Noter om opgaver i diskret matematik, Kirsten Rosenkilde, Maj Diskret matematik

Størrelse: px
Starte visningen fra side:

Download "Noter om opgaver i diskret matematik, Kirsten Rosenkilde, Maj Diskret matematik"

Transkript

1 Noter om opgaver i diskret matematik, Kirsten Rosenkilde, Maj Diskret matematik Disse noter er en introduktion til skuffeprincippet, grafteori, spilstrategier samt opgaver der kan løses ved farvelægning. 1 Skuffeprincippet Skuffeprincippet benytter de fleste helt intuitivt, og det hører egentlig ikke hjemme under noget bestemt emne, men benyttes i mange forskellige opgavetyper. Skuffeprincippet går ud på at hvis man har n + 1 bolde som man placerer i n skuffer, så findes der mindst en skuffe med mindst to bolde. 1.1 Eksempel Hvis 1100 mennesker er forsamlet så vil mindst 4 ifølge skuffeprincippet have fødselsdag samme dag da = 1098 < Eksempel Man kan også bruge skuffeprincippet til at vise at visse følger er periodiske fra et vist trin: Betragt følgen 1, 3, 6, 0, 9, 5, 4,... hvor det næste tal i følgen, fra og med det fjerde, er summen af de tre foregående modulo 10. Den må være periodisk fra et vist trin ifølge skuffeprincippet da der kun er endeligt mange kombinationer af tre cifre. 1.3 Eksempel I en vilkårlig delmængde af mængden M = {1, 2, 3,..., 100} med 15 elementer findes to talpar med samme differens: I delmængden er der nemlig i alt ( ) 15 2 = 105 forskellige talpar hvis differens er et helt tal mellem 1 og 99. Her er nogle eksempler på meget forskellige opgavetyper hvor man kan anvende skuffeprincippet. 1.4 Opgave Vis at hvis et 2 2 kvadrat indeholder 10 punkter, da vil der findes to punkter med afstand mindre end en. 1.5 Opgave Under en matematikforelæsning sover fem matematikere præcis to gange hver. De var alle vågne da forelæsningen startede, og for hvert par af matematikere var der et tidspunkt hvor de begge sov. Vis at der på et tidspunkt var mindst tre matematikere der sov samtidig. 1.6 Opgave Vis at uanset hvordan 15 punkter afsættes inden for en cirkel med radius 2 (cirkelranden medregnet), vil der eksistere en cirkel med radius 1 (cirkelranden medregnet) som indeholder mindst 3 af de 15 punkter. (Georg Mohr 91)

2 Noter om opgaver i diskret matematik, Kirsten Rosenkilde, Maj Opgave Ethvert punkt i planen er malet i en af n givne farver. Vis at der findes et rektangel hvis hjørner alle har samme farve. (Engel) 2 Grafteori I dette afsnit får du en meget kort introduktion til de vigtigste begreber i grafteori samt eksempler på opgavetyper inden for emnet. 2.1 Definition af graf En graf er et par bestående af en ikke-tom mængde af knuder (også kaldet hjørner eller punkter) samt en mængde af kanter, hvor hver kant forbinder to knuder med hinanden eller forbinder en knude med knuden selv. En kant der forbinder en knude med sig selv, kaldes en løkke. En knudes valens er det antal kanter der støder op til knuden, dog tæller en kant der går fra knuden til knuden selv, dobbelt. Bemærk at summen af samtlige punkters valens er lige da hver kant bidrager med to til summen. 2.2 Veje og sammenhængende grafer En vej (også kaldet en sti) er en følge af kanter e 1, e 2,... e n således at kant e k, 1 < k < n har den ene endeknude tilfælles med e k 1 og den anden med e k+1. En graf kaldes for sammenhængende hvis der for to vilkårlige knuder findes en vej fra den ene knude til den anden. 2.3 Eksempel Figur 1: Denne graf består af 6 knuder og 8 kanter, og knuden A har valens 3. Grafen er sammenhængende og indeholder fx en vej som består af seks kanter fra A til F. 2.4 Komplet graf En komplet graf er en graf hvor samtlige par af knuder er forbundet med netop en kant. En komplet graf med fx fire knuder har derfor ( 4 2) = 6 kanter, og en komplet graf med n kanter har ( n 2) kanter.

3 Noter om opgaver i diskret matematik, Kirsten Rosenkilde, Maj Eksempel på komplet graf med farvede kanter I en komplet graf med 6 knuder er samtlige kanter farvet enten blå eller røde. I dette eksempel vil vi vise at der uanset hvordan kanterne er farvede, altid findes tre knuder der er forbundet med kanter af samme farve. Vælg en tilfældig knude som vi kalder A. Da der fra A udgår fem kanter, udgår der mindst tre kanter med samme farve, lad os sige rød, til tre andre knuder. Hvis to af disse tre andre knuder er forbundet med en rød kant, danner de sammen med A tre knuder som er forbundet med kanter af samme farve. Hvis ikke, er disse tre knuder forbundet udelukkende med blå kanter. 2.6 Opgave I en komplet graf med 17 knuder er alle kanter malet enten blå, røde eller grønne. Vis at der uanset hvordan grafen er farvet, altid findes tre knuder som er forbundet af kanter af samme farve. (IMO 1964) 2.7 Eulerture og Eulergrafer En Eulertur i en graf er en vej der indeholder samtlige kanter netop en gang, og en lukket Eulertur er en Eulertur e 1, e 2,... e n hvor e 1 og e n støder op til samme knude. (Hvis n = 2 skal e 1 og e 2 have begge endeknuder tilfælles.) En graf kaldes en Eulergraf hvis alle dens kanter udgør en lukket Eulertur. 2.8 Opgave Bevis at en sammenhængende graf er en Eulergraf netop hvis alle knuder har lige valens. 2.9 Hamiltonkredse og Hamiltongrafer En kreds af længde n er en vej e 1, e 2,... e n hvor e 1 og e n støder op til samme knude, og hvor en vilkårlig knude i grafen er forbundet med nul eller to af kanterne e 1, e 2,... e n. En Hamiltonkreds er en kreds som har samme længde som antallet af knuder i grafen. En graf kaldes en Hamiltongraf hvis den indeholder en Hamiltonkreds Opgave I en skov bor der n, n 3, dyr i hver sin hule, og der er præcis en separat sti mellem hvert par af huler. Før valget af Skovens Konge laver nogle af dyrene en valgkampagne. Hvert af de dyr der laver valgkampagne, besøger alle de andre huler præcis en gang, benytter kun de beskrevne stier, skifter ikke sti mellem to huler og vender til slut tilbage til sin egen hule. I forbindelse med valgkampagnen benyttes ingen sti af mere end et dyr. Vis at hvis n er et primtal, da kan netop n 1 2 dyr maksimalt lave valgkampagne. Hvor mange dyr kan maksimalt lave valgkampagne for n = 9? (BW 1997) 2.11 Orienterede grafer En orienteret graf er en graf hvor alle kanter har en retning.

