Arbejdet på kuglens massemidtpunkt, langs x-aksen, er lig med den resulterende kraft gange strækningen:

Størrelse: px
Starte visningen fra side:

Download "Arbejdet på kuglens massemidtpunkt, langs x-aksen, er lig med den resulterende kraft gange strækningen:"

Transkript

1 Forsøgsopstilling: En kugle ligger mellem to skinner, og ruller ned af den. Vi måler ved hjælp af sensorer kuglens hastighed og tid ved forskellige afstand på rampen. Vi måler kuglens radius (R), radius for rotationen, dvs. afstanden kuglens midtpunkt til banen (r), og sinus til vinklen som rampen danner med bordet (sin(θ)), samt hastigheden (v), afstanden (s) og tiden (t). Teori: i) Teoretisk forventet værdi af hastigheden: Vi indlægger et koordinatsystem, hvor x-aksen går positivt ned af rampen og y-aksen står vinkelret på rampen. Eftersom kuglen ingen hastighed eller acceleration har i y-aksens retning er accelerationen og hastighed lig med accelerationen og hastigheden langs x-aksen. Arbejdet på kuglens massemidtpunkt, langs x-aksen, er lig med den resulterende kraft gange strækningen: Den resulterende kraft er ifølge Newtons anden lov lig med kuglens masse gange accelerationen: Og arbejdet er lig med ændringen i kinetiske energi, som er lig med ½ gange massen gange kvadratet på hastigheden: Eftersom vi antager at accelerationen er konstant, forventer vi at kuglens hastighed vil være en kvadratrodsfunktion af strækningen. ii) Bestemmelse af acceleration: Vores forsøg måler hastigheden direkte. Vi kan altså fra vores forsøgsresultater bestemme accelerationen som: iii) Bestemmelse af tyngdeaccelerationen: Den resulterende kraft i x-aksens retning er dels en komposant af vægten minus friktionskraften: Den eneste kraft der giver et kraftmoment om massemidtpunktet er friktionskraften. Denne lig inertimomentet gange vinkelaccelerationen:

2 Inertimomentet for en kugle er 2/5 gange massen gangen kvadratet på radius. Da vi antager at kuglen ruller uden at glide er kuglens acceleration lig med vinkelaccelerationen gange radius på rotationen: Dette indsættes i formlen for accelerationen, hvorved tyngdeaccelerationen kan isoleres: Om systematiske usikkerheder: i) Hastighed og afstand: Vi mener det vigtigste er at plotte hastigheden mod den afstand vi måler på, og prøve at fitte en kvadratrodsfunktion til den, for at se om der er nogen systematiske afvigelser fra denne. De to største fejlkilder vurderer vi er friktionen og luftmodstand. Friktionen har vi taget højde for, under forudsætning af, at kuglen ruller uden at glide. Hvis denne antagelse ikke holder helt, vil dette dog ikke kunne ses på plottet, da den vil være en konstant som trækkes fra accelerationen. Luftmodstand, derimod, afhænger af hastigheden, som stiger efterhånden som kuglen når længe re ned af rampen. Derfor forventer vi en systematisk afvigelse, som et plot af hastighed mod afstand kan vise: Da luftmodstanden stiger med hastigheden vil de første målinger ligge over fittet og de sidste under. Vi vil også sammenligne de beregnede værdier af kuglens acceleration og tyngdeaccelerationen med de teoretisk forventede værdier, og se om resultatet ligger indenfor en rimelig usikkerhed, eller om de nævnte fejlkilder har haft en signifikant indflydelse på vores resultat. ii) Andre mulige fejlkilder og systematiske usikkerheder: En større vinkel vil resultere i større hastigheder, hvorved fejlen fra luftmodstand ville forstørres. Ydermere vil friktionskraften muligvis ikke være stor nok til at garantere en ren rulning. En større kugle vil på den ene side har et større areal og opnå en større translationel hastighed, hvorved påvirkes mere af luftmodstanden fra den translationelle hastighed. Til gengæld vil den opnå en lavere vinkelhastighed, og altså påvirkes mindre af luftmodstanden derfra. Ligeledes vil en større afstand mellem skinnerne på rampen resultere i en lavere translationel hastighed, men en større vinkelhastighed.

3 Vi har ikke havde ikke mulighed for at lave målingerne til at undersøge disse sammenhænge. Resultater: Kuglens radius (R): Diameteren blev målt til 1,78 cm +/- 0,005 cm, dvs. R= 0,89 cm +/- 0,005 cm Afstand fra rampe til kuglens centrum (r): Afstanden mellem skinnerne blev målt til 0,605 cm +/- 0,005 cm. Ved pythagoras bliver afstand fra kuglens midte til banen 0,84 cm. Da der ingen korrelation er mellem banens bredde og kuglens radius bliver usikkerheden på dette resultat bestemt af følgende error propagation formula: Hvor er den partielt afledte af formlen for resultatet mht. hvert parameter, og er usikkerheden på den enkelte måling. Dette giver en usikkerhed på +/- 0,006 cm. Så r = 0,84 cm +/- 0,006 cm. (udregninger er på det vedlagte Mapleark (1)-(7)) Sinus til vinklen (sin(θ)): Rampens højde blev målt til 11.4 cm +/- 0,15 cm og længde af banens grundlinje til 88,8 cm +/-0,15 cm. Via trigonometri og error propagation formula (vi antager igen at der ingen korrelation er mellem parametrene) fås sin(θ)= 0,127 +/- 0, (udregninger er på det vedlagte Mapleark (8)-(13)) Forventet værdi af accelerationen: Disse resultater kan sættes ind i formlen for den forventede acceleration sammen med vores forventede værdi af g = 9,82 m/s 2. Vi beregner usikkerhed med error propagation formula (hvor vi neglicierer usikkerheden på tyngdeaccelerationen, og antager at der ingen korrelation er mellem parametrene): (udregninger er på det vedlagte Mapleark (14)-(19)) Plot af hastighed mod afstand:

4 (Plot af gennemsnitshastighed mod rullet strækning med standardafvigelse på hastighed og strækning, samt det bedste fit af ) For hver s tog vi gennemsnittet af alle hastighedsmålinger for det pågældende s, og fik derved et gennemsnit ( )og en standardafvigelse for hastigheden for hver strækning (s) vi målte. Vi lavede nu et fit for, hvor hvert målepunkt vægtedes efter dets pågældende standardafvigelse ( ). Vores resultat blev en værdi for k på. Denne konstant, k, måtte være. Standardafvigelsen bliver Beregnet acceleration: Beregning af tyngdeaccelerationen: Ved at indsætte vores beregnede værdi af accelerationen i formlen for tyngdeaccelerationen, og beregne usikkerheden med error propagation formula (hvor vi antager at alle parametrene er uafhængige) får vi følgende værdi for tyngdeaccelerationen:

