Projekt 3.1 Pyramidestub og cirkelareal

Størrelse: px
Starte visningen fra side:

Download "Projekt 3.1 Pyramidestub og cirkelareal"

Transkript

1 Projekt. Pyramidestub og cirkelareal - i tilknytning til afsnit., især for A Indhold Rumfanget af en pyramidestub... Moderne metode... Ægyptisk metode... Kommentarer til den ægyptiske beregning... Arealet af en cirkel... 4 Moderne metode... 4 Ægyptisk metode... 4 Kommentarer til den ægyptiske beregning L&R Uddannelse A/S Vognmagergade DK-48 København K Tlf:

2 Rumfanget af en pyramidestub Problem nr.4 i Moskvapapyrus handler som nævnt om beregning af rumfanget af en pyramidestub. Vi vil i dette projekt sammenligne deres opskrift med den moderne formel og diskutere, hvordan de kan være nået frem til deres viden. Moderne metode Skitser en pyramide med kvadratisk grundflade som vist nedenfor, hvor sidelængden kaldes a, og højden kaldes h. Det følgende bygger på, at vi ved, at rumfanget af en pyramide er: V h a pyramid e En pyramidestub er en pyramide, hvor vi i stykket h har skåret den øverste del af med et vandret snit, således at der her er en mindre, ny kvadratisk grundflade. Højden af pyramidestubben er altså h. Hvis vi kalder sidelængden i det lille øverste kvadrat for b, så gælder der, at rumfanget af en pyramidestub er: Vstub h ( a ab b ) 0 L&R Uddannelse A/S Vognmagergade DK-48 København K Tlf:

3 Denne formel kan vi få af pyramideformlen på følgende måde (tegn med):. Træk linjer lodret ned fra hjørnerne i b-kvadratet. Herved får vi en kasse inde i pyramidestubben med grundflade b og højde h. Rumfanget er: V h b. Tegn en skitse af pyramidens bund, hvor b-kvadratet er tegnet op inden i a-kvadratet. Forlæng alle siderne i b-kvadratet ud til pyramidens sider. Dette giver i hvert hjørne af pyramidens bund et lille kvadrat. Argumenter for, at disse har sidelængden: s. Trækkes linjer fra hjørnet i dette lille kvadrat op til det hjørnet på pyramidestubbens øverste flade får vi en (skæv) pyramide. Rumfanget af denne udregnes efter formel med sidelængden s. Argumenter for, at det samlede rumfang af de fire små pyramider bliver: a b 4skæve V 4 h 4 h h ( a b ) 4. Den resterende del af rumfanget af pyramidestubbe er de fire halve kasser ved hver af pyramidens fire sideflader, med grundflade bestemt af henholdsvis b og ( a b ) og højde h. Argumenter for, at det samlede rumfang af disse fire halve kasser kan beregnes ved: V 4 h b h b ( a b ) 4halv ekass er 5. Rumfanget af pyramidestubben kan nu bestemmes ved: Vstub Vkass e V4 skæv e V 4halv ekass er Vis, at denne sum netop kan reduceres til den søgte formel. kasse Ægyptisk metode Problem nr. 4 i Moskvapapyrus indeholder følgende: 6 høj og grundfladen har siden 4, mens topstykket har siden, så skal du kvadrere de 4, det bliver 6; du skal gange de med de 4, det er 8; du skal kvadrere de, det er 4. Nu skal du lægge 6, 8 og 4 sammen, det er 8. Nu skal du tage en tredjedel af de 6, det er. Du skal gange de 8 med de, resultatet er 56. Det er sandelig rumfanget af pyramidestubben! Kontroller, at denne opskrift giver formlen for en pyramidestub. Selv om vi kun har en beregning, hvor der udnyttes et taleksempel, så er der generel enighed om, at det er et udtryk for, at de har kendt metoden til at beregne rumfanget af en pyramidestub. Kommentarer til den ægyptiske beregning Skitser en overskåret pyramide med målene fra den ægyptiske tekst, hvor bredden af toppen er netop halvt så stor som bredden af grundfladen. Hvad må højden have været for den oprindelige pyramide? En pyramides rumfang er givet ved formlen: V Gh hvor G er grundfladens areal, og h er højden af pyramiden. Hvad bliver så rumfanget af den oprindelige pyramide, toppen af pyramiden og pyramidestubben? Hvordan passer det med den ægyptiske formel for pyramidestubbens rumfang? 0 L&R Uddannelse A/S Vognmagergade DK-48 København K Tlf:

4 Hvorfor er formlen for pyramidestubbens rumfang (den ægyptiske formel) smartere end fremgangsmåden beskrevet ovenfor, når man vil finde rumfanget af en pyramidestub? Arealet af en cirkel Moderne metode Omkreds O af en cirkel med radius r beregnes ud fra formlen: O π r Arealet A af en cirkel med radius r beregnes ud fra formlen: A π r π er et såkaldt irrationalt tal, hvor vi skulle have uendeligt mange decimaler med, før det er helt præcis. Det kan vi naturligvis ikke, og derfor er alle beregninger, hvor π indgår, tilnærmede beregninger. Et eksempel på en sådan tilnærmet beregning af π er tallet 7, der er, Et sted i Bibelen foretages en udregning af, hvor stort et bestemt kar er, hvoraf man kan slutte, at de, der skrev teksten, troede, at π er. Det har fået bestemte kristne fundamentalister til at foreslå, at det bliver vedtaget ved lov, at π er. Lommeregneren og forskellige programmer giver normalt π med op til -4 decimaler. Undersøg dit eget værktøj. I dag kender man π med flere milliarder decimaler, men det er stadig ikke præcis π. De første 0 er:, Ifølge Guiness Rekordbog kan den kinesiske student Lu Chao recitere cifre af π! Ægyptisk metode Problem nr. 50 i Rhind papyrus lyder: En rund mark har diameteren 9 khet. Hvor stort er arealet? Fjern /9 af diameteren, nemlig stykket. Resten er 8. Gange 8 med 8, det giver 64. Derfor rummer marken et areal på 64 setat. Dette er en sproglig beskrivelse som vi kan prøve at udtrykke som formel. Lad d betegne diameteren af en cirkel. Når vi fjerner /9, så får vi resten: d ( d ) 9 Den ægyptiske formel for arealet af en cirkel med diameter d er så: d 8d A ( d ) ( ) 9 9 Sammenlign med den moderne formel, og angiv den ægyptiske værdi af π. 0 L&R Uddannelse A/S Vognmagergade DK-48 København K Tlf:

5 Kommentarer til den ægyptiske beregning Vi ved ikke, hvordan de kan være nået frem til denne formel, men måske er der en anvisning i et foregående problem, nemlig nr. 48, hvor der er tegnet et kvadrat med de fire hjørner skåret af, så der fremkommer en 8-kant. Inde i denne figur er skrevet tallet 9, som, vi antager, er sidelængden. Konstruer en figur svarende til den nedenfor, hvor siderne deles i tre, og de hjørner, vi skærer af, er små retvinklede trekanter med sidelængder. Vis, at arealet af denne figur er 6. Det er således en teori, at 8-kanten med areal 6 er opfattet som en første tilnærmelse til cirklen, der er blevet vurderet som en smule større, altså 64. Bestem cirklens areal ved moderne metoder, og sammenlign med grækernes anslåede værdi. 0 L&R Uddannelse A/S Vognmagergade DK-48 København K Tlf:

Du skal lave en tegning af bordet set lige på fra alle sider (fra langsiden, den korte side, fra oven og fra neden - 4 tegninger i alt).

Du skal lave en tegning af bordet set lige på fra alle sider (fra langsiden, den korte side, fra oven og fra neden - 4 tegninger i alt). Mit bord. Tegn det bord, du sidder ved. Du skal lave en tegning af bordet set lige på fra alle sider (fra langsiden, den korte side, fra oven og fra neden - 4 tegninger i alt). Tegningerne skal laves på

Læs mere

MATEMATIK, MUNDTLIG PRØVE TEMA: PYRAMIDER

MATEMATIK, MUNDTLIG PRØVE TEMA: PYRAMIDER MATEMATIK, MUNDTLIG PRØVE TEMA: PYRAMIDER I oldtiden regnede man med 7 underværker, hvilket var seværdigheder, som man fremhævede på grund af deres størrelse, skønhed og udseende. Kun et enkelt af disse

Læs mere

Det er en af de hyppigst forekommende udregninger i den elementære talbehandling at beregne gennemsnit eller middeltal af en række tal.

Det er en af de hyppigst forekommende udregninger i den elementære talbehandling at beregne gennemsnit eller middeltal af en række tal. Tre slags gennemsnit Allan C. Malmberg Det er en af de hyppigst forekommende udregninger i den elementære talbehandling at beregne gennemsnit eller middeltal af en række tal. For mange skoleelever indgår

Læs mere

Kapitel 2 Tal og variable

Kapitel 2 Tal og variable Tal og variable Uden tal ingen matematik - matematik handler om tal og anvendelse af tal. Matematik beskæftiger sig ikke udelukkende med konkrete problemer fra andre fag, og de konkrete tal fra andre fagområder

Læs mere

brikkerne til regning & matematik areal og rumfang F+E+D preben bernitt

brikkerne til regning & matematik areal og rumfang F+E+D preben bernitt brikkerne til regning & matematik areal og rumfang F+E+D preben bernitt brikkerne til regning & matematik areal og rumfang,f ISBN: 978-87-92488-18-3 1. Udgave som E-bog 2010 by bernitt-matematik.dk Kopiering

Læs mere

ØVEHÆFTE FOR MATEMATIK C GEOMETRI

ØVEHÆFTE FOR MATEMATIK C GEOMETRI ØVEHÆFTE FOR MATEMATIK C GEOMETRI Indhold Begreber i klassisk geometri + formelsamling... 2 Pythagoras Sætning... 8 Retvinklede trekanter. Beregn den ukendte side markeret med et bogstav.... 9 Øve vinkler

Læs mere

Korncirkler og matematik

Korncirkler og matematik Korncirkler og matematik I den følgende opgave vil jeg undersøge om korncirkler indeholder matematiske figurer nærmere bestemt det gyldne snit, det gyldne rektangel og den gyldne spiral. Før jeg starter

Læs mere

Projekt 1.4 Tagrendeproblemet en instruktiv øvelse i modellering med IT.

Projekt 1.4 Tagrendeproblemet en instruktiv øvelse i modellering med IT. Projekt 1.4 Tagrendeproblemet en instruktiv øvelse i modellering med IT. Projektet kan bl.a. anvendes til et forløb, hvor en af målsætningerne er at lære om samspillet mellem værktøjsprogrammernes geometriske

Læs mere

Tip til 1. runde af Georg Mohr-Konkurrencen Geometri

Tip til 1. runde af Georg Mohr-Konkurrencen Geometri Tip til. runde af - Geometri, Kirsten Rosenkilde. Tip til. runde af Geometri Her er nogle centrale principper om og strategier for hvordan man løser geometriopgaver. et er ikke en særlig teoretisk indføring,

Læs mere

I denne opgave arbejder vi med følgende matematiske begreber:

I denne opgave arbejder vi med følgende matematiske begreber: I denne opgave arbejder vi med følgende matematiske begreber: En meter: 1 m. En kvadratmeter: 1 m. 1 m 2 1 m. En kubikmeter: 1 m 3 Radius-beregning af træet Find omkredsen af træet, mål i brysthøjde. Ca.

