Vindoptimeret opladning V2G

Størrelse: px
Starte visningen fra side:

Download "Vindoptimeret opladning V2G"

Transkript

1 Abstract & Resumé 1 af 4 optimeret opladning Wind Optimized Charging Analyse af tidsstyret, optimeret opladning af elbiler med vindproduktion, midlertidig lagring af overskydende vindproduktion og (Vehicle-to-Grid) energiarbitrage. Baseret på simulering af en konstrueret brugerprofils kørsel og opladning, ved brug af alternative elbilmodeller, alternative opladningsstrategier og i forhold til historiske elmarkedsdata. Simuleringernes primære output er årlig opladningsudgift, CO2-udledning per kørt km og vindandel i elforbrugets energimix. energi Danmark Af Jørgen Horstmann & Frank Nørgaard Medfinansieret af Energistyrelsen April 2015

2 optimeret opladning Delrapport 1 af 4 Abstract & Resumé V1.1 web

3 Indholdsfortegnelse Abstract in English 4 Resumé 8

4 Abstract in English

5 Effect Action Abstract Abstract This paper is part of a research project by energi Danmark amba and co-financed by the Danish Energy Authority that approaches the potential for wind power optimizing the charging of electric vehicles (EVs) in order to provide a maximum of common benefits for EV owners, wind power producers, society and the environment. As illustrated in figure 1. Part of a series about the charging strategy Wind Optimized Charging, it is analyzed how smart agents and Vehicle-to-Grid () technology could be deployed in EVs to utilize battery capacity for temporary storage of excess wind power and subsequently discharging back to the grid. This holds the potential for EV owners to profit on energy arbitrage by buying wind power on the regulating market, when prices are low, and selling battery stored energy as up-regulation, when prices are high. In a previous study, the charging strategy Wind Optimized Charging showed promising for reducing EV owners energy costs, minimizing vehicles CO2-emmissions and maximizing the share of wind power in the energy mix of the consumption as well as providing added value for wind power producers and society. This study examines if this is also true, when and energy arbitrage are included in the optimization. Does choosing Wind Optimized Charging over Wind Optimized Charging without sustain and preferably extend EV owners benefits? operations cause battery wearing thereby representing an added cost. Do revenues leverage the marginal costs of operations making Wind Optimized Charging preferably for EV owners, or are they better off without by only wind power optimizing charging for the EVs own driving consumption? Driving and charging routines of two constructed EV models are simulated for a typical, work commuting user profile. Three generic charging strategies are compared, a reference, Non-controlled Charging, Wind Optimized Charging (without ) and Wind Optimized Charging with variable levels of. In the simulations, EVs are equipped with a wind optimizing smart agent, which handles the arbitrage trading and charging-discharging operations on behalf of the EV user. The agent observes and forecasts driving behavior and charging needs, observes and forecasts power market parameters, calculates schedules and submits demand side power market bids and time controls charging and discharging activations, etc. Simulations are based on power marked data from Figure 1: Wind Optimized Charging sharing benefits among stakeholders EV owners Charging costs Power market Settlement prices and balancing costs Wind power producers Society PSO costs Wind Optimized Charging Benefits for all CO2 emissions Environment Wind Optimized Charging 5

6 Charging costs DKK/y Abstract The optimizing algorithms of Wind Optimized Charging prioritize to charge EVs with three kategories of wind power, measured by the market value and integration costs of wind power: 1. Wind power, that would have been switched off due to zero/negative power marked prices 2. Wind power, that would have been exported at insignificant low market values and high net losses 3. Wind power, with market values below average and the highest integration costs From the analysis, it is learned that the charging strategy Wind Optimized Charging significantly does what it is meant to regarding optimization and generation of benefits for EV owners, wind power producers, society and the environment. Benefits include: For EV owners: minimizing electricity charging costs, minimizing vehicles CO2-emissions per kilometer of driving and maximizing the share of wind power in the electricity mix used for charging. For wind power producers: higher settlement prices and lower balancing costs at the power market For society: higher market value and lower integration cost of wind power For the environment: lower CO2-emissions In many cases, the charging strategy Wind Optimized Charging efficiently reduces EV owners charging costs for work commuting to less than zero DKK per year, as well as reduces vehicles CO2-emissions to less than zero g per kilometer, and the wind power share of the energy mix often rises to more than 100 %. EV owners charging costs represent the total price for the consumed electricity at the power exchange. In Denmark, consumers electricity price is divided into three distinctive components, energy price, net tariffs and taxes, where PSO (Public Service Obligation) is included in the latter. In this report, charging costs refers only to the energy price, which typically is about 16 percent of the total consumer price of electricity. EV owners could significantly save charging costs by deploying Wind Optimized Charging instead of another, less efficient charging strategy, e.g. Non-controlled Charging. Wind Optimized Charging and 53 % Figure 2: Charging costs before deducting battery wear costs DKK DKK 500 DKK 0 DKK -500 DKK DKK Non-controlled Charging 959 DKK Wind Optimized Charging DKK 100 % = 962 DKK 392 DKK 329 DKK 310 DKK -3 DKK Wind Optimized Charging FK 100/400 battery wear costs 0 DKK/kWh savings > savings saving 59 % = 567 DKK saving 66 % = 630 DKK saving saving 72 % = 806 DKK Wind Optimized Charging Pspot 0/4 quartile saving 121 % DKK -236 DKK saving 205 % DKK DKK DKK Non controlled Wind Nissan Leaf Own consumption kwh Wind 10 % Wind 53 % Non controlled Wind Tesla S Own consumption kwh Wind 43 % Wind 163 % Wind Optimized Charging 6

7 Abstract could save Nissan Leaf owners 100 % and they would have to pay as less as minus 3 DKK a year for daily commuting. A Tesla S owner would have to pay only minus 236 DKK a year, representing 121 % savings. Wind Optimized Charging is the cheapest solution, however only before including battery wear costs in the equation. After subtracting profits by battery wear costs, Wind Optimized Charging is no longer the most attractive solution concerning charging costs. Wind Optimized Charging without is. However, industry experts expect that this will change in near future and perhaps as soon as in EV battery costs are expected to go down and performance expected to go up due to already initiated research and developments in battery cost reductions and performance, economics of scale as EVs enter the face of mass production and escalating power market price volatility as even more wind power and other intermediate renewables are integrated in the power systems. Figure 3 shows EV owners benefits concerning charging costs, CO2-emissions and wind power share in energy mix. Charging costs are shown for two battery wear cost scenarios: 2015-scenario, where battery wear costs are based on battery costs at USD 300 per kwh 2022-scenario, where battery wear costs are based on battery costs at USD 125 per kwh The analysis concludes that from year 2022 Wind Optimized Charging will by far become the most attractive solution deployed on both an individual level and society level for all four actors, EV owners, wind power producers, society and the environment. However, there is an urgent need for intermediate public subsidies filling out the battery wear cost gap, thereby offering EV owners economic incentives to choose Wind Optimized Charging. Else, Wind Optimized Charging will not happen; neither will the derived, considerable benefits for society economics and the environment. Therefor it is proposed that economic incentives are supported by public subsidies and offered EV owners, who choose to deploy the charging strategy, Wind Optimized Charging, which is in the best socio economic interest of society. Further, it is proposed that politics and regulating authorities address other urgent non-solved implementation barriers. E.g. regarding variable, cost-oriented net tariffing and taxation, how to fit in distributed, intermediate storage of wind power and consumers discharging of wind power back to the power system into the tariffing and taxation regulation regimes. Figure 3: Wind optimized charging simulation results Charging costs before battery wear -3 DKK/y CO2 emissions -22 g/km Charging costs 2015-scenario battery wear costs DKK/y at km/y battery wear costs DKK/y Wind power share 82 % CO2 emissions -49 g/km 53 % 43 % of energy mix Charging costs before battery wear -236 DKK/y Charging costs 2015-scenario battery wear costs DKK/y at km/y 2022-scenario battery wear costs DKK/y Wind power share 144 % of energy mix Nissan Leaf Own consumption kwh Tesla S Own consumption kwh Wind Optimized Charging 7

8 Resumé Foto fra

9 Effekt Handling Resumé Resumé I tidligere analyse optimeret opladning af elbiler blev det konkluderet, at der vil kunne genereres betydelige gevinster for elbilejere, vindproducenter, samfund og miljø ved at tidsstyre opladning optimalt i forhold til produktionen af vindenergi. I nærværende analyse fokuseres på gevinstpotentialet med optimeret opladning af elbiler, der er udstyret med Vehicle-to-Grid () teknologi. er betegnelsen for, at der kan aflades energi fra elbilens batteri tilbage til elnettet. optimeret opladning er tidsstyret, optimeret opladning primært med ellers ineffektivt udnyttet vindproduktion og til maksimal kollektiv nytte for elbilejere, vindproducenter, samfundsøkonomi og miljø. Se figur 4. Optimeringens beslutningsheuristik og algoritmer tilstræber at prioritere opladning med: 1. produktion, der ellers ville blive frakoblet på grund af nul/negative timepriser 2. produktion, der ellers ville blive eksporteret med lav profit og højt nettab 3. produktion med ellers laveste markedsværdi og højeste integrationsomkostninger Analysen bekræfter, at optimeret opladning som tilsigtet bidrager til at effektivisere udnyttelsen af vindkraft og genererer betydelige gevinster. Elbilejere opnår laveste opladningsudgift, laveste CO2-udledning og højeste vindandel producenter opnår driftsøkonomisk højere afregningspriser og lavere balanceomkostninger Samfundsøkonomien opnår højere markedsværdi og lavere integrationsomkostninger for vindkraft samt mindre behov for PSO Miljøet opnår generelt reduceret CO2-udledning fra den samlede energiforsyning muliggør, at batteriet løbende vil kunne oplades med mere energi, end elbilen forbruger til kørsel. Den overskydende energi lagres midlertidig og sælges efter en periode tilbage til elmarkedet, når elprisen er højest. Energiarbitrage er løbende køb og salg af energi efter princippet køb billigt, sælg dyrt. -energiarbitrage fortjenesten vil kunne modregnes i opladningsudgiften og tilfalde elbilejeren som incitament. Tilsvarende vil afledte CO2-gevinster i det samlede elsystem kunne godskrives i elbilens miljøregnskab. I nærværende analyse engageres elbilen i -energiarbitrage handel med vind på regulerkraftmarkedet. Figur 4: optimeret opladning gevinstdeling Elbilejere Opladningsudgift Kr/kWh Elmarked Afregningspris Kr/kWh producenter PSO omkostninger optimeret Opladning Gevinster for alle CO2 udledning Samfundsøkonomi Miljø optimeret opladning 9