5 (udregninger er på det vedlagte Mapleark (20)-(25)) Konklusion: Vi har altså nået frem til to resultater: Dels en beregnet acceleration som vi kan sammenligne med den teoretisk forventede: Som man kan se ligger vores beregnede værdi af a og den teoretiske værdi indenfor en standardafvigelse af hinanden. Vores beregnede resultat er altså konsistent med det teoretisk forventede. Da vi forventer at en evt. fejlkilde, som opstår ved, at kuglen ikke ruller uden at glide, ville optræde som en konstant afvigelse fra accelerationen, kan vi derfor ikke konkludere at dette har haft nogen indflydelse. Ligeledes er vi nået frem til en beregnet værdi af tyngdeaccelerationen som vi kan sammenligne med den værdi af tyngdeaccelerationen som vi forventer i Danmark: Den forventede værdi af tyngdeaccelerationen ligger altså indenfor to standardafvigelser af vores beregnede værdi. Dette kunne tyde på at der er nogle fejlkilder som forstyrrer vores resultat (selvom der dog er 32 % sandsynlighed for at den teoretiske værdi ligger indenfor to standardafvigelser).

6 Vi har her plottet hvor meget de enkelte målepunkter afviger fra fittede funktion af hastigheden mod strækning: Der ser altså ud til at være en systematisk fejlkilde, som korrelerer hastighed med strækning. Vi forventer som nævnt i afsnittet om usikkerheder, at dette skyldes luftmodstanden, som stiger efterhånden som kuglens hastighed stiger. Skulle vores målinger forbedres vil vi foreslå at man forsøgte at minimere luftmodstanden. En mindre kugle ville måske være mindre påvirket. Ellers skulle forsøget udføres i et vakuum.

Tallene angivet i rapporten som kronologiske punkter refererer til de i opgaven stillede spørgsmål.

Tallene angivet i rapporten som kronologiske punkter refererer til de i opgaven stillede spørgsmål. Labøvelse 2, fysik 2 Uge 47, Kalle, Max og Henriette Tallene angivet i rapporten som kronologiske punkter refererer til de i opgaven stillede spørgsmål. 1. Vi har to forskellige størrelser: a: en skive

Læs mere

Skråplan. Dan Elmkvist Albrechtsen, Edin Ikanović, Joachim Mortensen. 8. januar Hold 4, gruppe n + 1, n {3}, uge 50-51

Skråplan. Dan Elmkvist Albrechtsen, Edin Ikanović, Joachim Mortensen. 8. januar Hold 4, gruppe n + 1, n {3}, uge 50-51 Skråplan Dan Elkvist Albrechtsen, Edin Ikanović, Joachi Mortensen Hold 4, gruppe n + 1, n {3}, uge 50-51 8. januar 2008 Figurer Sider ialt: 5 Indhold 1 Forål 3 2 Teori 3 3 Fregangsåde 4 4 Resultatbehandling

Læs mere

KØBENHAVNS UNIVERSITET NATURVIDENSKABELIG BACHELORUDDANNELSE

KØBENHAVNS UNIVERSITET NATURVIDENSKABELIG BACHELORUDDANNELSE KØBENHAVNS UNIVERSITET NATURVIDENSKABELIG BACHELORUDDANNELSE Fysik 2, Klassisk Mekanik 2 Skriftlig eksamen 16. april 2009 Tilladte hjælpemidler: Medbragt litteratur, noter og lommeregner Besvarelsen må

Læs mere

INERTIMOMENT for stive legemer

INERTIMOMENT for stive legemer Projekt: INERTIMOMENT for stive legemer Formålet med projektet er at træne integralregning og samtidig se en ikke-triviel anvendelse i fysik. 0. Definition af inertimoment Inertimomentet angives med bogstavet

Læs mere

KØBENHAVNS UNIVERSITET NATURVIDENSKABELIG BACHELORUDDANNELSE

KØBENHAVNS UNIVERSITET NATURVIDENSKABELIG BACHELORUDDANNELSE KØBENHAVNS UNIVERSITET NATURVIDENSKABELIG BACHELORUDDANNELSE Fysik 2, Klassisk mekanik 2 - ny og gammel ordning Skriftlig eksamen 25. januar 2008 Tillae hjælpemidler: Medbragt litteratur, noter og lommeregner

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet Danmarks Tekniske Universitet Side 1 af 4 sider Skriftlig prøve, den 29. maj 2006 Kursus navn: Fysik 1 Kursus nr. 10022 Tilladte hjælpemidler: Alle "Vægtning": Eksamenssættet vurderes samlet. Alle svar

Læs mere

Matematik. Formlen for en Kugle: 3 V = 4/3»r *n. Formlen for et Kugleafsnit: Formlen for en Keglestub: 2 2 V =n/3»h»(r + r + R*r)

Matematik. Formlen for en Kugle: 3 V = 4/3»r *n. Formlen for et Kugleafsnit: Formlen for en Keglestub: 2 2 V =n/3»h»(r + r + R*r) Matematik Vi har fået til opgave at bygge en ballon hvis volume mindst må være 1,2 Kubikmeter og max 1,5 kubikmeter. Så for at løse dette problem valgte vi at finde formlerne for en kugle, kugleafsnit

Læs mere

Theory Danish (Denmark)

Theory Danish (Denmark) Q1-1 To mekanikopgaver (10 points) Læs venligst den generelle vejledning i en anden konvolut inden du går i gang. Del A. Den skjulte metalskive (3.5 points) Vi betragter et sammensat legeme bestående af

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet Danmarks Tekniske Universitet Side 1 af 13 sider Skriftlig prøve, lørdag den 23. maj, 2015 Kursus navn Fysik 1 Kursus nr. 10916 Varighed: 4 timer Tilladte hjælpemidler: Alle hjælpemidler tilladt "Vægtning":

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet Danmarks Tekniske Universitet Side 1 af 8 sider Skriftlig prøve, den 24. maj 2005 Kursus navn: Fysik 1 Kursus nr.: 10022 Tilladte hjælpemidler: Alle hjælpemidler tilladt. "Vægtning": Besvarelsen vægtes

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet Danmarks Tekniske Universitet Side 1 af 11 sider Skriftlig prøve, lørdag den 22. august, 2015 Kursus navn Fysik 1 Kursus nr. 10916 Varighed: 4 timer Tilladte hjælpemidler: Alle hjælpemidler tilladt "Vægtning":

Læs mere

Aalborg Universitet. Skriftlig eksamen i Grundlæggende Mekanik og Termodynamik. Torsdag d. 7. august 2014 kl