Læs mere

Analytisk geometri. Et simpelt eksempel på dette er en ret linje. Som bekendt kan en ret linje skrives på formen

Analytisk geometri. Et simpelt eksempel på dette er en ret linje. Som bekendt kan en ret linje skrives på formen Analtisk geometri Mike Auerbach Odense 2015 Den klassiske geometri beskæftiger sig med alle mulige former for figurer: Linjer, trekanter, cirkler, parabler, ellipser osv. I den analtiske geometri lægger

Læs mere

Konstruktion. d: En cirkel med diameter 7,4 cm. e: En trekant med grundlinie på 9,6 cm og højde på 5,2 cm. (Der er mange muligheder)

Konstruktion. d: En cirkel med diameter 7,4 cm. e: En trekant med grundlinie på 9,6 cm og højde på 5,2 cm. (Der er mange muligheder) 1: Tegn disse figurer: a: Et kvadrat med sidelængden 3,5 cm. b: En cirkel med radius 4,. c: Et rektangel med sidelængderne 3,6 cm og 9,. d: En cirkel med diameter 7,. e: En trekant med grundlinie på 9,6

Læs mere

Blandede opgaver (2) Maler-Biksen. Matematik på VUC Modul 3c Opgaver

Blandede opgaver (2) Maler-Biksen. Matematik på VUC Modul 3c Opgaver Blandede opgaver (2) 1: Tegningen viser et værelse med skråvæg. To af væggene kaldes A og B. a: Find arealet af væg A. b: Find arealet af væg B. A B 1 m 465 cm 4 m c: Tegn væggene i målestoksforhold 1:50.

Læs mere

areal og rumfang trin 2 brikkerne til regning & matematik preben bernitt

areal og rumfang trin 2 brikkerne til regning & matematik preben bernitt brikkerne til regning & matematik areal og rumfang trin 2 preben bernitt brikkerne til regning & matematik areal og rumfang, trin 2 ISBN: 978-87-92488-18-3 1. Udgave som E-bog 2003 by bernitt-matematik.dk

Læs mere

Beregninger Microsoft Excel 2010 Grundforløb Indhold

Beregninger Microsoft Excel 2010 Grundforløb Indhold Indhold Arealberegning... 2 Kvadrat/rektangulær... 2 Rektangel... 2 Kvadrat... 2 Cirkel... 2 Omkredsberegning... 3 Kvadrat/rektangulær... 3 Rektangel... 3 Kvadrat... 3 Cirkel... 3 Rumfangsberegning...

Læs mere

VEUD ekstraopgave Opgave nr. 62-11

VEUD ekstraopgave Opgave nr. 62-11 Opgavens art: Opgaveformulering: Fagområde: Opgavens varighed: Teoretisk Gennemgang af lommeregner Sprøjtestøbning 4 lektioner Niveau, sammenlignet med uddannelsen: Henvisning til hjælpemidler: Grunduddannelse

Læs mere

Projekt 7.4 Kvadratisk programmering anvendt til optimering af elektriske kredsløb

Projekt 7.4 Kvadratisk programmering anvendt til optimering af elektriske kredsløb Projekt 7.4 Kvadratisk programmering anvendt til optimering af elektriske kredsløb Indledning: I B-bogen har vi i studieretningskapitlet i B-bogen om matematik-fsik set på parallelkoblinger af resistanser

Læs mere

areal og rumfang trin 1 brikkerne til regning & matematik preben bernitt

areal og rumfang trin 1 brikkerne til regning & matematik preben bernitt brikkerne til regning & matematik areal og rumfang trin 1 preben bernitt brikkerne til regning & matematik areal og rumfang, trin 1 ISBN: 978-87-92488-17-6 1. Udgave som E-bog 2003 by bernitt-matematik.dk

Læs mere

Matematik for malere. praktikopgaver. Geometri Regneregler Areal Procent. Tilhører:

Matematik for malere. praktikopgaver. Geometri Regneregler Areal Procent. Tilhører: Matematik for malere praktikopgaver 2 Geometri Regneregler Areal Procent Tilhører: 2 Indhold: Geometri... side 4 Regneregler... side 10 Areal... side 12 Procent... side 16 Beregninger til praktikopgave

Læs mere

Undervisningen skal lede frem mod, at eleverne har tilegnet sig kundskaber og færdigheder, der sætter dem i stand til i arbejdet med geometri at:

Undervisningen skal lede frem mod, at eleverne har tilegnet sig kundskaber og færdigheder, der sætter dem i stand til i arbejdet med geometri at: Noter til læreren side 1 I Trinmål for faget matematik står der bl.a. Undervisningen skal lede frem mod, at eleverne har tilegnet sig kundskaber og færdigheder, der sætter dem i stand til i arbejdet med

Læs mere

Noter til læreren side 1 I Trinmål for faget matematik står der bl.a.

Noter til læreren side 1 I Trinmål for faget matematik står der bl.a. Noter til læreren side 1 I Trinmål for faget matematik står der bl.a. Undervisningen skal lede frem mod, at eleverne har tilegnet sig kundskaber og færdigheder, der sætter dem i stand til i arbejdet med

Læs mere

Lille Georgs julekalender 07. 1. december. Hvor mange løbere kan der opstilles på et skakbræt uden at de truer hinanden?

