enote 4: Statistik ved simulering Kursus 02402/02323 Introducerende Statistik Forelæsning 7: Simuleringsbaseret statistik Peder Bacher

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Starte visningen fra side:

Download "enote 4: Statistik ved simulering Kursus 02402/02323 Introducerende Statistik Forelæsning 7: Simuleringsbaseret statistik Peder Bacher"

Transkript

1 Kursus 02402/02323 Introducerende Statistik Forelæsning 7: Simuleringsbaseret statistik Peder Bacher DTU Compute, Dynamiske Systemer Bygning 303B, Rum 017 Danmarks Tekniske Universitet 2800 Lyngby Danmark enote 4: Statistik ved simulering Simulering: Træk tilfældige værdier og beregn statistik mange gange Fejlforplantning (error propagation rules) (F.eks. igennem ikke-lineær funktion) Bootstrapping af konfidensintervaller: Parametrisk (Simuler mange udfald af stokastisk var.) Ikke-parametrisk (Træk direkte fra data) Specifikke setups: (4 versioner af konfidensintervaller) Èn gruppe/stikprøve og to grupper/stikprøver data Parametrisk vs. ikke-parametrisk DTU Compute Introduktion til Statistik Forår / 54 DTU Compute Introduktion til Statistik Forår / 54 enote 4: Statistics by simulation Oversigt Simulation: Draw random values and calculate the statistic many times Error propagation rules (e.g. through a non-linear function) Bootstrapping of confidence intervals: Parametric (Simulate many outcomes of random var.) Non-parametric (Draw values directly from data) Specific situations: (4 versions of confidence intervals) One-sample and Two-sample data Parametric vs. non-parametric 1 Eksempel: Areal af plader 2 Introduction to bootstrap One-sample konfidensinterval for µ for en vilkårlig fordeling 3 One-sample konfidensinterval for µ DTU Compute Introduktion til Statistik Forår / 54 DTU Compute Introduktion til Statistik Forår / 54

2 Motivation Anvendelser Mange relevant beregningsstørrelser ( computed features ) har komplicerede samplingfordelinger: Medianen Fraktiler generelt, dvs. f.eks. også IQR= Q 3 Q 1 Enhver ikke-lineær function af en eller flere input variable... Data/populations fordelingen kan være ikke-normal, hvilket komplicerer den statistiske teori for selv en simpel gennemsnitsberegning Vi kan håbe på the magic of CLT (Central Limit Theorem), men afhænger af antal samples Stokastisk simulering anvendes mange steder: Trafiksimulering Kø simulering, f.eks. call-center Agent baseret simulering, f.eks. evakuering og markeder Vind- og solenergi... Generelt, kan bruges til at modellere komplekse processer ved generere tilfældige udfald MEN: Nogle gange kan vi ikke være helt sikre på om det er godt nok - simulering kan hjælpe til at verificere! Kræver: Brug af computer - R er et super værktøj til dette! DTU Compute Introduktion til Statistik Forår / 54 DTU Compute Introduktion til Statistik Forår / 54 Eksempel: Exponentialfordelingen med λ = 0.5 (Pseudo)tilfældige tal genereret af en computer En tilfældighedsgenerator er en algoritme der kan generere x i+1 ud fra x i En sekvens af tal ser tilfældige ud Kræver en start - kaldet seed (Bruger typisk uret i computeren) Grundlæggende simuleres den uniforme fordeling, og så bruges: Hvis U Uniform(0,1) og F er en fordelingsfunktion for en eller anden sandsynlighedsfordeling, så vil F 1 (U) følge fordelingen givet ved F Uniforme udfald x F(x) = f (t)dt = 1 e 0.5x Exponentielle udfald DTU Compute Introduktion til Statistik Forår / 54 DTU Compute Introduktion til Statistik Forår / 54

3 I praksis i R Eksempel: Simuler 100 binomial fordelte værdier De forskellige fordelinger er gjort klar til simulering: rbinom rpois rhyper rnorm rlnorm rexp runif rt rchisq rf Binomialfordelingen Poissonfordelingen Den hypergeometriske fordeling Normalfordelingen Lognormalfordelingen Eksponentialfordelingen Den uniforme(lige) fordeling t-fordelingen χ 2 -fordelingen F-fordelingen ## Sæt et seed for at få samme udfald hver gang set.seed(123) ## 100 realisationer fra binomialfordelingen: ## Antal successer fra 25 trækninger med 0.2 sandsynlighed for succes rbinom(n=100, size=25, prob=0.2) ## Exponential fordelte hist(rexp(n=100, rate=2), prob=true) ## Plot the theoretical pdf xseq <- seq(0,10,len=1000) lines(xseq, dexp(xseq, rate=2)) DTU Compute Introduktion til Statistik Forår / 54 DTU Compute Introduktion til Statistik Forår / 54 Eksempel: Areal af plader Eksempel: Areal af plader Eksempel: Areal af plader Eksempel: Areal af plader En virksomhed producerer rektangulære plader Bredden X af pladerne (i meter) antages at kunne beskrives med en normalfordeling N(2, ) og længden Y af pladerne (i meter) antages at kunne beskrives med en normalfordeling N(3, ) Man er interesseret i arealet, som jo så givet ved A = XY Spørgsmål som kan stilles er f.eks.: Hvor ofte sådanne plader har et areal, der afviger mere end 0.1m 2 fra de 6m 2? Sandsynligheden for andre mulige hændelser? Generelt: Hvad er sandsynlighedsfordelingen for A? Hvor ofte sådanne plader har et areal, der afviger mere end 0.1m 2 fra de 6m 2? Løsning ved simulering: ## Antal simuleringer k = ## Simuler længderne af siderne x = rnorm(k, 2, 0.01) y = rnorm(k, 3, 0.02) ## Beregn arealet for hver simulering area = x*y ## Beregn statistikker ## (stikprøve)gennemsnit mean(area) ## (stikprøve)spredning sd(area) ## Fraktion af arealer afviger mere end 0.1 sum(abs(area-6) > 0.1) / k DTU Compute Introduktion til Statistik Forår / 54 DTU Compute Introduktion til Statistik Forår / 54

4 Fejlophobning - ved lineær approksimation Spørgsmål om hvilken metode til beregning af varians (socrative.com - ROOM:PBAC) Vi har n stokastiske variabler X 1,X 2,...,X n og kender deres varianser σ 2 1,σ2 2,...,σ2 n Og vil finde variansen af en funktion af dem σ 2 f (X 1,...,X n) = Var( f (X 1,...,X n ) ) Vi kender allerede regneregel for lineære funktioner (Theorem 2.53) σf 2 n (X 1,...,X = n) a 2 i σi 2 hvis f (X 1,...,X n ) = i=1 Method 4.6: for ikke-lineære funktioner σf 2 n ( ) f 2 (X 1,...,X n) σi 2 i=1 x i n i=1 a i X i Hvordan beregnes: Var(2 2 X Y)? A: Som lineær funktion B: Som ikke-lineær funktion C: Ved ikke Svar: A: Som lineær funktion (Regneregel: Theorem 2.53 Mean and variance of linear combinations) Hvordan beregnes: Var(X + Y 1 )? A: Som lineær funktion B: Som ikke-lineær funktion C: Ved ikke Svar: B: Som ikke-lineær funktion (Brug error propagation eller simulation) DTU Compute Introduktion til Statistik Forår / 54 DTU Compute Introduktion til Statistik Forår / 54 Eksempel: Varians af areal (ikke-lineære fejlophobningslov) Eksempel: Varians af areal (ikke-lineære fejlophobningslov) Vi har allerede brugt eksemplet med areal af en plade Nu spørger vi: Hvad er fejlen på A = = 6.00 m 2 fundet ved den ikke-lineærefejlophobningslov? Varianserne er σ 2 X = Var(X) = og σ 2 Y = Var(Y) = Funktionen og de partielt afledte er f (x,y) = xy, f x = y, f y = x Så resultatet bliver ( ) f 2 ( ) f 2 Var(A) σx 2 + σy 2 x y = y 2 σ 2 X + x 2 σ 2 Y = = DTU Compute Introduktion til Statistik Forår / 54 DTU Compute Introduktion til Statistik Forår / 54

