I kapitlet arbejdes med følgende centrale matematiske objekter og begreber:
|
|
- Maja Axelsen
- 4 år siden
- Visninger:
Transkript
1 INTRO Efter mange års pause er trigonometri med Fælles Mål 2009 tilbage som fagligt emne i grundskolens matematikundervisning. Som det fremgår af den følgende sides udpluk fra faghæftets trinmål, er en del af hensigten med at beskæftige sig med trigonometri, at arbejde undersøgende med matematik. En anden årsag til (gen)inddragelsen af trigonometri i folkeskolen kunne være, at så godt som alle ungdomsuddannelser har dette fagområde på programmet. Grundskolens undervisning i trigonometri kan altså også ses som et forsøg på at imødekomme overgangsproblemer fra folkeskolens matematikundervisning til ungdomsuddannelsernes matematikundervisning. I Kolorit introduceres trigonometri som et matematisk værktøj til at give svar på praktiske problemstillinger vedrørende måling af længder og areal. Hvad gør man når den længde eller det areal, man gerne vil kende, ikke kan måles direkte? Hvordan kan man regne sig frem til ukendte længder og arealer? Svaret bygger især på kendskab til ligedannede trekanters egenskaber. I kapitlet arbejder eleverne derfor bl.a. med at undersøge forholdet mellem kateter og hypotenuse i ligedannede trekanter. Det viser sig, at dette forhold er ens, når trekanterne er ligedannede. Eleverne behøver derfor kun at kende forholdet i én trekant for at kende forholdet i alle de trekanter, som er ligedannede med denne trekant. De kan derfor udarbejde tabeller over de forhold, der knytter sig bestemte gradtal i retvinklede trekanter altså, tabeller over trigonometriske værdier. På baggrund af tabellerne (eller på baggrund af indtastninger på lommeregner) kan de derefter beregne målene på de ukendte længder. I kapitlet veksles således mellem praktiske og teoretiske problemstillinger. Udgangspunktet er forskellige praktiske problemstillinger, der fører til undersøgelser indenfor matematikken. Resultatet af disse undersøgelser giver ny indsigt, som kan bruges i forbindelse med de praktiske problemstillinger. Set fra et arbejdsmådeperspektiv giver kapitlet på den måde gode muligheder for bl.a. at fokusere på det trinmål, der handler om at veksle mellem praktiske og teoretiske problemstillinger i forbindelse med matematiske problemer (se de følgende udpluk fra faghæftet). I kapitlet arbejdes med følgende centrale matematiske objekter og begreber: Målestoksforhold Pythagoras sætning Kateter og hypotenuse (herunder hosliggende og modstående katete) Ligedannede, retvinklede trekanter Forhold Sinus, cosinus, tangens Arealberegning i trekant (bl.a. ved hjælp af trigonometri) Korder Herons formel Huskeliste: Evt. geometriprogram (side 90, 92, 94, 96) TRIGONOMETRI 1
2 FRA FAGHÆFTET Kompetencer skelne mellem definitioner og sætninger, mellem enkelttilfælde og generaliseringer og anvende denne indsigt til at udforske og indgå i dialog om forskellige matematiske begrebers rækkevidde og begrænsning (tankegangskompetence) opstille, behandle, afkode, analysere og forholde sig kritisk til modeller, der gengiver træk fra virkeligheden, bl.a. ved hjælp af regneudtryk, tegning, diagrammer, ligninger, funktioner og formler (modelleringskompetence) forstå og benytte variable og symboler, bl.a. når regler og sammenhænge skal vises, samt oversætte mellem dagligsprog og symbolsprog (symbolbehandlingskompetence) kende forskellige hjælpemidler, herunder it, og deres muligheder og begrænsninger, samt anvende dem hensigtsmæssigt, bl.a. til eksperimenterende udforskning af matematiske sammenhænge, til beregninger og til præsentationer (hjælpemiddelkompetence) Matematiske emner kende og anvende forskellige figurers geometriske egenskaber fremstille skitser og tegninger efter givne forudsætninger benytte grundlæggende geometriske begreber, herunder størrelsesforhold og linjers indbyrdes beliggenhed kende og anvende målestoksforhold, ligedannethed og kongruens kende og anvende målingsbegrebet, herunder måling og beregning i forbindelse med omkreds, flade og rum udføre enkle geometriske beregninger, bl.a. ved hjælp af Pythagoras sætning arbejde undersøgende med enkel trigonometri i forbindelse med retvinklede trekanter og beregne sider og vinkler bruge it til tegning, undersøgelser, beregninger og ræsonnementer vedrørende geometriske figurer arbejde med koordinatsystemet og forstå sammenhængen mellem tal og geometri Matematik i anvendelse anvende faglige redskaber og begreber, bl.a. procentberegninger, formler og funktioner som værktøj til løsning af praktiske problemer Matematiske arbejdsmåder deltage i udvikling af strategier og metoder med støtte i bl.a. it veksle mellem praktiske og teoretiske overvejelser ved løsningen af matematiske problemstillinger arbejde individuelt og sammen med andre om problemløsning i mundtligt og skriftligt arbejde TRIGONOMETRI 2