Lille Georgs julekalender 07. 1. december. Hvor mange løbere kan der opstilles på et skakbræt uden at de truer hinanden? 1. december Hvor mange løbere kan der opstilles på et skakbræt uden at de truer hinanden? Svar: 14 Forklaring: Der kan godt stå 14, f.eks. sådan: Men kunne der stå flere hvis man stillede dem endnu snedigere

Læs mere

Hunden kan sige et nyt tal (legen kan selvfølgelig udvides til former) hver dag, men kun det tal.

Hunden kan sige et nyt tal (legen kan selvfølgelig udvides til former) hver dag, men kun det tal. 4. oktober 9.00-15.00 Tårnby Faglig læsning Program Præsentation Hunden - en aktivitet til at vågne op på Oplæg om begrebsdannelse Aktiviteter hvor kroppen er medspiller Matematikkens særlige sprog Aktiviteter

Læs mere

Tal. Vi mener, vi kender og kan bruge følgende talmængder: N : de positive hele tal, Z : de hele tal, Q: de rationale tal.

Tal. Vi mener, vi kender og kan bruge følgende talmængder: N : de positive hele tal, Z : de hele tal, Q: de rationale tal. 1 Tal Tal kan forekomme os nærmest at være selvfølgelige, umiddelbare og naturgivne. Men det er kun, fordi vi har vænnet os til dem. Som det vil fremgå af vores timer, har de mange overraskende egenskaber

Læs mere

Kapitel 3 Lineære sammenhænge

Kapitel 3 Lineære sammenhænge Matematik C (må anvendes på Ørestad Gymnasium) Lineære sammenhænge Det sker tit, at man har flere variable, der beskriver en situation, og at der en sammenhæng mellem de variable. Enhver formel er faktisk

Læs mere

Introduktion til cosinus, sinus og tangens

Introduktion til cosinus, sinus og tangens Introduktion til cosinus, sinus og tangens Jes Toft Kristensen 24. maj 2010 1 Forord Her er en lille introduktion til cosinus, sinus og tangens. Det var et af de emner jeg selv havde svært ved at forstå,

Læs mere

Geometriske konstruktioner: Ovaler og det gyldne snit

Geometriske konstruktioner: Ovaler og det gyldne snit Matematik Geometriske konstruktioner: Ovaler og det gyldne snit Ole Witt-Hansen, Køge Gymnasium Ovaler og det gyldne snit har fundet anvendelse i arkitektur og udsmykning siden oldtiden. Men hvordan konstruerer

Læs mere

MATEMATIK A-NIVEAU 2g

MATEMATIK A-NIVEAU 2g NETADGANGSFORSØGET I MATEMATIK APRIL 2009 MATEMATIK A-NIVEAU 2g Prøve April 2009 1. delprøve: 2 timer med formelsamling samt 2. delprøve: 3 timer med alle hjælpemidler Hver delprøve består af 14 spørgsmål,

Læs mere

Mødet. 6 Geometri. Begreb Eksempel Navn. Parallel. Vinkelret. Linjestykke. Polygon. Cirkelperiferi. Midtpunkt. Linje. Diagonal. Radius.

Mødet. 6 Geometri. Begreb Eksempel Navn. Parallel. Vinkelret. Linjestykke. Polygon. Cirkelperiferi. Midtpunkt. Linje. Diagonal. Radius. 6.01 Mødet Begreb Eksempel Navn Parallel Vinkelret Linjestykke Polygon Cirkelperiferi Midtpunkt Linje Diagonal Radius Ret vinkel 6.02 Fire på stribe Regler Hver spiller får en spilleplade (6.03). Alle

Læs mere

Elevbog s. 14-25 Vi opsummerer hvad vi ved i. kendskab til geometriske begreber og figurer.

Elevbog s. 14-25 Vi opsummerer hvad vi ved i. kendskab til geometriske begreber og figurer. Årsplan 5. LH. Matematik Lærer Pernille Holst Overgaard (PHO) Lærebogsmateriale. Format 5 Tid og fagligt Aktivitet område Uge 33-37 Tal Uge 38-41 (efterårsferie uge 42) Figurer Elevbog s. 1-13 Vi opsummerer

Læs mere

Giza-pyramiderne. Oplæg til matematik. www.galapagos.dk. foto: Otto Nielsen & Søren Sørensen grafik: Brian Ravnborg udgave 1.

Giza-pyramiderne. Oplæg til matematik. www.galapagos.dk. foto: Otto Nielsen & Søren Sørensen grafik: Brian Ravnborg udgave 1. Giza-pyramiderne Oplæg til matematik Navn: Klasse: www.galapagos.dk af Brian Ravnborg foto: Otto Nielsen & Søren Sørensen grafik: Brian Ravnborg udgave 1.01 2007 Find mere om pyramiderne på www.galapagos.dk

Læs mere

Retningslinjer for bedømmelsen. Georg Mohr-Konkurrencen 2010 2. runde

Retningslinjer for bedømmelsen. Georg Mohr-Konkurrencen 2010 2. runde Retningslinjer for bedømmelsen. Georg Mohr-Konkurrencen 2010 2. runde Det som skal vurderes i bedømmelsen af en besvarelse, er om deltageren har formået at analysere problemstillingen, kombinere de givne

Læs mere

Projekt 2.4 Euklids konstruktion af femkanten

Projekt 2.4 Euklids konstruktion af femkanten Projekter: Kapitel Projekt.4 Euklids konstruktion af femkanten Et uddrag af sætninger fra Euklids Elementer, der fører frem til konstruktionen af den regulære femkant. 0. Forudsætninger, definitioner og