5 Fejlophobning - ved simulering Eksempel: Varians af areal (Simulering) Method 4.7: Error propagation by simulation Assume we have actual measurements x 1,...,x n with known/assumed error variances σ 2 1,...,σ2 n. 1 Simulate k outcomes of all n measurements from assumed error distributions, e.g. N(x i,σ 2 i ): X(j) i,j = 1...,k 2 Calculate the standard deviation directly as the observed standard deviation of the k simulated values of f s sim f (X 1,...,X = 1 k n) k 1 (f j f ) 2 where i=1 f j = f (X (j) 1,...,X(j) n ) Beregn variansen af arealet med simulering: k = ## Simuler længderne af siderne x = rnorm(k, 2, 0.01) y = rnorm(k, 3, 0.02) ## Beregn arealet for hver simulering area = x*y ## Beregn variansen af de simulerede arealer var(area) DTU Compute Introduktion til Statistik Forår / 54 DTU Compute Introduktion til Statistik Forår / 54 Eksempel: Varians af areal (Teoretisk udledning) Areal-eksempel et summary Faktisk kan man finde variansen for A = XY teoretisk [ Var(XY) = E (XY) 2] [E(XY)] 2 = E(X 2 )E(Y 2 ) E(X) 2 E(Y) 2 [ = Var(X) + E(X) 2][ Var(Y) + E(Y) 2] E(X) 2 E(Y) 2 = Var(X)Var(Y) + Var(X)E(Y) 2 + Var(Y)E(X) 2 = = = Tre approaches til beregning af varians af ikke-lineær funktion: 1 Den analytiske, men approksimative, fejlophobningslov (error propagation metode) 2 Simuleringsbaseret 3 Teoretisk udledning Simulering har en række fordele: 1 Det er en simpel måde at beregne andre størrelser end standardafvigelsen (som kan være mere komplicerede, f.eks. udtryk sværere at differentiere) 2 Det er en simpel måde at bruge andre fordelinger end normalfordelingen 3 Det afhænger ikke af en lineær approksimation (som error propagation) til den underliggende ikke-lineære funktion DTU Compute Introduktion til Statistik Forår / 54 DTU Compute Introduktion til Statistik Forår / 54

6 Bootstrapping Introduction to bootstrap One-sample konfidensinterval for µ Eksempel: Konfidensinterval for middelværdien i en Bootstrapping findes i to versioner: 1 Parametrisk bootstrap: Simuler gentagne samples fra en antagede (og estimerede) fordeling. 2 : Simuler gentagne samples direkte fra data. Antag at vi har observeret følgende 10 opkaldsventetider (i sekunder) i et call center 32.6, 1.6, 42.1, 29.2, 53.4, 79.3, 2.3, 4.7, 13.6, 2.0 Vi estimerer fra data (eksponential fordelingen har en parameter raten) ˆµ = x = og dermed er raten: ˆλ = 1/26.08 = Vores fordelingsantagelse Ventetiderne kommer fra en Hvad er konfidensintervallet for µ? Baseret på tidligere indhold i dette kursus: Det ved vi ikke! DTU Compute Introduktion til Statistik Forår / 54 DTU Compute Introduktion til Statistik Forår / 54 One-sample konfidensinterval for µ Eksempel: Konfidensinterval for middelværdien i en One-sample konfidensinterval for µ Eksempel: Konfidensinterval for middelværdien i en ## Sæt seed hvis sammen resultat ønskes set.seed( ) ## Første gang: Simuler 10 observationer og beregn gennemsnit simsample <- rexp(10, 1/26.08) mean1 <- mean(simsample) ## Anden gang: Simuler 10 observationer og beregn gennemsnit simsample <- rexp(10, 1/26.08) mean2 <- mean(simsample) ## Tredje gang: Simuler 10 observationer og beregn gennemsnit simsample <- rexp(10, 1/26.08) mean3 <- mean(simsample) k < ## 1. Simulate 10 exponentials k times and keep in a matrix: set.seed( ) simsamples <- replicate(k, rexp(10, 1/26.08)) ## 2. Compute the mean of the 10 simulated observations k times: simmeans <- apply(simsamples, 2, mean) ## 3. Find the two relevant quantiles of the k simulated means: quantile(simmeans, c(0.025, 0.975)) ## 2.5% 98% ## ## Gør det gange! Alright, det må kunne gøres smartere!! DTU Compute Introduktion til Statistik Forår / 54 DTU Compute Introduktion til Statistik Forår / 54

7 One-sample konfidensinterval for µ Example: Konfidensinterval for middelværdien i en Eksempel: Konfidensinterval for medianen i en hist(simmeans, col="blue", nclass=30) Histogram of simmeans Antag at vi har observeret følgende 10 opkaldsventetider (i sekunder) i et call center Frequency , 1.6, 42.1, 29.2, 53.4, 79.3, 2.3, 4.7, 13.6, 2.0 Vi estimerer fra data Median = 21.4 og ˆµ = x = Vores fordelingsantagelse Ventetiderne kommer fra en Hvad er konfidensintervallet for medianen? Baseret på tidligere indhold i dette kursus: Det ved vi ikke! DTU Compute 20 Introduktion40til Statistik Forår / 54 simmeans DTU Compute Introduktion til Statistik Forår / 54 Eksempel: Konfidensinterval for medianen i en Eksempel: Konfidensinterval for medianen i en k < ## 1. Simulate 10 exponentials with the right mean k times: set.seed( ) simsamples <- replicate(k, rexp(10, 1/26.08)) ## 2. Compute the median of the n=10 simulated observations k times: simmedians <- apply(simsamples, 2, median) ## 3. Find the two relevant quantiles of the k simulated medians: quantile(simmedians, c(0.025, 0.975)) expex2.6, results= asis, purl=true hist(simmedians, col= blue, ## 2.5% 98% ## 7 38 DTU Compute Introduktion til Statistik Forår / 54 DTU Compute Introduktion til Statistik Forår / 54

8 Papirkuglekast One-sample konfidensinterval for µ One-sample konfidensinterval for µ 1 Klargør papirkugler 2 Prøv at ramme ned i papkassen 3 KAST UAFHÆNGIGT AF DE ANDRE! 4 Vent til Peder siger go Pause :) DTU Compute Introduktion til Statistik Forår / 54 DTU Compute Introduktion til Statistik Forår / 54 One-sample konfidensinterval for µ Konfidensinterval for en vilkårlig beregningsstørrelse One-sample konfidensinterval for µ Et andet eksempel: 99% konfidensinterval for Q 3 for en normalfordeling Method 4.10: Confidence interval for any feature θ by parametric bootstrap Assume we have actual observations x 1,...,x n and assume that they stem from some probability distribution with density f. 1 Simulate k samples of n observations from the assumed distribution f where the mean a is set to x. 2 Calculate the statistic ˆθ in each of the k samples ˆθ 1,..., ˆθ k. 3 Find the 100(α/2)% and 100(1 α/2)% quantiles for these, q 100(α/2)% and q 100(1 α/2)% as the 100(1 α)% confidence interval: [q 100(α/2)%, q 100(1 α/2)% a And otherwise chosen to match the data as good as possible: Some distributions have more than just a single mean related parameter, e.g. the normal or the log-normal. For these one should use a distribution with a variance that matches the sample variance of the data. Even more generally the approach would be to match the chosen distribution to the data by the so-called maximum likelihood approach ] x <- c(168, 161, 167, 179, 184, 166, 198, 187, 191, 179) n <- length(x) ## Define a (upper-quartile) Q3-function: Q3 <- function(x){ quantile(x, 0.75)} ## Set the number of simulations: k < ## 1. Simulate k samples of n=10 normals with the right mean and variance: set.seed( ) simsamples <- replicate(k, rnorm(n, mean(x), sd(x))) ## 2. Compute the Q3 of the n=10 simulated observations k times: simq3s <- apply(simsamples, 2, Q3) ## 3. Find the two relevant quantiles of the k simulated medians: quantile(simq3s, c(0.005, 0.995)) ## 0.5% 100% ## DTU Compute Introduktion til Statistik Forår / 54 DTU Compute Introduktion til Statistik Forår / 54

9 for en vilkårlig fordeling Two-sample konfidensinterval for en vilkårlig feature sammenligning θ X θ Y (inkl. µ X µ Y ) for en vilkårlig fordeling Eksempel: Konfidensinterval for the forskellen mellem to exponentielle middelværdier Method 4.13: Two-sample confidence interval for any feature comparison θ X θ Y by parametric bootstrap Assume we have actual observations x X,...,x n and y X,...,y n and assume that they stem from some probability distributions with density f X and f Y. 1 Simulate k sets of 2 samples of n X and n Y observations from the assumed distributions setting the means a to ˆµ X = x and ˆµ Y = ȳ, respectively. 2 Calculate the difference between the features in each of the k samples ˆθ x1 ˆθ y1,..., ˆθ xk ˆθ yk. 3 Find the 100(α/2)% and 100(1 α/2)% quantiles for these, q 100(α/2)% and q 100(1 α/2)% as the 100(1 α)% confidence interval: [q 100(α/2)%, q 100(1 α/2)% ] x <- c(32.6, 1.6, 42.1, 29.2, 53.4, 79.3, 2.3, 4.7, 13.6, 2.0) ## Day 2 data: y <- c(9.6, 22.2, 52.5, 12.6, 33.0, 15.2, 76.6, 36.3, 110.2, 18.0, 62.4, 10.3) ## Keep sample sizes n1 <- length(x) n2 <- length(y) a As before DTU Compute Introduktion til Statistik Forår / 54 DTU Compute Introduktion til Statistik Forår / 54 for en vilkårlig fordeling for en vilkårlig fordeling Eksempel: Konfidensinterval for the forskellen mellem to exponentielle middelværdier Papirkuglekast k < ## 1. Simulate k samples of each n1=10 and n2=12 ## exponentials with the right means: set.seed( ) simxsamples <- replicate(k, rexp(n1, 1/mean(x))) simysamples <- replicate(k, rexp(n2, 1/mean(y))) ## 2. Compute the difference between the simulated ## means k times: simdifmeans <- apply(simxsamples, 2, mean) - apply(simysamples, 2, mean) ## 3. Find the two relevant quantiles of the ## k simulated differences of means: quantile(simdifmeans, c(0.025, 0.975)) 1 Klargør papirkugler 2 Prøv at ramme ned i papkassen 3 KAST UAFHÆNGIGT AF DE ANDRE! 4 NU MED DET ENE ØJE LUKKET 5 Vent til Peder siger go ## 2.5% 98% ## DTU Compute Introduktion til Statistik Forår / 54 DTU Compute Introduktion til Statistik Forår / 54