10 Resumé Elbilen køber og oplader med regulerkraft til nedregulering. Heraf bruger den en del til kørsel, og den resterende del sælger og aflader den tilbage til elmarkedet som regulerkraft til opregulering. Elbilen køber billig vindstrøm, når der er overskudsproduktion, og sælger den dyrt tilbage, når det er vindstille. Analysens centrale spørgsmål er, om yderligere vil kunne reducere elbilejerens opladningsudgift og CO2-udledning og skabe merværdi for vindproducenter og samfundet. Udover, hvad der vil kunne opnås med optimeret opladning uden. Eller om de marginale omkostninger til -batterislitage overstiger fortjenesten ved -energiarbitrage. En samfundsmæssig indsats for at udbrede optimeret opladning kan kun berettiges, såfremt der skabes merværdi for de involverede aktører. For elbilejere handler det om lavere opladningsudgift, lavere CO2-udledning og højere vindandel i elforbruget. For vindproducenter handler det om bedre driftsøkonomi. Samfundsøkonomisk handler det om afledte gevinster i form af lavere omkostninger til omstilling af elforsyningen med mere vindkraft, udfasning af fossile brændsler, mindre CO2, energieffektivisering og PSO. Ifølge analysen vil udbredelse af optimeret opladning give rigtig god samfundsøkonomisk mening, og det vil det også for vindproducenternes driftsøkonomi. Umiddelbart gælder det samme for elbilejerne, når der i første omgang ses bort fra -omkostningerne til øget batterislitage. Selv en beskeden elbiludbredelse på 2,5 pct. af bilparken, dvs. ca elbiler, vil med optimeret opladning og kunne dække en overvejende del af behovet for at balancere vindproduktion på regulerkraftmarkedet. En del af opladningen ville oven i købet være ellers frakoblet vindproduktion fra eksisterende vindmøller og ellers eksporteret, relativ værdiløs vindproduktion med højt nettab. Midlertidig lagring af ellers frakoblet vindproduktion og efterfølgende afladning tilbage til elnettet, hvor den lagrede vindproduktion fortrænger kulbaseret kraftværksproduktion, så andre ikke-forbrugsfleksible elapparater selv i vindstille perioder vil kunne forsynes med vindproduktion, vil selvsagt generere betydelige samfundsøkonomiske og miljømæssige gevinster. Nissan Leaf og Tesla S elbiler vil med optimeret opladning typisk kunne oplades for under nul kr. til et års kørselsforbrug. Når der i første omgang ses bort fra batterislitage omkostninger. Videre vil elbilens CO2-udledning typisk være under nul g per kørt km, og elforbrugets vindandel over 100 pct. Se figur 5. Figur 5: optimeret opladning resultater Opladnings udgift før batterislitage -3 kr/år CO2 udledning -22 g/km Opladningsudgift 2015-scenarie batterislitage omkostning kr/år v/ km/år 2022-scenarie batterislitage omkostning kr/år andel 82 % Opladnings udgift før batterislitage -236 kr/år CO2 udledning -49 g/km Opladningsudgift 2015-scenarie batterislitage omkostning kr/år v/ km/år 53 % 43 % 2022-scenarie batterislitage omkostning kr/år andel 144 % Nissan Leaf Egenforbrug kwh Tesla S Egenforbrug kwh optimeret opladning 10

11 Resumé Opladningsudgiften opgøres som den elgrossistpris, dvs. den afregningspris, der benyttes til handel med vindproduktion på elmarkedet. Dermed udgør opladningsudgiften alene en del af den forbruger-elpris, elbilejere totalt kommer til at betale for opladning. Forbruger-elprisens øvrige delkomponenter er nettariffer, PSO, afgifter og moms. Men når -batterislitage omkostninger indregnes, er optimeret opladning ikke længere den billigste løsning for elbilejere. Det er derimod optimeret opladning uden. Batterislitage omkostningen afhænger af batteriets kostpris, og som den er i dag, vil -batterislitage omkostningen ikke kunne dække -energiarbitrage fortjenesten. Forventningen er dog, at kostprisen vil falde til et niveau i fx 2022, der vil gøre optimeret opladning til den mest fordelagtige opladningsstrategi, også med hensyn til opladningsudgift. Endvidere forventes øget prisvolatilitet på elmarkedet, som ligeledes kunne øge -energiarbitrage fortjenesten. Figur 5 illustrerer to batterislitage omkostning scenarier for elbilejeres gevinster med optimeret opladning vedrørende opladningsudgift, CO2-udledning og vindandel: 2015-scenarie, hvor batterislitage omkostning baseres på en batteri kostpris på USD 300 per kwh 2022-scenarie, hvor batterislitage omkostning baseres på en batteri kostpris på USD 125 per kwh Analysen konkluderer, at det ikke vil kunne betale sig for elbilejere at engagere sig i med den nuværende batteri kostpris. Men det vil det kunne i år 2022 som følge af faldende batteri kostpris og/eller øget fortjeneste ved energiarbitrage. Hvis ikke optimeret opladning vil kunne betale sig for elbilejere, vil strategien ikke slå igennem og vinde udbredelse. Dermed vil der samfundsøkonomisk og miljømæssigt heller ikke kunne høstes de betydelige gevinster, som opladningsstrategien potentielt vil generere, og som ville komme alle tilgode. Det anses for afgørende, at optimeret opladning får mulighed for at vinde fodfæste som bidragsyder til at balancere og aftage overskydende vindproduktion i de tidlige faser af behovets opståen. Ellers vil alternative løsninger givetvis vinde og mætte markedet og dermed umuliggøre senere indtrængning med. I givet fald vil samfundet og miljøet aldrig komme til at nyde godt af de betydelige, afledte samfundsøkonomiske og miljømæssige gevinster med. Det anbefales, at elbilejere i en overgangsperiode tilskyndes til at vælge optimeret opladning med offentligt finansieret subsidier, der som minimum modsvarer de indledningsvis ekstra høje batterislitage omkostninger, og i tillæg kompenserer for elbilejeres omkostninger til ladetab, komforttab og risikovillighed. En sådan støtte kunne eventuelt følge samme generelle principper og niveau, som de der i dag gælder for tilskud til husstands vindmøller. Desuden anbefales det, at opladningsstrategier som optimeret opladning sikres lige vilkår med alternative løsninger vedrørende markedsadgang, markedsregler, energiafgiftsregler, omkostningsægte nettarifering, prioriteret forsknings- og udviklingsstøtte og lignende. Endelig er der presserende behov for politisk og reguleringsmæssig stillingstagen til, hvordan elforbrug til midlertidig lagring og efterfølgende aflagring tilbage til elnettet tarifferes og afgiftsbelægges. optimeret opladning 11

12 Resumé Metode og simulering Analysen baseres på simuleringer af elbilers kørsel og opladning for en konstrueret brugerprofil, der benytter elbilen til typisk, rutinemæssig jobpendling kørselsforbrug. Simuleringerne omfatter to konstruerede elbilmodeller, Nissan Leaf og Tesla S, samt tre alternative opladningsstrategier, referencen Ikke-styret opladning samt optimeret opladning og optimeret opladning. Analyseårets historiske elmarkedsdata er for Simuleringernes primære output er opladningsudgift, CO2-udledning og vindandel. Tanken er, at elbilerne udstyres med en smart opladningsagent, dvs. en software-kodet, matematisk beslutningsalgoritme, indlejret i elbilens opladning styresystemet. Agenten varetager elbilejerens interesser vedrørende opladningsbehov og elmarkedsdeltagelse. Den indsamler markedsinformation, prognosticerer pris- og vindudviklingen, indsamler information om brugerpræferencer, kørsel og opladningsbehov, osv. Informationen indgår i optimeringen og danner basis for tidsstyret opladning og deltagelse i elmarkedet. På baggrund af opladningsbehov og markedsdata beregner og planlægger agenten en opladningsplan, som den eksekverer i elmarkedet ved at afgive købs- og salgsbud på op- og afladning, og som den aktiverer som tidsstyret igangsætning af op- og afladning på baggrund af modtaget ordring af vundne markedsbud. Elbilernes opladningsagent tænkes at modsvare de tilsvarende agenter, der forventes indbygget i vindmøller til fx styring af markedsdeltagelse og automatisk produktionsfrakobling ved prognosefejl og nul/negativ elmarkedspris. Dermed optræder elbiler og vindmøller side om side på elmarkedet som prosumers, der repræsenteret ved deres respektive agenters aggregatorer deler information og udveksler elprodukter. Elbilernes markedsdeltagelse defineres som op- og afladning i spot- og regulerkraftmarkedet. Optimeringens hovedprincipper er, at nødvendig opladning til næste dags planlagte kørsel gennemføres i spotmarkedet, eventuelt overskydende batterikapacitet oplades med nedregulering i regulerkraftmarkedet, og lagret energi aflades som opregulering i regulerkraftmarkedet. Denne tre-deling af batteriet illustreres i figur 6. I senere, videreudviklede udgaver af opladningsstrategien udvides markedsdeltagelsen til også at omfatte afladning i spotmarkedet og deltagelse i øvrige, relevante elmarkedspladser for kapacitet og energi, fx manuel reserve og frekvensregulering. Figur 6: Opdeling af batteriets kapacitet tre dele uden og med uden optimeret opladning med Ledig kapacitet 3 Købsbud regulerkraft (nedregulering = opladning) Købsbud regulerkraft (nedregulering = opladning) Salgsbud regulerkraft (opregulering = afladning) 3A 3B Ledig kapacitet Opladet regulerkraft Næste kørsel 2 Købsbud elspot Næste planlagte kørsel 2 Næste kørsel Buffer 1 Uforudset kørsel 1 Buffer optimeret opladning 12