Aalborg Universitet. Skriftlig eksamen i Grundlæggende Mekanik og Termodynamik. Torsdag d. 7. august 2014 kl Aalborg Universitet Skriftlig eksamen i Grundlæggende Mekanik og Termodynamik Torsdag d. 7. august 2014 kl. 9 00-13 00 Ved bedømmelsen vil der blive lagt vægt på argumentationen (som bør være kort og præcis),

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet Danmarks Tekniske Universitet Side 1 af 9 sider Skriftlig prøve, torsdag den 24. maj, 2007, kl. 9:00-13:00 Kursus navn: Fysik 1 Kursus nr. 10022 Tilladte hjælpemidler: Alle hjælpemidler er tilladt. "Vægtning":

Læs mere

Aalborg Universitet. Skriftlig eksamen i Grundlæggende Mekanik og Termodynamik. Mandag d. 11. juni 2012 kl. 9 00-13 00

Aalborg Universitet. Skriftlig eksamen i Grundlæggende Mekanik og Termodynamik. Mandag d. 11. juni 2012 kl. 9 00-13 00 Aalborg Universitet Skriftlig eksamen i Grundlæggende Mekanik og Termodynamik Mandag d. 11. juni 2012 kl. 9 00-13 00 Ved bedømmelsen vil der blive lagt vægt på argumentationen (som bør være kort og præcis),

Læs mere

Aalborg Universitet. Skriftlig eksamen i Grundlæggende Mekanik og Termodynamik. Torsdag d. 8. august 2013 kl

Aalborg Universitet. Skriftlig eksamen i Grundlæggende Mekanik og Termodynamik. Torsdag d. 8. august 2013 kl Aalborg Universitet Skriftlig eksamen i Grundlæggende Mekanik og Termodynamik Torsdag d. 8. august 2013 kl. 9 00 13 00 Ved bedømmelsen vil der blive lagt vægt på argumentationen (som bør være kort og præcis),

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet Danmarks Tekniske Universitet Side 1 af 10 sider Skriftlig prøve, lørdag den 23. maj, 2015 Kursus navn Fysik 1 Kursus nr. 10916 Varighed: 4 timer Tilladte hjælpemidler: Alle hjælpemidler tilladt "Vægtning":

Læs mere

Kræfter og Energi. Nedenstående sammenhæng mellem potentiel energi og kraft er fundamental og anvendes indenfor mange af fysikkens felter.

Kræfter og Energi. Nedenstående sammenhæng mellem potentiel energi og kraft er fundamental og anvendes indenfor mange af fysikkens felter. Kræfter og Energi Jacob Nielsen 1 Nedenstående sammenhæng mellem potentiel energi og kraft er fundamental og anvendes indenfor mange af fysikkens felter. kraften i x-aksens retning hænger sammen med den

Læs mere

Aalborg Universitet. Skriftlig eksamen i Grundlæggende Mekanik og Termodynamik. Torsdag d. 9. juni 2011 kl

Aalborg Universitet. Skriftlig eksamen i Grundlæggende Mekanik og Termodynamik. Torsdag d. 9. juni 2011 kl Aalborg Universitet Skriftlig eksamen i Grundlæggende Mekanik og Termodynamik Torsdag d. 9. juni 2011 kl. 9 00-13 00 Ved bedømmelsen vil der blive lagt vægt på argumentationen (som bør være kort og præcis),

Læs mere

KØBENHAVNS UNIVERSITET NATURVIDENSKABELIG BACHELORUDDANNELSE

KØBENHAVNS UNIVERSITET NATURVIDENSKABELIG BACHELORUDDANNELSE KØBENHAVNS UNIVERSITET NATURVIDENSKABELIG BACHELORUDDANNELSE Fysik 2, Klassisk Mekanik 2 Skriftlig eksamen 23. januar 2009 Tilladte hjælpemidler: Medbragt litteratur, noter og lommeregner Besvarelsen må

Læs mere

Det skrå kåst. Af Allan Tobias Langhoff, Nikolaj Egholk Jakobsen og Suayb Köse

Det skrå kåst. Af Allan Tobias Langhoff, Nikolaj Egholk Jakobsen og Suayb Köse Det skrå kåst Af Allan Tobias Langhoff, Nikolaj Egholk Jakobsen og Suayb Köse 19/12-2012 Matematik Opstil stedfunktionen s x (t) og s y (t) for den lodrette og den vandrette bevægelse, som funktion af

Læs mere

Måling af turbulent strømning

Måling af turbulent strømning Måling af turbulent strømning Formål Formålet med at måle hastighedsprofiler og fluktuationer i en turbulent strømning er at opnå et tilstrækkeligt kalibreringsgrundlag til modellering af turbulent strømning

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet Danmarks Tekniske Universitet Side 1 af 11 sider Skriftlig prøve, lørdag den 12. december, 2015 Kursus navn Fysik 1 Kursus nr. 10916 Varighed: 4 timer Tilladte hjælpemidler: Alle hjælpemidler tilladt "Vægtning":

Læs mere

Studieretningsopgave

Studieretningsopgave Virum Gymnasium Studieretningsopgave Harmoniske svingninger i matematik og fysik Vejledere: Christian Holst Hansen (matematik) og Bodil Dam Heiselberg (fysik) 30-01-2014 Indholdsfortegnelse Indledning...

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet Danmarks Tekniske Universitet Side 1 af 11 Skriftlig prøve, torsdag den 8 maj, 009, kl 9:00-13:00 Kursus navn: Fysik 1 Kursus nr 100 Tilladte hjælpemidler: Alle hjælpemidler er tilladt "Vægtning": Besvarelsen

Læs mere

5: Trigonometri Den del af matematik, der beskæftiger sig med figurer og deres egenskaber, kaldes for geometri. Selve

5: Trigonometri Den del af matematik, der beskæftiger sig med figurer og deres egenskaber, kaldes for geometri. Selve 5: Trigonometri Den del af matematik, der beskæftiger sig med figurer og deres egenskaber, kaldes for geometri. Selve ordet geometri er græsk og betyder jord(=geo)måling(=metri). Interessen for figurer

Læs mere

Newtons love - bevægelsesligninger - øvelser. John V Petersen

Newtons love - bevægelsesligninger - øvelser. John V Petersen Newtons love - bevægelsesligninger - øvelser John V Petersen Newtons love 2016 John V Petersen art-science-soul Indhold 1. Indledning og Newtons love... 4 2. Integration af Newtons 2. lov og bevægelsesligningerne...