3 Indhold og mål I dette kapitel skal I arbejde med trigonometri. Målet er, at I bliver i stand til at beregne de ukendte sidelængder i en retvinklet trekant, når I kender størrelsen på en af de spidse vinkler og en sidelængde. lærer begreberne sinus, cosinus og tangens i forbindelse med retvinklede trekanter. kan bruge jeres nye viden til at beregne længder og arealer. TRIGONOMETRI 3
4 Facit Side 90 Mundtligt 1.a og 1.b Fx 34,4 m 28 m 20 m 10,1 m m 6 m 5,2 m 60 85,1 m m TRIGONOMETRI 4
5 Pythagoras sætning kan kun bruges, når der kendes to af de tre sidelængder. Side 91 - Mundtlig 5. a b b a Side 92 - Problem 1. Fx B c a A 60 b C 2. a - b - c - 3. a 0,87 b 0,50 c 1,73 4. Fx TRIGONOMETRI 5
6 B c a A 60 b C 5. De tre forhold har samme resultater. 6. Det gælder for alle retvinklede trekanter med en vinkel på I alle retvinklede trekanter med en vinkel A på 40 gælder: 8. I retvinklede, ligedannede trekanter er forholdene mellem siderne ens. TRIGONOMETRI 6
7 Side 93 Færdighed (Facit står i grundbogen på side 184) Side 94 Mundtlig 1. Fx 10,0 cm 3,4 cm A Ca. 340 m 3. Fordi 4. 0, = Side 95 - Mundtlig 6. Det røde dragefly: 210 m Det gule dragefly: 208 m Det grønne dragefly: 170 m 7. Forholdet mellem siderne er 0,5. Resultatet er derfor 700 m 0,5 = 350 m. TRIGONOMETRI 7
8 Side 96 - Problem 1. og 2. Fx 1 0,8 0,6 0,4 0,2-1 -0,5 0,5 1-0,2 v=24-0,4-0,6-0, ,41 4. v 4 0,07 8 0, , , , , , , , , ,69 TRIGONOMETRI 8
9 48 0, , ,83 0, , , , , ,98 5. Fx Katetens længde er større end 0 og mindre end 1. Derfor kan forholdets mindste værdi komme så tæt på 0, det skal være, men aldrig blive 0 eller mindre. Forholdets største værdi kan komme så tæt på 1, det skal være, men aldrig blive 1 eller større. Side 97 Problem 1. a 29,4 m b 27 m c 20,7 m d 15,9 m Side 98 Mundtlig 1. cos (50 ) 0,64 2. tan (50 ) 1,2 3. a sin (50 ) 0,7660 b cos (50 ) 0,6428 c tan (50 ) 1, TRIGONOMETRI 9
10 Side 99 Mundtlig 5. Fx Cosinus er. I eksemplet er cos(23 ) =. Da cos(23 ) = 0,92, må det gælde, at. 6. 5,4 cm 7. a Først kan sin(23 ) bestemmes ved hjælp af lommeregner. Derefter kan resultatet bruges til at opstille en ligning (se opgave 8). b Først kan tan(23 ) bestemmes ved hjælp af lommeregner. Derefter kan resultatet bruges til at opstille en ligning (se opgave 8). 8. sin(23 ) 0,39 Da er s = 5,4 0,39 2,1 tan(23 ) 0,42 Da er s = 5,0 0,42 = 2,1 De to resultater passer med hinanden. 9. I rammen Samlet er siderne navngivet med bogstaver i stedet for katete og hypotenuse. Side Færdighed (Facit står i grundbogen på side 185) Side 101 Problem 1. Klippen er ca. 17 m høj. 2. Øen ligger cirka 229 m væk. 3. Dragen er ca. 12 m over vandoverfladen. TRIGONOMETRI 10
11 Side 102 Problem 1. Arealet af trekant ABC er 12. Det kan beregnes med formlen (hvor h er trekantens højde og g er trekantens grundlinje), eller man kan tælle sig frem. Den del, der ligger over højden, er halvdelen af et rektangel på 16 (altså 8 ), og den del der ligger under højden er halvdelen af et rektangel på 8 (altså 4 ). 2. Den del af trekanten, der ligger over højden, udgør en retvinklet trekant. I en retvinklet trekant er sin(v) =. Derfor gælder i eksemplet, at sin(c) = 3. Ved at gange med b på begge sider af lighedstegnet, fås h = b sin(c) 4. Da h = b sin(c), kan b sin(c) erstatte h i den kendte formel. 5. b sin(c) = sin(45 ) = 12, altså Grundens areal er ca Side Problem 1. cm 4,24 cm 2. Fordi korden ikke er en del af en retvinklet trekant. 3. Vinkelhalveringslinjen er vinkelret på korden og halverer den. De to trekanter, der opstår, vil derfor være retvinklede og kongruente (de har tre lige lange sider og to ens vinkler). 4. Den mindste vinkel er 20 fordi den udgør halvdelen af 40. Kordens længde er ca. 2,1 cm. 5. Bredden på scenens bagkant er ca. 9,2 m. TRIGONOMETRI 11