Læs mere

Eksperimenter med areal og rumfang. Aktivitet Emne Klassetrin Side

Eksperimenter med areal og rumfang. Aktivitet Emne Klassetrin Side VisiRegn ideer 5 Eksperimenter med areal og rumfang Inge B. Larsen ibl@dpu.dk INFA juli 2001 Indhold: Aktivitet Emne Klassetrin Side Vejledning til Areal og Rumfang 2 Red burhønsene. Vejledn. 3-7 Største

Læs mere

Emnehæfte. Beregning af koter, fald, anlæg og rumfang. Kloakrørlæggeruddannelsen

Emnehæfte. Beregning af koter, fald, anlæg og rumfang. Kloakrørlæggeruddannelsen Efteruddannelsesudvalget for bygge/anlæg og industri (BAI) Emnehæfte Beregning af koter, fald, anlæg og rumfang Kloakrørlæggeruddannelsen Undervisningsministeriet. 12. september 2006. Materialet er udviklet

Læs mere

Kapitel 4. Trigonometri. Matematik C (må anvendes på Ørestad Gymnasium) Kapitel 4

Kapitel 4. Trigonometri. Matematik C (må anvendes på Ørestad Gymnasium) Kapitel 4 Matematik C (må anvendes på Ørestad Gymnasium) Trigonometri Den del af matematik, der beskæftiger sig med figurer og deres egenskaber, kaldes for geometri. Selve ordet geometri er græsk og betyder jord(=geo)måling(=metri).

Læs mere

F I N N H. K R I S T I A N S E N DET GYLDNE SNIT TES REGNING MED REGNEARK KUGLE SIMULATIONER G Y L D E N D A L LANDMÅLING

F I N N H. K R I S T I A N S E N DET GYLDNE SNIT TES REGNING MED REGNEARK KUGLE SIMULATIONER G Y L D E N D A L LANDMÅLING F I N N H. K R I S T I A N S E N 6 DET GYLDNE SNIT 4 TES REGNING MED REGNEARK KUGLE G Y L D E N D A L SIMULATIONER 5 LANDMÅLING Faglige mål: Demonstrere viden om matematikanvendelse samt eksempler på matematikkens

Læs mere

Matematik A. 5 timers skriftlig prøve. Højere Teknisk Eksamen i Grønland maj 2009 GLT091-MAA. Undervisningsministeriet

Matematik A. 5 timers skriftlig prøve. Højere Teknisk Eksamen i Grønland maj 2009 GLT091-MAA. Undervisningsministeriet Højere Teknisk Eksamen i Grønland maj 2009 GLT091-MAA Matematik A 5 timers skriftlig prøve Undervisningsministeriet Fredag den 29. maj 2009 kl. 9.00-14.00 Matematik A 2009 Prøvens varighed er 5 timer.

Læs mere

INERTIMOMENT for stive legemer

INERTIMOMENT for stive legemer Projekt: INERTIMOMENT for stive legemer Formålet med projektet er at træne integralregning og samtidig se en ikke-triviel anvendelse i fysik. 0. Definition af inertimoment Inertimomentet angives med bogstavet

Læs mere

Geometri, (E-opgaver 9d)

Geometri, (E-opgaver 9d) Geometri, (E-opgaver 9d) GEOMETRI, (E-OPGAVER 9D)... 1 Vinkler... 1 Trekanter... 2 Ensvinklede trekanter... 2 Retvinklede trekanter... 3 Pythagoras sætning... 3 Sinus, Cosinus og Tangens... 4 Vilkårlige

Læs mere

Uge Emne Formål Faglige mål Evaluering

Uge Emne Formål Faglige mål Evaluering Uge Emne Formål Faglige mål Evaluering (Der evalueres løbende på følgende hovedpunkter) 33-36 Regneregler Vedligeholde og udbygge forståelse og færdigheder inden for de fire regningsarter Blive fortrolig

Læs mere

Hvad er matematik? C, i-bog ISBN 978 87 7066 499 8

Hvad er matematik? C, i-bog ISBN 978 87 7066 499 8 Et af de helt store videnskabelige projekter i 1700-tallets Danmark var kortlægningen af Danmark. Projektet blev varetaget af Det Kongelige Danske Videnskabernes Selskab og løb over en periode på et halvt

Læs mere

6 Geometri. Faglige mål. Areal og overflade. Cirkler og ellipser. Konstruktion

6 Geometri. Faglige mål. Areal og overflade. Cirkler og ellipser. Konstruktion 6 Geometri Faglige mål Kapitlet Geometri tager udgangspunkt i følgende faglige mål: Areal og overflade: kunne foretage beregninger af sammensatte arealer og sammensætte formler til beregning af disse.

Læs mere

Euklids algoritme og kædebrøker

Euklids algoritme og kædebrøker Euklids algoritme og kædebrøker Michael Knudsen I denne note vil vi med Z, Q og R betegne mængden af henholdsvis de hele, de rationale og de reelle tal. Altså er { m } Z = {..., 2,, 0,, 2,...} og Q = n

Læs mere

Trigonometri. for 9. klasse. Geert Cederkvist

Trigonometri. for 9. klasse. Geert Cederkvist Trigonometri Ved konstruktion af bygningsværker, hvor der kræves stor nøjagtighed, er der ofte brug for, at man kan beregne sider og vinkler i geometriske figurer. Alle polygoner kan deles op i trekanter,

Læs mere

Invarianter. 1 Paritet. Indhold

Invarianter. 1 Paritet. Indhold Invarianter En invariant er en størrelse der ikke ændrer sig, selv om situationen ændrer sig. I nogle kombinatorikopgaver hvor man skal undersøge hvilke situationer der er mulige, er det ofte en god idé