13 Resumé Opladningsstrategiens optimeringsalgoritmer sondrer mellem tre kategorier af ineffektivt udnyttet vindproduktion, overskydende (ellers frakoblet) vindproduktion, ineffektivt udnyttet vindproduktion og energimix med højeste vindandel. De tre kategorier er udspecificeret i figur 7 med angivelse af kriterierne for, hvordan de indgår i opladningens optimering. Beregning af -batterislitage omkostningen er forklaret i figur 8. Figur 7: Rangordning og prioritering af opladet vindproduktion (eksempel) Prioritet Kategori betegnelse OPLADNING Overskydende vindproduktion OPLADNING Ineffektiv vindproduktion OPLADNING Energimix m/ højeste vindandel AFLADNING Lav eller ingen vindproduktion Rangordning elpris timeværdier < P spot <= 0 Beskrivelse produktion til nul/negativ elpris, forudsættes at være produktion, der ellers ville blive frakoblet Gulv -500 EUR/, max EUR/ 0 < P spot,rk <= 0,15* ) produktion til særlig lav, positiv elpris, evt. i kombination med nettoeksport, høje integrationsomkostninger, PSO-bidrag, subsidieret forbrug osv., kategoriseres som ineffektivt udnyttet vindproduktion 0,15 < P spot,rk <= GNS P >= gennemsnit + batterislitage omkostning produktion i prisintervallet mellem en nedre, positiv fraktil og gennemsnittet produktion til afladning Figur 8: batteri slitage omkostninger Elbilmodel Nissan Leaf 24/160 Tesla S 90/186 Batterikapacitet 24 kwh 85 kwh Kostpris per kwh batteri *) **) ***) 300 USD = DKK 300 USD = DKK Kostpris per elbil batteri DKK DKK Levetid (dybe cyklinger, 100 % DoD) Opnåeligt antal kwh energiflow kwh kwh Batterislitage omkostning per kwh energiflow (kørsel- og cykling) Tilpasning : Afkortet afladningsdybde DoD og ingen cykling i slitage-følsomme SoC yderintervaller 0,60 kr/kwh 0,60 kr/kwh kwh 0,55 kr/kwh kwh 0,55 kr/kwh *) System; **) EV Everywhere 2014-målsætning ifølge EV Everywhere Progress of Battery Development Project, Plug-In Battery Cost (per kwh Useable Energy), U.S. Battery R&D Progress and Plans, David Howell, US DOE, 2010; ***) Omregningskurs 6 DKK/USD optimeret opladning 13

14 Opladningsudgift kr/år Resumé Resultater og konklusioner Simuleringernes resultater analyseres for elbilejeres gevinster og samfundsøkonomiske gevinster ved optimeret opladning. Elbilejernes gevinster vedrører opladningsudgift, CO2-udledning og vindandel. Elbilejeres -gevinster: Opladningsudgift før batterislitage Ifølge analysens simuleringer af alternative opladningsstrategier, -markedsbud strategier og varierende omfang af vil en elbilejer som vist i figur 9 kunne spare op til i størrelsesordenen pct. af opladningsudgiften ved at benytte optimeret opladning. Selv med et moderat -omfang på pct. af energimængden til kørselsforbrug vil der kunne opnås betydelige r. En Nissan Leaf vil med optimeret opladning og 53 pct. kunne oplades til en opladningsudgift på minus 3 kr. per år. For en Tesla S bliver opladningsudgiften minus 236 kr. per år med 43 pct.. Elbilejere vil med andre ord kunne spare i størrelsesordenen kr. per år i ren energiudgift med optimeret opladning og moderat -omfang. Målt som elgrossistprisen på elmarkedet, dvs. eksklusiv forbrugerelprisens øvrige komponenter, transmissions- og distributionstariffer, PSO, energiafgifter og moms. Dermed overstiger -rne de, der kunne opnås med optimeret opladning uden. Nissan Leaf opnår uden, dvs., en opladningsudgift på 392 kr. per år, svarende til en i forhold til Ikke-styret opladning på ca. 59 pct. For Tesla S bliver opladningsudgiften med optimeret opladning 310 kr., svarende til en i forhold til Ikke-styret opladning på 72 pct. Dermed konkluderes, at rne med optimeret opladning er højere end rne uden, som vist i de pink søjler i figur 9. Beregningen inkluderer ikke ekstraomkostninger til batterislitage, som forudsættes afholdt af elbilejerne. Når omkostninger til -batterislitage modregnes i opladningsudgiften, er ikke længere billigere end, der ikke belastes af ekstra batterislitage. Figur 9: Opladningsudgift før -batterislitage omkostninger kr kr 500 kr 0 kr -500 kr kr Ikke-styret opladning 959 kr optimeret opladning kr 392 kr 329 kr 100 % = 962 kr 310 kr -3 kr optimeret opladning FK 100/400 batterislitage omkostning 0 kr/kwh > 59 % = 567 kr 66 % = 630 kr 72 % = 806 kr optimeret opladning Pspot 0/4 kvartil 121 % kr -236 kr 205 % kr kr kr Ikke styret Nissan Leaf Egenforbrug kwh 10 % 53 % Ikke styret Tesla S Egenforbrug kwh 43 % 163 % optimeret opladning 14

15 Opladningsudgift kr/år Resumé Elbilejeres -gevinster: Opladningsudgift efter batterislitage Analysen anvender en simpel batterislitage model, der estimerer -batterislitage omkostningen som en variabel enhedsomkostning. Det amerikanske energiministerium US DOE (Department of Energy) estimerer batteriets kostpris til 300 USD (1.800 kr.) i På den baggrund fastsættes -batterislitage omkostningen til i gennemsnit 0,55 kr. per kwh energiflow. Hver kwh -energiarbitrage der cykles, dvs. op- og aflades, fremskynder batteriets forældelse og reducerer dets værdi med 0,55 kr. Når -batterislitage omkostningen medregnes reduceres rne, så opladningsudgiften som vist i figur 10 lander på 831 kr. per år for Nissan Leaf med 53 pct. og 559 kr. per år for Tesla S med 43 pct.. Dermed bliver opladningsudgiften med optimeret opladning højere end med, hvor den for Nissan Leaf bliver 392 kr. og for Tesla S minus 310 kr. Det konkluderes, at optimeret opladning ikke er prisdygtig i forhold til under de givne forudsætninger vedrørende batteriets kostpris, -batterislitage og markedets prisvolatilitet. For at kunne konkurrere kræves det, at slitageomkostningen reduceres pct. til ca. 0,26-0,38 kr. per kwh. Se figur 11. Figur 10: Opladningsudgift efter -batterislitage omkostninger (US DOE 2015) kr kr kr 500 kr 0 kr Ikke-styret opladning 959 kr Ikke styret Nissan Leaf Egenforbrug kwh optimeret opladning 10 % 53 % optimeret opladning FK 100/400 Ikke styret Tesla S Egenforbrug kwh optimeret opladning Pspot 0/4 kvartil batterislitage omkostning 0,55 kr/kwh < batterislitage omkostningspari ca. 0,26-0,38 kr/kwh = 13 % = 129 kr kr 831 kr 50 % = 556 kr 59 % = 567 kr % = 475 kr kr Heraf 72 % = 806 kr 559 kr Heraf batterislitage Heraf 392 kr batterislitage 833 kr 310 kr batterislitage 155 kr 796 kr 43 % kr Heraf batterislitage kr 163 % Figur 11: -batterislitage omkostningsparitet Elbil batteri kostpris kr/kwh Behov for offentlig støttet incitament Elbil batteri kostpris 750 kr/kwh I dag batterislitage omkostning 0,55 kr/kwh Behov for sænkning pct. 0,17-0,29 kr/kwh (Omkostningspari ved 0,26-0,38 kr/kwh) - < 2022/ batterislitage omkostning 0,23 kr/kwh - > = & -energiarbitrage profit < -batterislitage omk -energiarbitrage profit & > = -batterislitage omk optimeret opladning 15

16 Opladningsudgift kr/år Resumé Udsigt til lavere batteri kostpris og batterislitage omkostning vil gøre rentabel i fremtiden Elbilejere vil under de nuværende forhold ikke kunne spare yderligere opladningsudgift med optimeret opladning i forhold til optimeret opladning uden. Men det vil ændre sig i fremtiden. Men med de officielle udviklingsplaner for elbilbatterier og forventningen til øget prisvolatilitet på elmarkedet, vil det ske i fremtiden, og måske allerede fra Forventningen er, at de primære determinanter for -energiarbitrage profit, elmarkedets prisvolatilitet og elbilbatteriets kostpris, alt andet lige vil udvikle sig til fordel for. Som illustreret i figur 12 forventes øget udbredelse af vindkraft og andet VE på den ene side at øge elmarkedets prisvolatilitet, og på den anden side, forventes F&U og stordriftsfordele at reducere batteriets kostpris og dermed -batterislitage omkostningen. US DOE forudsiger, at batteriets kostpris muligvis vil falde fra dets nuværende 2014-prisniveau på kr per kwh til 750 kr per kwh i På den baggrund estimeres -batterislitage omkostningen til 0,23 kr per kwh. Det vil i givet fald resultere i, at bliver priskonkurrencedygtig i forhold til for både Nissan Leaf med 53 pct. og Tesla S med 43 pct., som illustreret i figur 13 nedenfor. Selv Tesla S med 163 pct. bliver konkurrencedygtig og ligefrem til billigste, hvad angår opladningsudgift. Figur 12: energiarbitrage profit > batterislitage omk = mergevinst Batteri trends Stordrift Kostpris ned Ydelse op Robusthed op Levetid op 0,6-0,4-0,2-0 - Kr per 1 kwh energiflow og energiarbitrage batterislitage omkostning Batteri kostpris og ydelse mergevinst energi arbitrage profit Difference mellem købs- og salgspris Elmarked trends Mere vind Mere ubalance Øget prisvolatilitet Flere ekstremt høje og lave priser Måske kapacitetsbetaling Figur 13: Opladningsudgift efter -batterislitage omkostninger (US DOE 2022) kr kr kr 750 kr 500 kr 250 kr 0 kr Ikke-styret opladning 959 kr Ikke styret Nissan Leaf Egenforbrug kwh optimeret opladning 10 % 53 % optimeret opladning FK 100/ kr 393 kr 392 kr 342 kr Heraf Heraf 310 kr Ikke styret Tesla S Egenforbrug kwh optimeret opladning Pspot 0/4 kvartil batterislitage omkostning 0,23 kr/kwh > 59 % = 567 kr 59 % = 566 kr 64 % = 617 kr batterislitage 64 kr batterislitage 344 kr 72 % = 806 kr 92 % = kr Heraf batterislitage 329 kr 92 kr 43 % 94 % = kr Heraf batterislitage kr 66 kr 163 % optimeret opladning 16