4 Noter om opgaver i diskret matematik, Kirsten Rosenkilde, Maj Eksempel I et land er der et endeligt antal byer, og nogle af byerne er forbundet med ensrettede veje. Hvis vi opfatter byerne som knuder og vejene som kanter, har vi en orienteret graf. Vi ved yderligere at for hvert par af byer kan man komme fra den ene til den anden eller omvendt eventuelt via andre byer. Vi vil nu vise at der findes en by hvorfra man kan komme til alle andre byer. Lad A være en by fra hvilken man kan komme til flest andre byer. Antag at der findes en by B som ikke kan nås fra A. Da kan man komme fra B til A og derfra videre til alle de byer der kan nås fra A. Dette er i modstrid med A s maksimalitet. (BW 1992) 2.13 Opgave Den Forunderlige Ø s efterretningstjeneste har 16 spioner i Tartu. Hver af dem overvåger nogle af sine kolleger, men der er intet par af spioner der overvåger hinanden. Desuden ved man at hvis man udtager ti tilfældige spioner, kan de nummereres således at nummer et overvåger nummer to, nummer to overvåger nummer tre osv., og den tiende desuden overvåger nummer et. Vis at man også kan gøre dette med 11 tilfældigt valgte spioner. (BW 1994) De næste opgaver er blandede opgaver hvor alle problemstillingerne drejer sig om grafer Opgave På en danseaften har enhver af de tilstedeværende herrer danset med mindst en af de tilstedeværende damer, og enhver dame har ligeledes danset med mindst en af herrerne. Der findes ingen herre der har danset med samtlige damer, og ingen damer der har danset med samtlige herrer. Bevis at der findes to herrer og to damer således at de to herrer har danset med præcis en af de to damer og omvendt Opgave Antag at G er en sammenhængende graf med k kanter. Vis at det er muligt at nummerere kanterne 1, 2, 3,... k således at hver knude som er forbundet med mindst to kanter, opfylder at største fælles divisor af tallene på alle de tilstødende kanter er 1. (IMO 1991) 2.16 Opgave I en komplet graf med ni knuder er kanterne enten røde, blå eller slet ikke farvede. Lad n betegne antallet af farvede kanter. Bestem den mindste værdi af n således at der altid findes tre knuder som er forbundet af kanter af samme farve. (IMO 1992) 3 Spilstrategier De spiltyper vi skal se på i disse noter, er spil af følgende type: Spil der spilles af to spillere A og B som skiftes til at trække, der gælder samme regler for hvordan A og B må trække, og hvis man ikke kan trække har man tabt. Der er desuden kun et endeligt antal træk, dvs.

5 Noter om opgaver i diskret matematik, Kirsten Rosenkilde, Maj spillet kan ikke ende uafgjort, og en af de to spillere må derfor have en vindende strategi. (Hvorfor det? Overvej.) I det første eksempel og de første opgaver vi skal se på, er strategien at dele alle startpositioner i to grupper: Dem hvor første spiller har en vindende strategi, og dem hvor hun ikke har, dvs. dem hvor spiller nummer to har en vindende strategi. 3.1 Eksempel I et spil ligger der n sten på et bord, og de to spillere A og B må i hvert træk fjerne 1, 2,..., k 1 eller k sten fra bordet. Den spiller der tager de sidste sten, har vundet. Spørgsmålet er nu for hvilke værdier af n den første spiller A har en vindende strategi. Dette kan man finde ud af ved at prøve sig frem med små tal. Det er for eksempel indlysende at for n {1, 2,..., k} har spiller A en vindende strategi, mens for n = k + 1 har hun ikke. Dvs. A har en vindende strategi, hvis hun efter første træk kan efterlade k + 1 sten på bordet, og det kan hun netop for n {k + 2, k + 3,..., 2k + 1}. På denne måde ser man induktivt at A har en vindende strategi, netop når n ikke er et multiplum af k + 1. Hvis n ikke er et multiplum af k + 1, kan A nemlig efter hvert træk efterlade et bord med et multiplum af k + 1 sten, mens hvis der fra starten er et multiplum af k + 1 sten, vil B efter hvert træk have mulighed for at efterlade et multiplum af k + 1 sten på bordet. (Engel) 3.2 Vindermængde og tabermængde Af eksemplet fremgår det hvordan man deler startmulighederne op i to mængder som vi kalder tabermængden, og som vi kalder for vindermængden. T = {n N n = m(k + 1) for m N} V = {n N n m(k + 1) for m N} Med et udgangspunkt fra vindermængden skal der findes et træk så man lander i tabermængden, og med udgangspunkt i tabermængden skal man efter et vilkårligt lovligt træk lande i vindermængden. 3.3 Opgave I et spil ligger der n sten på et bord, og de to spillere A og B må i hvert træk fjerne 1, 2, 4, 8,... (altså alle potenser af 2) sten fra bordet. Den spiller der tager de sidste sten, har vundet. Bestem de værdier af n for hvilke spiller A har en vindende strategi. (Engel) 3.4 Opgave Fire bunker med henholdsvis 38, 45, 61 og 70 tændstikker ligger på et bord. To spillere skiftes til at udvælge to bunker og fjerne et antal tændstikker fra hver. (De skal altså fjerne mindst en fra hver bunke, men behøver ikke at fjerne lige mange fra hver.) Den spiller som først ikke kan trække, taber. Hvilken af de to spillere har en vindende strategi? (Baltic Way 1996)

6 Noter om opgaver i diskret matematik, Kirsten Rosenkilde, Maj Opgave I et spil ligger der n sten på et bord, og de to spillere A og B må i hvert træk fjerne p n, hvor p er et primtal og n et ikke-negativt helt tal, sten fra bordet. Den spiller der tager de sidste sten, har vundet. Bestem tabermængden. (Engel) 3.6 Uendelig tabermængde I de foregående eksempler og opgaver har vi eksplicit bestemt tabermængden og vindermængden, men det er ikke altid så let. I dette eksempel skal vi se på et spil hvor der ligger to bunker med sten på bordet. Hvert træk består i at fjerne et antal sten fra den ene bunke eller fjerne samme antal sten fra begge bunker. En udgangsposition med a sten i den ene bunke og b i den anden betegner vi med (a, b). Dette eksempel går ud på at vise at der findes uendeligt mange udgangspositioner så spiller B har en vindende strategi, men altså ikke bestemme dem. Dette svarer til at vise at tabermængden er uendelig. Man kan godt pusle sig frem til de første elementer i tabermængden og finde en algoritme for hvordan det næste element fremkommer og derved vise at den er uendelig, men i dette eksempel skal I se et andet trick hvor man overhovedet ikke behøver at bestemme et eneste element i tabermængden. Vi viser det i stedet indirekte ved at antage at tabermængden er endelig. Da findes et største element i tabermængden (n, m), n m, således at ingen andre elementer i tabermængden indeholder en bunke med flere end n sten. Dermed må udgangspositionen (n + 1, 2n + 2) ligge i vindermængden, og der skal altså findes et træk så man fra denne position ender i tabermængden, men det gør der ikke. Dermed har vi en modstrid, og tabermængden er dermed uendelig. Samme trick skal du benytte i næste opgave. 3.7 Opgave To personer spiller følgende spil. Der ligger til at starte med n sten på bordet, og hver spiller skiftes til at tage m 2 sten fra bordet hvor m er et naturligt tal. Den spiller der tager de sidste sten, har vundet. Vis at der findes uendeligt mange værdier af n for hvilke spiller nummer to har en vindende strategi. (Baltic Way 1995) Nu skal vi se på nogle spil som nemt bliver så uoverskuelige at det er umuligt at bestemme taber- og vindermængden. Når man er på jagt efter en vindende strategi, kan man ikke få overblik over alle de situationer der kan opstå i spillet, men man kan ved hjælp af en strategi der bygger på symmetri, sørge for at man kun kommer ud i et overskueligt udvalg af alle disse muligheder. 3.8 Parring ved hjælp af symmetri På et skakbræt skiftes spiller A og B til at placere en springer. Spiller A placerer hvide springere og B sorte. De må kun placere springerne på tomme felter som ikke er truet af en springer af modsat farve. Den spiller som først ikke kan placere en springer, har tabt. Vi skal nu undersøge hvem af A og B der har en vindende strategi, når spiller A starter.