12 Side Færdighed (Facit står i grundbogen på side 185) Side 105 Færdighed (Facit står i grundbogen på side 185) TRIGONOMETRI 12
Matematik. Matematiske kompetencer
Matematiske kompetencer skelne mellem definitioner og sætninger, mellem enkelttilfælde og generaliseringer og anvende denne indsigt til at udforske og indgå i dialog om forskellige matematiske begrebers
Årsplan for 7. klasse, matematik
Årsplan for 7. klasse, matematik I matematik bruger vi bogsystemet Sigma som grundmateriale. I systemet er der, ud over grundbogen, også kopiark og tests tilknyttet de enkelte kapitler. Systemet er udarbejdet
Undersøgelser af trekanter
En rød tråd igennem kapitlet er en søgen efter svar på spørgsmålet: Hvordan kan vi beregne os frem til længder, vi ikke kan komme til at måle?. Hvordan kan vi fx beregne højden på et træ eller et hus,
Årsplan for matematik
Årsplan for matematik 2016-17 Uge Tema/emne Metode/mål 33 Brøker + talforståelse Matematiske arbejdsmåder(metode) 34 Brøker + procent 35 Excel 35 GeoGebra/Geometri 36 Geometri 37 Emneuge 38 Geometri 39
Årsplan for matematik 2012-13
Årsplan for matematik 2012-13 Uge Tema/emne Metode/mål 32 Matematiske arbejdsmåder(metode) 33 Intro 34 Tal + talforståelse 35 Brøker-procent 36 Potens+kvadrat-og kubikrod 37 Emneuge 38 Ligninger-uligheder
Eleverne skal lære at:
PK: Årsplan 8.Ga. M, matematik Tid og fagligt område Aktivitet Læringsmål Uge 32 uge 50 Tal og algebra Eleverne skal arbejde med at: kende de reelle tal og anvende dem i praktiske og teoretiske sammenhænge
Årsplan matematik, RE 2018/2019
Uge Område Ugeinfo. / Indhold er 33 Tal & Størrelser Introuge - Kun Undervisning fredag 34 Tal & Størrelser Introuge - ikke undervisning fredag Decimaltal & Brøker 35 Tal & Størrelser Procentregning 36
3. klasse 6. klasse 9. klasse
Børne- og Undervisningsudvalget 2012-13 BUU Alm.del Bilag 326 Offentligt Elevplan 3. klasse 6. klasse 9. klasse Matematiske kompetencer Status tal og algebra sikker i, er usikker i de naturlige tals opbygning
Evaluering af matematik undervisning
Evaluering af matematik undervisning Udarbejdet af Khaled Zaher, matematiklærer 6-9 klasse og Boushra Chami, matematiklærer 2-5 klasse Matematiske kompetencer. Fællesmål efter 3.klasse indgå i dialog om
Årsplan 9. klasse matematik 2013-2014 Uge Emne Faglige mål Trinmål Materialer/ systemer 33 Årsprøven i matematik
Årsplan 9. klasse matematik 2013-2014 33 Årsprøven i matematik Årsprøve og rettevejledledning 34-35 36 og løbe nde Talmængder og regnemetoder Mundtlig matematik 37 Fordybelses uge 38-39 Procent - Gennemgå
Årsplan 8. klasse matematik 2013-2014 Uge Emne Faglige mål Trinmål Materialer/ systemer 33 og løbende
Årsplan 8. klasse matematik 2013-2014 33 løbende 33-34 løbende Løbende Problemregning ( faglig læsning) Mundtlig matematik (forberede oplæg til 6. klasse) - flere forskellige trinmål Ben, formelsamlingen,
Funktioner og ligninger
Eleverne har både i Kolorit på mellemtrinnet og i Kolorit 7 matematik grundbog arbejdet med funktioner. I 7. klasse blev funktionsbegrebet defineret, og eleverne arbejdede med forskellige måder at beskrive
Års- og aktivitetsplan i matematik hold 4 2014/2015
Års- og aktivitetsplan i matematik hold 4 2014/2015 Der arbejdes hen mod slutmålene i matematik efter 10. klassetrin. www.uvm.dk => Fælles Mål 2009 => Faghæfter alfabetisk => Matematik => Slutmål for faget
Fælles Mål Matematik. Faghæfte 12
Fælles Mål 2009 Matematik Faghæfte 12 Undervisningsministeriets håndbogsserie nr. 14 2009 Fælles Mål 2009 Matematik Faghæfte 12 Undervisningsministeriets håndbogsserie nr. 14 2009 Indhold Formål for faget
Matematik. Matematiske kompetencer
Matematiske kompetencer formulere sig skriftligt og mundtligt om matematiske påstande og spørgsmål og have blik for hvilke typer af svar, der kan forventes (tankegangskompetence) løse matematiske problemer
Undervisningsplan for matematik
Undervisningsplan for matematik Formål for faget Formålet med undervisningen i matematik er, at eleverne udvikler kompetencer og opnår viden og kunnen således, at de bliver i stand til at begå sig hensigtsmæssigt
Fælles Mål 2009. Matematik. Faghæfte 12
Fælles Mål 2009 Matematik Faghæfte 12 Undervisningsministeriets håndbogsserie nr. 14 2009 Fælles Mål 2009 Matematik Faghæfte 12 Undervisningsministeriets håndbogsserie nr. 14 2009 Indhold Formål for faget
Fælles Mål 2009. Matematik. Faghæfte 12