10 Parametrisk bootstrap - et overblik for en vilkårlig fordeling - et overblik Vi antager en fordeling! Der er parametre i en fordeling, derfor parametrisk bootstrap To konfidensinterval-metodeboxe blev givet: One-sample Two-sample For any feature Method 4.10 Method 4.13 Vi antager IKKE noget om nogen fordelinger! Altså der er ingen parametre, derfor ikke-parametrisk bootstrap To konfidensinterval-metodeboxe bliver givet: One-sample Two-sample For any feature Method 4.18 Method 4.20 DTU Compute Introduktion til Statistik Forår / 54 DTU Compute Introduktion til Statistik Forår / 54 One-sample konfidensinterval for µ Eksempel: Kvinders cigaretforbrug One-sample konfidensinterval for µ Eksempel: Kvinders cigaretforbrug I et studie undersøgte man kvinders cigaretforbrug før og efter fødsel Man fik følgende observationer af antal cigaretter pr. dag: før efter før efter Sammenlign før og efter! Er der sket nogen ændring i gennemsnitsforbruget! Et parret t-test setup, MEN med tydeligvis ikke-normale data! x1 <- c(8, 24, 7, 20, 6, 20, 13, 15, 11, 22, 15) x2 <- c(5, 11, 0, 15, 0, 20, 15, 19, 12, 0, 6) ## Calculate the difference dif <- x1 - x2 dif ## [1] ## And the sample mean mean(dif) ## [1] 5.3 DTU Compute Introduktion til Statistik Forår / 54 DTU Compute Introduktion til Statistik Forår / 54

11 One-sample konfidensinterval for µ Eksempel: Kvinders cigaretforbrug - bootstrapping One-sample konfidensinterval for µ Eksempel: Kvinders cigaretforbrug - de ikke-parametriske bootstrap resultater: ## Resample from the several times sample(dif, replace = TRUE) ## [1] sample(dif, replace = TRUE) ## [1] sample(dif, replace = TRUE) ## [1] sample(dif, replace = TRUE) simsamples = replicate(k, sample(dif, replace = TRUE)) ## Take the mean for every resample simmeans = apply(simsamples, 2, mean) ## Take the two quantiles to get the confidence interval quantile(simmeans, c(0.025,0.975)) ## 2.5% 98% ## ## [1] sample(dif, replace = TRUE) ## [1] DTU Compute Introduktion til Statistik Forår / 54 DTU Compute Introduktion til Statistik Forår / 54 One-sample konfidensinterval for en vilkårlig feature θ (inkl. µ) Eksempel: Kvinders cigaretforbrug Method 4.18: Confidence interval for any feature θ by non-parametric bootstrap Assume we have actual observations x 1,...,x n. 1 Simulate k samples of size n by randomly sampling among the available data (with replacement) 2 Calculate the statistic ˆθ in each of the k samples ˆθ 1,..., ˆθ k. 3 Find the 100(α/2)% and 100(1 α/2)% quantiles for these, q 100(α/2)% and q 100(1 α/2)% as the 100(1 α)% confidence interval: [q 100(α/2)%, q 100(1 α/2)% ] Lad os finde 95% konfidensintervallet for ændringen af median cigaretforbruget k = simsamples = replicate(k, sample(dif, replace = TRUE)) ## Take the median for each resample simmedians = apply(simsamples, 2, median) ## Take the two quantiles to get the confidence interval quantile(simmedians, c(0.025,0.975)) ## 2.5% 98% ## -1 9 DTU Compute Introduktion til Statistik Forår / 54 DTU Compute Introduktion til Statistik Forår / 54

12 Eksempel: Tandsundhed og flaskebrug Eksempel: Tandsundhed og flaskebrug - et 95% konfidensinterval for µ X µ Y I et studie ville man undersøge, om børn der havde fået mælk fra flaske som barn havde dårligere eller bedre tænder end dem, der ikke havde fået mælk fra flaske. Fra 19 tilfældigt udvalgte børn registrerede man hvornår de havde haft deres første tilfælde af karies. Find konfidensintervallet for forskellen! flaske alder flaske alder flaske alder nej 9 nej 10 ja 16 ja 14 nej 8 ja 14 ja 15 nej 6 ja 9 nej 10 ja 12 nej 12 nej 12 ja 13 ja 12 nej 6 nej 20 ja 19 ja 13 x <- c(9,10,12,6,10,8,6,20,12) ## Reading in yes group: y <- c(14,15,19,12,13,13,16,14,9,12) ## Resample many times k < simxsamples <- replicate(k, sample(x, replace = TRUE)) simysamples <- replicate(k, sample(y, replace = TRUE)) ## Take the mean for each time and subtract simmeandifs <- apply(simxsamples, 2, mean) - apply(simysamples, 2, mean) ## Take the two quantiles to get the confidence interval quantile(simmeandifs, c(0.025,0.975)) ## 2.5% 98% ## DTU Compute Introduktion til Statistik Forår / 54 DTU Compute Introduktion til Statistik Forår / 54 Two-sample konfidensinterval for θ X θ Y (inkl. µ X µ Y ) med ikke-parametrisk bootstrap Eksempel: Tandsundhed og flaskebrug - et 99% confidence interval for median-forskellen Method 4.20: Two-sample confidence interval for θ X θ Y by non-parametric bootstrap Assume we have actual observations x 1,...,x n and y 1,...,y n. 1 Simulate k sets of 2 samples of n X and n Y observations from the respective groups (with replacement) 2 Calculate the difference between the features in each of the k samples ˆθ x1 ˆθ y1,..., ˆθ xk ˆθ yk. 3 Find the 100(α/2)% and 100(1 α/2)% quantiles for these, q 100(α/2)% and q 100(1 α/2)% as the 100(1 α)% confidence interval: [q 100(α/2)%, q 100(1 α/2)% ] k < simxsamples <- replicate(k, sample(x, replace = TRUE)) simysamples <- replicate(k, sample(y, replace = TRUE)) ## Take the difference in medians simmediandiffs <- apply(simxsamples, 2, median)- apply(simysamples, 2, median) ## Take the two quantiles to get the confidence interval quantile(simmediandiffs, c(0.005,0.995)) ## 0.5% 100% ## -8 0 DTU Compute Introduktion til Statistik Forår / 54 DTU Compute Introduktion til Statistik Forår / 54

13 Bootstrapping - et overblik Vi har fået 4 ret ens forskellige metode-bokse: 1 Med eller uden fordeling (parametrisk eller ikke-parametrisk) 2 For one- eller two-sample analyse (en eller to grupper) Midtvejsevaluerings resultater:?? Bemærk: Middelværdier (means) er inkluderet i vilkårlige beregningsstørrelser (other features). Eller: Disse metoder kan også anvendes for andre analyser end for means! Hypotesetest også muligt Vi kan udføre hypotese test ved at kigge på konfidensintervallerne! DTU Compute Introduktion til Statistik Forår / 54 DTU Compute Introduktion til Statistik Forår / 54 Oversigt 1 Eksempel: Areal af plader 2 Introduction to bootstrap One-sample konfidensinterval for µ for en vilkårlig fordeling 3 One-sample konfidensinterval for µ DTU Compute Introduktion til Statistik Forår / 54

Kursus 02402/02323 Introducerende Statistik. Forelæsning 7: Simuleringsbaseret statistik

Kursus 02402/02323 Introducerende Statistik. Forelæsning 7: Simuleringsbaseret statistik Kursus 02402/02323 Introducerende Statistik Forelæsning 7: Simuleringsbaseret statistik Peder Bacher DTU Compute, Dynamiske Systemer Bygning 303B, Rum 009 Danmarks Tekniske Universitet 2800 Lyngby Danmark

Læs mere

Oversigt. Kursus 02402/02323 Introducerende Statistik. Forelæsning 7: Simuleringsbaseret statistik. Klaus K. Andersen og Per Bruun Brockhoff

Oversigt. Kursus 02402/02323 Introducerende Statistik. Forelæsning 7: Simuleringsbaseret statistik. Klaus K. Andersen og Per Bruun Brockhoff Kursus 02402/02323 Introducerende Statistik Forelæsning 7: Simuleringsbaseret statistik Klaus K. Andersen og Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Danmarks Tekniske Universitet 2800

Læs mere

Oversigt. Kursus 02402 Introduktion til Statistik. Forelæsning 10: Statistik ved hjælp af simulering. Per Bruun Brockhoff.