7 Noter om opgaver i diskret matematik, Kirsten Rosenkilde, Maj Det er let at se at det bliver fuldstændigt uoverskueligt at opdele samtlige mulige situationer i en vinder- og tabermængde, men hvis vi blot kan finde en vindende strategi for en af spillerne, er det også godt nok. I dette tilfælde har spiller B en vindende strategi. Hvis hun udnytter den vandrette (eller lodrette) symmetriakse midt gennem brættet der parrer felterne to og to, og hver gang at spiller A har placeret en springer, placerer en springer på det felt der er parret med det felt hvor spiller A placerede, vil hun altid have mulighed for at trække. Her udnytter man altså at felterne kan parres to og to så man hele tiden har mulighed for at kopiere modspillerens træk og dermed sikre sig at han først står i en situation hvor han ikke kan trække. 3.9 Opgave På et skakbræt skiftes spiller A og B til at placere en løber. Spiller A placerer hvide løbere og B sorte. De må kun placere løberne på tomme felter som ikke er truet af en løber af modsat farve. Den spiller som først ikke kan placere en løber, har tabt. Afgør hvilken af de to spillere der har en vindende strategi. (Engel) 3.10 Opgave På et 5 5 skakbræt spiller to spillere følgende spil. Den første spiller placerer en springer på brættet hvorefter spillerne på skift startende med den anden spiller flytter springeren til et felt som ikke før har været besøgt. Den første spiller som ikke kan flytte springeren, har tabt. Hvilken af de to spillere har en vindende strategi? (Baltic Way 1997) 3.11 Opgave Georg og hans mor spiller et spil hvor der til at starte med er n bunker med lige mange mønter i hver. De har tur på skift, og i hver tur må de fjerne en eller flere mønter fra samme bunke. Den spiller der tager den sidste mønt, har vundet. Georg starter altid. Bestem de værdier af n for hvilke Georg har en vindende strategi Opgave Astrid og Malte spiller følgende spil på et n 1001 skakbræt, hvor n På skift farver de for et naturligt tal k alle de k 2 felter i et k k kvadrat røde. Tallet k må gerne variere fra træk til træk, men det er ikke tilladt at kvadratet indeholder felter som allerede er farvede. Den spiller der først ikke kan trække, har tabt. Bestem samtlige værdier af n for hvilke Astrid har en vindende strategi når hun er den der trækker først Opgave På et uendeligt skakbræt skiftes to spillere til at markere et tomt felt. Den ene spiller markerer med kryds og den anden med bolle. Den der først har udfyldt fire felter som danner et 2 2 kvadrat med sit symbol, har vundet. Har den spiller der starter, altid en vindende strategi? (Baltic Way 1996) (Bemærk at dette spil afviger fra de andre vi har set på, da det kan fortsætte i det uendelige.)

8 Noter om opgaver i diskret matematik, Kirsten Rosenkilde, Maj Farvning I dette afsnit skal vi se på opgaver som man kan løse ved at farvelægge de objekter man betragter, på en hensigtsmæssig måde. 4.1 Eksempel Et klassisk eksempel på dette er at et skakbræt hvor to diagonalt modsatte hjørner er fjernet, ikke kan dækkes med 1 2 brikker. Disse dækker nemlig alle et hvidt og et sort felt, men når de to hjørner er fjernet, er der ikke lige mange sorte og hvide felter. 4.2 Eksempel I foregående eksempel var farvningen allerede givet på forhånd, men nogle gange skal man selv finde på en smart farvelægning. I dette eksempel skal vi se på et rektangulært gulv som er dækket af 2 2 fliser og 1 4 fliser. Spørgsmålet er nu: Hvis en flise knækker, kan den så hvis man omarrangerer fliserne, erstattes af en flise af den anden type? Vi ønsker nu at finde en smart farvning der viser at dette ikke kan lade sig gøre, dvs. vi skal finde en farvelægning således at de to flisetyper ikke dækker lige mange hvide felter og lige mange sorte. Den traditionelle skakbrætfarvning virker ikke i dette tilfælde, men farvelægningen på figur 2 opfylder netop dette, og det viser at en enkelt flise ikke kan erstattes af en flise af den anden type. (Engel) Figur 2: 4.3 Opgave Kan et skakbræt hvor alle fire hjørner er fjernet, dækkes af brikker af følgende type? Figur 3:

9 Noter om opgaver i diskret matematik, Kirsten Rosenkilde, Maj Opgave Kan et skakbræt hvor det midterste felt er fjernet, dækkes af 1 4 brikker? (Baltic Way 1998) 4.5 Opgave Et 7 7 skakbræt er dækket af brikker af følgende to typer: Vis at der netop er en brik af type b. (Georg Mohr 1997) Figur 4: 4.6 Opgave På et uendeligt skakbræt spilles følgende spil. Til at begynde med er der n 2 brikker som står på et n n kvadrat således at der er en brik på hvert felt. Et træk består i lade en brik hoppe hen over en nabobrik lodret eller vandret til et tomt felt lige på den anden side, og fjerne den brik man hoppede henover. Bestem samtlige værdier af n for hvilke det er muligt at ende med en brik på brættet. (IMO 1993) 4.7 Eksempel I de foregående opgaver har vi udnyttet en smart farvning, men nogen gange er det hensigtsmæssigt ikke at knytte farver, men tal til de enkelte felter da det giver nye muligheder som vi skal se i dette eksempel. Et skakbræt dækkes med 32 dominobrikker således at brikkerne dækker netop to felter hver. De brikker der ligger vandret, og hvis venstre del dækker et sort felt, kalder vi SHbrikker, og de brikker hvis venstre del dækker et hvidt felt, kalder vi HS-brikker. Vi vil nu ved at knytte tal til de enkelte felter på skakbrættet vise at der er lige mange af de to typer brikker. Nummerer søjlerne 1-8 fra venstre mod højre. Alle sorte felter får tildelt nummeret fra den søjle de ligger i, og alle hvide felter får tildelt minus dette nummer. Alle brikker der ligger lodret, dækker nu to felter hvis sum er nul, mens SH-brikker dækker to felter hvis sum er -1, og HS-brikker dækker to felter hvis sum er 1. Da summen af samtlige felter er nul, må der være lige mange SH-brikker og HS-brikker. 4.8 Opgave En kube med sidelængde 2n er sammensat af 4n 3 brikker af formen som hver af sammensat af et hvidt og et sort enhedskvadrat. Brikkerne ligger sådan at alle sidefladerne

10 Noter om opgaver i diskret matematik, Kirsten Rosenkilde, Maj i de hvide enhedskvadrater støder op til sorte og omvendt. Vis at hvis man ser på alle de brikker der ligger lodret, så har halvdelen den hvide del opad og halvdelen den sorte del opad.

Noter om opgaver i diskret matematik, Kirsten Rosenkilde, Maj 2006 1. Diskret matematik

Noter om opgaver i diskret matematik, Kirsten Rosenkilde, Maj 2006 1. Diskret matematik Noter om opgaver i diskret matematik, Kirsten Rosenkilde, Maj 2006 1 Diskret matematik Disse noter er en introduktion til skuffeprincippet, grafteori, spilstrategier samt opgaver der kan løses ved farvelægning.

Læs mere

Spilstrategier, Kirsten Rosenkilde, september 2007 1. Spilstrategier

Spilstrategier, Kirsten Rosenkilde, september 2007 1. Spilstrategier Spilstrategier, Kirsten Rosenkilde, september 2007 1 1 Spilstrategier Spilstrategier De spiltyper vi skal se på her, er spil af følgende type: Spil der spilles af to spillere A og B som skiftes til at

Læs mere

Spilstrategier. Indhold. Georg Mohr-Konkurrencen. 1 Vindermængde og tabermængde 2. 2 Kopier modpartens træk 4

Spilstrategier. Indhold. Georg Mohr-Konkurrencen. 1 Vindermængde og tabermængde 2. 2 Kopier modpartens træk 4 Indhold 1 Vindermængde og tabermængde 2 2 Kopier modpartens træk 4 3 Udnyt modpartens træk 5 4 Strategityveri 6 5 Løsningsskitser 7 Spilstrategier De spiltyper vi skal se på her, er primært spil af følgende

Læs mere

Spilstrategier. 1 Vindermængde og tabermængde

Spilstrategier. 1 Vindermængde og tabermængde Spilstrategier De spiltyper vi skal se på her, er primært spil af følgende type: Spil der spilles af to spillere A og B som skiftes til at trække, A starter, og hvis man ikke kan trække har man tabt. Der

Læs mere

Grafteori, Kirsten Rosenkilde, september 2007 1. Grafteori

Grafteori, Kirsten Rosenkilde, september 2007 1. Grafteori Grafteori, Kirsten Rosenkilde, september 007 1 1 Grafteori Grafteori Dette er en kort introduktion til de vigtigste begreber i grafteori samt eksempler på opgavetyper inden for emnet. 1.1 Definition af

Læs mere

Invarianter. 1 Paritet. Indhold

Invarianter. 1 Paritet. Indhold Invarianter En invariant er en størrelse der ikke ændrer sig, selv om situationen ændrer sig. I nogle kombinatorikopgaver hvor man skal undersøge hvilke situationer der er mulige, er det ofte en god idé

Læs mere

Vinderseminar 2007. Diskret matematik. Kirsten Rosenkilde. 1. Diskret matematik.