Fælles Mål 2009 Matematik Faghæfte 12 Undervisningsministeriets håndbogsserie nr. 14 2009 Fælles Mål 2009 Matematik Faghæfte 12 Undervisningsministeriets håndbogsserie nr. 14 2009 Indhold Formål for faget
Årsplan for Matematik 8. klasse 2011/2012
Årsplan for Matematik 8. klasse 2011/2012 Formål for faget matematik Formålet med undervisningen er, at eleverne udvikler matematiske kompetencer og opnår viden og kunnen således, at de bliver i stand
Årsplan for 5. klasse, matematik
Årsplan for 5. klasse, matematik I matematik bruger vi bogsystemet Sigma som grundmateriale. I systemet er der, ud over også kopiark og tests tilknyttet de enkelte kapitler. Systemet er udarbejdet så det
Årsplan 9. klasse matematik 2014-2015 Uge Emne Faglige mål Trinmål Materialer/ systemer 33-34
Årsplan 9. klasse matematik 2014-2015 33-34 Årsprøve og rettevejledledning 34-36 Årsprøven i matematik Talmængder og regnemetoder 37 Fordybelses uge 38-39 40 Termins-prøve 41 Studieturen 42 Efterårsferie
MATEMATIK. Formål for faget
MATEMATIK Formål for faget Formålet med undervisningen er, at eleverne udvikler matematiske kompetencer og opnår viden og kunnen således, at de bliver i stand til at begå sig hensigtsmæssigt i matematikrelaterede
10.klasse. Naturfaglige fag: Matematik, Fysik/kemi. Matematik. Formål for faget matematik
10.klasse Naturfaglige fag: Matematik, Fysik/kemi Matematik Formål for faget matematik Formålet med undervisningen er, at eleverne udvikler matematiske kompetencer og opnår viden og kunnen således, at
Geometri i plan og rum
INTRO I kapitlet arbejder eleverne med plane og rumlige figurers egenskaber og med deres anvendelse som geometriske modeller. I den forbindelse kommer de bl.a. til at beskæftige sig med beregninger af
Selam Friskole Fagplan for Matematik
Selam Friskole Fagplan for Matematik Formål Formålet med undervisningen er, at eleverne udvikler matematiske kompetencer og opnår viden og kunnen således, at de bliver i stand til at begå sig hensigtsmæssigt
Emne Tema Materiale r - - - - - aktiviteter
Fag: Matematik Hold: 24 Lærer: TON Undervisningsmål Læringsmål 9 klasse 32-34 Introforløb: række tests, som viser eleverne faglighed og læringsstil. Faglige aktiviteter Emne Tema Materiale r IT-inddragelse
MATEMATIK. GIDEONSKOLENS UNDERVISNINGSPLAN Oversigt over undervisning i forhold til trinmål og slutmål
MATEMATIK GIDEONSKOLENS UNDERVISNINGSPLAN Oversigt over undervisning i forhold til trinmål og slutmål KOMMENTAR Vi har i det følgende foretaget en analyse og en sammenstilling af vore materialer til skriftlig
Matematik. Matematiske kompetencer
Matematiske kompetencer skelne mellem definitioner og sætninger, mellem enkelttilfælde og generaliseringer og anvende denne indsigt til at udforske og indgå i dialog om forskellige matematiske begrebers
Undervisningsplan: Matematik Skoleåret 2014/2015 Strib Skole: 5B Ugenumre: Hovedområder: Emner og temaer: Side 1 af 5
Ugenumre: Hovedområder: Emner og temaer: 33 Addition og subtraktion Anvendelse af regningsarter 34 Multiplikation og division Anvendelse af regningsarter 35 Multiplikation med decimaltal Anvendelse af
Fagårsplan 10/11 Fag: Matematik Klasse: 8.A Lærer: Henrik Stillits Fagområde/ emne Færdighedsregning - Typer af opgaver - Systematik
Fagårsplan 10/11 Fag: Matematik Klasse: 8.A Lærer: Henrik Stillits Fagområde/ emne Færdighedsregning - Typer af opgaver - Systematik Periode Mål Eleverne skal: 32/33 Få kendskab til opgavetypen og få rutine.
Matematik samlet evaluering for Ahi Internationale Skole
efter 3.klasse. e efter 6.klasse. e Skole efter 9.klasse. e indgå i dialog om spørgsmål og svar, som er karakteristiske i arbejdet med matematik (tankegangskompetence formulere sig skriftligt og mundtligt
Undervisningsplan for faget matematik. Ørestad Friskole
Undervisningsplan for faget matematik Ørestad Friskole 1. af 11 sider Undervisningsplan for faget matematik. Ørestad Friskole Undervisningsplanens indhold Undervisningens organisering og omfang side 2
Geometri, (E-opgaver 9d)
Geometri, (E-opgaver 9d) GEOMETRI, (E-OPGAVER 9D)... 1 Vinkler... 1 Trekanter... 2 Ensvinklede trekanter... 2 Retvinklede trekanter... 3 Pythagoras sætning... 3 Sinus, Cosinus og Tangens... 4 Vilkårlige
Der er ikke væsentlig niveauforskel i opgaverne inden for de fire emner, men der er fokus på forskellige matematiske områder.