17 Opladning med Opladning med Opladning med Elproduktion (ab værk) kwh Resumé Beregning af CO2 Elbilens CO2-udledning opgøres i gram per kørt kilometer, og den beregnes ud fra CO2-indholdet i det elforbrug, der forsyner opladningen. Elforbruget er korrigeret for de ladekonverteringstab, der forekommer under op- og afladning. Ligeledes korrigeres for nettab i transmissions- og distributionsnet, udlandsudveksling og produktionsfordeling, således at CO2-indholdet i opladningens elforbrug inkluderer alt CO2-udledning for hele den elproduktion, der forsyner elforbruget. Well-to-Wheel. CO2-udledning fra elproduktion, der fortrænges af afladning, modregnes elforbrugets CO2-udledning. Hovedprincippet er, at elforbrugets CO2-indhold opgøres for den timeopløste, individuelle, marginale elproduktion, der forsyner det. Derudover er det et hovedprincip, at elbilen godskrives for alle afledte CO2- effekter i det samlede elsystem, der genereres som en konsekvens af elbilejerens aktive tilvalg af optimeret opladning. Opladningsstrategiens algoritmer sondrer mellem tre typer ineffektivt udnyttet vindproduktion henholdsvis elsystem tilstande, med varierende CO2-effekt. Se figur 14. De kan identificeres mere eller mindre komplekst og præcist. I nærværende analyse defineres optimeret opladning til at prioritere opladning med henholdsvis overskydende vind, ineffektiv vind og energimix vind. Defineret ud fra fx elpris, relative elprisniveau, elmarked, vindproduktion, vindprognosefejl osv. Figur 14: Elproduktion til optimeret opladning af Tesla S med 43 pct Overskydende vind P = nul/neg kwh kwh Ineffektiv vind P = særlig lav Energimix vind P = lav kwh = 34 % Elforbrug: kwh Nettab: 145 kwh kwh 404 kwh 404 kwh = 7 % Elforbrug: 372 kwh Nettab: 31 kwh kwh = 59 % Elforbrug: kwh Nettab: 253 kwh Elproduktion til opladning Overskydende vind P = nul/neg Ineffektiv vind P = særlig lav Energimix vind P = lav CO2 i opladning 0 g per kwh minus 750 g per kwh 0 g per kwh (minus fortrængt CO2 for sparet netkonverteringstab på udlandsforbindelse (Norge) 2*10 %. Berettiget, men ikke medregnet) Energimix gennemsnit CO2 g per kwh, som ellers ville blive frakoblet og kasseret, produceret med eksisterende vindmøller Ny vind, som fortrænger fossil-baseret elproduktion, som ellers ville blive eksporteret, til lav pris og med højt nettab, produceret med eksisterende vindmøller Energimix ets gennemsnit CO2 g per kwh CO2 fra elproduktion fortrængt af afladning Minus 750 g per kwh optimeret opladning 17

18 CO2 g per km Resumé Som det også fremgår af figur 14 ovenfor, afhænger CO2-udledningen per kørt km i høj grad af elforbrugets fordeling på de tre kategorier elproduktion, overskydende vind, ineffektiv vind og energimix vind. Derudover har CO2-udledningen i den elproduktion, der fortrænges af afladning, stor betydning. Søjlerne i figur 14 øverst viser fordelingen af de tre elproduktion kategorier for optimeret opladning af Tesla S med 43 pct.. For de elproduktion kategorier, optimeret opladning prioriterer at oplade med, gælder: Overskydende vind til nul/negativ elpris forudsættes at være 100 pct. ellers frakoblet vindproduktion, dvs. vindproduktion, der ellers ikke ville blive produceret, og som produceres med vindmøller, der i forvejen er i drift. Elbilens opladning udløser med andre ord en merproduktion af vind. Elbilen aftager den mest problematiske andel af en given installeret vindkraftkapacitets produktion, den mindst værdifulde del, og som har den absolut højeste integrationsomkostning. Ineffektiv vind til særlig lav, positiv elpris, fastsat til lavere end 150 kr/, antages at være vindproduktion, der ellers ville være blevet eksporteret, til lav værdi, og med et højt nettab. Tæller i opladningens elforbrug med nul g CO2-udledning per kwh. Men det kunne postuleres, at der yderligere burde fradrages 2 * 10 pct. fortrængt CO2-udledning fra sparet elproduktion til netkonverteringstab i udlandsforbindelsen til Norge, som der i praksis vil være, når en elbil med optimeret opladning alternativt aftager vindproduktionen i Vestdanmark. Energimix vind til elpriser over 150 kr/, men til opladningsperiodens laveste timeværdi, tæller i elbilens CO2-regnskab med CO2-udledningen per kwh for timens gennemsnitlige produktionsmix. Elbilejeres -gevinster: CO2-udledning per kørt km Som det fremgår af figur 15, er optimeret opladning, under de givne beregningsforudsætninger, særdeles effektiv til at reducere elbilernes CO2-udledning per kørt km. Så effektiv, at elbilerne opnår negativ CO2-udledning. For Nissan Leaf bliver CO2-udledningen med 53 pct. minus 22 g per km, eller mere end 141 lavere end med Ikke-styret opladning. For Tesla S bliver den minus 49 g per km, svarende til en reduktion på 179 pct. i forhold til Ikke-styret opladning. Figur 15: CO2-udledning g per kørt km for alternative opladningsstrategier Ikke-styret opladning optimeret opladning EU 2021 mål: 95 g/km 55 % 54 g/km 75 % 62 g/km 91 % 24 g/km 141 % 14 g/km 6 g/km -22 g/km EU 2021 superkreditter optimeret opladning : NL 10 % TS 43 % optimeret opladning : NL 53 % TS 163 % 179 % 373 % -49 g/km -171 g/km Ikkestyret Nissan Leaf Egenforbrug kwh 10 % 53 % Ikkestyret Tesla S Egenforbrug kwh 43 % 163 % optimeret opladning 18

19 andel % Resumé Elbilejeres -gevinster: andel i elforbrugets energimix andelen i elforbrugets energimix opgøres principielt på samme måde som CO2-udledningen, nemlig ud fra den elproduktion, der forsyner opladningens elforbrug. Ligeledes korrigeres for nettab, udveksling og produktionsfordeling, og der sondres mellem de tre kategorier af vindintensiv elproduktion. Overskydende vind tæller 200 pct. i beregningen af vindandel Ineffektiv vind tæller 100 pct. Energimix vind tæller med timernes individuelle vindandele. andelen i opladningen beregnes som andelen af vindproduktion i det samlede elproduktion mix. En del af den vindproduktion aflades tilbage til elnettet. I beregningen antages, at andelen af vindproduktion i afladningen er den samme, som andelen af vindproduktion i elnettet i den time, hvor afladningen gennemføres. Hvis fx vindandelen i elnettet er 30 pct. i afladningstimen, antages det, at der også er 30 pct. vindproduktion i den afladede energimængde. produktionen i afladning fratrækkes i vindproduktionen i opladningen, og nettosummen udgør den vindproduktion, der bruges til at beregne vindandelen i elbilens egenforbrug. Dermed angiver vindandelen, hvor meget vindproduktion der er i den energimængde, elbilen anvender til kørsel. Og ikke, hvor stor vindandelen er i det elforbrug, der forsyner opladningen. optimeret opladning af Nissan Leaf med 53 pct. når op på en vindandel på 82 pct. For Tesla S med 43 pct. er vindandelen 144 pct. Se figur 16. Til sammenligning udgør vindandelen i Ikke-styret opladning 34 pct., og vindandelen i året totale elforbrug var i 2012 cirka 30 pct. Det kan derudfra konkluderes, at optimeret opladning selv ved et beskedent omfang af vil kunne bidrage betydeligt til at øge udnyttelsen af vindproduktion i den samlede elforsyning. Figur 16: andel i elbilens elforbrug til kørsel (ikke elforbrug i opladning) Ikke-styret opladning optimeret opladning optimeret opladning : NL 10 % TS 43 % optimeret opladning : NL 53 % TS 163 % 200% 175% kraftens forbrugsdækning DK 2012 = 30 % 150% 171% 125% 144% 100% 75% 50% 74% 79% 82% 93% 25% 0% 34% 34% Ikkestyret 10 % 53 % Ikkestyret 43 % 163 % Nissan Leaf Egenforbrug kwh Tesla S Egenforbrug kwh optimeret opladning 19

20 /år Regulerkraft marked 2012 Resumé Samfundsøkonomiske gevinster: elbiler Udbredelse af mange elbiler, der benytter optimeret opladning, vil kunne effektivisere udnyttelsen af vindkraft, øge vindkraftens markedsværdi, reducere integrationsomkostningerne for ny vindkraft osv. Men det vil kræve et vist minimum af elbiler for at kunne gøre en mærkbar samfundsøkonomisk forskel. Spørgsmålet er, om der realistisk vil kunne forventes en tilstrækkelig elbil udbredelse til at berettige en samfundsmæssig satsning på rammevilkår til udbredelse af optimeret opladning. Blandt aktuelle problemområder og elbilernes mulige løsningbidrag kunne nævnes: Aftage overskydende vindproduktion, som ellers ville blive frakoblet, fordi elprisen er nul/negativ Balancering på regulerkraftmarkedet i tilfælde af vindprognosefejl Afladning af lagret vindkraft i relativt vindstille højlast timer til erstatning for marginal kraftværk elbilers deltagelse i regulerkraftmarkedet Figur 17 viser op- og nedregulering på regulerkraftmarkedet i Vestdanmark i 2012 og optimeret opladning af elbiler, svarende til en elbil penetration på 2,5 pct. af Danmarks personbil bestand på ca. 2.2 mio. Øverste søjler viser opladning, og nederste viser afladning. Opladning af Nissan Leaf elbiler med optimeret opladning og 53 pct. aftager , svarende til 111 pct. af årets nedregulering på (sort stipuleret linje) Tesla S elbilers afladning ved 163 pct. til 114 pct. af den faktiske opregulering på Eksemplerne illustrerer alene mængdeforhold og er ikke udtryk for sammenfaldende timefordeling for opladning/nedregulering og afladning/opregulering. Figur 17: opladning elbiler - andel af balancering i DK-Vest Overskydende vind P nulneg Ineffektiv vind P lav Energimix vind P gns Afladning P høj % % Nissan Leaf Egenforbrug kwh Nedregulering Opladning O p l a d n i n g Opladning % af RK ned Afladning % af RK op A f l a d n i n g 77 % % Ned regulering Op regulering % Opladning % af RK ned Afladning % af RK op 163 % Tesla S Egenforbrug kwh Opregulering Afladning % Ikke alt RK ubalance er et stort problem. Størst problem er ineffektiv og overskydende vind 273 % optimeret opladning 20