Læs mere

Eksamensspørgsmål: Trekantberegning

Eksamensspørgsmål: Trekantberegning Eksamensspørgsmål: Trekantberegning Indhold Definition af Sinus og Cosinus... 1 Bevis for Sinus- og Cosinusformlerne... 3 Tangens... 4 Pythagoras s sætning... 4 Arealet af en trekant... 7 Vinkler... 8

Læs mere

GeoGebra. Tegn følgende i Geogebra. Indsæt tegningen fra geogebra. 1. Indsæt punkterne: (2,3) (-2, 4) (-3, -4,5)

GeoGebra. Tegn følgende i Geogebra. Indsæt tegningen fra geogebra. 1. Indsæt punkterne: (2,3) (-2, 4) (-3, -4,5) Tegn følgende i Geogebra 1. Indsæt punkterne: (2,3) (-2, 4) (-3, -4,5) Forbind disse tre punker (brug polygon ) 2. Find omkreds, vinkler, areal og sidelængder 3. Tegn en vinkelret linje fra A og ned på

Læs mere

Harmonisk oscillator. Dan Elmkvist Albrechtsen, Edin Ikanović, Joachim Mortensen Hold 4, gruppe n + 1, n {3}, uge 46-47

Harmonisk oscillator. Dan Elmkvist Albrechtsen, Edin Ikanović, Joachim Mortensen Hold 4, gruppe n + 1, n {3}, uge 46-47 Harmonisk oscillator Dan Elmkvist Albrechtsen, Edin Ikanović, Joachim Mortensen Hold 4, gruppe n + 1, n {3}, uge 46-47 28. november 2007 Indhold 1 Formål 2 2 Teori 2 3 Fremgangsmåde 3 4 Resultatbehandling

Læs mere

Resonans 'modes' på en streng

Resonans 'modes' på en streng Resonans 'modes' på en streng Indhold Elektrodynamik Lab 2 Rapport Fysik 6, EL Bo Frederiksen (bo@fys.ku.dk) Stanislav V. Landa (stas@fys.ku.dk) John Niclasen (niclasen@fys.ku.dk) 1. Formål 2. Teori 3.

Læs mere

Nb: der kan komme mindre justeringer af denne plan.

Nb: der kan komme mindre justeringer af denne plan. Efterårets øvelser, blok 2 Fysik2 Introduktion Fysik 2 øvelser består af 3 øvelser hvori der indgår måling af de fundamentale størrelser: længde, tid og masse. Alle øvelserne handler på en eller anden

Læs mere

Formålet med dette forsøg er at lave en karakteristik af et 4,5 V batteri og undersøge dets effektforhold.

Formålet med dette forsøg er at lave en karakteristik af et 4,5 V batteri og undersøge dets effektforhold. Formål Formålet med dette forsøg er at lave en karakteristik af et 4,5 V batteri og undersøge dets effektforhold. Teori Et batteri opfører sig som en model bestående af en ideel spændingskilde og en indre

Læs mere

Aalborg Universitet. Skriftlig eksamen i Grundlæggende Mekanik og Termodynamik. Tirsdag d. 11. august 2015 kl

Aalborg Universitet. Skriftlig eksamen i Grundlæggende Mekanik og Termodynamik. Tirsdag d. 11. august 2015 kl Aalborg Universitet Skriftlig eksamen i Grundlæggende Mekanik og Termodynamik Tirsdag d. 11. august 2015 kl. 9 00-13 00 Ved bedømmelsen vil der blive lagt vægt på argumentationen (som bør være kort og

Læs mere

Aalborg Universitet. Skriftlig eksamen i Grundlæggende Mekanik og Termodynamik. Tirsdag d. 27. maj 2014 kl

Aalborg Universitet. Skriftlig eksamen i Grundlæggende Mekanik og Termodynamik. Tirsdag d. 27. maj 2014 kl Aalborg Universitet Skriftlig eksamen i Grundlæggende Mekanik og Termodynamik Tirsdag d. 27. maj 2014 kl. 9 00-13 00 Ved bedømmelsen vil der blive lagt vægt på argumentationen (som bør være kort og præcis),

Læs mere

FYSIK RAPPORT. Fysiske Kræfter. Tim, Emil, Lasse & Kim

FYSIK RAPPORT. Fysiske Kræfter. Tim, Emil, Lasse & Kim FYSIK RAPPORT Fysiske Kræfter Tim, Emil, Lasse & Kim Indhold Indledning... 2 Newtons love... 3 1. Lov: Inertiloven... 3 2. Lov: Kraftloven... 3 3. Lov: Loven om aktion/reaktion... 3 Kræfter... 4 Formler:...

Læs mere

Oscillator. Af: Alexander Rosenkilde Alexander Bork Christian Jensen

Oscillator. Af: Alexander Rosenkilde Alexander Bork Christian Jensen Oscillator Af: Alexander Rosenkilde Alexander Bork Christian Jensen Oscillator øvelse Formål Øvelse med oscillator, hvor frekvensen bestemmes, for den frie og dæmpede svingning. Vi vil tilnærme data fra

Læs mere

Fysik i billard. Erik Vestergaard

Fysik i billard. Erik Vestergaard Fysik i billard Erik Vestergaard 2 Erik Vestergaard www.matematikfysik.dk Erik Vestergaard, 2010. Billeder: Forside: istock.com/aviad Desuden egne illustrationer Erik Vestergaard www.matematikfysik.dk

Læs mere

Dynamik. 1. Kræfter i ligevægt. Overvejelser over kræfter i ligevægt er meget vigtige i den moderne fysik.

Dynamik. 1. Kræfter i ligevægt. Overvejelser over kræfter i ligevægt er meget vigtige i den moderne fysik. M4 Dynamik 1. Kræfter i ligevægt Overvejelser over kræfter i ligevægt er meget vigtige i den moderne fysik. Fx har nøglen til forståelsen af hvad der foregår i det indre af en stjerne været betragtninger

Læs mere

Faldmaskine. Esben Bork Hansen Amanda Larssen Martin Sven Qvistgaard Christensen. 23. november 2008

Faldmaskine. Esben Bork Hansen Amanda Larssen Martin Sven Qvistgaard Christensen. 23. november 2008 Faldmakine Eben Bork Hanen Amanda Laren Martin Sven Qvitgaard Chritenen 23. november 2008 Indhold Formål 3 2 Optilling 3 2. Materialer............................... 3 2.2 Optilling...............................