Vinderseminar 2007. Diskret matematik. Kirsten Rosenkilde. 1. Diskret matematik. Vinderseminar 2007. Diskret matematik. Kirsten Rosenkilde. 1 1 Paritet Diskret matematik. I mange matematikopgaver er det en god ide at se på paritet dvs. hvornår en bestemt størrelse er henholdsvis lige

Læs mere

Invarianter. 1 Paritet. Indhold

Invarianter. 1 Paritet. Indhold Invarianter En invariant er en størrelse der ikke ændrer sig, selv om situationen ændrer sig. I nogle kombinatorikopgaver hvor man skal undersøge hvilke situationer der er mulige, er det ofte en god idé

Læs mere

Invarianter. 1 Paritet. Indhold. Georg Mohr-Konkurrencen

Invarianter. 1 Paritet. Indhold. Georg Mohr-Konkurrencen Invarianter En invariant er en størrelse der ikke ændrer sig, selv om situationen ændrer sig. I nogle kombinatorikopgaver hvor man skal undersøge hvilke situationer der er mulige, er det ofte en god idé

Læs mere

Grafteori. 1 Terminologi. Indhold

Grafteori. 1 Terminologi. Indhold Grafteori Dette er en introduktion til de vigtigste begreber i grafteori, udvalgt teori samt eksempler på opgavetyper inden for emnet med fokus på de opgavetyper der typisk er til internationale matematikkonkurrencer.

Læs mere

Matematik og dam. hvordan matematik kan give overraskende resultater om et velkendt spil. Jonas Lindstrøm Jensen

Matematik og dam. hvordan matematik kan give overraskende resultater om et velkendt spil. Jonas Lindstrøm Jensen Matematik og dam hvordan matematik kan give overraskende resultater om et velkendt spil Jonas Lindstrøm Jensen (jonas@imf.au.dk) March 200 Indledning Det klassiske spil dam spilles på et almindeligt skakbræt.

Læs mere

π er irrationel Frank Nasser 10. december 2011

π er irrationel Frank Nasser 10. december 2011 π er irrationel Frank Nasser 10. december 2011 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Indhold 1 Introduktion

Læs mere

Tip til 1. runde af Georg Mohr-Konkurrencen Kombinatorik

Tip til 1. runde af Georg Mohr-Konkurrencen Kombinatorik Tip til 1. runde af - Kombinatorik, Kirsten Rosenkilde. Tip til 1. runde af Kombinatorik Her er nogle centrale principper om og strategier for hvordan man tæller et antal kombinationer på en smart måde,

Læs mere

Broer, skak og netværk Carsten Thomassen: Naturens Verden 10, 1992, s. 388-393.

Broer, skak og netværk Carsten Thomassen: Naturens Verden 10, 1992, s. 388-393. Broer, skak og netværk Side 1 af 6 Broer, skak og netværk Carsten Thomassen: Naturens Verden 10, 1992, s. 388-393. Eksempler på praktiske anvendelser af matematik og nogle uløste problemer Indledning Figur

Læs mere

Tal og algebra. I hvilke situationer kan det være motiverende at gengive et talmønster som et geometrisk mønster?

Tal og algebra. I hvilke situationer kan det være motiverende at gengive et talmønster som et geometrisk mønster? Oplæg I hvilke situationer kan det være motiverende at gengive et talmønster som et geometrisk mønster? Hvordan ser I mulighederne i at stimulere elevernes tænkning og udvikle deres arbejdsmåde, når de

Læs mere

Talteori. Teori og problemløsning. Indhold. Talteori - Teori og problemløsning, marts 2014, Kirsten Rosenkilde.

Talteori. Teori og problemløsning. Indhold. Talteori - Teori og problemløsning, marts 2014, Kirsten Rosenkilde. Indhold 1 Delelighed, primtal og primfaktoropløsning Omskrivning vha. kvadratsætninger 4 3 Antal divisorer 6 4 Største fælles divisor og Euklids algoritme 7 5 Restklasser 9 6 Restklasseregning og kvadratiske

Læs mere

KÆNGURUEN 2015. International matematikkonkurrence. Del 1. 3 point pr. opgave. 2. Erik har 10 ens metalstænger.

KÆNGURUEN 2015. International matematikkonkurrence. Del 1. 3 point pr. opgave. 2. Erik har 10 ens metalstænger. 2015 60 minutter Navn og klasse Del 1 3 point pr. opgave 1. A 6 B 7 C 8 D 10 E 15 2. Erik har 10 ens metalstænger. Han skruer dem sammen to og to og får fem metalstænger. Hvilken stang er længst? A A B

Læs mere

P2-projektforslag Kombinatorik: grafteori og optimering.

P2-projektforslag Kombinatorik: grafteori og optimering. P2-projektforslag Kombinatorik: grafteori og optimering. Vejledere: Leif K. Jørgensen, Diego Ruano 1. februar 2013 1 Indledning Temaet for projekter på 2. semester af matematik-studiet og matematikøkonomi-studiet

Læs mere

TALTEORI Følger og den kinesiske restklassesætning.

TALTEORI Følger og den kinesiske restklassesætning. Følger og den kinesiske restklassesætning, december 2006, Kirsten Rosenkilde 1 TALTEORI Følger og den kinesiske restklassesætning Disse noter forudsætter et grundlæggende kendskab til talteori som man

Læs mere

POWER GRID SPILLEREGLER

POWER GRID SPILLEREGLER POWER GRID SPILLEREGLER FORMÅL Hver spiller repræsenterer et energiselskab som leverer elektricitet til et antal byer. I løbet af spillet køber hver spiller et antal kraftværker i konkurrence med andre

Læs mere

Algebra - Teori og problemløsning

Algebra - Teori og problemløsning Algebra - Teori og problemløsning, januar 05, Kirsten Rosenkilde. Algebra - Teori og problemløsning Kapitel -3 giver en grundlæggende introduktion til at omskrive udtryk, faktorisere og løse ligningssystemer.

Læs mere

JEANNETTE STEEN CAMILLA SIMONSEN BRUG LÅGET. i matematik. Taktile materialer

JEANNETTE STEEN CAMILLA SIMONSEN BRUG LÅGET. i matematik. Taktile materialer JEANNETTE STEEN CAMILLA SIMONSEN BRUG LÅGET i matematik Taktile materialer Jeannette Steen og Camilla Simonsen BRUG LÅGET i matematik Taktile materialer Jeannette Steen og Camilla Simonsen Brug låget i

Læs mere

Lille Georgs julekalender 06. 1. december

Lille Georgs julekalender 06. 1. december 1. december Hvad skal der stå på den tomme plads? 11001-10101 - 10011 10111-11011 - 11101 11000-10100 - Svar: 10010 Forklaring: Ydercifrene forbliver de samme. Ciffer nr. rykker mød højre ved først at

Læs mere

Skak-regler. Inhold Förmål med spillet Forberedelset Flytning av brikkerne. Flyttning af hver enkel brik

Skak-regler. Inhold Förmål med spillet Forberedelset Flytning av brikkerne. Flyttning af hver enkel brik 1 / 5 29.7.2008 10:54 Skak regler Inhold Förmål med spillet Forberedelset Flytning av brikkerne Flyttning af hver enkel brik - Kongen - Dronningen - Tårnet - Løberen - Springeren - Bonden Spillet Skakmat

Læs mere

TALTEORI Ligninger og det der ligner.