21 Ton CO2 per år Resumé elbilers CO2 g/km Analysens beregninger vedrørende elbilers CO2-udledning vedrører de marginale CO2-r ved at benytte opladningsstrategien optimeret opladning i stedet for Ikke-styret opladning. De vedrører ikke potentialet for CO2-reduktioner med elbiler i stedet for benzin/diesel biler. Elbiler kritiseres typisk i EU undersøgelser for ikke at udlede mindre CO2 per kørt km end benzin/diesel biler, på grund af det relativt høje nettab i elnettet og det relativt høje CO2-indhold i det energimix, der forsyner opladningens elforbrug. I figur 18 er de potentielle marginale CO2-r Well-to-Wheel for optimeret opladning af elbiler illustreret i relation til de EU s vedtagne målsætninger for CO2-r, beregnet for et tilsvarende antal benzin/diesel biler. Dermed vil investeringen i at opnå de pågældende r med nedsættes af EU s CO2-mål fra 130 g/km i 2015 til fx 70 g/km i 2025, hvor sidstnævnte dog ikke er vedtaget, kunne holdes overfor muligheden for at opnå tilsvarende CO2-reduktioner ved at tilbyde elbilbrugere et incitament til at benytte optimeret opladning i stedet for Ikke-styret opladning elbilers marginale CO2-udledning vil potentielt kunne reduceres med pct. for henholdsvis Nissan Leaf med 53 pct. og Tesla S med 43 pct. ved at benytte optimeret opladning i stedet for Ikke-styret opladning. Tesla S CO2-n svarer nominelt til ca. det dobbelte af, hvad der vil kunne opnås ved at nedsætte EU grænseværdien for benzin/diesel biler fra 130 g/km i 2015 til forventelig 70 g/km i Figur 18: elbilers totale CO2-udledning per år og CO2-r Ikke-styret opladning fra 130 CO2 g/km til 95 CO2 g/km fra 95 CO2 g/km til 70 CO2 g/km ton CO2 Ikke styret ton CO2 Nissan Leaf Egenforbrug kwh optimeret opladning g CO2/år g CO2/år CO2 55 % ton CO2 75 % ton ton CO elbilers marginale CO2 = pct. for Nissan Leaf 53 pct. og Tesla S 43 pct. = Ca pct. af CO2- for benzin/diesel biler ved nedsættelse af EU CO2-mål fra 130 g/km i 2015 til 70 g/km i % ton CO2 53 % optimeret opladning NL 10 % TS 43 % EU 2015 CO2-mål 130 g/km EU 2021 CO2-mål 95 g/km EU 2025 CO2-mål 70 g/km (??) CO2 141 % ton ton CO2 Kørselsforbrug km per år Ikke styret CO2 91 % ton ton CO2 Tesla S Egenforbrug kwh optimeret opladning NL 53 % TS 153 % benzin/diesel bilers CO2 g/år CO2 179 % ton ton CO Tesla S elbilers marginale CO2 med 163 pct. i stedet for Ikke-styret opladning = benzin/diesel bilers totale CO2 ved EU 2021 mål på 95 g/km 43 % CO2 373 % ton ton CO2 163 % optimeret opladning 21

22

23

24 optimeret opladning Delrapport 1 af 4 Abstract & Resumé V1.1 web

Vindoptimeret opladning V2G

Vindoptimeret opladning V2G 1 af 4 optimeret Wind Optimized Charging Analyse af tidsstyret, optimeret af elbiler med vindproduktion, midlertidig lagring af overskydende vindproduktion og (Vehicle-to-Grid) energiarbitrage. Baseret

Læs mere

Vindoptimeret opladning V2G

Vindoptimeret opladning V2G Rapport 2 af 4 optimeret opladning Wind Optimized Charging Analyse af tidsstyret, optimeret opladning af elbiler med vindproduktion, midlertidig lagring af overskydende vindproduktion og (Vehicle-to-Grid)

Læs mere

VINDOPTIMERET. OPLADNING AF ELBILER Vindenergi Danmark. Sammenfatning

VINDOPTIMERET. OPLADNING AF ELBILER Vindenergi Danmark. Sammenfatning 212 Sammenfatning AF ELBILER Vindenergi Danmark Hvordan kan elbilers opladning effektivisere udnyttelsen af vindkraft til fælles gavn for elbilejernes kørselsøkonomi, vindkraftproducenternes driftsøkonomi

Læs mere

Vindoptimeret opladning V2G

Vindoptimeret opladning V2G Bilag I: Datagrundlag 3 af 4 Vindoptimeret opladning V2G Wind Optimized Charging V2G Analyse af tidsstyret, optimeret opladning af elbiler med vindproduktion, midlertidig lagring af overskydende vindproduktion

Læs mere

Vindoptimeret opladning V2G

Vindoptimeret opladning V2G Bilag II: Batterislitage 4 af 4 Vindoptimeret opladning V2G Wind Optimized Charging V2G Analyse af tidsstyret, optimeret opladning af elbiler med vindproduktion, midlertidig lagring af overskydende vindproduktion

Læs mere

Elbiler som metode til at få mere af transportområdet ind under kvotesystemet ad bagvejen. v/lærke Flader, Dansk Energi

Elbiler som metode til at få mere af transportområdet ind under kvotesystemet ad bagvejen. v/lærke Flader, Dansk Energi Elbiler som metode til at få mere af transportområdet ind under kvotesystemet ad bagvejen v/lærke Flader, Dansk Energi Indhold: 1. Transport ind under kvotereguleringen vil tage presset af den ikke-kvote

Læs mere

VINDOPTIMERET. OPLADNING AF ELBILER Vindenergi Danmark

VINDOPTIMERET. OPLADNING AF ELBILER Vindenergi Danmark 212 VINDOPTIMERET AF ELBILER Vindenergi Danmark Hvordan kan elbilers opladning effektivisere udnyttelsen af vindkraft til fælles gavn for elbilejernes kørselsøkonomi, vindkraftproducenternes driftsøkonomi

Læs mere

Better Place Transportens Innovationsnetværk

Better Place Transportens Innovationsnetværk Better Place Transportens Innovationsnetværk Director of Public Affairs Marianne Wier 25. november 2009 How do you make the world a better place by 2020? Uafhængig af fossile brændsler... Overgang til

Læs mere

The Green Power Plant Seahorn Energy

The Green Power Plant Seahorn Energy The Green Power Plant Seahorn Energy Agenda Seahorn Energy Hvorfor lagring? The Green Power Plant (GPP) Økonomien i GPP Fremtidige aspekter 25/06/2013 SEAHORN ENERGY Aps 2 Seahorn Energy Lille dansk virksomhed

Læs mere

Analyse af samspil til energisystemet

Analyse af samspil til energisystemet Analyse af samspil til energisystemet Konference for demoprojekter om varmepumper Dansk Fjernvarme, Kolding, 21. januar 2016 Anders Kofoed-Wiuff, Ea Energianalyse 2 Vestdanmark 2015 Energiforbrug til opvarmning

Læs mere

Transforming DONG Energy to a Low Carbon Future

Transforming DONG Energy to a Low Carbon Future Transforming DONG Energy to a Low Carbon Future Varmeplan Hovedstaden Workshop, January 2009 Udfordringen er enorm.. Global generation European generation 34,000 TWh 17,500 TWh 94% 34% 3,300 TWh 4,400

Læs mere

LEVERING AF SYSTEMYDELSER. Henning Parbo

LEVERING AF SYSTEMYDELSER. Henning Parbo LEVERING AF SYSTEMYDELSER Henning Parbo DET DANSKE ELSYSTEM INSTALLERET KAPACITET, PRIMO 2017 20 centrale kraftværker 6.150 vindmøller 4.200 MW 670 decentrale kraftvarmeværker 5.250 MW 96.000 solcelleanlæg

Læs mere

H2020 DiscardLess ( ) Lessons learnt. Chefkonsulent, seniorrådgiver Erling P. Larsen, DTU Aqua, Denmark,

H2020 DiscardLess ( ) Lessons learnt.   Chefkonsulent, seniorrådgiver Erling P. Larsen, DTU Aqua, Denmark, H2020 DiscardLess (2015-2019) Lessons learnt www.discardless.eu Chefkonsulent, seniorrådgiver Erling P. Larsen, DTU Aqua, Denmark, Fra ændrede fiskeredskaber til cost-benefit analyser Endnu et skifte i

Læs mere

Gas og el det perfekte mix

Gas og el det perfekte mix Professor og centerleder Jacob Østergaard Center for Elteknologi (CET) Naturgas en nødvendig del af løsningen... Hotel Nyborg Strand 26. november 2010 ? Bred politisk enighed om reduktion af CO2-udledning

Læs mere

Produktionsmiks i fremtidens Danmark/Europa

Produktionsmiks i fremtidens Danmark/Europa Produktionsmiks i fremtidens Danmark/Europa Seminar for aktører på elmarkedet 11. oktober 212 Lasse Sundahl Lead Regulatory Advisor Overskrifter Politisk drevne ændringer af elsystemet i Europa DK og alle

Læs mere

Fleksibilitet i elforbruget i et realistisk perspektiv. Mikael Togeby Ea Energianalyse A/S

Fleksibilitet i elforbruget i et realistisk perspektiv. Mikael Togeby Ea Energianalyse A/S Fleksibilitet i elforbruget i et realistisk perspektiv Mikael Togeby Ea Energianalyse A/S Relevant projects FlexPower design af elmarket med udgangspunkt i demand response Ready demand response fra varmepumper.

Læs mere

Baggrund og introduktion til fagområder

Baggrund og introduktion til fagområder Baggrund og introduktion til fagområder Temaer: Vind, brændselsceller og elektrolyse Ingeniørhuset Århus den 12. januar 28 Brian Vad Mathiesen, Næstformand i Energiteknisk Gruppe Project partners IDAs

Læs mere

Smart Grid i Danmark Perspektiver

Smart Grid i Danmark Perspektiver Smart Grid i Danmark Perspektiver Samarbejdsprojekt mellem Dansk Energi, energiselskaberne og Energinet.dk Anders Bavnhøj Hansen, Energinet.dk & Allan Norsk Jensen, Dansk Energi I Danmark arbejder både

Læs mere

29. oktober 2015. Smart Energy. Dok. 14/21506-18

29. oktober 2015. Smart Energy. Dok. 14/21506-18 29. oktober 2015 Smart Energy Dok. 14/21506-18 Fra Smart Grid til Smart Energy I 2010 lavede Dansk Energi og Energinet.dk en analyse af den samfundsøkonomiske værdi af Smart Grid. Præmissen for analysen

Læs mere

Brint og grønne brændstoffers rolle i fremtidens smarte energi systemer

Brint og grønne brændstoffers rolle i fremtidens smarte energi systemer SerEnergy, Lyngvej 3, 9000 Aalborg 18. april 2018 Brint og grønne brændstoffers rolle i fremtidens smarte energi systemer Henrik Lund Professor i Energiplanlægning Aalborg Universitet Den langsigtede målsætning

Læs mere

J.nr. 3401/1001-2921 Ref. SLP

J.nr. 3401/1001-2921 Ref. SLP VINDKR AF T OG ELOVERL ØB 9. maj 2011 J.nr. 3401/1001-2921 Ref. SLP Indledning Danmark har verdensrekord i vindkraft, hvis man måler det i forhold til elforbruget. I 2009 udgjorde vindkraftproduktionen