Læs mere

David Kallestrup, Aarhus School of Engineering, SRP-forløb ved Maskinteknisk retning 1

David Kallestrup, Aarhus School of Engineering, SRP-forløb ved Maskinteknisk retning 1 1 Pendul David Kallestrup, Aarhus School of Engineering, SRP-forløb ved Maskinteknisk retning 1 1.1 Hvad er et pendul? En matematiker og en ingeniør ser tit ens på mange ting, men ofte er der forskelle

Læs mere

RKS Yanis E. Bouras 21. december 2010

RKS Yanis E. Bouras 21. december 2010 Indhold 0.1 Indledning.................................... 1 0.2 Løsning af 2. ordens linære differentialligninger................ 2 0.2.1 Sætning 0.2............................... 2 0.2.2 Bevis af sætning

Læs mere

KØBENHAVNS UNIVERSITET NATURVIDENSKABELIG BACHELORUDDANNELSE

KØBENHAVNS UNIVERSITET NATURVIDENSKABELIG BACHELORUDDANNELSE KØBENHAVNS UNIVERSITET NATURVIDENSKABELIG BACHELORUDDANNELSE Fysik 2, Klassisk mekanik 2 - ny og gammel ordning Vejledende eksamensopgaver 16. januar 2008 Tilladte hjælpemidler: Medbragt litteratur, noter

Læs mere

Matematik A-niveau 22. maj 2015 Delprøve 2. Løst af Anders Jørgensen og Saeid Jafari

Matematik A-niveau 22. maj 2015 Delprøve 2. Løst af Anders Jørgensen og Saeid Jafari Matematik A-niveau 22. maj 2015 Delprøve 2 Løst af Anders Jørgensen og Saeid Jafari Opgave 7 - Analytisk Plangeometri Delopgave a) Vi starter ud med at undersøge afstanden fra punktet P(5,4) til linjen

Læs mere

Relativitetsteori. Henrik I. Andreasen Foredrag afholdt i matematikklubben Eksponenten Thisted Gymnasium 2015

Relativitetsteori. Henrik I. Andreasen Foredrag afholdt i matematikklubben Eksponenten Thisted Gymnasium 2015 Relativitetsteori Henrik I. Andreasen Foredrag afholdt i matematikklubben Eksponenten Thisted Gymnasium 2015 Koordinattransformation i den klassiske fysik Hvis en fodgænger, der står stille i et lyskryds,

Læs mere

Bevægelse i to dimensioner

Bevægelse i to dimensioner Side af 7 Bevægelse i to dimensioner Når man beskriver bevægelse i to dimensioner, som funktion af tiden, ser man bevægelsen som var den i et almindeligt koordinatsystem (med x- og y-akse). Ud fra dette

Læs mere

Svingningsrapport. Projektopgave 2, 41035 Dynamik og Svingninger Danmarks Tekniske Universitet Jakob Wulff Andersen, s112985

Svingningsrapport. Projektopgave 2, 41035 Dynamik og Svingninger Danmarks Tekniske Universitet Jakob Wulff Andersen, s112985 Projektopgave 2, 41035 Dynamik og Svingninger Danmarks Tekniske Universitet Jakob Wulff Andersen, s112985 Opgaverne er udregnet i samarbejde med Thomas Salling, s110579 og Mikkel Seibæk, s112987. 11/12-2012

Læs mere

C) Perspektiv jeres kommunes resultater vha. jeres svar på spørgsmål b1 og b2.

C) Perspektiv jeres kommunes resultater vha. jeres svar på spørgsmål b1 og b2. C) Perspektiv jeres kommunes resultater vha. jeres svar på spørgsmål b1 og b. 5.000 4.800 4.600 4.400 4.00 4.000 3.800 3.600 3.400 3.00 3.000 1.19% 14.9% 7.38% 40.48% 53.57% 66.67% 79.76% 9.86% 010 011

Læs mere

Matlab script - placering af kran

Matlab script - placering af kran Matlab script - placering af kran 1 Til at beregne den ideelle placering af kranen hos MSK, er der gjort brug af et matlab script. Igennem dette kapitel vil opbygningen af dette script blive gennemgået.

Læs mere

Opgave 1 10. Opgave 2 Andengradsligningen løses, idet. Opgave 3. 11 er en løsning til ligningen, da:

Opgave 1 10. Opgave 2 Andengradsligningen løses, idet. Opgave 3. 11 er en løsning til ligningen, da: 7. marts 0 FVU AVU HF X FAG : Matematik B ark nr. antal ark 8 Opgave 0 a b 5 a b 5 = b 3 er en løsning til ligningen, da: = 9 = 3 Opgave Andengradsligningen løses, idet a = b = 3 c = 4 d (diskriminanten)

Læs mere

Her skal vi se lidt på de kræfter, der påvirker en pil når den affyres og rammer sit mål.

Her skal vi se lidt på de kræfter, der påvirker en pil når den affyres og rammer sit mål. a. Buens opbygning Her skal vi se lidt på de kræfter, der påvirker en pil når den affyres og rammer sit mål. Buen påvirker pilen med en varierende kraft, der afhænger meget af buens opbygning. For det

Læs mere

Kapitel 4. Trigonometri. Matematik C (må anvendes på Ørestad Gymnasium) Kapitel 4

Kapitel 4. Trigonometri. Matematik C (må anvendes på Ørestad Gymnasium) Kapitel 4 Matematik C (må anvendes på Ørestad Gymnasium) Trigonometri Den del af matematik, der beskæftiger sig med figurer og deres egenskaber, kaldes for geometri. Selve ordet geometri er græsk og betyder jord(=geo)måling(=metri).

Læs mere

Aalborg Universitet. Skriftlig eksamen i Grundlæggende Mekanik og Termodynamik. Tirsdag d. 31. maj 2016 kl

Aalborg Universitet. Skriftlig eksamen i Grundlæggende Mekanik og Termodynamik. Tirsdag d. 31. maj 2016 kl Aalborg Universitet Skriftlig eksamen i Grundlæggende Mekanik og Termodynamik Tirsdag d. 31. maj 2016 kl. 9 00-13 00 Ved bedømmelsen vil der blive lagt vægt på argumentationen (som bør være kort og præcis),

Læs mere

FY01 Obligatorisk laboratorieøvelse. Matematisk Pendul. Jacob Christiansen Afleveringsdato: 10. april 2003 Morten Olesen Andreas Lyder

FY01 Obligatorisk laboratorieøvelse. Matematisk Pendul. Jacob Christiansen Afleveringsdato: 10. april 2003 Morten Olesen Andreas Lyder FY01 Obligatorisk laboratorieøvelse Matematisk Pendul Hold E: Hold: D12 Jacob Christiansen Afleveringsdato: 10. april 2003 Morten Olesen Andreas Lyder Indholdsfortegnelse Indholdsfortegnelse 1 Formål...3

Læs mere

Vejledende besvarelse

Vejledende besvarelse Ib Michelsen Svar: stx B 29. maj 2013 Side 1 1. Udfyld tabellen Vejledende besvarelse Givet funktionen f (x)=4 5 x beregnes f(2) f (2)=4 5 2 =4 25=100 Den udfyldte tabel er derfor: x 0 1 2 f(x) 4 20 100

Læs mere

Opgave 1 - Lineær Funktioner. Opgave 2 - Funktioner. Opgave 3 - Tredjegradsligning

Opgave 1 - Lineær Funktioner. Opgave 2 - Funktioner. Opgave 3 - Tredjegradsligning Sh*maa03 1508 Matematik B->A, STX Anders Jørgensen, delprøve 1 - Uden hjælpemidler Følgende opgaver er regnet i hånden, hvorefter de er skrevet ind på PC. Opgave 1 - Lineær Funktioner Vi ved, at år 2001