Læs mere

Excel - begynderkursus

Excel - begynderkursus Excel - begynderkursus 1. Skriv dit navn som undertekst på et Excel-ark Det er vigtigt når man arbejder med PC er på skolen at man kan få skrevet sit navn på hver eneste side som undertekst.gå ind under

Læs mere

Komplekse tal. Mikkel Stouby Petersen 27. februar 2013

Komplekse tal. Mikkel Stouby Petersen 27. februar 2013 Komplekse tal Mikkel Stouby Petersen 27. februar 2013 1 Motivationen Historien om de komplekse tal er i virkeligheden historien om at fjerne forhindringerne og gøre det umulige muligt. For at se det, vil

Læs mere

Interaktiv Whiteboard og geometri

Interaktiv Whiteboard og geometri Interaktiv Whiteboard og geometri Nærværende dokumentation af et undervisningsforløb til undervisning i geometri er blevet til som et resultat af initiativet Spredningsprojektet. Spredningsprojektet er

Læs mere

Kvadratrodsberegning ved hjælp af de fire regningsarter

Kvadratrodsberegning ved hjælp af de fire regningsarter Kvadratrodsberegning ved hjælp af de fire regningsarter Tidligt i historien opstod et behov for at beregne kvadratrødder med stor nøjagtighed. Kvadratrødder optræder i forbindelse med retvinklede trekanter,

Læs mere

Berlin eksempel på opgavebesvarelse i Word m/mathematics

Berlin eksempel på opgavebesvarelse i Word m/mathematics Berlin eksempel på opgavebesvarelse i Word m/mathematics 1.1 Gennemsnitsfarten findes ved at dividere den kørte strækning med den forbrugte tid i decimaltal. I regnearket bliver formlen =A24/D24. Resultatet

Læs mere

Tal og algebra. I hvilke situationer kan det være motiverende at gengive et talmønster som et geometrisk mønster?

Tal og algebra. I hvilke situationer kan det være motiverende at gengive et talmønster som et geometrisk mønster? Oplæg I hvilke situationer kan det være motiverende at gengive et talmønster som et geometrisk mønster? Hvordan ser I mulighederne i at stimulere elevernes tænkning og udvikle deres arbejdsmåde, når de

Læs mere

Lærervejledning. - til computerprogrammet Google Sketchup og Mathcad

Lærervejledning. - til computerprogrammet Google Sketchup og Mathcad Lærervejledning - til computerprogrammet Google Sketchup og Mathcad Klassetrin/niveau: 4.-6. klasse/ mellemtrinet. Opgaverne kan dog med fordel anvendes i indskolingen og udskolingen. Introduktion: Google

Læs mere

og til summer af stambrøker. Bemærk: De enkelte brøker kan opskrives på flere måder som summer af stambrøker.

og til summer af stambrøker. Bemærk: De enkelte brøker kan opskrives på flere måder som summer af stambrøker. Hvad er en brøk? Når vi taler om brøker i dette projekt, mener vi tal på formen a, hvor a og b er hele tal (og b b 0 ), fx 2,, 3 og 3 7 13 1. Øvelse 1 Hvordan vil du forklare, hvad 7 er? Brøker har været

Læs mere

Kalkulus 1 - Opgaver. Anne Ryelund, Anders Friis og Mads Friis. 20. januar 2015

Kalkulus 1 - Opgaver. Anne Ryelund, Anders Friis og Mads Friis. 20. januar 2015 Kalkulus 1 - Opgaver Anne Ryelund, Anders Friis og Mads Friis 20. januar 2015 Mængder Opgave 1 Opskriv følgende mængder med korrekt mængdenotation. a) En mængde A indeholder alle hele tal fra og med 1

Læs mere

T ALKUNNEN. Tilnærmede tal og computertal

T ALKUNNEN. Tilnærmede tal og computertal T ALKUNNEN 6 Allan C Allan C.. Malmberg Tilnærmede tal og computertal INFA Matematik - 2000 1 INFA - IT i skolens matematik Projektledelse: Allan C. Malmberg Inge B. Larsen INFA-Klubben: Leif Glud Holm

Læs mere

Projekt 2.1: Parabolantenner og parabelsyning

Projekt 2.1: Parabolantenner og parabelsyning Projekter: Kapitel Projekt.1: Parabolantenner og parabelsyning En af de vigtigste egenskaber ved en parabel er dens brændpunkt og en af parablens vigtigste anvendelser er som profilen for en parabolantenne,

Læs mere

Projekt 2.3 Euklids konstruktion af femkanten

Projekt 2.3 Euklids konstruktion af femkanten Projekter: Kapitel. Projekt.3 Euklids konstruktion af femkanten Projekt.3 Euklids konstruktion af femkanten Et uddrag af sætninger fra Euklids Elementer, der fører frem til konstruktionen af den regulære

Læs mere

Matematik D. Almen forberedelseseksamen. Skriftlig prøve. (4 timer)

Matematik D. Almen forberedelseseksamen. Skriftlig prøve. (4 timer) Matematik D Almen forberedelseseksamen Skriftlig prøve (4 timer) AVU101-MAD Torsdag den 27. maj 2010 kl. 9.00-13.00 Post Danmark Matematik niveau D Skriftlig matematik Opgavesættet består af: Opgavehæfte

Læs mere

Projekt 2.5 Brændpunkt og ledelinje

Projekt 2.5 Brændpunkt og ledelinje Projekter. Kapitel. Projekt.5 Brændpunkt og ledelinje Projekt.5 Brændpunkt og ledelinje En af de vigtigste egenskaber ved en parabel er dens brændpunkt og en af parablens vigtigste anvendelser er som profilen