Oversigt. Kursus 02402 Introduktion til Statistik. Forelæsning 10: Statistik ved hjælp af simulering. Per Bruun Brockhoff. Kursus 02402 Introduktion til Statistik Forelæsning 10: Statistik ved hjælp af simulering Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800

Læs mere

1 enote 1: Simple plots og deskriptive statistik. 2 enote2: Diskrete fordelinger. 3 enote 2: Kontinuerte fordelinger

1 enote 1: Simple plots og deskriptive statistik. 2 enote2: Diskrete fordelinger. 3 enote 2: Kontinuerte fordelinger Kursus 02402/02323 Introduktion til statistik Forelæsning 13: Et overblik over kursets indhold Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Building 324, Room 220 Danish Technical University

Læs mere

enote 2: Kontinuerte fordelinger Introduktion til Statistik Forelæsning 3: Kontinuerte fordelinger Peder Bacher enote 2: Continuous Distributions

enote 2: Kontinuerte fordelinger Introduktion til Statistik Forelæsning 3: Kontinuerte fordelinger Peder Bacher enote 2: Continuous Distributions Introduktion til Statistik Forelæsning 3: Kontinuerte fordelinger Peder Bacher DTU Compute, Dynamiske Systemer Bygning 33B, Rum 9 Danmarks Tekniske Universitet 28 Lyngby Danmark e-mail: pbac@dtu.dk Efterår

Læs mere

Kursus 02402/02323 Introduktion til statistik. Forelæsning 13: Et overblik over kursets indhold. Klaus K. Andersen og Per Bruun Brockhoff

Kursus 02402/02323 Introduktion til statistik. Forelæsning 13: Et overblik over kursets indhold. Klaus K. Andersen og Per Bruun Brockhoff Kursus 02402/02323 Introduktion til statistik Forelæsning 13: Et overblik over kursets indhold Klaus K. Andersen og Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Danmarks Tekniske Universitet

Læs mere

Introduktion til Statistik. Forelæsning 3: Kontinuerte fordelinger. Peder Bacher

Introduktion til Statistik. Forelæsning 3: Kontinuerte fordelinger. Peder Bacher Introduktion til Statistik Forelæsning 3: Kontinuerte fordelinger Peder Bacher DTU Compute, Dynamiske Systemer Bygning 303B, Rum 009 Danmarks Tekniske Universitet 2800 Lyngby Danmark e-mail: pbac@dtu.dk

Læs mere

Oversigt. Introduktion til Statistik. Forelæsning 2: Stokastisk variabel og diskrete fordelinger

Oversigt. Introduktion til Statistik. Forelæsning 2: Stokastisk variabel og diskrete fordelinger Introduktion til Statistik Forelæsning 2: og diskrete fordelinger Oversigt 1 2 3 Fordelingsfunktion 4 Peder Bacher DTU Compute, Dynamiske Systemer Bygning 303B, Rum 017 Danmarks Tekniske Universitet 2800

Læs mere

1 enote 1: Simple plots og deskriptive statistik. 2 enote 2: Diskrete fordelinger. 3 enote 2: Kontinuerte fordelinger

1 enote 1: Simple plots og deskriptive statistik. 2 enote 2: Diskrete fordelinger. 3 enote 2: Kontinuerte fordelinger Kursus 02402/02323 Introduktion til statistik Forelæsning 13: Et overblik over kursets indhold Peder Bacher DTU Compute, Dynamiske Systemer Building 303B, Room 017 Danish Technical University 2800 Lyngby

Læs mere

Introduktion til Statistik. Forelæsning 2: Stokastisk variabel og diskrete fordelinger. Peder Bacher

Introduktion til Statistik. Forelæsning 2: Stokastisk variabel og diskrete fordelinger. Peder Bacher Introduktion til Statistik Forelæsning 2: Stokastisk variabel og diskrete fordelinger Peder Bacher DTU Compute, Dynamiske Systemer Bygning 303B, Rum 009 Danmarks Tekniske Universitet 2800 Lyngby Danmark

Læs mere

Forelæsning 5: Kapitel 7: Inferens for gennemsnit (One-sample setup)

Forelæsning 5: Kapitel 7: Inferens for gennemsnit (One-sample setup) Kursus 02402 Introduktion til Statistik Forelæsning 5: Kapitel 7: Inferens for gennemsnit (One-sample setup) Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske

Læs mere

Forelæsning 4: Konfidensinterval for middelværdi (og spredning)

Forelæsning 4: Konfidensinterval for middelværdi (og spredning) Introduktion til Statistik Forelæsning 4: Konfidensinterval for middelværdi (og spredning) Peder Bacher DTU Compute, Dynamiske Systemer Bygning 303B, Rum 009 Danmarks Tekniske Universitet 2800 Lyngby Danmark

Læs mere

Oversigt. Course 02402/02323 Introducerende Statistik. Forelæsning 2: Stokastisk variabel og diskrete fordelinger

Oversigt. Course 02402/02323 Introducerende Statistik. Forelæsning 2: Stokastisk variabel og diskrete fordelinger Course 02402/02323 Introducerende Statistik Forelæsning 2: Stokastisk variabel og diskrete fordelinger Klaus K. Andersen og Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Danmarks Tekniske Universitet

Læs mere

Oversigt. Kursus Introduktion til Statistik. Forelæsning 4: Kapitel 5: Kontinuerte fordelinger

Oversigt. Kursus Introduktion til Statistik. Forelæsning 4: Kapitel 5: Kontinuerte fordelinger Kursus 02402 Introduktion til Statistik Forelæsning 4: Kapitel 5: Kontinuerte fordelinger Rune Haubo B Christensen (based on slides by Per Bruun Brockhoff) DTU Compute, Statistik og Dataanalyse Bygning

Læs mere

Note om Monte Carlo metoden

Note om Monte Carlo metoden Note om Monte Carlo metoden Kasper K. Berthelsen Version 1.2 25. marts 2014 1 Introduktion Betegnelsen Monte Carlo dækker over en lang række metoder. Fælles for disse metoder er, at de anvendes til at

Læs mere

Forelæsning 3: Kapitel 5: Kontinuerte fordelinger

Forelæsning 3: Kapitel 5: Kontinuerte fordelinger Kursus 02402 Introduktion til Statistik Forelæsning 3: Kapitel 5: Kontinuerte fordelinger Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800

Læs mere

Introduktion til Statistik. Forelæsning 3: Kontinuerte fordelinger. Peder Bacher

Introduktion til Statistik. Forelæsning 3: Kontinuerte fordelinger. Peder Bacher Introduktion til Statistik Forelæsning 3: Kontinuerte fordelinger Peder Bacher DTU Compute, Dynamiske Systemer Bygning 303B, Rum 009 Danmarks Tekniske Universitet 2800 Lyngby Danmark e-mail: pbac@dtu.dk

Læs mere

Oversigt. Kursus Introduktion til Statistik. Forelæsning 3: Kapitel 5: Kontinuerte fordelinger. Per Bruun Brockhoff.

Oversigt. Kursus Introduktion til Statistik. Forelæsning 3: Kapitel 5: Kontinuerte fordelinger. Per Bruun Brockhoff. Kursus 242 Introduktion til Statistik Forelæsning 3: Kapitel 5: Kontinuerte fordelinger Per Bruun Brockhoff DTU Compute, Statistik Bygning 35/324 Danmarks Tekniske Universitet 28 Lyngby Danmark e-mail:

Læs mere

Oversigt. Course 02402/02323 Introducerende Statistik. Forelæsning 3: Kontinuerte fordelinger. Per Bruun Brockhoff

Oversigt. Course 02402/02323 Introducerende Statistik. Forelæsning 3: Kontinuerte fordelinger. Per Bruun Brockhoff Course 242/2323 Introducerende Statistik Forelæsning 3: Kontinuerte fordelinger Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 22 Danmarks Tekniske Universitet 28 Lyngby Danmark

Læs mere

Oversigt. Kursus 02402 Introduktion til Statistik. Forelæsning 4: Kapitel 5: Kontinuerte fordelinger. Per Bruun Brockhoff. Eksponential fordelingen

Oversigt. Kursus 02402 Introduktion til Statistik. Forelæsning 4: Kapitel 5: Kontinuerte fordelinger. Per Bruun Brockhoff. Eksponential fordelingen Kursus 02402 Introduktion til Statistik Forelæsning 4: Kapitel 5: Kontinuerte fordelinger Per Bruun Brockhoff DTU Compute, Statistik Bygning 305/324 Danmarks Tekniske Universitet 2800 Lyngby Danmark e-mail:

Læs mere

Løsning eksamen d. 15. december 2008

Løsning eksamen d. 15. december 2008 Informatik - DTU 02402 Introduktion til Statistik 2010-2-01 LFF/lff Løsning eksamen d. 15. december 2008 Referencer til Probability and Statistics for Engineers er angivet i rækkefølgen [8th edition, 7th

Læs mere

Kursusindhold: Produkt og marked - matematiske og statistiske metoder. Monte Carlo

Kursusindhold: Produkt og marked - matematiske og statistiske metoder. Monte Carlo Kursusindhold: Produkt og marked - matematiske og statistiske metoder Rasmus Waagepetersen Institut for Matematiske Fag Aalborg Universitet Sandsynlighedsregning og lagerstyring Normalfordelingen og Monte

Læs mere

Produkt og marked - matematiske og statistiske metoder

Produkt og marked - matematiske og statistiske metoder Produkt og marked - matematiske og statistiske metoder Rasmus Waagepetersen Institut for Matematiske Fag Aalborg Universitet February 19, 2016 1/26 Kursusindhold: Sandsynlighedsregning og lagerstyring

Læs mere

Oversigt. Kursus Introduktion til Statistik. Forelæsning 2: Kapitel 4, Diskrete fordelinger. Per Bruun Brockhoff. Stokastiske Variable

Oversigt. Kursus Introduktion til Statistik. Forelæsning 2: Kapitel 4, Diskrete fordelinger. Per Bruun Brockhoff. Stokastiske Variable Kursus 02402 Introduktion til Statistik Forelæsning 2: Kapitel 4, Diskrete fordelinger Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800

Læs mere

Kursus navn og nr: Introduktion til Statistik (02323, og 02593) (studienummer) (underskrift) (bord nr)

Kursus navn og nr: Introduktion til Statistik (02323, og 02593) (studienummer) (underskrift) (bord nr) Danmarks Tekniske Universitet Side 1 af 26 sider. Skriftlig prøve: 16. august 2015 Kursus navn og nr: Introduktion til Statistik (02323, 02402 og 02593) Tilladte hjælpemidler: Alle Dette sæt er besvaret

Læs mere

Konfidensintervaller og Hypotesetest

Konfidensintervaller og Hypotesetest Konfidensintervaller og Hypotesetest Konfidensinterval for andele χ -fordelingen og konfidensinterval for variansen Hypoteseteori Hypotesetest af middelværdi, varians og andele Repetition fra sidst: Konfidensintervaller

Læs mere

Oversigt. 1 Gennemgående eksempel: Højde og vægt. 2 Korrelation. 3 Regressionsanalyse (kap 11) 4 Mindste kvadraters metode

Oversigt. 1 Gennemgående eksempel: Højde og vægt. 2 Korrelation. 3 Regressionsanalyse (kap 11) 4 Mindste kvadraters metode Kursus 02402 Introduktion til Statistik Forelæsning 11: Kapitel 11: Regressionsanalyse Oversigt 1 Gennemgående eksempel: Højde og vægt 2 Korrelation 3 Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse

Læs mere

Forelæsning 11: Kapitel 11: Regressionsanalyse

Forelæsning 11: Kapitel 11: Regressionsanalyse Kursus 02402 Introduktion til Statistik Forelæsning 11: Kapitel 11: Regressionsanalyse Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800

Læs mere

Løsning til eksaminen d. 14. december 2009

Løsning til eksaminen d. 14. december 2009 DTU Informatik 02402 Introduktion til Statistik 200-2-0 LFF/lff Løsning til eksaminen d. 4. december 2009 Referencer til Probability and Statistics for Engineers er angivet i rækkefølgen [8th edition,

Læs mere

Oversigt. 1 Eksempel. 2 Fordelingen for gennemsnittet t-fordelingen. 3 Konfidensintervallet for µ Eksempel

Oversigt. 1 Eksempel. 2 Fordelingen for gennemsnittet t-fordelingen. 3 Konfidensintervallet for µ Eksempel Kursus 02402/02323 Introducerende Statistik Forelæsning 4: Konfidensinterval for middelværdi (og spredning) Klaus K. Andersen og Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Danmarks Tekniske

Læs mere

Sandsynlighed og Statistik

Sandsynlighed og Statistik 36 Sandsynlighed og Statistik 6.1 Indledning Denne note beskriver de statistiske begreber og formler som man med rimelig sandsynlighed kan komme ud for i eksperimentelle øvelser. Alt er yderst korfattet,

Læs mere

Ensidet eller tosidet alternativ. Hypoteser. tosidet alternativ. nul hypotese testes mod en alternativ hypotese

Ensidet eller tosidet alternativ. Hypoteser. tosidet alternativ. nul hypotese testes mod en alternativ hypotese Kursus 02402 Introduktion til Statistik Forelæsning 6: Kapitel 7: Hypotesetest for gennemsnit (one-sample setup). 7.4-7.6 Per Bruun Brockhoff DTU Compute, Statistik Bygning 305/324 Danmarks Tekniske Universitet

Læs mere

Overheads til forelæsninger, mandag 5. uge På E har vi en mængde af mulige sandsynlighedsfordelinger for X, (P θ ) θ Θ.

Overheads til forelæsninger, mandag 5. uge På E har vi en mængde af mulige sandsynlighedsfordelinger for X, (P θ ) θ Θ. Statistiske modeller (Definitioner) Statistik og Sandsynlighedsregning 2 IH kapitel 0 og En observation er en vektor af tal x (x,..., x n ) E, der repræsenterer udfaldet af et (eller flere) eksperimenter.

Læs mere

Kvantitative Metoder 1 - Forår Dagens program

Kvantitative Metoder 1 - Forår Dagens program Dagens program Afsnit 6.1 Den standardiserede normalfordeling Normalfordelingen Beskrivelse af normalfordelinger: - Tæthed og fordelingsfunktion - Middelværdi, varians og fraktiler Lineære transformationer

Læs mere

Program: 1. Repetition: fordeling af observatorer X, S 2 og t. 2. Konfidens-intervaller, hypotese test, type I og type II fejl, styrke.

Program: 1. Repetition: fordeling af observatorer X, S 2 og t. 2. Konfidens-intervaller, hypotese test, type I og type II fejl, styrke. Program: 1. Repetition: fordeling af observatorer X, S 2 og t. 2. Konfidens-intervaller, hypotese test, type I og type II fejl, styrke. 1/23 Opsummering af fordelinger X 1. Kendt σ: Z = X µ σ/ n N(0,1)

Læs mere

Statistik og Sandsynlighedsregning 2. Repetition og eksamen. Overheads til forelæsninger, mandag 7. uge

Statistik og Sandsynlighedsregning 2. Repetition og eksamen. Overheads til forelæsninger, mandag 7. uge Statistik og Sandsynlighedsregning 2 Repetition og eksamen Overheads til forelæsninger, mandag 7. uge 1 Normalfordelingen Erfaringsmæssigt er normalfordelingen velegnet til at beskrive variationen i mange

Læs mere

Kursus 02402/02323 Introducerende Statistik. Forelæsning 6: Sammenligning af to grupper

Kursus 02402/02323 Introducerende Statistik. Forelæsning 6: Sammenligning af to grupper Kursus 02402/02323 Introducerende Statistik Forelæsning 6: Sammenligning af to grupper Peder Bacher DTU Compute, Dynamiske Systemer Bygning 303B, Rum 009 Danmarks Tekniske Universitet 2800 Lyngby Danmark

Læs mere

Kursus 02402/02323 Introducerende Statistik

Kursus 02402/02323 Introducerende Statistik Kursus 02402/02323 Introducerende Statistik Forelæsning 8: Simpel lineær regression Peder Bacher DTU Compute, Dynamiske Systemer Bygning 303B, Rum 009 Danmarks Tekniske Universitet 2800 Lyngby Danmark

Læs mere

Binomial fordeling. n f (x) = p x (1 p) n x. x = 0, 1, 2,...,n = x. x x!(n x)! Eksempler. Middelværdi np og varians np(1 p). 2/

Binomial fordeling. n f (x) = p x (1 p) n x. x = 0, 1, 2,...,n = x. x x!(n x)! Eksempler. Middelværdi np og varians np(1 p). 2/ Program: 1. Repetition af vigtige sandsynlighedsfordelinger: binomial, (Poisson,) normal (og χ 2 ). 2. Populationer og stikprøver 3. Opsummering af data vha. deskriptive størrelser og grafer. 1/29 Binomial

Læs mere

Agenda Sandsynlighedsregning. Regneregler (kap. 3-4) Fordelinger og genkendelse af fordelinger (kap. 3-5) Simultane, marginale og betingede

Agenda Sandsynlighedsregning. Regneregler (kap. 3-4) Fordelinger og genkendelse af fordelinger (kap. 3-5) Simultane, marginale og betingede Agenda Sandsynlighedsregning. Regneregler (kap. 3-4) Fordelinger og genkendelse af fordelinger (kap. 3-5) Simultane, marginale og betingede fordelinger (kap. 4) Middelværdi og varians (kap. 3-4) Fordelingsresultater

Læs mere

Naturvidenskabelig Bacheloruddannelse Forår 2006 Matematisk Modellering 1 Side 1

Naturvidenskabelig Bacheloruddannelse Forår 2006 Matematisk Modellering 1 Side 1 Matematisk Modellering 1 Side 1 I nærværende opgavesæt er der 16 spørgsmål fordelt på 4 opgaver. Ved bedømmelsen af besvarelsen vægtes alle spørgsmål lige. Endvidere lægges der vægt på, at det af besvarelsen

Læs mere

Normalfordelingen. Statistik og Sandsynlighedsregning 2

Normalfordelingen. Statistik og Sandsynlighedsregning 2 Statistik og Sandsynlighedsregning 2 Repetition og eksamen T-test Normalfordelingen Erfaringsmæssigt er normalfordelingen velegnet til at beskrive variationen i mange variable, blandt andet tilfældige

Læs mere

En Introduktion til SAS. Kapitel 5.