Læs mere

Aalborg Universitet. Skriftlig eksamen i Grundlæggende Mekanik og Termodynamik. Tirsdag d. 2. juni 2015 kl

Aalborg Universitet. Skriftlig eksamen i Grundlæggende Mekanik og Termodynamik. Tirsdag d. 2. juni 2015 kl Aalborg Universitet Skriftlig eksamen i Grundlæggende Mekanik og Termodynamik Tirsdag d. 2. juni 2015 kl. 9 00-13 00 Ved bedømmelsen vil der blive lagt vægt på argumentationen (som bør være kort og præcis),

Læs mere

Den frie og dæmpede oscillator

Den frie og dæmpede oscillator Ida Nissen - 80385 Maria Wulff - 140384 Jacob Bjerregaard - 7098 Morten Badensø - 40584 Fysik Lab.øvelser Uge Den frie og dæmpede oscillator Formål Formålet med denne øvelse er at studere den harmoniske

Læs mere

Matematik for malere. praktikopgaver. Tegneopgave Ligninger Areal Materialeberegning Procent Rumfang og massefylde Trekantberegninger.

Matematik for malere. praktikopgaver. Tegneopgave Ligninger Areal Materialeberegning Procent Rumfang og massefylde Trekantberegninger. Matematik for malere praktikopgaver 3 Tilhører: Tegneopgave Ligninger Areal Materialeberegning Procent Rumfang og massefylde Trekantberegninger 2 Indhold: Tegneopgave... side 4 Ligninger... side 8 Areal...

Læs mere

Enkelt og dobbeltspalte

Enkelt og dobbeltspalte Enkelt og dobbeltsalte Jan Scholtyßek 4.09.008 Indhold 1 Indledning 1 Formål 3 Teori 3.1 Enkeltsalte.................................. 3. Dobbeltsalte................................. 3 4 Fremgangsmåde

Læs mere

Mini SRP. Afkøling. Klasse 2.4. Navn: Jacob Pihlkjær Hjortshøj, Jonatan Geysner Hvidberg og Kevin Høst Husted

Mini SRP. Afkøling. Klasse 2.4. Navn: Jacob Pihlkjær Hjortshøj, Jonatan Geysner Hvidberg og Kevin Høst Husted Mini SRP Afkøling Klasse 2.4 Navn: Jacob Pihlkjær Lærere: Jørn Christian Bendtsen og Karl G Bjarnason Roskilde Tekniske Gymnasium SO Matematik A og Informations teknologi B Dato 31/3/2014 Forord Under

Læs mere

Projektopgave Observationer af stjerneskælv

Projektopgave Observationer af stjerneskælv Projektopgave Observationer af stjerneskælv Af: Mathias Brønd Christensen (20073504), Kristian Jerslev (20072494), Kristian Mads Egeris Nielsen (20072868) Indhold Formål...3 Teori...3 Hvorfor opstår der

Læs mere

Løsninger til udvalgte opgaver i opgavehæftet

Løsninger til udvalgte opgaver i opgavehæftet V3. Marstal solvarmeanlæg a) Den samlede effekt, som solfangeren tilføres er Solskinstiden omregnet til sekunder er Den tilførte energi er så: Kun af denne er nyttiggjort, så den nyttiggjorte energi udgør

Læs mere

1. Kræfter. 2. Gravitationskræfter

1. Kræfter. 2. Gravitationskræfter 1 M1 Isaac Newton 1. Kræfter Vi vil starte med at se på kræfter. Vi ved fra vores hverdag, at der i mange daglige situationer optræder kræfter. Skal man fx. cykle op ad en bakke, bliver man nødt til at

Læs mere

Lysets fysik Optiske fibre P0 projekt

Lysets fysik Optiske fibre P0 projekt Lysets fysik Optiske fibre P0 projekt Forsidebillede: En oplyst plexiglasleder hvorpå gruppens navn er skrevet [1] Titel: Optiske fibre Tema: Lysets fysik Projektperiode: 01/09 18/09 2015 Projektgruppe:

Læs mere

Elektron- og lysdiffraktion

Elektron- og lysdiffraktion Elektron- og lysdiffraktion Fysik 8: Kvantemekanik II Joachim Mortensen, Michael Olsen, Edin Ikanović, Nadja Frydenlund 19. marts 2009 1 Elektron-diffraktion 1.1 Indledning og kort teori Formålet med denne

Læs mere

Opgave 1 Til denne opgave anvendes bilag 1.

Opgave 1 Til denne opgave anvendes bilag 1. Opgave 1 Til denne opgave anvendes bilag 1. a) Undersøg figur 1. Mål og noter vinklerne Mål og noter længderne b) Undersøg figur 2. Mål og noter vinklerne Mål og noter længderne c) Undersøg figur 3. Mål

Læs mere

FORSØGSVEJLEDNING. Kasteparablen

FORSØGSVEJLEDNING. Kasteparablen Fysik i idræt - Idræt i fysik 006 FORSØGSVEJLEDNING Kasteparablen Formål: At bestemme kastelængden (x-positionen) for kast ed forskellige afleeringsinkler: o Ca. 30 o. o Ca. 45 o. o Ca. 60 o. og ed brug

Læs mere

Hastighedsprofiler og forskydningsspænding

Hastighedsprofiler og forskydningsspænding Hastighedsprofiler og forskydningsspænding Formål Formålet med de gennemførte forsøg er at anvende og sammenligne 3 metoder til bestemmelse af bndforskydningsspændingen i strømningsrenden. Desden er formålet,

Læs mere

Figur 1: Kraftpåvirkning af vingeprol

Figur 1: Kraftpåvirkning af vingeprol 0.1 Aerodynamik 0.1. AERODYNAMIK I dette afsnit opstilles en matematisk model for de kræfter, der virker på en vingeprol. Disse kræfter kan få rotoren til at rotere og kan anvendes til at krøje nacellen,

Læs mere

Trigonometri at beregne Trekanter

Trigonometri at beregne Trekanter Trigonometri at beregne Trekanter Pythagoras, en stor matematiker fandt ud af, at der i en retvinklet trekant summen af kvadraterne på kateterne er lig med kvadratet på hypotenusen. ( a 2 + b 2 = c 2 )

Læs mere

Grundlæggende Opgaver

Grundlæggende Opgaver Grundlæggende Opgaver Opgave 1 En retvinklet trekant har sine vinkelspidser i (,4),(4, 4) og (, 4). a) Hvor store er kateterne? b) Hvor store er hypotenusen? c) Beregn trekantens areal. d) Bestem kateterne,

Læs mere

Bevægelse op ad skråplan med ultralydssonde.