Læs mere

100% VE i EU med eksempler Towards 100% Renewable Energy Supply within the EU, examples. Gunnar Boye Olesen

100% VE i EU med eksempler Towards 100% Renewable Energy Supply within the EU, examples. Gunnar Boye Olesen Community Power and Renewable Energy Storage in Denmark and in the EU Community power og vedvarende energi lagring i Danmark og i EU Nordisk Folkecenter for Vedvarende Energi, 7760 Hurup, Denmark, 12.12.2016

Læs mere

Elektrisk Transport Vision 2025

Elektrisk Transport Vision 2025 Netværksmøde Elektrisk Transport Vision 2025 TEKNOLOGISK INSTITUT Kjeld Nørregaard Programleder Elektrisk k Transport 2025 danske udfordringer Energi forsyning Meget lidt olie tilbage af egen Nordsø aftapning

Læs mere

BYGNINGER OG FREMTIDENS ENERGISYSTEM

BYGNINGER OG FREMTIDENS ENERGISYSTEM BYGNINGER OG FREMTIDENS ENERGISYSTEM BRIAN VAD MATHIESEN bvm@plan.aau.dk Konference: De almene boliger, Energisystemet og Bæredygtighed i praksis Statens Byggeforskningsinstitut, København, November 2016

Læs mere

Udbud af systemydelser y på markedsvilkår

Udbud af systemydelser y på markedsvilkår Udbud af systemydelser y på markedsvilkår May 21. juni 2010 Flemming Birck Pedersen flebp@dongenergy.dk gy Afdelingsleder Markedsstrategi og systemydelser DONG Energy 1 GENERATION Meget mere grøn strøm

Læs mere

Specialregulering i fjernvarmen

Specialregulering i fjernvarmen Specialregulering i fjernvarmen Elkedler omsætter massive mængder af overskuds-el fra Nordtyskland til varme Nina Detlefsen Side 1 Dato: 04.02.2016 Udarbejdet af: Nina Detlefsen Kontrolleret af: Jesper

Læs mere

Den Europæiske integration af el-markederne: et spørgsmål om kapacitet, vedvarende energi og politisk handlekraft

Den Europæiske integration af el-markederne: et spørgsmål om kapacitet, vedvarende energi og politisk handlekraft Temadag Elprisscenarier, Danmarks Vindmølleforening, 21. oktober 2015, Fredericia Den Europæiske integration af el-markederne: et spørgsmål om kapacitet, vedvarende energi og politisk handlekraft Thomas

Læs mere

Future Gas projektet. Gas som en integreret del af det fremtidige Energisystem

Future Gas projektet. Gas som en integreret del af det fremtidige Energisystem Future Gas projektet Gas som en integreret del af det fremtidige Energisystem Biogas2020 Skandinaviens biogas konference - biogassen i en grøn omstilling af Lise Skovsgaard, lskn@dtu.dk Phd. student, FutureGas

Læs mere

Can renewables meet the energy demand in heavy industries?

Can renewables meet the energy demand in heavy industries? Sune Thorvildsen Can renewables meet the energy demand in heavy industries? Senior Advisor Sune Thorvildsen DI Energy Confederation of Danish Industry 2 Strong sector associations 3 4 5 Top 10 Receiving

Læs mere

Basic statistics for experimental medical researchers

Basic statistics for experimental medical researchers Basic statistics for experimental medical researchers Sample size calculations September 15th 2016 Christian Pipper Department of public health (IFSV) Faculty of Health and Medicinal Science (SUND) E-mail:

Læs mere

Smart energi - Smart varme

Smart energi - Smart varme Smart energi - Smart varme Fossil frie Thy 22. august 2012 Kim Behnke Energinet.dk Sektionschef Miljø, Forskning og Smart Grid Dansk klima- og energipolitik med ambitioner 40 % mindre CO 2 udledning i

Læs mere

Det danske behov for systemydelser. Jens Møller Birkebæk Chef for Systemdrift Energinet.dk

Det danske behov for systemydelser. Jens Møller Birkebæk Chef for Systemdrift Energinet.dk Det danske behov for systemydelser Jens Møller Birkebæk Chef for Systemdrift Energinet.dk Danmark et ben i hver elektrisk lejr Energinet.dk er ansvarlig for forsyningssikkerheden i hele Danmark Kendetegn

Læs mere

Den Danske Brint- og Brændselscelledag MegaBalance

Den Danske Brint- og Brændselscelledag MegaBalance Den Danske Brint- og Brændselscelledag 2016 - MegaBalance 1 1 MegaBalance projektet Titel: Partnere: MegaBalance Assessment on a widespread Hydrogen Fueling Station network for grid balancing of renewable

Læs mere

EcoGrid EU En prototype på et europæisk Smart Grid. Maja Felicia Bendtsen Østkraft Holding A/S September 2012

EcoGrid EU En prototype på et europæisk Smart Grid. Maja Felicia Bendtsen Østkraft Holding A/S September 2012 EcoGrid EU En prototype på et europæisk Smart Grid Maja Felicia Bendtsen Østkraft Holding A/S September 2012 PJ Uafhængig af fossile brændsler i 2050 Energi forbrug i Danmark 300 250 200 150 100 50 1980

Læs mere

IDA National energiplan Elsystemer

IDA National energiplan Elsystemer IDA National energiplan Elsystemer 2. jan 29 Ingeniørhuset Kbh. Betina Knudsen, Vattenfall Nordic Agenda Vattenfalls klima målsætning Initiativer for at nå klima målsætning Største udfordringer 2 The Investment

Læs mere

Indpasning af solceller i det danske elsystem. Loui Algren Energianalyse loa@energinet.dk

Indpasning af solceller i det danske elsystem. Loui Algren Energianalyse loa@energinet.dk Indpasning af solceller i det danske elsystem Loui Algren Energianalyse loa@energinet.dk Danske energiressourcer Baseret på vindscenariet fra Energiaftalens analyser, 2014 21-04-2016 Klyngemøde - Insero

Læs mere

Afslutningsskema. 1. Projekttitel Muligheder for anvendelse af Compressed. 2. Projektidentifikation Energinet.dk projektnr. 6567

Afslutningsskema. 1. Projekttitel Muligheder for anvendelse af Compressed. 2. Projektidentifikation Energinet.dk projektnr. 6567 Dato: Afslutningsskema 1. Projekttitel Muligheder for anvendelse af Compressed Air Energy Storage for ellagring i fremtidens elsystem 2. Projektidentifikation Energinet.dk projektnr. 6567 3. Projektperiode

Læs mere

Analyse af tariffer og afgifter for store eldrevne varmepumper

Analyse af tariffer og afgifter for store eldrevne varmepumper Analyse af tariffer og afgifter for store eldrevne varmepumper FJERNVARMENS TÆNKETANK Dato: 16. december 2014 Udarbejdet af: Nina Detlefsen & Jesper Koch Kontrolleret af: Kim Clausen Beskrivelse: Denne

Læs mere

Transportsektoren er en stor udfordring for fremtidens energipolitik. Power to the People. Jørgen S. Christensen, Dansk Energi

Transportsektoren er en stor udfordring for fremtidens energipolitik. Power to the People. Jørgen S. Christensen, Dansk Energi Transportsektoren er en stor udfordring for fremtidens energipolitik Power to the People Jørgen S. Christensen, Dansk Energi 1 Agenda De energipolitiske udfordringer Der er behov for flere brændselstyper

Læs mere

Hvor godt kender du energisektoren i Danmark?

Hvor godt kender du energisektoren i Danmark? Hvor godt kender du energisektoren i Danmark? - fortid, nutid og fremtid - Anders Kofoed-Wiuff, Ea Energianalyse Tip en 13 er 1 X 2 1. Hvor stor en del af Danmarks faktiske bruttoenergiforbrug udgjorde

Læs mere

Fremtidens elsystem det bygger vi i dag

Fremtidens elsystem det bygger vi i dag Fremtidens elsystem det bygger vi i dag Nye energikoncepter og decentrale kraftvarmeværkers rolle i fremtidens elsystem Erritsø, 6. januar 2011 Kim Behnke Forsknings- og miljøchef, Energinet.dk kbe@energinet.dk

Læs mere

Smart Grid i Danmark Perspektiver

Smart Grid i Danmark Perspektiver Smart Grid i Danmark Perspektiver Samarbejdsprojekt mellem Dansk Energi, energiselskaber og Energinet.dk Peder Ø. Andreasen, Adm. direktør Energinet.dk Trends i udviklingen der påvirker værdien af et Smart

Læs mere

Fremtidens Forsyningsmix - Smart Grids

Fremtidens Forsyningsmix - Smart Grids Fremtidens Forsyningsmix - Smart Grids 17. september 2010 Siemens A/S Andreea Balasiu Salgchef Tlf: 44 77 43 75 E-mail: andreea.balasiu@siemens.com Elektrisk energi rygraden i vores samfund Vi betjener

Læs mere

Vindenergi - og vinderenergi

Vindenergi - og vinderenergi Vindenergi - og vinderenergi Energinet.dk præsentation på seminar 15. november 2013 Kim Behnke, forsknings- og miljøchef, Energinet.dk kbe@energinet.dk Energinet.dk s vigtigste opgave kl. 20.50 år 20 50

Læs mere

DEMAND RESPONSE I SMART GRID

DEMAND RESPONSE I SMART GRID RUNE HYLSBERG JACOBSEN INSTITUT FOR INGENIØRVIDENSKAB UNI VERSITET DANMARK PÅ FOSSILFRI KURS Grøn økonomi i vækst Omstilning til et energi- og transportsystem uafhængigt af fossile brændstoffer I 2020

Læs mere

VINDKRAFTENS ROLLE I FREMTIDENS ENERGISYSTEM

VINDKRAFTENS ROLLE I FREMTIDENS ENERGISYSTEM VINDKRAFTENS ROLLE I FREMTIDENS ENERGISYSTEM - S M AR T E N E R GY S Y S T E M S OG OMKOSTNINGSEFFEKTIV OMSTILLING TIL 1 0 0 % V E D VAR E N D E E N E R GI B R I A N V A D M A T H I E S E N b v m @ p l

Læs mere

Test-en-elbil Afslutningskonference 23. Juni 2014 Trafikstyrelsen

Test-en-elbil Afslutningskonference 23. Juni 2014 Trafikstyrelsen Test-en-elbil Afslutningskonference 23. Juni 2014 Trafikstyrelsen Jeannette Møller Jørgensen JMJ@energinet.dk Forskningskoordinator Energinet.dk Om Energinet.dk 23. juni 2014 Test-en-elbil 2 Et elsystem