En Introduktion til SAS. Kapitel 5. En Introduktion til SAS. Kapitel 5. Inge Henningsen Afdeling for Statistik og Operationsanalyse Københavns Universitet Marts 2005 6. udgave Kapitel 5 T-test og PROC UNIVARIATE 5.1 Indledning Dette kapitel

Læs mere

Introduktion til Statistik. Forelæsning 12: Inferens for andele. Peder Bacher

Introduktion til Statistik. Forelæsning 12: Inferens for andele. Peder Bacher Introduktion til Statistik Forelæsning 12: Inferens for andele Peder Bacher DTU Compute, Dynamiske Systemer Bygning 303B, Rum 009 Danmarks Tekniske Universitet 2800 Lyngby Danmark e-mail: pbac@dtu.dk Efterår

Læs mere

Sandsynlighedsregning 4. forelæsning Bo Friis Nielsen

Sandsynlighedsregning 4. forelæsning Bo Friis Nielsen Sandsynlighedsregning 4. forelæsning Bo Friis Nielsen Anvendt Matematik og Computer Science Danmarks Tekniske Universitet 2800 Kgs. Lyngby Danmark Email: bfni@dtu.dk Dagens emner: Afsnit 3.3 og 3.4 Varians/standardafvigelse

Læs mere

Teoretisk Statistik, 9 marts nb. Det forventes ikke, at alt materialet dækkes d. 9. marts.

Teoretisk Statistik, 9 marts nb. Det forventes ikke, at alt materialet dækkes d. 9. marts. Teoretisk Statistik, 9 marts 2005 Empiriske analoger (Kap. 3.7) Normalfordelingen (Kap. 3.12) Opsamling på Kap. 3 nb. Det forventes ikke, at alt materialet dækkes d. 9. marts. 1 Empiriske analoger Betragt

Læs mere

Almindelige kontinuerte fordelinger

Almindelige kontinuerte fordelinger Almindelige kontinuerte fordelinger Den uniforme fordeling Symbol: X Uniform a,b Beskrivelse: Et tilfældigt tal mellem a og b. Støtte: V X a, b. Tæthedsfunktion: f x 1/ b a for x a,b Fordelingsfunktion:

Læs mere

enote 3: Hypotesetests for én gruppe/stikprøve Introduktion til Statistik Forelæsning 5: Hypotesetest, power og modelkontrol - one sample Peder Bacher

enote 3: Hypotesetests for én gruppe/stikprøve Introduktion til Statistik Forelæsning 5: Hypotesetest, power og modelkontrol - one sample Peder Bacher Introduktion til Statistik Forelæsning 5: Hypotesetest, power og modelkontrol - one sample Peder Bacher DTU Compute, Dynamiske Systemer Bygning 303B, Rum 009 Danmarks Tekniske Universitet 2800 Lyngby Danmark

Læs mere

R i 02402: Introduktion til Statistik

R i 02402: Introduktion til Statistik R i 02402: Introduktion til Statistik Per Bruun Brockhoff DTU Informatik, DK-2800 Lyngby 20. juni 2011 Indhold 1 Anvendelse af R på Databar-systemet på DTU 5 1.1 Adgang......................................

Læs mere

Sandsynlighedsregning 4. forelæsning Bo Friis Nielsen

Sandsynlighedsregning 4. forelæsning Bo Friis Nielsen Sandsynlighedsregning 4. forelæsning Bo Friis Nielsen Anvendt Matematik og Computer Science Danmarks Tekniske Universitet 2800 Kgs. Lyngby Danmark Email: bfni@dtu.dk Dagens emner: Afsnit 3.3 og 3.4 Varians/standardafvigelse

Læs mere

Oversigt. 1 Motiverende eksempel - energiforbrug. 2 Hypotesetest (Repetition) 3 Two-sample t-test og p-værdi. 4 Konfidensinterval for forskellen

Oversigt. 1 Motiverende eksempel - energiforbrug. 2 Hypotesetest (Repetition) 3 Two-sample t-test og p-værdi. 4 Konfidensinterval for forskellen Kursus 02402/02323 Introducerende Statistik Forelæsning 6: Sammenligning af to grupper Oversigt 1 Motiverende eksempel - energiforbrug 2 Hypotesetest (Repetition) 3 Klaus K. Andersen og Per Bruun Brockhoff

Læs mere

Introduktion til Statistik. Forelæsning 10: Inferens for andele. Peder Bacher

Introduktion til Statistik. Forelæsning 10: Inferens for andele. Peder Bacher Introduktion til Statistik Forelæsning 10: Inferens for andele Peder Bacher DTU Compute, Dynamiske Systemer Bygning 303B, Rum 009 Danmarks Tekniske Universitet 2800 Lyngby Danmark e-mail: pbac@dtu.dk Efterår

Læs mere

Kursus 02402 Introduktion til Statistik. Forelæsning 7: Kapitel 7 og 8: Statistik for to gennemsnit, (7.7-7.8,8.1-8.5) Per Bruun Brockhoff

Kursus 02402 Introduktion til Statistik. Forelæsning 7: Kapitel 7 og 8: Statistik for to gennemsnit, (7.7-7.8,8.1-8.5) Per Bruun Brockhoff Kursus 02402 Introduktion til Statistik Forelæsning 7: Kapitel 7 og 8: Statistik for to gennemsnit, (7.7-7.8,8.1-8.5) Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks

Læs mere

Oversigt. Kursus Introduktion til Statistik. Forelæsning 9: Inferens for andele (kapitel 10) Per Bruun Brockhoff

Oversigt. Kursus Introduktion til Statistik. Forelæsning 9: Inferens for andele (kapitel 10) Per Bruun Brockhoff Kursus 02402 Introduktion til Statistik Forelæsning 9: Inferens for andele (kapitel 10) Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800

Læs mere

Kvantitative Metoder 1 - Efterår Dagens program

Kvantitative Metoder 1 - Efterår Dagens program Dagens program Afsnit 6.1. Ligefordelinger, fra sidst Den standardiserede normalfordeling Normalfordelingen Beskrivelse af normalfordelinger: - Tæthed og fordelingsfunktion - Middelværdi, varians og fraktiler

Læs mere

Bernoulli og binomial fordelingerne Kontinuerte stokastiske variable Normalfordelingen

Bernoulli og binomial fordelingerne Kontinuerte stokastiske variable Normalfordelingen Bernoulli og binomial fordelingerne Kontinuerte stokastiske variable Normalfordelingen Repetition Lov om total sandsynlighed Bayes sætning P( B A) = P(A) = P(AI B) + P(AI P( A B) P( B) P( A B) P( B) +

Læs mere

Oversigt. 1 Intro: Regneeksempel og TV-data fra B&O. 2 Model og hypotese. 3 Beregning - variationsopspaltning og ANOVA tabellen

Oversigt. 1 Intro: Regneeksempel og TV-data fra B&O. 2 Model og hypotese. 3 Beregning - variationsopspaltning og ANOVA tabellen Kursus 02402/02323 Introducerende Statistik Forelæsning 10: Envejs variansanalyse, ANOVA Oversigt 1 Intro: Regneeksempel og TV-data fra B&O 2 Model og hypotese Per Bruun Brockhoff DTU Compute, Statistik

Læs mere

Kvantitative Metoder 1 - Forår 2007

Kvantitative Metoder 1 - Forår 2007 Dagens program Kapitel 8.7, 8.8 og 8.10 Momenter af gennemsnit og andele kap. 8.7 Eksempel med simulationer Den centrale grænseværdisætning (Central Limit Theorem) kap. 8.8 Simulationer Normalfordelte

Læs mere

Repetition. Diskrete stokastiske variable. Kontinuerte stokastiske variable

Repetition. Diskrete stokastiske variable. Kontinuerte stokastiske variable Normal fordelingen Normal fordelingen Egenskaber ved normalfordelingen Standard normal fordelingen Find sandsynligheder ud fra tabel Transformation af normal fordelte variable Invers transformation Repetition

Læs mere

Tema. Dagens tema: Indfør centrale statistiske begreber.