Bevægelse op ad skråplan med ultralydssonde. Bevægelse op ad skråplan med ultralydssonde. Formål: a) At finde en formel for accelerationen i en bevægelse op ad et skråplan, og at prøve at eftervise denne formel, ud fra en lille vinkel og vægtskål

Læs mere

Det teknisk-naturvidenskabelige basisår Matematik 1A, Efterår 2005, Hold 3 Prøveopgave A

Det teknisk-naturvidenskabelige basisår Matematik 1A, Efterår 2005, Hold 3 Prøveopgave A Det teknisk-naturvidenskabelige basisår Matematik 1A, Efterår 2005, Hold 3 Prøveopgave A Opgaven består af tre dele, hver med en række spørgsmål, efterfulgt af en liste af teorispørgsmål. I alle opgavespørgsmålene

Læs mere

Opgave 1 - Eksponentiel funktion/procent og renter

Opgave 1 - Eksponentiel funktion/procent og renter Alle beregninger er, hvis ikke andet angivet, udført med WordMat. Opgave 1 - Eksponentiel funktion/procent og renter Jeg vil nu finde ud af hvor stort et beløb der står på kontoen efter 1 år med en starts

Læs mere

Analysestrategi. Lektion 7 slides kompileret 27. oktober 200315:24 p.1/17

Analysestrategi. Lektion 7 slides kompileret 27. oktober 200315:24 p.1/17 nalysestrategi Vælg statistisk model. Estimere parametre i model. fx. lineær regression Udføre modelkontrol beskriver modellen data tilstrækkelig godt og er modellens antagelser opfyldte fx. vha. residualanalyse

Læs mere

Matematiske hjælpemidler. Koordinater. 2.1 De mange bredder.

Matematiske hjælpemidler. Koordinater. 2.1 De mange bredder. 2. Matematiske hjælpemidler. Koordinater. 2.1 De mange bredder. 2.1 I Figur 1.1 i kapitel 1 er der vist et ideelt Kartesiske eller Euklidiske koordinatsystem, med koordinater ( X, Y, Z) = ( X 1, X 2, X

Læs mere

cvbnmrtyuiopasdfghjklæøzxcvbnmq wertyuiopåasdfghjklæøzxcvbnmqw ertyuiopåasdfghjklæøzxcvbnmqwer tyuiopåasdfghjklæøzxcvbnmqwerty

cvbnmrtyuiopasdfghjklæøzxcvbnmq wertyuiopåasdfghjklæøzxcvbnmqw ertyuiopåasdfghjklæøzxcvbnmqwer tyuiopåasdfghjklæøzxcvbnmqwerty cvbnmrtyuiopasdfghjklæøzxcvbnmq wertyuiopåasdfghjklæøzxcvbnmqw ertyuiopåasdfghjklæøzxcvbnmqwer tyuiopåasdfghjklæøzxcvbnmqwerty Matematik Den kinesiske prøve uiopåasdfghjklæøzxcvbnmqwertyui 45 min 01 11

Læs mere

Vektorer i 3D. 1. Grundbegreber. 1. Koordinater. Enhedsvektorerne. Vektor OP. De ortogonale enhedsvektorer kaldes for: Hvis punkt p har koordinaterne:

Vektorer i 3D. 1. Grundbegreber. 1. Koordinater. Enhedsvektorerne. Vektor OP. De ortogonale enhedsvektorer kaldes for: Hvis punkt p har koordinaterne: Vektorer i 3D. Grundegreer. Koordinater z k P OP i 0 j x y Enhedsvektorerne De ortogonale enhedsvektorer kaldes for: i, j og k Vektor OP Hvis punkt p har koordinaterne: P ( a a a3 ) Så har vektor OP koordinaterne:

Læs mere

MATEMATIK ( 5 h ) DATO: 8. juni 2009

MATEMATIK ( 5 h ) DATO: 8. juni 2009 EUROPÆISK STUDENTEREKSAMEN 2009 MATEMATIK ( 5 h ) DATO: 8. juni 2009 PRØVENS VARIGHED: 4 timer (240 minutter) TILLADTE HJÆLPEMIDLER Europaskolernes formelsamling Ikke-grafisk, ikke-programmerbar lommeregner

Læs mere

Ib Michelsen Vejledende løsning stxb 101 1

Ib Michelsen Vejledende løsning stxb 101 1 Ib Michelsen Vejledende løsning stxb 101 1 Opgave 1 Løs ligningen: 3(2 x+1)=4 x+9 Løsning 3(2 x+1)=4 x+9 6 x+3=4 x+9 6 x+3 3=4 x+9 3 6 x=4 x+6 6x 4 x=4 x+6 4 x 2 x=6 2 x 2 = 6 2 x=3 Opgave 2 P(3,1) er

Læs mere

Kasteparabler i din idræt øvelse 1

Kasteparabler i din idræt øvelse 1 Kasteparabler i din idræt øvelse 1 Vi vil i denne første øvelse arbejde med skrå kast i din idræt. Du skal lave en optagelse af et hop, kast, spark eller slag af en person eller genstand. Herefter skal

Læs mere

Vinkelrette linjer. Frank Villa. 4. november 2014

Vinkelrette linjer. Frank Villa. 4. november 2014 Vinkelrette linjer Frank Villa 4. november 2014 Dette dokument er en del af MatBog.dk 2008-2012. IT Teaching Tools. ISBN-13: 978-87-92775-00-9. Se yderligere betingelser for brug her. Indhold 1 Introduktion

Læs mere

Evaluering af den skriftlige prøve i fysik A, htx, d. 4. juni 2008

Evaluering af den skriftlige prøve i fysik A, htx, d. 4. juni 2008 Peter Snoer Jensen, Ph.d. Fagkonsulent f. Fysik Htx, Afdelingen for gymnasiale uddannelser Indholdskontoret Frederiksholms Kanal 26 1220 København K. Direkte Tlf. 2565 9209 E-mail: peter.s.jensen@uvm.dk.

Læs mere

Løsningsforslag til fysik A eksamenssæt, 23. maj 2008

Løsningsforslag til fysik A eksamenssæt, 23. maj 2008 Løsningsforslag til fysik A eksamenssæt, 23. maj 2008 Kristian Jerslev 22. marts 2009 Geotermisk anlæg Det geotermiske anlæg Nesjavellir leverer varme til forbrugerne med effekten 300MW og elektrisk energi

Læs mere

Flemmings Maplekursus 1. Løsning af ligninger

Flemmings Maplekursus 1. Løsning af ligninger Flemmings Maplekursus 1. Løsning af ligninger a) Ligninger med variabel og kun en løsning. Ligningen løses 10 3 Hvis vi ønsker løsningen udtrykt som en decimalbrøk i stedet: 3.333333333 Løsningen 3 er

Læs mere

Viskositets indflydelse på dynamikken af en væskefyldt cylinder

Viskositets indflydelse på dynamikken af en væskefyldt cylinder Viskositets indflydelse på dynamikken af en væskefyldt cylinder Udarbejdet af: Casper Weile, Christian Kjeldbjerg Kristensen, Jesper Olsen, Kim Bonde Jensen, Mikkel Sakse Bennetsen og Nanna Kerlauge Projektrapport,

Læs mere

Vektorer og lineær regression. Peter Harremoës Niels Brock

Vektorer og lineær regression. Peter Harremoës Niels Brock Vektorer og lineær regression Peter Harremoës Niels Brock April 2013 1 Planproduktet Vi har set, at man kan gange en vektor med et tal. Et oplagt spørgsmål er, om man også kan gange to vektorer med hinanden.