TALTEORI Ligninger og det der ligner. Ligninger og det der ligner, december 006, Kirsten Rosenkilde 1 TALTEORI Ligninger og det der ligner. Disse noter forudsætter et grundlæggende kendskab til talteori som man kan få i Marianne Terps og Peter

Læs mere

Løsninger til KÆNGURUEN International matematikkonkurrence. Del 1 Løsninger 3 point pr. opgave. 2. Erik har 10 ens metalstænger.

Løsninger til KÆNGURUEN International matematikkonkurrence. Del 1 Løsninger 3 point pr. opgave. 2. Erik har 10 ens metalstænger. Løsninger til 2015 60 minutter Del 1 Løsninger 3 point pr. opgave 1. 2 3 15 A 6 B 7 C 8 D 10 E 15 2. Erik har 10 ens metalstænger. Han skruer dem sammen to og to og får fem metalstænger. Hvilken stang

Læs mere

Talteori. Teori og problemløsning. Indhold. Talteori - Teori og problemløsning, august 2013, Kirsten Rosenkilde.

Talteori. Teori og problemløsning. Indhold. Talteori - Teori og problemløsning, august 2013, Kirsten Rosenkilde. Indhold 1 Delelighed, primtal og primfaktoropløsning Omskrivning vha. kvadratsætninger 4 3 Antal divisorer 6 4 Største fælles divisor og Euklids algoritme 7 5 Restklasser 9 6 Restklasseregning og kvadratiske

Læs mere

Svar på blokkens præmieopgave (21. årgang nr. 4)

Svar på blokkens præmieopgave (21. årgang nr. 4) Leg med trekanter 19 Præmieopgave og svar på sidste bloks abestreger! Jingyu She Svar på blokkens præmieopgave (21. årgang nr. 4) I sidste præmieopgave blev læseren bedt om at finde sandsynligheden for,

Læs mere

Forslag til løsning af Opgaver til afsnittet om de naturlige tal (side 80)

Forslag til løsning af Opgaver til afsnittet om de naturlige tal (side 80) Forslag til løsning af Opgaver til afsnittet om de naturlige tal (side 80) Opgave 1 Vi skal tegne alle de linjestykker, der forbinder vilkårligt valgte punkter blandt de 4 punkter. Gennem forsøg finder

Læs mere

Lille Georgs julekalender 07. 1. december. Hvor mange løbere kan der opstilles på et skakbræt uden at de truer hinanden?

Lille Georgs julekalender 07. 1. december. Hvor mange løbere kan der opstilles på et skakbræt uden at de truer hinanden? 1. december Hvor mange løbere kan der opstilles på et skakbræt uden at de truer hinanden? Svar: 14 Forklaring: Der kan godt stå 14, f.eks. sådan: Men kunne der stå flere hvis man stillede dem endnu snedigere

Læs mere

Asymptoter. for standardforsøgene i matematik i gymnasiet. 2003 Karsten Juul

Asymptoter. for standardforsøgene i matematik i gymnasiet. 2003 Karsten Juul Asymptoter for standardforsøgene i matematik i gymnasiet 2003 Karsten Juul Indledning om lodrette asymptoter Lad f være funktionen bestemt ved =, 2. 2 Vi udregner funktionsværdierne i nogle -værdier der

Læs mere

Lille Georgs julekalender 2010. 1. december

Lille Georgs julekalender 2010. 1. december 1. december I hver af de øverste bokse skal der skrives et af tallene 1, 2, 3,..., 9. Alle tre tal skal være forskellige. I de næste bokse skrives de tal der fremkommer ved at man lægger sammen som vist.

Læs mere

TALTEORI Wilsons sætning og Euler-Fermats sætning.

TALTEORI Wilsons sætning og Euler-Fermats sætning. Wilsons sætning og Euler-Fermats sætning, marts 2007, Kirsten Rosenkilde 1 TALTEORI Wilsons sætning og Euler-Fermats sætning. Disse noter forudsætter et grundlæggende kendskab til talteori som man kan

Læs mere

Matematisk induktion

Matematisk induktion Induktionsbeviser MT01.0.07 1 1 Induktionsbeviser Matematisk induktion Sætninger der udtaler sig om hvad der gælder for alle naturlige tal n N, kan undertiden bevises ved matematisk induktion. Idéen bag

Læs mere

Lektion 7 Funktioner og koordinatsystemer

Lektion 7 Funktioner og koordinatsystemer Lektion 7 Funktioner og koordinatsystemer Brug af grafer og koordinatsystemer Lineære funktioner Andre funktioner lignnger med ubekendte Lektion 7 Side 1 Pris i kr Matematik på Åbent VUC Brug af grafer

Læs mere

i tredje brøkstreg efter lukket tiendedele primtal time

i tredje brøkstreg efter lukket tiendedele primtal time ægte 1 i tredje 3 i anden rumfang år 12 måle kalender lagt sammen resultat streg adskille led adskilt udtrk minus (-) overslag afrunde præcis skøn efter bagved foran placering kvart fjerdedel lagkage rationale

Læs mere

Side 1 af 8. Vejledning

Side 1 af 8. Vejledning Side 1 af 8 Vejledning Art. nr. 2079006 Pedalo - Stort spillebræt - spilsamling Læs og opbevar venligst vejledningen De efterfølgende sider indeholder spilanvisning til disse spil: Generel Information:

Læs mere

Lille Georgs julekalender 08. 1. december

Lille Georgs julekalender 08. 1. december 1. december Et digitalur viser 20:08. Hvor lang tid går der før de samme fire cifre vises igen (gerne i en anden rækkefølge)? 2. december Hvilket matematisk tegn kan anbringes mellem 2 og 3, således at

Læs mere

Retningslinjer for bedømmelsen. Georg Mohr-Konkurrencen 2010 2. runde

Retningslinjer for bedømmelsen. Georg Mohr-Konkurrencen 2010 2. runde Retningslinjer for bedømmelsen. Georg Mohr-Konkurrencen 2010 2. runde Det som skal vurderes i bedømmelsen af en besvarelse, er om deltageren har formået at analysere problemstillingen, kombinere de givne

Læs mere

Først falder den med 20% af 100 = 20 kr, dernæst stiger den med 30% af 80 = 24 kr. Der er 91 dage mellem datoerne, svarende til 13 uger.

Først falder den med 20% af 100 = 20 kr, dernæst stiger den med 30% af 80 = 24 kr. Der er 91 dage mellem datoerne, svarende til 13 uger. ud af deltagere må være børn, da der er dobbelt så mange børn som voksne. Derfor er der i alt børn med på skovturen. ud af børn må være piger, da der er dobbelt så mange piger som drenge. Det vil sige,

Læs mere

Julehjerter med motiver

Julehjerter med motiver Julehjerter med motiver Torben Mogensen 18. december 2012 Resumé Jeg har i mange år moret mig med at lave julehjerter med motiver, og er blevet spurgt om, hvordan man gør. Så det vil jeg forsøge at forklare

Læs mere

Der er felter, og på hvert af disse felter har tårnet træk langs linjen og træk langs rækken.

Der er felter, og på hvert af disse felter har tårnet træk langs linjen og træk langs rækken. SJOV MED SKAK OG TAL Af Rasmus Jørgensen Når man en sjælden gang kører træt i taktiske opgaver og åbningsvarianter, kan det være gavnligt at adsprede hjernen med noget andet, fx talsjov, og heldigvis byder

Læs mere

Tal. Vi mener, vi kender og kan bruge følgende talmængder: N : de positive hele tal, Z : de hele tal, Q: de rationale tal.