Dette tema lægger forskellige vinkler på temaet biografen. Udgangspunktet er således ikke et bestemt matematisk område, men et stykke virkelighed, der bl.a. kan beskrives ved hjælp af matematik. I dette
Matematikken og naturens kræfter
INTRO Omdrejningspunktet for dette tema er matematikkens anvendelse som beskrivelsesmiddel i forbindelse med fysiske love. Temaet er inddelt i følgende fire emner: Pendulure Frit fald Bremselængder og
Tal og algebra. I kapitlet arbejdes med følgende centrale matematiske begreber: algebra variable. Huskeliste: Tændstikker (til side 146) FRA FAGHÆFTET
I kapitlet skal eleverne arbejde med fire forskellige vinkler på algebra de præsenteres på kapitlets første mundtlige opslag. De fire vinkler er algebra som et redskab til at løse matematiske problemer.
MATEMATIK. Formål for faget
Fælles Mål II MATEMATIK Formål for faget Fælles Mål Formålet med undervisningen i matematik er, at eleverne bliver i stand til at forstå og anvende matematik i sammenhænge, der vedrører dagligliv, samfundsliv
Fagplan for matematik
Fagplan for matematik Formål Undervisningen i matematik skal give eleverne lyst til, forståelse for og teoretisk baggrund for at analysere, vurdere, kontrollere og argumentere, når de i deres dagligdag
TRIGONOMETRI, 4 UGER, 9.KLASSE.
TRIGONOMETRI, 4 UGER, 9.KLASSE. FRA FÆLLES MÅL Målsætninger for undervisningsforløbet er opsat efter kompetence, færdigheds og vidensmål samt læringsmål i lærersprog. Geometri og måling Fase 3 Geometriske
Klassen er sammenlæst, altså 5 og 6 klasse på en og samme tid. Samtidig er klassen pt på ca 11 elever ialt.
Introduktion til mat i 5/6 klasse Vejle Privatskole 13/14: Klassen er sammenlæst, altså 5 og 6 klasse på en og samme tid. Samtidig er klassen pt på ca 11 elever ialt. Udgangspunktet bliver en blød screening,
Skolens formål med faget matematik følger beskrivelsen af formål i folkeskolens Fælles Mål:
Formål: Skolens formål med faget matematik følger beskrivelsen af formål i folkeskolens Fælles Mål: Formålet med undervisningen i matematik er, at eleverne bliver i forstå og anvende matematik i sammenhænge,
Space Challenge og Undervisningsminsteriets Fælles Mål for folkeskolen
Space Challenge og Undervisningsminsteriets Fælles Mål for folkeskolen I dette kapitel beskrives det, hvilke Fælles Mål man kan nå inden for udvalgte fag, når man i skolen laver aktiviteter med Space Challenge.
Geometriske eksperimenter
I kapitlet arbejder eleverne med nogle af de egenskaber, der er knyttet til centrale geometriske figurer og begreber (se listen her under). Set fra en emneorienteret synsvinkel handler kapitlet derfor
Årsplan matematik 8. klasse
Årsplan matematik 8. klasse 2019-2020 Eleverne arbejder med grundbogen Matematrix 8. I undervisningen inddrages digitale undervisningsredskaber såsom Geogebra, Wordmat, MatematikFessor, emat, excel og
LÆRINGSMÅL PÅ NIF MATEMATIK 2014-15
LÆRINGSMÅL PÅ NIF MATEMATIK 2014-15 Mål for undervisningen i Matematik på NIF Følgende er baseret på de grønlandske læringsmål, tilføjelser fra de danske læringsmål står med rød skrift. Læringsmål Yngstetrin
Matematik for lærerstuderende klasse Geometri
Matematik for lærerstuderende 4.-10. klasse Geometri Klassisk geometri (kapitel 6) Deduktiv tankegang Ræsonnementskompetence Mål med kapitlet: Erkender Thales sætning som fundament for afstandsberegning.
ØVEHÆFTE FOR MATEMATIK C GEOMETRI
ØVEHÆFTE FOR MATEMATIK C GEOMETRI Indhold Begreber i klassisk geometri + formelsamling... 2 Pythagoras Sætning... 8 Retvinklede trekanter. Beregn den ukendte side markeret med et bogstav.... 9 Øve vinkler
ØVEHÆFTE FOR MATEMATIK C GEOMETRI
ØVEHÆFTE FOR MATEMATIK C GEOMETRI Indhold Begreber i klassisk geometri + formelsamling... 2 Ensvinklede trekanter... 7 Pythagoras Sætning... 10 Øve vinkler i retvinklede trekanter... 15 Sammensatte opgaver....