Læs mere

TREKANTER. Indledning. Typer af trekanter. Side 1 af 7. (Der har været tre kursister om at skrive denne projektrapport)

TREKANTER. Indledning. Typer af trekanter. Side 1 af 7. (Der har været tre kursister om at skrive denne projektrapport) Side 1 af 7 (Der har været tre kursister om at skrive denne projektrapport) TREKANTER Indledning Vi har valgt at bruge denne projektrapport til at udarbejde en oversigt over det mest grundlæggende materiale

Læs mere

Den Naturvidenskabelige Bacheloreksamen Københavns Universitet. Fysik september 2006

Den Naturvidenskabelige Bacheloreksamen Københavns Universitet. Fysik september 2006 Den Naturvidenskabelige acheloreksamen Københavns Universitet Fysik 1-14. september 006 Første skriftlige evaluering 006 Opgavesættet består af 4 opgaver med i alt 9 spørgsmål. Skriv tydeligt navn og fødselsdato

Læs mere

Geometri, (E-opgaver 9d)

Geometri, (E-opgaver 9d) Geometri, (E-opgaver 9d) GEOMETRI, (E-OPGAVER 9D)... 1 Vinkler... 1 Trekanter... 2 Ensvinklede trekanter... 2 Retvinklede trekanter... 3 Pythagoras sætning... 3 Sinus, Cosinus og Tangens... 4 Vilkårlige

Læs mere

Repetition til eksamen. fra Thisted Gymnasium

Repetition til eksamen. fra Thisted Gymnasium Repetition til eksamen fra Thisted Gymnasium 20. oktober 2015 Kapitel 1 Introduktion til matematikken 1. Fortegn Husk fortegnsregnereglerne for multiplikation og division 2. Hierarki Lær sætningen om regnearternes

Læs mere

I kapitlet arbejdes med følgende centrale matematiske objekter og begreber:

I kapitlet arbejdes med følgende centrale matematiske objekter og begreber: INTRO Efter mange års pause er trigonometri med Fælles Mål 2009 tilbage som fagligt emne i grundskolens matematikundervisning. Som det fremgår af den følgende sides udpluk fra faghæftets trinmål, er en

Læs mere

Beregning til brug for opmåling, udfoldning og konstruktion

Beregning til brug for opmåling, udfoldning og konstruktion VVS-branchens efteruddannelse Beregning til brug for opmåling, udfoldning og konstruktion Beregning til brug for opmåling, udfoldning og konstruktion Med de trigonometriske funktioner, kan der foretages

Læs mere

Placering af vindmøller Denne øvelse er lavet af: Lavet af Martin Kaihøj, Jørgen Vind Villadsen og Dennis Noe. Rettet til af Dorthe Agerkvist.

Placering af vindmøller Denne øvelse er lavet af: Lavet af Martin Kaihøj, Jørgen Vind Villadsen og Dennis Noe. Rettet til af Dorthe Agerkvist. Placering af vindmøller Denne øvelse er lavet af: Lavet af Martin Kaihøj, Jørgen Vind Villadsen og Dennis Noe. Rettet til af Dorthe Agerkvist. Forudsætninger: funktioner (matematik) og primære vindsystemer

Læs mere

Peter Orthmann Nielsen og Jørgen Franck. Dansk Amatør Raket Klub

Peter Orthmann Nielsen og Jørgen Franck. Dansk Amatør Raket Klub Beregning af areal, volumen, massemidtpunkt og inertimomenter for en klasse af omdrejningslegemer med cirkelbuegeometri af Peter Orthmann Nielsen og Jørgen Franck Dansk Amatør Raket Klub Introduktion Denne

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet Danmarks Tekniske Universitet Side 1 af 9 sider Skriftlig prøve, lørdag den 13. december, 2014 Kursus navn Fysik 1 Kursus nr. 10916 Varighed: 4 timer Tilladte hjælpemidler: Alle tilladte hjælpemidler på

Læs mere

Det grafiske billede af en andengradsfunktion er altid en parabel. En parabels skæring med x-aksen kaldes nulpunkter eller rødder.

Det grafiske billede af en andengradsfunktion er altid en parabel. En parabels skæring med x-aksen kaldes nulpunkter eller rødder. Parabler En funktion med grundformlen y = ax 2 + bx + c kaldes en andengradsfunktion. Det grafiske billede af en andengradsfunktion er altid en parabel. 1. Hvis a = 0, er det ikke en andengradsfunktion.

Læs mere

VUC Vestsjælland Syd, Slagelse Nr. 1 Institution: Projekt Trigonometri

VUC Vestsjælland Syd, Slagelse Nr. 1 Institution: Projekt Trigonometri VUC Vestsjælland Syd, Slagelse Nr. 1 Institution: 333247 2015 Anders Jørgensen, Mark Kddafi, David Jensen, Kourosh Abady og Nikolaj Eriksen 1. Indledning I dette projekt, vil man kunne se definitioner

Læs mere

Brydningsloven og bestemmelse af brydningsindeks Fysikrapport, 5/9-2008

Brydningsloven og bestemmelse af brydningsindeks Fysikrapport, 5/9-2008 ROSKILDE TEKNISKE GYMNASIUM Brydningsloven og bestemmelse af brydningsindeks Fysikrapport, 5/9-2008 Louise Regitze Skotte Andersen, Klasse 2.4 Lærer: Ashuak Jacob France 2 Indhold Indledning... 3 Materialeliste...

Læs mere

Lærereksemplar. Kun til lærerbrug GEOMETRI 89. Kopiering er u-økonomisk og forbudt til erhvervsformål.

Lærereksemplar. Kun til lærerbrug GEOMETRI 89. Kopiering er u-økonomisk og forbudt til erhvervsformål. Kun salg ved direkte kontakt mellem skole og forlag. Kopiering er u-økonomisk og forbudt til erhvervsformål. GEOMETRI 89 Side Emne 1 Indholdsfortegnelse 2 Måling af vinkler 3 Tegning og måling af vinkler

Læs mere