Tal. Vi mener, vi kender og kan bruge følgende talmængder: N : de positive hele tal, Z : de hele tal, Q: de rationale tal. 1 Tal Tal kan forekomme os nærmest at være selvfølgelige, umiddelbare og naturgivne. Men det er kun, fordi vi har vænnet os til dem. Som det vil fremgå af vores timer, har de mange overraskende egenskaber

Læs mere

Lille Georgs julekalender 2010. 1. december

Lille Georgs julekalender 2010. 1. december 1. december I hver af de øverste bokse skal der skrives et af tallene 1, 2, 3,..., 9. Alle tre tal skal være forskellige. I de næste bokse skrives de tal der fremkommer ved at man lægger sammen som vist.

Læs mere

Tip til 1. runde af Georg Mohr-Konkurrencen - Talteori, Kirsten Rosenkilde. Opgave 1. Hvor mange af følgende fem tal er delelige med 9?

Tip til 1. runde af Georg Mohr-Konkurrencen - Talteori, Kirsten Rosenkilde. Opgave 1. Hvor mange af følgende fem tal er delelige med 9? Tip til 1. runde af Talteori Talteori handler om de hele tal, og særligt om hvornår et helt tal er deleligt med et andet. Derfor spiller primtallene en helt central rolle i talteori, hvilket vi skal se

Læs mere

TRIX. Træningshæfte 2 FACITLISTE. Side 1. Side 2 Side 3. FACIT, side 1-3 Trix, Træningshæfte 2 Alinea. Byg og tegn

TRIX. Træningshæfte 2 FACITLISTE. Side 1. Side 2 Side 3. FACIT, side 1-3 Trix, Træningshæfte 2 Alinea. Byg og tegn TRIX Træningshæfte Side J a o u - - - - - - e t u r i g v b n Fra oven p FACITLISTE Forfra Fra siden Jubii Side Side Femkanter Veksle mønter Farv rødt Farv gult Jubii Positionssystemet Øverst: Eksperimenter

Læs mere

fortsætte høj retning mellem mindre over større

fortsætte høj retning mellem mindre over større cirka (ca) omtrent overslag fortsætte stoppe gentage gentage det samme igen mønster glat ru kantet høj lav bakke lav høj regel formel lov retning højre nedad finde rundt rod orden nøjagtig præcis cirka

Læs mere

Undersøgelser i nyere geometri

Undersøgelser i nyere geometri Figur 15. Skatteøen. Undersøgelser i nyere geometri På opdagelse i grafteorien Grafteori teorien om netværk er et af de områder i matematikken, der er bedst egnet til at gå på opdagelse i. Det skyldes,

Læs mere

Basisblokke addition Programmet viser enere, 10-bunker, 100- bunker osv. Det kan bruges til at visualisere, hvordan man lægger tal sammen.

Basisblokke addition Programmet viser enere, 10-bunker, 100- bunker osv. Det kan bruges til at visualisere, hvordan man lægger tal sammen. Basisblokke addition bunker osv. Det kan bruges til at visualisere, hvordan man lægger tal sammen. Basisblokke - decimaltal bunker osv. Det kan desuden vise decimaler og dermed give eleven visuel støtte

Læs mere

Minimum udspændende Træer (MST)

Minimum udspændende Træer (MST) Minimum udspændende Træer (MST) Træer Et (frit/u-rodet) træ er en uorienteret graf G = (V, E) som er Sammenhængende: der er en sti mellem alle par af knuder. Acyklisk: der er ingen kreds af kanter. Træer

Læs mere

Talteoriopgaver Træningsophold ved Sorø Akademi 2007

Talteoriopgaver Træningsophold ved Sorø Akademi 2007 Talteoriopgaver Træningsophold ved Sorø Akademi 2007 18. juli 2007 Opgave 1. Vis at når a, b og c er positive heltal, er et sammensat tal. Løsningsforslag: a 4 + b 4 + 4c 4 + 4a 3 b + 4ab 3 + 6a 2 b 2

Læs mere

Afstandsformlen og Cirklens Ligning

Afstandsformlen og Cirklens Ligning Afstandsformlen og Cirklens Ligning Frank Villa 19. august 2012 2008-2012. IT Teaching Tools. ISBN-13: 978-87-92775-00-9. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk.

Læs mere

Fra tilfældighed over fraktaler til uendelighed

Fra tilfældighed over fraktaler til uendelighed Fra tilfældighed over fraktaler til uendelighed Tilfældighed Hvor tilfældige kan vi være? I skemaet ved siden af skal du sætte 0 er og 1-taller, ét tal i hvert felt. Der er 50 felter. Du skal prøve at

Læs mere

Basisblokke addition Programmet viser enere, 10-bunker, 100- bunker osv. Det kan bruges til at visualisere, hvordan man lægger tal sammen.

Basisblokke addition Programmet viser enere, 10-bunker, 100- bunker osv. Det kan bruges til at visualisere, hvordan man lægger tal sammen. Tal og algebra Abacus Dette program er en elektronisk udgave af en kugleramme. Man kan flytte en kugle eller en gruppe af kugler ved at klikke på en af kuglerne. Hvis man klikker på Nulstil, vender alle

Læs mere

Fra tilfældighed over fraktaler til uendelighed

Fra tilfældighed over fraktaler til uendelighed Fra tilfældighed over fraktaler til uendelighed Dette undervisningsforløb har jeg lavet til et forløb på UCC Nordsjælland for særligt interesserede elever i 8. klasse. Alt, der står med rødt, er henvendt

Læs mere

Kapitel 2 Tal og variable

Kapitel 2 Tal og variable Tal og variable Uden tal ingen matematik - matematik handler om tal og anvendelse af tal. Matematik beskæftiger sig ikke udelukkende med konkrete problemer fra andre fag, og de konkrete tal fra andre fagområder

Læs mere

TALTEORI Wilsons sætning og Euler-Fermats sætning.

TALTEORI Wilsons sætning og Euler-Fermats sætning. Wilsons sætning og Euler-Fermats sætning, marts 2007, Kirsten Rosenkilde 1 TALTEORI Wilsons sætning og Euler-Fermats sætning. Disse noter forudsætter et grundlæggende kendskab til talteori som man kan

Læs mere

LÆrerVeJLednIng til Skak I SkoLen det SkaL VÆre SJoVt at blive klogere! brug Låget på brættet materialer: Sådan kommer I I gang

LÆrerVeJLednIng til Skak I SkoLen det SkaL VÆre SJoVt at blive klogere! brug Låget på brættet materialer: Sådan kommer I I gang løber 3 point SKOLESKAK SKOLESKAK LÆRERVEJLEDNING til skak i skolen Det skal være sjovt at blive klogere! Dansk Skoleskak og Skolemælk har i samarbejde udviklet dette materiale for at skabe mere leg, læring

Læs mere

http://192.168.1.217/www.nelostuote.fi/tanska/discoveryregler.html

http://192.168.1.217/www.nelostuote.fi/tanska/discoveryregler.html 1 / 10 25.6.2008 9:03 2 / 10 25.6.2008 9:03 Indhold 2 kort (spilleplader), 2 plastikfolier (benyttes til at lægge over kortet), 1 tjekometer, 28 tjekometer kort, 18 udrustningskort, 210 terræn brikker,

Læs mere

Funktioner - supplerende eksempler

Funktioner - supplerende eksempler - supplerende eksempler Oversigt over forskellige typer af funktioner... 9b Omvendt proportionalitet og hyperbler... 9c Eksponentialfunktioner... 9e Potensfunktioner... 9g Side 9a Oversigt over forskellige

Læs mere

Konstruktion. d: En cirkel med diameter 7,4 cm. e: En trekant med grundlinie på 9,6 cm og højde på 5,2 cm. (Der er mange muligheder)

Konstruktion. d: En cirkel med diameter 7,4 cm. e: En trekant med grundlinie på 9,6 cm og højde på 5,2 cm. (Der er mange muligheder) 1: Tegn disse figurer: a: Et kvadrat med sidelængden 3,5 cm. b: En cirkel med radius 4,. c: Et rektangel med sidelængderne 3,6 cm og 9,. d: En cirkel med diameter 7,. e: En trekant med grundlinie på 9,6