Læs mere

Klimastrategi Københavns Lufthavne A/S

Klimastrategi Københavns Lufthavne A/S Klimastrategi Københavns Lufthavne A/S 1 2 CO 2 -udledning i Københavns Lufthavn Scope 3 Samlet CO 2 -udledning i 2018: 386.573 ton 93% Scope 3: Flyselskaber, handlere, forpagtere, lejere og tilbringertrafik

Læs mere

Elbiler og elnettet. Perspektiver for elbiler i samspil med elsystemet Center for Grøn Transport

Elbiler og elnettet. Perspektiver for elbiler i samspil med elsystemet Center for Grøn Transport Elbiler og elnettet Perspektiver for elbiler i samspil med elsystemet Center for Grøn Transport 11.06.2010 Anders Bavnhøj Hansen, Senior konsulent, Civilingeniør Energinet.dk, Strategisk planlægning E-mail:

Læs mere

Statskassepåvirkning ved omstilling til store varmepumper i fjernvarmen

Statskassepåvirkning ved omstilling til store varmepumper i fjernvarmen Statskassepåvirkning ved omstilling til store varmepumper i fjernvarmen FJERNVARMENS TÆNKETANK Dato: 15. september 2015 Udarbejdet af: Nina Detlefsen Kontrolleret af: Kasper Nagel og Jesper Koch Beskrivelse:

Læs mere

Muligheder og udfordringer ved overskydende elproduktion. Seniorkonsulent Steen Vestervang, Energinet.dk

Muligheder og udfordringer ved overskydende elproduktion. Seniorkonsulent Steen Vestervang, Energinet.dk Muligheder og udfordringer ved overskydende elproduktion Seniorkonsulent Steen Vestervang, Energinet.dk 1 Oversigt Lidt om Energinet.dk Udfordringerne i fremtidens energisystem Mulige løsninger 2 Om Energinet.dk

Læs mere

Markedet for vindenergi

Markedet for vindenergi Markedet for vindenergi IDA Det Nordeuropæiske marked for energi og ressourcer 5. februar 2015 Martin Risum Bøndergaard Energiøkonomisk konsulent Vindmølleindustrien Hvem er Vindmølleindustrien? Vi: -

Læs mere

Den grønne omstilling. Loui Algren, ingeniør Energinet.dk / Energianalyse

Den grønne omstilling. Loui Algren, ingeniør Energinet.dk / Energianalyse Den grønne omstilling Loui Algren, ingeniør Energinet.dk / Energianalyse loa@energinet.dk Klimaaftalen er i hus! Klimaet er reddet (?) Agenda 1. Kort om Energinet.dk 2. Energisystemet historisk 3. Status:

Læs mere

Appendix 1: Interview guide Maria og Kristian Lundgaard-Karlshøj, Ausumgaard

Appendix 1: Interview guide Maria og Kristian Lundgaard-Karlshøj, Ausumgaard Appendix 1: Interview guide Maria og Kristian Lundgaard-Karlshøj, Ausumgaard Fortæl om Ausumgaard s historie Der er hele tiden snak om værdier, men hvad er det for nogle værdier? uddyb forklar definer

Læs mere

85/15 DONG Energy. Knud Pedersen, VP DONG Energy Distribution

85/15 DONG Energy. Knud Pedersen, VP DONG Energy Distribution 85/15 DONG Energy Knud Pedersen, VP DONG Energy Distribution Den danske vandsektor som en del af Danmarks energiforsyning hvad er mulighederne inden for eksport og teknologi, og hvad er udfordringerne?

Læs mere

Omstilling af det danske energisystem til 100% vedvarende energi Scenarieanalyser i CEESA-projektet

Omstilling af det danske energisystem til 100% vedvarende energi Scenarieanalyser i CEESA-projektet Omstilling af det danske energisystem til 100% vedvarende energi Scenarieanalyser i CEESA-projektet Mandag Morgens Klimakonference 26. februar 2013 Poul Alberg Østergaard / Brian Vad Mathiesen Aalborg

Læs mere

Fremme af fleksibelt forbrug ved hjælp af tariffer

Fremme af fleksibelt forbrug ved hjælp af tariffer Fremme af fleksibelt forbrug ved hjælp af FJERNVARMENS TÆNKETANK Grøn Energi er fjernvarmens tænketank. Vi omsætter innovation og analyser til konkret handling til gavn for den grønne omstilling, vækst

Læs mere

Energi og Infrastruktur

Energi og Infrastruktur Energi og Infrastruktur Transportens Innovationsnetværk den 18. juni 2009 v/lærke Flader v/lærke Flader Chefkonsulent, Dansk Energi Energi og Infrastruktur Oplæggets indhold: De energipolitiske udfordringer

Læs mere

Engelsk. Niveau D. De Merkantile Erhvervsuddannelser September Casebaseret eksamen. og

Engelsk. Niveau D. De Merkantile Erhvervsuddannelser September Casebaseret eksamen.  og 052431_EngelskD 08/09/05 13:29 Side 1 De Merkantile Erhvervsuddannelser September 2005 Side 1 af 4 sider Casebaseret eksamen Engelsk Niveau D www.jysk.dk og www.jysk.com Indhold: Opgave 1 Presentation

Læs mere

Elbilers værdi i elsystemet

Elbilers værdi i elsystemet 19-06-2014 cb/hhl Elbilers værdi i elsystemet Resumé.... 1 Elsystemets systemtjenester... 2 Mængder og priser... 4 Systemtjenester fremadrettet... 5 Estimat af elbilers værdi for elsystemet... 6 I takt

Læs mere

Local Heating Concepts for Power Balancing

Local Heating Concepts for Power Balancing Local Heating Concepts for Power Balancing 1 Projektets baggrund Maximum residual consumption incl. flexibility - DK Behov for balancering af el-systemet på mellemlange tidshorisonter + Behov for nye lokale/distribuerede

Læs mere

Balancering af energisystemer, gassystemet i fremtiden: grønt, fleksibelt, effektivt

Balancering af energisystemer, gassystemet i fremtiden: grønt, fleksibelt, effektivt Balancering af energisystemer, gassystemet i fremtiden: grønt, fleksibelt, effektivt Gastekniske Dage 15. Maj 2012 Malene Hein Nybroe Energinet.dk 1 Vores systemer Vi har allerede en del fluktuerende produktion

Læs mere

Fremtidens energi er Smart Energy

Fremtidens energi er Smart Energy Fremtidens energi er Smart Energy Partnerskabet for brint og brændselsceller 3. april 2014 Kim Behnke, Chef for forskning og miljø, Energinet.dk kbe@energinet.dk I januar 2014 dækkede vindkraften 63,3

Læs mere

Optimal udnyttelse af en fluktuerende el-produktion fra vejrafhængig VE

Optimal udnyttelse af en fluktuerende el-produktion fra vejrafhængig VE Optimal udnyttelse af en fluktuerende el-produktion fra vejrafhængig VE Konference om Intelligent Energi VE-Net og DI Energibranchen 5. November 2008 Peter Jørgensen Udviklingsdirektør, Energinet.dk 1

Læs mere

Bedre vindmølleøkonomi gennem lokalt ejerskab, flere landmøller og integration af el og varme.

Bedre vindmølleøkonomi gennem lokalt ejerskab, flere landmøller og integration af el og varme. Bedre vindmølleøkonomi gennem lokalt ejerskab, flere landmøller og integration af el og varme. Nordisk folkecenter 18 April 2013 Frede Hvelplund Aalborg Universitet Department of Development and Planning

Læs mere

Mulighederne ved gas/el-hybridvarmepumper

Mulighederne ved gas/el-hybridvarmepumper Mulighederne ved gas/el-hybridvarmepumper Ved Frank Rosager HMN Naturgas I/S 30. maj 2017 Slide 1 Visionen for 2050 Gas/el-hybridvarmepumper Problemstillinger Gasselskabets indsats Spørgsmål? Energipolitiske

Læs mere

Nationalt: Strategisk energiplanlægning i Danmark

Nationalt: Strategisk energiplanlægning i Danmark Nationalt: Strategisk energiplanlægning i Danmark KICKSTART AF GRØN OMSTILLING I DANSKE KOMMUNER 29-30 oktober 2015 Anders Kofoed-Wiuff Partner, Ea Energianalyse Spørgsmål Hvordan ser Danmarks energisystem

Læs mere

Hvordan passer vandsektoren ind i fremtiden energisystem. Ole Damm SE Big Blue. 4. juli Ole Damm SE Big Blue

Hvordan passer vandsektoren ind i fremtiden energisystem. Ole Damm SE Big Blue. 4. juli Ole Damm SE Big Blue Hvordan passer vandsektoren ind i fremtiden energisystem 1 Centrale målsætninger i Energiaftalen 22-3-2012 2020: 50% vindenergi i elforbruget 2020: 40% reduktion af drivhusgasser set i forhold til 1990

Læs mere

Virkemiddelkataloget beskriver en række tiltag og deres CO2 reduktions effekt.

Virkemiddelkataloget beskriver en række tiltag og deres CO2 reduktions effekt. 1 of 6 Bilag 4: Udvalg af virkemidler til opfyldelse målsætninger i Borgmesteraftalen Borgmesteraftalen omfatter kommunen som geografisk enhed og ved indgåelse af aftalen forpligtede kommunen sig til en

Læs mere

TMS programmet på energi 2008/9

TMS programmet på energi 2008/9 TMS programmet på energi 2008/9 TMS (Teknologi, Menneske, Samfund) forløbet skal give de studerende kundskaber og værktøjer til at vurdere tekniske løsninger i et bredere, samfundsmæssigt perspektiv. Klimakrise

Læs mere

SmartGrids i et internationalt perspektiv

SmartGrids i et internationalt perspektiv SmartGrids i et internationalt perspektiv Centerleder og Professor Jacob Østergaard Center for Elteknologi (CET) Danmarks Tekniske Universitet 10. september 2010 Center for Elteknologi, DTU Etableret i

Læs mere

Status of & Budget Presentation. December 11, 2018

Status of & Budget Presentation. December 11, 2018 Status of 2018-19 & 2019-20 Budget Presentation December 11, 2018 1 Challenges & Causes $5.2M+ Shortfall does not include potential future enrollment decline or K-3 Compliance. Data included in presentation

Læs mere

Muligheder for anvendelse af Compressed Air Energy Storage for ellagring i fremtidens elsystem - procesorienteret projekt

Muligheder for anvendelse af Compressed Air Energy Storage for ellagring i fremtidens elsystem - procesorienteret projekt Muligheder for anvendelse af Compressed Air Energy Storage for ellagring i fremtidens elsystem - procesorienteret projekt ForskEL 6567 Energinet 14. juni 2006 Outline Udførelse Baggrund Elmarkedet og CAES

Læs mere

Lithium Batterier til transport; perspektiver og status

Lithium Batterier til transport; perspektiver og status Lithium Batterier til transport; perspektiver og status Poul Norby Department of Energy Conversion and Storage Technical University of Denmark Norge: Mest solgte bil i: oktober 2013: Nissan Leaf september

Læs mere

Generalized Probit Model in Design of Dose Finding Experiments. Yuehui Wu Valerii V. Fedorov RSU, GlaxoSmithKline, US

Generalized Probit Model in Design of Dose Finding Experiments. Yuehui Wu Valerii V. Fedorov RSU, GlaxoSmithKline, US Generalized Probit Model in Design of Dose Finding Experiments Yuehui Wu Valerii V. Fedorov RSU, GlaxoSmithKline, US Outline Motivation Generalized probit model Utility function Locally optimal designs

Læs mere

Energiscenarier for 2030

Energiscenarier for 2030 Energiscenarier for 2030 Niels Træholt Franck, Forskning og udvikling 30. november 2016. Dok 15/08958-162 1 Agenda Kort introduktion? Hvorfor lave scenarier? Tilblivelse af scenarierne De fire scenarier

Læs mere

Central Statistical Agency.