7 Trekanter. Faglige mål. Linjer i trekanter. Ligedannethed. Pythagoras. Trigonometri
7 Trekanter Faglige mål Kapitlet Trekanter tager udgangspunkt i følgende faglige mål: Linjer i trekanter: kende til højde, vinkelhalveringslinje, midtnormal og median, kunne tegne indskrevne og omskrevne
Algebra INTRO. I kapitlet arbejdes med følgende centrale matematiske begreber:
INTRO Kapitlet sætter fokus på algebra, som er den del af matematikkens sprog, hvor vi anvender variable. Algebra indgår i flere af bogens kapitler, men hensigten med dette kapitel er, at eleverne udvikler
Fagårsplan 10/11 Fag: Matematik Klasse: 7.ABC Lærer: Henrik Stillits. Fagområde/ emne
Fagårsplan 10/11 Fag: Matematik Klasse: 7.ABC Lærer: Henrik Stillits. Fagområde/ emne Matematiske færdigheder Grundlæggende færdigheder - plus, minus, gange, division (hele tal, decimaltal og brøker) Identificer
Læseplan for faget matematik. 1. 9. klassetrin
Læseplan for faget matematik 1. 9. klassetrin Matematikundervisningen bygger på elevernes mange forudsætninger, som de har med når de starter i skolen. Der bygges videre på elevernes forskellige faglige
Årsplan for 5. klasse, matematik
Ringsted Lilleskole, Uffe Skak Årsplan for 5. klasse, matematik Som det fremgår af nedenstående uddrag af undervisningsministeriets publikation om fælles trinmål til matematik efter 6. klasse, bliver faget
Årsplan matematik 4.klasse - skoleår 11/12- Ida Skov Andersen Med ret til ændringer og justeringer
Basis: Klassen består af 22 elever og der er afsat 4 ugentlige timer. Grundbog: Vi vil arbejde ud fra Matematrix 4, arbejds- og grundbog, kopisider, Rema, ekstraopgaver og ugentlige afleveringsopgaver
Foreløbig udgave af læringsmål til: Kapitel 1 Regn med store tal Fælles Mål Læringsmål Forslag til tegn på læring
Foreløbig udgave af læringsmål til: Kapitel 1 Regn med store tal Fælles Mål Læringsmål Forslag til tegn på læring udføre beregninger med de fire regningsarter inden for naturlige tal, herunder beregninger
Oversigt over Forenklede Fælles Mål i forbindelse med kapitlerne i MULTI. Problembehandling. Modellering
MULTI 4 Forenklede Fælles Mål Oversigt over Forenklede Fælles Mål i forbindelse med kapitlerne i MULTI Kapitel 1 Faglig læsning undersøgende arbejde Eleven kan læse og skrive enkle tekster med og om matematik
TW 2011/12. Fag: Matematik Klasse: 9. Mandag, Tirsdag, fredag. Formål for faget matematik:
TW 2011/12 Fag: Matematik Klasse: 9. Mandag, Tirsdag, fredag Formål for faget matematik: Formålet med undervisningen er, at eleverne udvikler matematiske kompetencer og opnår viden og kunnen således, at
Når vi forbereder et nyt emne eller område vælger vi de metoder, materialer og evalueringsformer, der egner sig bedst til forløbet.
MATEMATIK Delmål for fagene generelt. Al vores undervisning hviler på de i Principper for skole & undervisning beskrevne områder (- metoder, materialevalg, evaluering og elevens personlige alsidige udvikling),
Eleven kan handle med overblik i sammensatte situationer med matematik. Eleven kan anvende rationale tal og variable i beskrivelser og beregninger
Kompetenceområde Efter klassetrin Efter 6. klassetrin Efter 9. klassetrin Matematiske kompetencer handle hensigtsmæssigt i situationer med handle med overblik i sammensatte situationer med handle med dømmekraft
5: Trigonometri Den del af matematik, der beskæftiger sig med figurer og deres egenskaber, kaldes for geometri. Selve
5: Trigonometri Den del af matematik, der beskæftiger sig med figurer og deres egenskaber, kaldes for geometri. Selve ordet geometri er græsk og betyder jord(=geo)måling(=metri). Interessen for figurer
Årsplan i matematik 8 klasse. 2018/2019 Abdiaziz Farah
Årsplan i matematik 8 klasse. 2018/2019 Abdiaziz Farah Materialer: arbejdsbog, /9 begrebsbog Uger Indhold Videns eller færdigheds mål Materialer Evaluering 34-38 kende de reelle tal og En Negative tal
Problemløsning i retvinklede trekanter
Problemløsning i retvinklede trekanter Frank Villa 14. februar 2012 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug
Matematik 2011/2012 Skovbo Efterskole Trigonometri. Trigonometri
Trigonometri Spidse og stumpe vinkler En vinkel kaldes spids, når den er mindre end 90. En vinkel kaldes ret, når den er 90. En vinkel kaldes stump, når den er større end 90. En vinkel kaldes lige, når
Kapitel 4. Trigonometri. Matematik C (må anvendes på Ørestad Gymnasium) Kapitel 4
Matematik C (må anvendes på Ørestad Gymnasium) Trigonometri Den del af matematik, der beskæftiger sig med figurer og deres egenskaber, kaldes for geometri. Selve ordet geometri er græsk og betyder jord(=geo)måling(=metri).
Årsplan i matematik klasse
32-36 Brøker og Én brøk - forskellige betydninger en helhed ved hjælp af brøker. en helhed ved hjælp af brøker. Eleven kan bruge brøker til at beskrive forholdet mellem to størrelser. Eleven kan argumentere
Dette kapitel tager især udgangspunkt i det centrale kundskabs- og færdighedsområde: Matematik i anvendelse med økonomi som omdrejningspunktet.