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet side af sider Danmarks Tekniske Universitet Skriftlig prøve, den. maj 00. Kursusnavn Algoritmer og datastrukturer Kursus nr. 06. Tilladte hjælpemidler: Alle hjælpemidler. Vægtning af opgaverne: Opgave

Læs mere

Lineære sammenhænge. Udgave 2. 2009 Karsten Juul

Lineære sammenhænge. Udgave 2. 2009 Karsten Juul Lineære sammenhænge Udgave 2 y = 0,5x 2,5 2009 Karsten Juul Dette hæfte er en fortsættelse af hæftet "Variabelsammenhænge, 2. udgave 2009". Indhold 1. Lineære sammenhænge, ligning og graf... 1 2. Lineær

Læs mere

Usædvanlige opgaver Lærervejledning

Usædvanlige opgaver Lærervejledning Mette Hjelmborg Usædvanlige opgaver Lærervejledning Gyldendal Usædvanlige opgaver, lærervejledning af Mette Hjelmborg 008 Gyldendalske boghandel, Nordisk Forlag A/S, København Forlagsredaktion: Stine Kock,

Læs mere

Læs selv om UENDELIGHED. Erik Bjerre og Pernille Pind Forlaget Mañana

Læs selv om UENDELIGHED. Erik Bjerre og Pernille Pind Forlaget Mañana Læs selv om UENDELIGHED Erik Bjerre og Pernille Pind Forlaget Mañana Læs selv om UENDELIGHED Erik Bjerre og Pernille Pind Forlaget Mañana 2 Uendelighed - et matematisk symbol Der kan være uendeligt lang

Læs mere

Matematiske metoder - Opgaver

Matematiske metoder - Opgaver Matematiske metoder - Opgaver Anders Friis, Anne Ryelund 25. oktober 2014 Logik Opgave 1 Find selv på tre udtalelser (gerne sproglige). To af dem skal være udsagn, mens det tredje ikke må være et udsagn.

Læs mere

Spil banko. Spil lotto. Række 3. Række 1. Antal rigtige: Række 4. Række 2. skrives tallene på lottokuponen og antallet af rigtige noteres.

Spil banko. Spil lotto. Række 3. Række 1. Antal rigtige: Række 4. Række 2. skrives tallene på lottokuponen og antallet af rigtige noteres. 14 Spil banko 1 5 6 10 11 15 16 20 21 25 26 30 1 5 6 10 11 15 16 20 21 25 26 30 15 Spil lotto Række 1 Række 2 Tal i hverdagen 14. Udfyld de hvide felter på bankopladerne med tal fra 1-30. Har man et af

Læs mere

.. if L(u) + w(u, v) < L(v) then.. begin... L(v) := L(u) + w(u, v)... F (v) := u.. end. med længde L(z)}

.. if L(u) + w(u, v) < L(v) then.. begin... L(v) := L(u) + w(u, v)... F (v) := u.. end. med længde L(z)} Procedure Dijkstra(G = (V, E): vægtet sh. graf,. a, z: punkter) { Det antages at w(e) > 0 for alle e E} For alle v V : L(v) := L(a) := 0, S := while z / S begin. u := punkt ikke i S, så L(u) er mindst

Læs mere

Projekt 1.4 Tagrendeproblemet en instruktiv øvelse i modellering med IT.

Projekt 1.4 Tagrendeproblemet en instruktiv øvelse i modellering med IT. Projekt 1.4 Tagrendeproblemet en instruktiv øvelse i modellering med IT. Projektet kan bl.a. anvendes til et forløb, hvor en af målsætningerne er at lære om samspillet mellem værktøjsprogrammernes geometriske

Læs mere

Før-skoleskak Undervisningsbog

Før-skoleskak Undervisningsbog Før-skoleskak Undervisningsbog Dansk Skoleskak - leg og læring Før-skoleskak - undervisningsbog Dansk Skoleskak 1. udgave, 1. oplag 2013 ISBN: 978-87-87800-88-4 Udgiver Dansk Skoleskak - Skoleskak.dk Før-skoleskak

Læs mere

Tråden kan med lidt god vilje ses som et S (rødt) - og på den anden tegning et Z (rødt)

Tråden kan med lidt god vilje ses som et S (rødt) - og på den anden tegning et Z (rødt) Der findes nogle få, fundamentale regler, som jeg vil prøve at redegøre for. Som regel består den af en plade (af meget varierende størrelse, men den for mig bedste størrelse er ca. 5 x 5 cm). Den kan

Læs mere

2. juni Solitaire spilles med pinde, der pa gurerne er angivet som sorte pletter. Der

2. juni Solitaire spilles med pinde, der pa gurerne er angivet som sorte pletter. Der SOLITAIRE 2. juni 2003 Mogens Esrom Larsen Indledning. Solitaire spilles med pinde, der pa gurerne er angivet som sorte pletter. Der kan sta en eller ingen pind i et felt, som pa guren er angivet som et

Læs mere

Faglige mål: Håndtere simple formler og ligninger, herunder kunne oversætte fra symbolholdigt sprog til naturligt sprog og omvendt. Håndtere simple mo

Faglige mål: Håndtere simple formler og ligninger, herunder kunne oversætte fra symbolholdigt sprog til naturligt sprog og omvendt. Håndtere simple mo C A R S T E N C R A M O N PASCALS TREKANT G Y L D E N D A L Faglige mål: Håndtere simple formler og ligninger, herunder kunne oversætte fra symbolholdigt sprog til naturligt sprog og omvendt. Håndtere

Læs mere

Spillebeskrivelse Produceret af For Spillehallen.dk

Spillebeskrivelse Produceret af For Spillehallen.dk Spillebeskrivelse Produceret af For Spillehallen.dk INDHOLDSFORTEGNELSE: 1. GENERELT OM HOT STUFF 3 2. GEVINSTTAVLEN 4 3. VALGFRIT SPIL 5 4. INFERNO 5 5. HOT SHOT 6 6. FIREBALL 7 7. GAMEFLASH 8 7.1. Nudge

Læs mere

Kombinatoriske Spil. Noter til QGM Math Club af Tobias Kildetoft

Kombinatoriske Spil. Noter til QGM Math Club af Tobias Kildetoft Kombinatoriske Spil Noter til QGM Math Club af Tobias Kildetoft 1 Forord Disse noter er i stor grad baseret på bogen Lessons in Play af Michael H. Albert, Richard J. Nowakowski og David Wolfe (fra nu af

Læs mere

Skak. Regler og strategi. Version 1.0. 1. september 2015. Copyright

Skak. Regler og strategi. Version 1.0. 1. september 2015. Copyright Skak Regler og strategi Version 1.0 1. september 2015 Copyright Forord At lære at spille skak er ikke svært. Det tager få minutter. At blive dygtig tager som regel årevis. Om man er dygtig eller ej, er

Læs mere

Filtmåtter med de 120 hyppige ord

Filtmåtter med de 120 hyppige ord VEJLEDNING TIL Fodspor Filtmåtter med de 120 hyppige ord Med bogen På sporet af ordet fang tyven, opgaveæsken og app en På sporet af ordet, Turbo-ord, sækkekort, Læs Lydret bøgerne, gulvtæppet og filtmåtterne

Læs mere

International matematikkonkurrence

International matematikkonkurrence 60 minutter Navn og klasse 3 point pr. opgave Hjælpemidler: papir og blyant 1 Hvilket trafikskilt har flest symmetriakser? D 2 På Lisas køleskab holdes nogle postkort fast af 8 stærke magneter. magnet

Læs mere

Analytisk Geometri. Frank Nasser. 11. juli 2011

Analytisk Geometri. Frank Nasser. 11. juli 2011 Analytisk Geometri Frank Nasser 11. juli 2011 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Indhold 1 Introduktion