Tema. Dagens tema: Indfør centrale statistiske begreber. Tema Dagens tema: Indfør centrale statistiske begreber. Model og modelkontrol Estimation af parametre. Fordeling. Hypotese og test. Teststørrelse. konfidensintervaller Vi tager udgangspunkt i Ex. 3.1 i

Læs mere

Normalfordelingen. Statistik og Sandsynlighedsregning 2

Normalfordelingen. Statistik og Sandsynlighedsregning 2 Normalfordelingen Statistik og Sandsynlighedsregning 2 Repetition og eksamen Erfaringsmæssigt er normalfordelingen velegnet til at beskrive variationen i mange variable, blandt andet tilfældige fejl på

Læs mere

Oversigt. 1 Motiverende eksempel: Højde-vægt. 2 Lineær regressionsmodel. 3 Mindste kvadraters metode (least squares)

Oversigt. 1 Motiverende eksempel: Højde-vægt. 2 Lineær regressionsmodel. 3 Mindste kvadraters metode (least squares) Kursus 02402/02323 Introducerende Statistik Forelæsning 8: Simpel lineær regression Oversigt Motiverende eksempel: Højde-vægt 2 Lineær regressionsmodel 3 Mindste kvadraters metode (least squares) Klaus

Læs mere

Normalfordelingen og Stikprøvefordelinger

Normalfordelingen og Stikprøvefordelinger Normalfordelingen og Stikprøvefordelinger Normalfordelingen Standard Normal Fordelingen Sandsynligheder for Normalfordelingen Transformation af Normalfordelte Stok.Var. Stikprøver og Stikprøvefordelinger

Læs mere

Forelæsning 9: Inferens for andele (kapitel 10)

Forelæsning 9: Inferens for andele (kapitel 10) Kursus 02402 Introduktion til Statistik Forelæsning 9: Inferens for andele (kapitel 10) Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800

Læs mere

Program: 1. Repetition: p-værdi 2. Simpel lineær regression. 1/19

Program: 1. Repetition: p-værdi 2. Simpel lineær regression. 1/19 Program: 1. Repetition: p-værdi 2. Simpel lineær regression. 1/19 For test med signifikansniveau α: p < α forkast H 0 2/19 p-værdi Betragt tilfældet med test for H 0 : µ = µ 0 (σ kendt). Idé: jo større

Læs mere

Landmålingens fejlteori - Lektion 2. Sandsynlighedsintervaller Estimation af µ Konfidensinterval for µ. Definition: Normalfordelingen

Landmålingens fejlteori - Lektion 2. Sandsynlighedsintervaller Estimation af µ Konfidensinterval for µ. Definition: Normalfordelingen Landmålingens fejlteori Lektion Sandsynlighedsintervaller Estimation af µ Konfidensinterval for µ - rw@math.aau.dk Institut for Matematiske Fag Aalborg Universitet En stokastisk variabel er en variabel,

Læs mere

3.600 kg og den gennemsnitlige fødselsvægt kg i stikprøven.

3.600 kg og den gennemsnitlige fødselsvægt kg i stikprøven. PhD-kursus i Basal Biostatistik, efterår 2006 Dag 1, onsdag den 6. september 2006 Eksempel: Sammenhæng mellem moderens alder og fødselsvægt I dag: Introduktion til statistik gennem analyse af en stikprøve

Læs mere

Resumé: En statistisk analyse resulterer ofte i : Et estimat θˆmed en tilhørende se

Resumé: En statistisk analyse resulterer ofte i : Et estimat θˆmed en tilhørende se Epidemiologi og biostatistik. Uge, torsdag 5. februar 00 Morten Frydenberg, Institut for Biostatistik. Type og type fejl Statistisk styrke Nogle speciale metoder: Normalfordelte data : t-test eksakte sikkerhedsintervaller

Læs mere

enote 5: Simpel lineær regressions analyse Kursus 02402/02323 Introducerende Statistik Oversigt

enote 5: Simpel lineær regressions analyse Kursus 02402/02323 Introducerende Statistik Oversigt enote 5: Simpel lineær regressions analse Kursus 02402/02323 Introducerende Statistik Forelæsning 8: Simpel lineær regression To variable: og Beregn mindstekvadraters estimat af ret linje Inferens med

Læs mere

Oversigt. 1 Motiverende eksempel - energiforbrug. 2 Hypotesetest (Repetition) 3 Two-sample t-test og p-værdi. 4 Konfidensinterval for forskellen

Oversigt. 1 Motiverende eksempel - energiforbrug. 2 Hypotesetest (Repetition) 3 Two-sample t-test og p-værdi. 4 Konfidensinterval for forskellen Kursus 02402/02323 Introducerende Statistik Forelæsning 6: Sammenligning af to grupper Peder Bacher DTU Compute, Dynamiske Systemer Bygning 303B, Rum 009 Danmarks Tekniske Universitet 2800 Lyngby Danmark

Læs mere

MM501 forelæsningsslides

MM501 forelæsningsslides MM501 forelæsningsslides uge 40, 2010 Produceret af Hans J. Munkholm bearbejdet af JC 1 Separabel 1. ordens differentialligning En generel 1. ordens differentialligning har formen s.445-8 dx Eksempler

Læs mere

Statistiske modeller

Statistiske modeller Statistiske modeller Statistisk model Datamatrice Variabelmatrice Hændelse Sandsynligheder Data Statistiske modeller indeholder: Variable Hændelser defineret ved mulige variabel værdier Sandsynligheder

Læs mere

Institut for Matematiske Fag Sandsynlighedsregning og Statistik 2. R opgaver

Institut for Matematiske Fag Sandsynlighedsregning og Statistik 2. R opgaver Institut for Matematiske Fag Sandsynlighedsregning og Statistik 2 Københavns Universitet Susanne Ditlevsen og Helle Sørensen R opgaver Det er en god ide at vænne sig til at skrive kommandoerne i en editor

Læs mere

Opgave 1 Betragt to diskrete stokastiske variable X og Y. Antag at sandsynlighedsfunktionen p X for X er givet ved

Opgave 1 Betragt to diskrete stokastiske variable X og Y. Antag at sandsynlighedsfunktionen p X for X er givet ved Matematisk Modellering 1 (reeksamen) Side 1 Opgave 1 Betragt to diskrete stokastiske variable X og Y. Antag at sandsynlighedsfunktionen p X for X er givet ved { 1 hvis x {1, 2, 3}, p X (x) = 3 0 ellers,

Læs mere

Afsnit E1 Konfidensinterval for middelværdi i normalfordeling med kendt standardafvigelse

Afsnit E1 Konfidensinterval for middelværdi i normalfordeling med kendt standardafvigelse Afsnit 8.3 - E1 Konfidensinterval for middelværdi i normalfordeling med kendt standardafvigelse Først skal normalfordelingen lige defineres i Maple, så vi kan benytte den i vores udregninger. Dette gøres

Læs mere

(studienummer) (underskrift) (bord nr)

(studienummer) (underskrift) (bord nr) Danmarks Tekniske Universitet Side 1 af 20 sider. Skriftlig prøve: 1. december 2011 Kursus navn og nr: Introduktion til Statistik, 02402 Tilladte hjælpemidler: Alle Dette sæt er besvaret af (studienummer)

Læs mere

Statistik Lektion 20 Ikke-parametriske metoder. Repetition Kruskal-Wallis Test Friedman Test Chi-i-anden Test

Statistik Lektion 20 Ikke-parametriske metoder. Repetition Kruskal-Wallis Test Friedman Test Chi-i-anden Test Statistik Lektion 0 Ikkeparametriske metoder Repetition KruskalWallis Test Friedman Test Chiianden Test Run Test Er sekvensen opstået tilfældigt? PPPKKKPPPKKKPPKKKPPP Et run er en sekvens af ens elementer,

Læs mere

Forelæsning 6: Kapitel 7: Hypotesetest for gennemsnit (one-sample setup). 7.4-7.6

Forelæsning 6: Kapitel 7: Hypotesetest for gennemsnit (one-sample setup). 7.4-7.6 Kursus 02402 Introduktion til Statistik Forelæsning 6: Kapitel 7: Hypotesetest for gennemsnit (one-sample setup). 7.4-7.6 Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220

Læs mere

Hvis α vælges meget lavt, bliver β meget stor. Typisk vælges α = 0.01 eller 0.05

Hvis α vælges meget lavt, bliver β meget stor. Typisk vælges α = 0.01 eller 0.05 Statistik 7. gang 9. HYPOTESE TEST Hypotesetest ved 6 trins raket! : Trin : Formuler hypotese Spørgsmål der ønskes testet vha. data H : Nul hypotese Formuleres som en ligheds hændelse H eller H A : Alternativ