Central Statistical Agency. Central Statistical Agency www.csa.gov.et 1 Outline Introduction Characteristics of Construction Aim of the Survey Methodology Result Conclusion 2 Introduction Meaning of Construction Construction may

Læs mere

Internationalt uddannelsestilbud

Internationalt uddannelsestilbud t Internationalt uddannelsestilbud Lyngby-Taarbæk Vidensby Forberedende analyse blandt udenlandske ansatte 9. maj 2013 AARHUS COPENHAGEN MALMÖ OSLO SAIGON STAVANGER VIENNA 1 1. BAGGRUND Denne rapportering

Læs mere

FREMTIDEN. Energieffektivitet i industrien. Niels Træholt Franck,

FREMTIDEN. Energieffektivitet i industrien. Niels Træholt Franck, FREMTIDEN Energieffektivitet i industrien Niels Træholt Franck, ntf@energinet.dk Temadag om energieffiktivitet 6-4-217 1 HVORFOR SKAL VI GÆTTE PÅ FREMTIDEN? Energinet har ansvaret for, at der er el i stikkontakten

Læs mere

Sport for the elderly

Sport for the elderly Sport for the elderly - Teenagers of the future Play the Game 2013 Aarhus, 29 October 2013 Ditte Toft Danish Institute for Sports Studies +45 3266 1037 ditte.toft@idan.dk A growing group in the population

Læs mere

Hvorfor er Danmark det perfekte foregangsland med elbiler

Hvorfor er Danmark det perfekte foregangsland med elbiler Hvorfor er Danmark det perfekte foregangsland med elbiler Fremtidens danske elbilmarked hvornår og hvordan Dansk Industri 26.08.2009 Anders Bavnhøj Hansen, Energinet.dk, Strategisk planlægning E-mail:

Læs mere

Supermarkeder og Smart Grid muligheder for fleksibelt elforbrug

Supermarkeder og Smart Grid muligheder for fleksibelt elforbrug Supermarkeder og Smart Grid muligheder for fleksibelt elforbrug Torben Funder-Kristensen Refrigeration and Air Conditioning Controls 1 Department (slide master) www.danfoss.com Agenda Cold Food Chain Trends

Læs mere

Kommune og Amts Revision Danmark Statsautoriseret Revisionsaktieselskab

Kommune og Amts Revision Danmark Statsautoriseret Revisionsaktieselskab Kommune og Amts Revision Danmark Statsautoriseret Revisionsaktieselskab RESULTATOPGØRELSE 1. JANUAR - 31. DECEMBER Note 23 Nettoomsætning Andre eksterne omkostninger Bruttoresultat 1 Afskrivninger Resultat

Læs mere

IT & Intelligent Energi ISSH-Netværket 28. Oktober 2009

IT & Intelligent Energi ISSH-Netværket 28. Oktober 2009 ISSH-Netværket 28. Oktober 2009 Dansk Energi Politisk Afdeling Richard Schalburg IT og energiforbrug IT og energibesparelser IT, energi og systemisk tænkning IT, energi og fremtiden Eksempel Slutbruger

Læs mere

Markedsmodel 2.0. Bjarne Brendstrup Systemanalyse Energinet.dk

Markedsmodel 2.0. Bjarne Brendstrup Systemanalyse Energinet.dk Markedsmodel 2.0 Bjarne Brendstrup Systemanalyse Energinet.dk 19-08-2015 sommer skole 2015 1 Agenda 1 Baggrund for Markedsmodel 2.0 2 Fase 1: Udfordringer og mulige løsninger 3 Den europæiske ramme 4 Fase

Læs mere

Skatteudvalget 2015-16 L 61 Bilag 1 Offentligt

Skatteudvalget 2015-16 L 61 Bilag 1 Offentligt Skatteudvalget 2015-16 L 61 Bilag 1 Offentligt Skatteministeriet Nicolai Eigtveds Gade 28 DK 1402 København K Kerteminde d. 6. november 2015 Sendes på mail til juraogsamfundsoekonomi@skm.dk og nk@skm.dk

Læs mere

Fjerde Generation Fjernvarme

Fjerde Generation Fjernvarme Dansk Fjernvarmes 56. landsmøde Aalborg Kongres & Kultur Center, 30-31. oktober 2014 Fremtidens fjernvarmesystem Fjerde Generation Fjernvarme Professor Henrik Lund, Aalborg Universitet 4DH Forskningscenter

Læs mere

Gaskonference 2014 Brint og brændselsceller. Partnerskabet for brint og brændselsceller 14. november 2014

Gaskonference 2014 Brint og brændselsceller. Partnerskabet for brint og brændselsceller 14. november 2014 Gaskonference 2014 Brint og brændselsceller Partnerskabet for brint og brændselsceller 14. november 2014 Partnerskabet for brint og brændselsceller - indsatsområder Integration af aktiviteter Offentliggørelse

Læs mere

Statistical information form the Danish EPC database - use for the building stock model in Denmark

Statistical information form the Danish EPC database - use for the building stock model in Denmark Statistical information form the Danish EPC database - use for the building stock model in Denmark Kim B. Wittchen Danish Building Research Institute, SBi AALBORG UNIVERSITY Certification of buildings

Læs mere

TMC - Klima

TMC - Klima NOTAT TMC Klima 97218 CO 2regnskab 217 Ifølge HøjeTaastrup Kommunes KlimaKommuneaftale med Danmarks Naturfredningsforening skal der udarbejdes og offentliggøres et årligt regnskab over kommunens CO 2 udledning.

Læs mere

Forskning og udvikling i almindelighed og drivkraften i særdeleshed Bindslev, Henrik

Forskning og udvikling i almindelighed og drivkraften i særdeleshed Bindslev, Henrik Syddansk Universitet Forskning og udvikling i almindelighed og drivkraften i særdeleshed Bindslev, Henrik Publication date: 2009 Document version Final published version Citation for pulished version (APA):

Læs mere

Bilag. Resume. Side 1 af 12

Bilag. Resume. Side 1 af 12 Bilag Resume I denne opgave, lægges der fokus på unge og ensomhed gennem sociale medier. Vi har i denne opgave valgt at benytte Facebook som det sociale medie vi ligger fokus på, da det er det største

Læs mere

Anmeldt solcelleeffekt i alt

Anmeldt solcelleeffekt i alt F AK T AAR K 6. november 2012 J.nr. 3401/1001-4896 Ref. hla Betydeligt prisfald på solceller Prisen på solceller er faldet drastisk de seneste to år. Fra 2000 til medio 2010 lå prisen på solcelleanlæg

Læs mere

MARKEDER OG BEHOV FOR LAGRING

MARKEDER OG BEHOV FOR LAGRING MARKEDER OG BEHOV FOR LAGRING Korttids- og langtidslagring Loui Algren Forretningsstøtte og -udvikling INDHOLD Behov for lagring i dag Behov for lagring i fremtiden DTI - Avanceret Energilagring 30-11-2017

Læs mere

Naturgassens rolle i fremtidens danske energimarked

Naturgassens rolle i fremtidens danske energimarked Årsmøde i Dansk Gas Forening - 2010 Naturgassens rolle i fremtidens danske energimarked Naturgas Fyn A/S - Adm. dir. Bjarke Pålsson - 25. november 2010 1 Naturgas Fyn NGF Gazelle NGF Distribution 1,0 mia.

Læs mere

Energi i fremtiden i et dansk perspektiv

Energi i fremtiden i et dansk perspektiv Energi i fremtiden i et dansk perspektiv AKADEMIERNAS ENERGIDAG 27 august 2010 Mariehamn, Åland Afdelingschef Systemanalyse Risø DTU Danmark Verden står overfor store udfordringer Danmark står overfor

Læs mere

Engelsk. Niveau C. De Merkantile Erhvervsuddannelser September 2005. Casebaseret eksamen. www.jysk.dk og www.jysk.com.

Engelsk. Niveau C. De Merkantile Erhvervsuddannelser September 2005. Casebaseret eksamen. www.jysk.dk og www.jysk.com. 052430_EngelskC 08/09/05 13:29 Side 1 De Merkantile Erhvervsuddannelser September 2005 Side 1 af 4 sider Casebaseret eksamen Engelsk Niveau C www.jysk.dk og www.jysk.com Indhold: Opgave 1 Presentation

Læs mere

DANSKE ERFARINGER MED INTEGRATION AF VINDKRAFT

DANSKE ERFARINGER MED INTEGRATION AF VINDKRAFT DANSKE ERFARINGER MED INTEGRATION AF VINDKRAFT Energikonference, Torshavn, 7. April 2017 Peter Jørgensen, Vice President, Associated Activities Danske erfaringer med integration af vindkraft April 2017

Læs mere

Vindkraft I Danmark. Erfaringer, økonomi, marked og visioner. Energiforum EF Bergen 21. november 2007

Vindkraft I Danmark. Erfaringer, økonomi, marked og visioner. Energiforum EF Bergen 21. november 2007 Vindkraft I Danmark Erfaringer, økonomi, marked og visioner Energiforum EF Bergen 21. november 2007 Hans Henrik Lindboe Ea Energianalyse a/s www.eaea.dk Danmarks energiforbrug i 25 år PJ 900 600 300 0

Læs mere

Electricity Market Fundamental Information Platform (EMFIP)

Electricity Market Fundamental Information Platform (EMFIP) Electricity Market Fundamental Information Platform (EMFIP) Implementering af EMFIP i Danmark Dato - Dok.nr. 1 Hvad er EMFIP? Transparens har været et centralt element siden liberalisering af elmarkedet.

Læs mere