Dette kapitel tager især udgangspunkt i det centrale kundskabs- og færdighedsområde: Matematik i anvendelse med økonomi som omdrejningspunktet. Kapitlet indledes med fokus på løn og skat og lægger op til,
Introduktion til mat i 4 klasse Vejle Privatskole 2013/14:
Introduktion til mat i 4 klasse Vejle Privatskole 2013/14: Udgangspunktet bliver en blød screening, der skal synliggøre summen af elevernes standpunkt. Det betyder i realiteten, at der uddeles 4 klasses
Trigonometri at beregne Trekanter
Trigonometri at beregne Trekanter Pythagoras, en stor matematiker fandt ud af, at der i en retvinklet trekant summen af kvadraterne på kateterne er lig med kvadratet på hypotenusen. ( a 2 + b 2 = c 2 )
Oversigt over Forenklede Fælles Mål i forbindelse med kapitlerne i MULTI. Problembehandling. Modellering
MULTI 5 Forenklede Fælles Mål Oversigt over Forenklede Fælles Mål i forbindelse med kapitlerne i MULTI Kapitel 1 Faglig læsning Opmærksomhedspunkt Eleven kan anvende ræsonnementer i undersøgende arbejde
Tavleundervisning og samarbejde 2 og 2. Eleverne arbejder selvstændigt med opgaver. Løbende opsamling ved tavlen.
Fag: Matematik Hold: 21 Lærer: ASH 33-34 35-36 lære at læse og forstå en lønseddel samt vide hvordan deres skat bliver beregnet. Se i øvrigt fælles mål Arbejde med regnehieraki og regneregler. 36-38 Elevere
Årsplan for 9 årgang
Årsplan 9.årgang matematik 09-00: Matematrix grundbog 9.kl Kopiark Færdighedsregning 9.kl Computer Vi skal i løbet af året arbejde med følgende IT værktøjer: Excel Matematikfessor Wordmat Excel, og wordmat
Pythagoras Ensvinklede trekanter Trigonometri. Helle Fjord Morten Graae Kim Lorentzen Kristine Møller-Nielsen
MATEMATIKBANKENS P.E.T. KOMPENDIUM Pythagoras Ensvinklede trekanter Trigonometri Helle Fjord Morten Graae Kim Lorentzen Kristine Møller-Nielsen FORENKLEDE FÆLLES MÅL FOR PYTHAGORAS, ENSVINKLEDE TREKANTER
Andreas Nielsen Kalbyrisskolen 2009
Andreas Nielsen Kalbyrisskolen 2009 Matematiske kompetencer. Matematiske emner (tal og algebra, geometri, statistik og sandsynlighed). Matematik i anvendelse. Matematiske arbejdsmåder. Tankegangskompetence
It i Fælles mål 2009- Matematik
It i Fælles mål 2009- Matematik Markeringer af hvor it er nævnt. Markeringen er ikke udtømmende og endelig. Flemming Holt, PITT Aalborg Kommune Fælles Mål 2009 - Matematik Faghæfte 12 Formål for faget
Årsplan 2012/2013. 9. årgang: Matematik. Lyreskovskolen. FORMÅL OG FAGLIGHEDSPLANER - Fælles Mål II 2009
Årsplan 2012/2013 9. årgang: Matematik FORMÅL OG FAGLIGHEDSPLANER - Fælles Mål II 2009 Formålet med undervisningen i matematik er, at eleverne udvikler matematiske r og opnår viden og kunnen således, at
Trekants- beregning for hf
Trekants- beregning for hf C C 5 l 5 A 34 8 B 018 Karsten Juul Indhold 1. Vinkler... 1 1.1 Regler for vinkler.... 1. Omkreds, areal, højde....1 Omkreds..... Rektangel....3 Kvadrat....4 Højde....5 Højde-grundlinje-formel
Matematik - undervisningsplan
I 4. klasse starter man på andet forløb i matematik, der skal lede frem mod at eleverne kan opfylde fagets trinmål efter 6. klasse. Det er dermed det som undervisningen tilrettelægges ud fra og målsættes
Trinmål Matematik. Børnehaveklasse Efter 3. klasse Fagligt bånd. Matematiske kompetencer. Problemløsning. Regnesymboler. Talforståelse Mængder
Trinmål Matematik Børnehaveklasse Efter 3. klasse Fagligt bånd Evaluering Matematiske kompetencer Talforståelse Mængder Regnesymboler Problemløsning have kendskab til tal og tælleremser opbygge talforståelse
Matematik. Matematikundervisningen tager udgangspunkt i Folkeskolens Fælles Mål
Matematik Matematikundervisningen tager udgangspunkt i Folkeskolens Fælles Mål Formålet med undervisningen i matematik er, at eleverne bliver i stand til at forstå og anvende matematik i sammenhænge, der
Årsplan matematik 5 kl 2015/16
Årsplan matematik 5 kl 2015/16 I matematik bruger vi bogsystemet Sigma som grundmateriale, og har matematikfessor som suplerende materiale, samt kopisider. I systemet er der,ud over grundbogen, også kopiark
Matematik på Viby Friskole
Matematik på Viby Friskole Formålet for faget matematik Formålet med undervisningen er, at eleverne udvikler matematiske kompetencer og opnår viden og kunnen således, at de bliver i stand til at begå sig
Årsplan 2017/2018 Matematik 8. kl. Kapitel 1: Regnehierarkiet
Årsplan 07/08 Matematik 8. kl. I grundbogen Matematrix 8 arbejder elevern med bogens emner og opgaver (næsten) udelukkende på computer i word, excel og geogebra. Eleverne skal udover det daglige arbejde
Eksamensspørgsmål: Trekantberegning
Eksamensspørgsmål: Trekantberegning Indhold Definition af Sinus og Cosinus... 1 Bevis for Sinus- og Cosinusformlerne... 3 Tangens... 4 Pythagoras s sætning... 4 Arealet af en trekant... 7 Vinkler... 8
ræsonnere og argumentere intuitivt om konkrete matematiske aktiviteter og følge andres mundtlige argumenter (ræsonnementskompetence)
Matematiske kompetencer indgå i dialog om spørgsmål og svar, som er karakteristiske i arbejdet med matematik (tankegangskompetence) løse matematiske problemer knyttet til en kontekst, der giver mulighed
Matematik Færdigheds- og vidensmål (Geometri og måling )
Matematik Færdigheds- og vidensmål (Geometri og måling ) Kompetenceområde Klassetrin Faser 1 Eleven kan kategorisere Efter klassetrin Eleven kan anvende geometriske begreber og måle Eleven kan kategorisere
Oversigt over Forenklede Fælles Mål i forbindelse med kapitlerne i MULTI. Modellering
MULTI 7 Forenklede Fælles Mål Oversigt over Forenklede Fælles Mål i forbindelse med kapitlerne i MULTI Kapitel 1 Læs og skriv matematik Eleven kan kommunikere mundtligt og skriftligt med og om matematik
Symbolbehandlingskompetencen er central gennem arbejdet med hele kapitlet i elevernes arbejde med tal og regneregler.