Læs mere

Oversigt over nyttige fordelinger

Oversigt over nyttige fordelinger Oversigt over nyttige fordelinger Helene Regitze Lund Wandsøe November 14, 2011 1 Bernoulli-fordelingen 1 Når et eksperiment har to mulige udfald: succes eller fiasko. X er en stokastisk variabel med følgende

Læs mere

(studienummer) (underskrift) (bord nr)

(studienummer) (underskrift) (bord nr) Danmarks Tekniske Universitet Side 1 af 19 sider. Skriftlig prøve: 14. december 2013 Kursus navn og nr: Introduktion til Statistik, 02402 Tilladte hjælpemidler: Alle Dette sæt er besvaret af (studienummer)

Læs mere

Elementær sandsynlighedsregning

Elementær sandsynlighedsregning Elementær sandsynlighedsregning Sandsynlighedsbegrebet Et udfaldsrum S er mængden af alle de mulige udfald af et eksperiment. En hændelse A er en delmængde af udfaldsrummet S. Den hændelse, der ikke indeholder

Læs mere

Basal statistik. 30. januar 2007

Basal statistik. 30. januar 2007 Basal statistik 30. januar 2007 Deskriptiv statistik Typer af data Tabeller Grafik Summary statistics Lene Theil Skovgaard, Biostatistisk Afdeling Institut for Folkesundhedsvidenskab, Københavns Universitet

Læs mere

Hvad skal vi lave? Nulhypotese - alternativ. Teststatistik. Signifikansniveau

Hvad skal vi lave? Nulhypotese - alternativ. Teststatistik. Signifikansniveau Hvad skal vi lave? 1 Statistisk inferens: Hypotese og test Nulhypotese - alternativ. Teststatistik P-værdi Signifikansniveau 2 t-test for middelværdi Tosidet t-test for middelværdi Ensidet t-test for middelværdi

Læs mere

Side 1 af 17 sider. Danmarks Tekniske Universitet. Skriftlig prøve: 25. maj 2007 Kursus navn og nr: Introduktion til Statistik, 02402

Side 1 af 17 sider. Danmarks Tekniske Universitet. Skriftlig prøve: 25. maj 2007 Kursus navn og nr: Introduktion til Statistik, 02402 Danmarks Tekniske Universitet Side 1 af 17 sider. Skriftlig prøve: 25. maj 2007 Kursus navn og nr: Introduktion til Statistik, 02402 Tilladte hjælpemidler: Alle Dette sæt er besvaret af (navn) (underskrift)

Læs mere

k UAFHÆNGIGE grupper F-test Oversigt 1 Intro eksempel 2 Model og hypotese 3 Beregning - variationsopspaltning og ANOVA tabellen

k UAFHÆNGIGE grupper F-test Oversigt 1 Intro eksempel 2 Model og hypotese 3 Beregning - variationsopspaltning og ANOVA tabellen Introduktion til Statistik Forelæsning 10: Envejs variansanalyse, ANOVA Peder Bacher DTU Compute, Dynamiske Systemer Bygning 303B, Rum 017 Danmarks Tekniske Universitet 2800 Lyngby Danmark e-mail: pbac@dtu.dk

Læs mere

1 Hb SS Hb Sβ Hb SC = , (s = )

1 Hb SS Hb Sβ Hb SC = , (s = ) PhD-kursus i Basal Biostatistik, efterår 2006 Dag 6, onsdag den 11. oktober 2006 Eksempel 9.1: Hæmoglobin-niveau og seglcellesygdom Data: Hæmoglobin-niveau (g/dl) for 41 patienter med en af tre typer seglcellesygdom.

Læs mere

men nu er Z N((µ 1 µ 0 ) n/σ, 1)!! Forkaster hvis X 191 eller X 209 eller

men nu er Z N((µ 1 µ 0 ) n/σ, 1)!! Forkaster hvis X 191 eller X 209 eller Type I og type II fejl Type I fejl: forkast når hypotese sand. α = signifikansniveau= P(type I fejl) Program (8.15-10): Hvis vi forkaster når Z < 2.58 eller Z > 2.58 er α = P(Z < 2.58) + P(Z > 2.58) =

Læs mere

Tema. Model og modelkontrol ( Fx. en normalfordelt obs. række m. kendt varians) Estimation af parametre. Fordeling. Hypotese og test. Teststørrelse.

Tema. Model og modelkontrol ( Fx. en normalfordelt obs. række m. kendt varians) Estimation af parametre. Fordeling. Hypotese og test. Teststørrelse. Tema Model og modelkontrol ( Fx. en normalfordelt obs. række m. kendt varians) Estimation af parametre. Fordeling. (Fx. x. µ) Hypotese og test. Teststørrelse. (Fx. H 0 : µ = µ 0 ) konfidensintervaller

Læs mere

(studienummer) (underskrift) (bord nr)

(studienummer) (underskrift) (bord nr) Danmarks Tekniske Universitet Side 1 af 20 sider. Skriftlig prøve: 15. december 2012 Kursus navn og nr: Introduktion til Statistik, 02402 Tilladte hjælpemidler: Alle Dette sæt er besvaret af (studienummer)

Læs mere

Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab. Statistisk Model

Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab. Statistisk Model Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab Statistisk Model Indhold Binomialfordeling Sandsynlighedsfunktion Middelværdi og spredning 1 Aalen: Innføring i statistik med medisinske eksempler

Læs mere

Kvantitative Metoder 1 - Efterår Dagens program

Kvantitative Metoder 1 - Efterår Dagens program Dagens program Approksimation af binomialsandsynligheder, Afsnit 4.5 Multinomial fordeling, Afsnit 4.8 Negativ binomialfordeling, Afsnit 4.4 Poisson fordeling og Poisson process, Afsnit 4.6 Kontinuerte

Læs mere

Kvantitative metoder 2

Kvantitative metoder 2 Kvantitative metoder 2 Inferens i den lineære regressionsmodel 7. marts 2007 regressionsmodel 1 Opgave fra sidst (Gauss-Markov teoremet) Opgave: Vis at hvis M = I X X X X 1 ( ' ) ' er M idempoten dvs der

Læs mere

Oversigt over emner. Punktestimatorer: Centralitet(bias) og efficiens

Oversigt over emner. Punktestimatorer: Centralitet(bias) og efficiens Oversigt Oversigt over emner 1 Punkt- og intervalestimation Punktestimatorer: Centralitet(bias) og efficiens 2 Konfidensinterval Konfidensinterval for andel Konfidensinterval - normalfordelt stikprøve

Læs mere

Ex µ = 3,σ 2 = 1 og µ = 1,σ 2 = 4. hvor. Vha. R: Vha. tabel:

Ex µ = 3,σ 2 = 1 og µ = 1,σ 2 = 4. hvor. Vha. R: Vha. tabel: Normal fordeling Tæthedsfunktion for normalfordeling med middelværdi µ og varians σ 2 : Program (8.15-10): f() = 1 µ)2 ep( ( 2πσ 2 2σ 2 ) E µ = 3,σ 2 = 1 og µ = 1,σ 2 = 4 1. vigtige sandsynlighedsfordelinger:

Læs mere

Kommentarer til opg. 1 og 3 ved øvelser i basalkursus, 3. uge

Kommentarer til opg. 1 og 3 ved øvelser i basalkursus, 3. uge Kommentarer til opg. 1 og 3 ved øvelser i basalkursus, 3. uge Opgave 1. Data indlæses i 3 kolonner, som f.eks. kaldessalt,pre ogpost. Der er således i alt tale om 26 observationer, idet de to grupper lægges

Læs mere

Forelæsning 8: Inferens for varianser (kap 9)

Forelæsning 8: Inferens for varianser (kap 9) Kursus 02402 Introduktion til Statistik Forelæsning 8: Inferens for varianser (kap 9) Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800 Lyngby

Læs mere

Elementær sandsynlighedsregning

Elementær sandsynlighedsregning Elementær sandsynlighedsregning Sandsynlighedsbegrebet Et udfaldsrum S er mængden af alle de mulige udfald af et eksperiment. En hændelse A er en delmængde af udfaldsrummet S. Et sandsynlighedsmål er en

Læs mere

MLR antagelserne. Antagelse MLR.1:(Lineære parametre) Den statistiske model for populationen kan skrives som

MLR antagelserne. Antagelse MLR.1:(Lineære parametre) Den statistiske model for populationen kan skrives som MLR antagelserne Antagelse MLR.1:(Lineære parametre) Den statistiske model for populationen kan skrives som y = β 0 + β 1 x 1 + β 2 x 2 + + β k x k + u, hvor β 0, β 1, β 2,...,β k er ukendte parametere,

Læs mere

02402 Vejledende løsninger til hjemmeopgaver og øvelser i uge 5

02402 Vejledende løsninger til hjemmeopgaver og øvelser i uge 5 02402 Vejledende løsninger til hjemmeopgaver og øvelser i uge 5 Opgave 5.117, side 171 (7ed: 5.116 side 201 og 6ed: 5.116 side 197) I denne opgave skal vi benytte relationen mellem den log-normale fordeling

Læs mere