Læs mere

Vejr. Matematik trin 2. avu

Vejr. Matematik trin 2. avu Vejr Matematik trin 2 avu Almen voksenuddannelse 10. december 2008 Vejr Matematik trin 2 Skriftlig matematik Opgavesættet består af: Opgavehæfte Svarark Hæftet indeholder følgende opgaver: 1 Klimarekorder

Læs mere

TREKANTER. Indledning. Typer af trekanter. Side 1 af 7. (Der har været tre kursister om at skrive denne projektrapport)

TREKANTER. Indledning. Typer af trekanter. Side 1 af 7. (Der har været tre kursister om at skrive denne projektrapport) Side 1 af 7 (Der har været tre kursister om at skrive denne projektrapport) TREKANTER Indledning Vi har valgt at bruge denne projektrapport til at udarbejde en oversigt over det mest grundlæggende materiale

Læs mere

geometri trin 1 brikkerne til regning & matematik preben bernitt

geometri trin 1 brikkerne til regning & matematik preben bernitt brikkerne til regning & matematik geometri trin 1 preben bernitt brikkerne til regning & matematik geometri, trin 1 ISBN: 978-87-92488-15-2 1. Udgave som E-bog 2003 by bernitt-matematik.dk Kopiering er

Læs mere

Rumfang af væske i beholder

Rumfang af væske i beholder Matematikprojekt Rumfang af væske i beholder Maila Walmod, 1.3 HTX Roskilde Afleveringsdato: Fredag d. 7. december 2007 1 Fru Hansen skal have en væskebeholder, hvor rumfanget af væsken skal kunne aflæses

Læs mere

ØVEHÆFTE FOR MATEMATIK C FORMLER OG LIGNINGER

ØVEHÆFTE FOR MATEMATIK C FORMLER OG LIGNINGER ØVEHÆFTE FOR MATEMATIK C FORMLER OG LIGNINGER INDHOLDSFORTEGNELSE 0. FORMELSAMLING TIL FORMLER OG LIGNINGER... 2 Tal, regneoperationer og ligninger... 2 Isolere en ubekendt... 3 Hvis x står i første brilleglas...

Læs mere

Lektion 7 Funktioner og koordinatsystemer

Lektion 7 Funktioner og koordinatsystemer Lektion 7 Funktioner og koordinatsystemer Brug af grafer og koordinatsystemer Lineære funktioner Andre funktioner lignnger med ubekendte Lektion 7 Side 1 Pris i kr Matematik på Åbent VUC Brug af grafer

Læs mere

Matematik A. Studentereksamen

Matematik A. Studentereksamen Matematik A Studentereksamen 2st111-MAT/A-24052011 Tirsdag den 24. maj 2011 kl. 9.00-14.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål. Delprøven

Læs mere

Matematik. Trinmål 2. Nordvestskolen 2006 Forord. Trinmål 2 (4. 6. klasse)

Matematik. Trinmål 2. Nordvestskolen 2006 Forord. Trinmål 2 (4. 6. klasse) Matematik Trinmål 2 Nordvestskolen 2006 Forord Forord For at sikre kvaliteten og fagligheden i folkeskolen har Undervisningsministeriet udarbejdet faghæfter til samtlige fag i folkeskolen med bindende

Læs mere

Foreløbig udgave af læringsmål til: Kapitel 1 Regn med store tal Fælles Mål Læringsmål Forslag til tegn på læring

Foreløbig udgave af læringsmål til: Kapitel 1 Regn med store tal Fælles Mål Læringsmål Forslag til tegn på læring Foreløbig udgave af læringsmål til: Kapitel 1 Regn med store tal Fælles Mål Læringsmål Forslag til tegn på læring udføre beregninger med de fire regningsarter inden for naturlige tal, herunder beregninger

Læs mere

Undersøgelser af trekanter

Undersøgelser af trekanter En rød tråd igennem kapitlet er en søgen efter svar på spørgsmålet: Hvordan kan vi beregne os frem til længder, vi ikke kan komme til at måle?. Hvordan kan vi fx beregne højden på et træ eller et hus,

Læs mere

AEU-2 MATEMATIK PROBLEMREGNING MAJ 2015. Tidspunkt.: Individuel besvarelse 9.00 11.30. Dato: Torsdag den 21. maj 2015

AEU-2 MATEMATIK PROBLEMREGNING MAJ 2015. Tidspunkt.: Individuel besvarelse 9.00 11.30. Dato: Torsdag den 21. maj 2015 AEU-2 MATEMATIK PROBLEMREGNING MAJ 2015 Tidspunkt.: Individuel besvarelse 9.00 11.30 Dato: Torsdag den 21. maj 2015 Hjælpemidler: Lommeregner Lineal Passer Vinkelmåler Formel- og tabelsamling Egne noter

Læs mere

KonteXt +5, Kernebog

KonteXt +5, Kernebog 1 KonteXt +5, Lærervejledning/Web Facit til KonteXt +5, Kernebog Kapitel 3: Vinkler og figurer Version september 2015 Facitlisten er en del af KonteXt +5; Lærervejledning/Web KonteXt +5, Kernebog Forfattere:

Læs mere

Lærereksemplar. Kun til lærerbrug GEOMETRI 89. Kopiering er u-økonomisk og forbudt til erhvervsformål.