Det første kapitel i grundbogen til Kolorit i 8. klasse handler om tal og regning. Kapitlet indledes med, at vores titalssystem som positionssystem sættes i en historisk sammenhæng. Gennem arbejdet med
MULTI 6 Forenklede Fælles Mål
MULTI 6 Forenklede Fælles Mål Oversigt over Forenklende Fælles Mål i forbindelse med kapitlerne i MULTI Kapitel 1 Faglig læsning og skrivning Eleverne kan anvende forskellige strategier til matematisk
Trigonometri. Store konstruktioner. Måling af højde
Trigonometri Ordet trigonometri er sammensat af de to ord trigon og metri, hvor trigon betyder trekant og metri kommer af det græske ord metros, som kan oversættes til måling. Så ordet trigonometri er
Matematik på Viby Friskole
Matematik på Viby Friskole Formålet for faget matematik Formålet med undervisningen er, at eleverne udvikler matematiske kompetencer og opnår viden og kunnen således, at de bliver i stand til at begå sig
Oversigt over Forenklede Fælles Mål i forbindelse med kapitlerne i MULTI. Ræsonnement og tankegang. Modellering
MULTI 6 Forenklede Fælles Mål Oversigt over Forenklede Fælles Mål i forbindelse med kapitlerne i MULTI Kapitel 1 Faglig læsning og skrivning Eleven kan anvende forskellige strategier til matematisk problemløsning
Matematik på Humlebæk lille Skole
Matematik på Humlebæk lille Skole Matematikundervisningen på HLS er i overensstemmelse med Undervisningsministeriets Fælles Mål, dog med få justeringer som passer til vores skoles struktur. Det betyder
TREKANTER. Indledning. Typer af trekanter. Side 1 af 7. (Der har været tre kursister om at skrive denne projektrapport)
Side 1 af 7 (Der har været tre kursister om at skrive denne projektrapport) TREKANTER Indledning Vi har valgt at bruge denne projektrapport til at udarbejde en oversigt over det mest grundlæggende materiale
06 Formler i retvinklede trekanter del 2
06 Formler i retvinklede trekanter del 2 I del 2 udledes (nogle af) de generelle formler, der gælder for sinus, cosinus og tangens i retvinklede trekanter. Sætning 1 For enhver vinkel v gælder der BEVIS
Indholds- og årsplan matematik
Indholds- og årsplan matematik Formål Eleverne skal i faget matematik udvikle matematiske kompetencer og opnå færdigheder og viden, således at de kan begå sig hensigtsmæssigt i matematikrelaterede situationer
Matematik UVMs Trinmål synoptisk fremstillet
Matematik UVMs Trinmål synoptisk fremstillet Matematiske kompetencer Trinmål efter 3. klassetrin Trinmål efter 6. klassetrin Trinmål efter 9. klassetrin indgå i dialog om spørgsmål og svar, som er karakteristiske
MaxiMat og de forenklede Fælles mål
MaxiMat og de forenklede Fælles mål Dette er en oversigt over hvilke læringsmål de enkelte forløb indeholder. Ikke alle forløb er udarbejdet endnu, men i skemaet kan man se alle læringsmålene også de,
Geometri, (E-opgaver 9b & 9c)
Geometri, (E-opgaver 9b & 9c) Indhold GEOMETRI, (E-OPGAVER 9B)... 1 Arealet af en er ½ højde grundlinje... 1 Vinkelsummen i en er altid 180... 1 Ensvinklede er... 1 Retvinklede er... Sinus,... FORMLER...
Faglige delmål og slutmål i faget Matematik. Trin 1
Faglige delmål og slutmål i faget Matematik. Trin 1 Faglige delmål for matematik i 1. og 2. klasse. Undervisningen skal lede frem mod, at eleverne efter 2. klasse har tilegnet sig kundskaber og færdigheder,
Matematisk argumentation
Kapitlets omdrejningspunkt er matematisk argumentation, der især bruges i forbindelse med bevisførelse altså, når det drejer sig om at overbevise andre om, at matematiske påstande er sande eller falske.