodan aeale, nye bygninge, beplantning,

Læs mere

Om Gear fra Technoingranaggi Riduttori Tilføjelser til TR s katalogmateriale

Om Gear fra Technoingranaggi Riduttori Tilføjelser til TR s katalogmateriale ...when motos must be contolled Om Gea fa Technoinganaggi Riduttoi Tilføjelse til TR s katalogmateiale ISO 9 cetificeing: Technoinganaggi Riduttoi følge ISO 9 pincippene i dees kvalitetsstying. Alle dele

Læs mere

Honeywell Hometronic

Honeywell Hometronic Honeywell Hometonic Komfot + Spa enegi Gulvvame Lysstying Lys Sikkehed Sikkehed Andet Andet Radiato Insight Building Automation 1 MANAGER Hometonic Manageen HCM200d e familiens oveodnede buge-inteface.

Læs mere

Detaljeret information om cookies

Detaljeret information om cookies Detaljeet infomation om cookies Website: http://mbbl.dk/ Kontoldato: 2015-11-07 Kontolleet af: Cookie Repots Limited http://www.cookieepots.com/ Dette dokument e udabejdet så "Ministeiet fo By, Bolig og

Læs mere

bruge en formel-samling

bruge en formel-samling Geometri Længdemål og omregning mellem længdemål... 56 Omkreds og areal af rektangler og kvadrater... 57 Omkreds og areal af andre figurer... 58 Omregning mellem arealenheder... 6 Nogle geometriske begreber

Læs mere

Projekt 3.5 faktorisering af polynomier

Projekt 3.5 faktorisering af polynomier Projekt 3.5 faktorisering af polynomier Hvilke hele tal går op i tallet 60? Det kan vi få svar på ved at skrive 60 som et produkt af sine primtal: 60 3 5 Divisorerne i 60 er lige præcis de tal, der kan

Læs mere

Forslag til løsning af Opgaver til afsnittet om de naturlige tal (side 80)

Forslag til løsning af Opgaver til afsnittet om de naturlige tal (side 80) Forslag til løsning af Opgaver til afsnittet om de naturlige tal (side 80) Opgave 1 Vi skal tegne alle de linjestykker, der forbinder vilkårligt valgte punkter blandt de 4 punkter. Gennem forsøg finder

Læs mere