Læs mere

i x-aksens retning, så fås ). Forskriften for g fås altså ved i forskriften for f at udskifte alle forekomster af x med x x 0

i x-aksens retning, så fås ). Forskriften for g fås altså ved i forskriften for f at udskifte alle forekomster af x med x x 0 BAndengradspolynomier Et polynomium er en funktion på formen f ( ) = an + an + a+ a, hvor ai R kaldes polynomiets koefficienter. Graden af et polynomium er lig med den højeste potens af, for hvilket den

Læs mere

Nordisk Matematikkonkurrence Danmarks Matematiklærerforening Skoleåret 2010-2011 Opgaver ved semifinalen

Nordisk Matematikkonkurrence Danmarks Matematiklærerforening Skoleåret 2010-2011 Opgaver ved semifinalen Opgave 1 Sum af produkter i en trekant Antag at der i et koordinatsystem er en trekant hvis vinkelspidser ligger i punkterne ( 2, 1), (3, 3) og (4, 3). Find alle de punkter inden i trekanten hvis koordinater

Læs mere

Projekt 5.9. Geometriske fraktaler og fraktale dimensioner

Projekt 5.9. Geometriske fraktaler og fraktale dimensioner Projekt 5.9. Geometriske fraktaler og fraktale dimensioner Indhold 1. Fraktaler og vækstmodeller... 2 2. Kløverøen... 2 3. Fraktal dimension... 4 3.1 Skridtlængdemetoden... 4 3.2 Netmaskemetoden... 7 3.3

Læs mere

3.2. Grundlæggende Spilleregler

3.2. Grundlæggende Spilleregler 3.2. Grundlæggende Spilleregler 3.2.1. 1 Skakspillets natur og mål 1.1 Et parti skak er et spil mellem to modstandere som skiftevis flytter deres brikker på et kvadratisk bræt, kaldet et "skakbræt". Spilleren

Læs mere

3 Algebra. Faglige mål. Variable og brøker. Den distributive lov. Potenser og rødder

3 Algebra. Faglige mål. Variable og brøker. Den distributive lov. Potenser og rødder 3 Algebra Faglige mål Kapitlet Algebra tager udgangspunkt i følgende faglige mål: Variable og brøker: kende enkle algebraiske udtryk med brøker og kunne behandle disse ved at finde fællesnævner. Den distributive

Læs mere

Basisblokke addition Programmet viser enere, 10-bunker, 100- bunker osv. Det kan bruges til at visualisere, hvordan man lægger tal sammen.

Basisblokke addition Programmet viser enere, 10-bunker, 100- bunker osv. Det kan bruges til at visualisere, hvordan man lægger tal sammen. Abacus Dette program er en elektronisk udgave af en kugleramme. Man kan flytte en kugle eller en gruppe af kugler ved at klikke på en af kuglerne. Hvis man klikker på Nulstil, vender alle kuglerne tilbage

Læs mere

Grafer og graf-gennemløb

Grafer og graf-gennemløb Grafer og graf-gennemløb Grafer En mængde V af knuder (vertices). En mængde E V V af kanter (edges). Dvs. ordnede par af knuder. Grafer En mængde V af knuder (vertices). En mængde E V V af kanter (edges).

Læs mere

Grundlæggende køretidsanalyse af algoritmer

Grundlæggende køretidsanalyse af algoritmer Grundlæggende køretidsanalyse af algoritmer Algoritmers effektivitet Størrelse af inddata Forskellige mål for køretid Store -notationen Klassiske effektivitetsklasser Martin Zachariasen DIKU 1 Algoritmers

Læs mere

Årets overordnede mål inddelt i kategorier

Årets overordnede mål inddelt i kategorier Matematik 1. klasse Årsplan af Bo Kristensen, Katrinedals Skole Årets overordnede mål inddelt i kategorier Tallenes opbygning og indbyrdes hierarki Tælle til 100. Kende tælleremser som 10 20 30, 5 10 15,

Læs mere

P2-gruppedannelsen for Mat og MatØk

P2-gruppedannelsen for Mat og MatØk Institut for Matematiske Fag Aalborg Universitet Danmark 1-02-2012 Vejledere Bo Hove E-mail: bh@thisted-gymnasium.dk 3 Mat grupper (semesterkoordinator) E-mail: diego@math.aau.dk. Web page: http://people.math.aau.dk/~diego/

Læs mere

Basisblokke addition Programmet viser enere, 10-bunker, 100- bunker osv. Det kan bruges til at visualisere, hvordan man lægger tal sammen.

Basisblokke addition Programmet viser enere, 10-bunker, 100- bunker osv. Det kan bruges til at visualisere, hvordan man lægger tal sammen. Basisblokke addition Programmet viser enere, 10-bunker, 100- bunker osv. Det kan bruges til at visualisere, hvordan man lægger tal sammen. Basisblokke - decimaltal Programmet viser enere, 10-bunker, 100-

Læs mere

International matematikkonkurrence

International matematikkonkurrence 60 minutter Navn og klasse 3 point pr. opgave Hjælpemidler: papir og blyant 1 Et rektangel er delvist skjult bag et gardin. Hvillken form har den skjulte del? A En trekant B Et kvadrat C En sekskant D

Læs mere

Analytisk Geometri. Frank Nasser. 12. april 2011

Analytisk Geometri. Frank Nasser. 12. april 2011 Analytisk Geometri Frank Nasser 12. april 2011 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Bemærk: Dette er

Læs mere

Hop videre med. Udforskning af opgaverne for 6. og 7. klassetrin i Danmark. 1 a) Tegn alle de mulige symmetriakser på vejskiltene.

Hop videre med. Udforskning af opgaverne for 6. og 7. klassetrin i Danmark. 1 a) Tegn alle de mulige symmetriakser på vejskiltene. Hop videre med Udforskning af opgaverne ne bygger videre på opgaver fra Kænguruen og lægger op til, at klassen sammen kan diskutere og udforske problemstillingerne. Opgavenumrene henviser til de opgaver,

Læs mere

Ordbog over Symboler

Ordbog over Symboler Ordbog over Symboler Frank Nasser 20. april 2011 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Bemærk: Dette

Læs mere

Opgaver. Kapitel 1 fra Bogen. Georg Mohr-Konkurrencens vinderseminar 1. udgave 2. oplag 2007

Opgaver. Kapitel 1 fra Bogen. Georg Mohr-Konkurrencens vinderseminar 1. udgave 2. oplag 2007 Opgaver Kapitel 1 fra Bogen Georg Mohr-Konkurrencens vinderseminar 1. udgave 2. oplag 2007 Dette kapitel indeholder opgaver af ret varierende sværhedsgrad. De letteste ligger i forlængelse af, hvad der

Læs mere

Kommentarer til den ægyptiske beregning Kommentarer til den ægyptiske beregning... 5

Kommentarer til den ægyptiske beregning Kommentarer til den ægyptiske beregning... 5 Hvad er matematik? C, i-bog ISBN 978 87 7066 499 8 Projekter: Kapitel - Projektet er delt i to små projekter, der kan laves uafhængigt af hinanden. Der afsættes fx - timer til vejledning med efterfølgende

Læs mere

koordinatsystemer og skemaer

koordinatsystemer og skemaer brikkerne til regning & matematik koordinatsystemer og skemaer basis preben bernitt brikkerne til regning & matematik Koordinatsystemer og skemaer, basis 1. Udgave som E-bog 2003 by bernitt-matematik.dk

Læs mere

International matematikkonkurrence

International matematikkonkurrence Facit til demoopgaver for 6. og 7. klassetrin Navn og klasse 3 point pr. opgave Facit 1 Hvilken figur har netop halvdelen farvet? A B C D E 2 På min paraply fra Australien står der KANGAROO: Hvilket af

Læs mere

Eksempel på muligt eksamenssæt i Diskret Matematik

Eksempel på muligt eksamenssæt i Diskret Matematik Eksempel på muligt eksamenssæt i Diskret Matematik Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet???dag den?.????, 20??. Kl. 9-13. Nærværende eksamenssæt består af 13 nummererede sider med

Læs mere