Lærereksemplar. Kun til lærerbrug GEOMETRI 89. Kopiering er u-økonomisk og forbudt til erhvervsformål. Kun salg ved direkte kontakt mellem skole og forlag. Kopiering er u-økonomisk og forbudt til erhvervsformål. GEOMETRI 89 Side Emne 1 Indholdsfortegnelse 2 Måling af vinkler 3 Tegning og måling af vinkler

Læs mere

Hvad er matematik? C, i-bog ISBN 978 87 7066 499 8

Hvad er matematik? C, i-bog ISBN 978 87 7066 499 8 Introduktion til ovaler: Ovato Tondo fra Rafaels skole En oval er en lukket krum kurve med to vinkelrette symmetriakser, storeaksen og lilleaksen, og dermed også et symmetricentrum. Der findes mange forskellige

Læs mere

1. Tryk. Figur 1. og A 2. , der påvirkes af luftartens molekyler med kræfterne henholdsvis F 1. og F 2. , må der derfor gælde, at (1.1) F 1 = P.

1. Tryk. Figur 1. og A 2. , der påvirkes af luftartens molekyler med kræfterne henholdsvis F 1. og F 2. , må der derfor gælde, at (1.1) F 1 = P. M3 1. Tryk I beholderen på figur 1 er der en luftart, hvis molekyler bevæger sig rundt mellem hinanden. Med jævne mellemrum støder de sammen med hinanden og de støder ligeledes med jævne mellemrum mod

Læs mere

Evaluering af matematik undervisning

Evaluering af matematik undervisning Evaluering af matematik undervisning Udarbejdet af Khaled Zaher, matematiklærer 6-9 klasse og Boushra Chami, matematiklærer 2-5 klasse Matematiske kompetencer. Fællesmål efter 3.klasse indgå i dialog om

Læs mere

brikkerne til regning & matematik geometri basis+g preben bernitt

brikkerne til regning & matematik geometri basis+g preben bernitt brikkerne til regning & matematik geometri basis+g preben bernitt brikkerne til regning & matematik geometri, basis+g ISBN: 978-87-92488-15-2 1. Udgave som E-bog 2010 by bernitt-matematik.dk Kopiering

Læs mere

Lille Georgs julekalender 08. 1. december

Lille Georgs julekalender 08. 1. december 1. december Et digitalur viser 20:08. Hvor lang tid går der før de samme fire cifre vises igen (gerne i en anden rækkefølge)? 2. december Hvilket matematisk tegn kan anbringes mellem 2 og 3, således at

Læs mere

1. Eksperimenterende geometri og måling

1. Eksperimenterende geometri og måling . Eksperimenterende geometri og måling Undersøgelse Undersøgelsen drejer sig om det såkaldte Firfarveproblem. For mere end 00 år siden fandt man ved sådanne undersøgelser frem til, at fire farver er nok

Læs mere

Titalssystemet 0 0 0, 0 0 0 1

Titalssystemet 0 0 0, 0 0 0 1 VUCFYN Odense maj 2010 Titalssystemet Vi har 10 cifre at gøre brug af, nemlig 0, 1, 2, 3, 4, 5, 6, 7, 8 og 9 Pladsen et ciffer står på i et tal viser os hvilken værdi cifret har! 1. 0 0 0. 0 0 0. 0 0 0,

Læs mere

Projekt 4.6 Didaktisk oplæg til et eksperimenterende forløb med fokus på modellering og repræsentationsformer

Projekt 4.6 Didaktisk oplæg til et eksperimenterende forløb med fokus på modellering og repræsentationsformer rojekter: Kapitel. rojekt.6 Eksperimenterende forløb med fokus på modellering og repræsentationsformer rojekt.6 idaktisk oplæg til et eksperimenterende forløb med fokus på modellering og repræsentationsformer

Læs mere

cvbnmrtyuiopasdfghjklæøzxcvbnmq wertyuiopåasdfghjklæøzxcvbnmqw ertyuiopåasdfghjklæøzxcvbnmqwer tyuiopåasdfghjklæøzxcvbnmqwerty

cvbnmrtyuiopasdfghjklæøzxcvbnmq wertyuiopåasdfghjklæøzxcvbnmqw ertyuiopåasdfghjklæøzxcvbnmqwer tyuiopåasdfghjklæøzxcvbnmqwerty cvbnmrtyuiopasdfghjklæøzxcvbnmq wertyuiopåasdfghjklæøzxcvbnmqw ertyuiopåasdfghjklæøzxcvbnmqwer tyuiopåasdfghjklæøzxcvbnmqwerty Matematik Den kinesiske prøve uiopåasdfghjklæøzxcvbnmqwertyui 45 min 01 11

Læs mere

Julehjerter med motiver

Julehjerter med motiver Julehjerter med motiver Torben Mogensen 18. december 2012 Resumé Jeg har i mange år moret mig med at lave julehjerter med motiver, og er blevet spurgt om, hvordan man gør. Så det vil jeg forsøge at forklare

Læs mere

5. KLASSE UNDERVISNINGSPLAN MATEMATIK

5. KLASSE UNDERVISNINGSPLAN MATEMATIK Lærer: SS Forord til faget i klassen Vi vil i matematik arbejde differentieret i hovedemnerne geometri, statistik og sandsynlighed samt tal og algebra. Vi vil i 5. kl. dagligt arbejde med matematisk kommunikation

Læs mere

geometri basis+g brikkerne til regning & matematik preben bernitt

geometri basis+g brikkerne til regning & matematik preben bernitt brikkerne til regning & matematik geometri basis+g preben bernitt brikkerne til regning & matematik geometri G ISBN: 978-87-92488-15 2 1. udgave som E-bog til tablets 2012 by bernitt-matematik.dk Denne

Læs mere

Apparatur: 1 EV3 startkasse, målebånd, sort bred lærredstape, oplader, kan benyttes som passer, kridt, plader til at lave bakker med, niveauborde.

Apparatur: 1 EV3 startkasse, målebånd, sort bred lærredstape, oplader, kan benyttes som passer, kridt, plader til at lave bakker med, niveauborde. Lego Mindstorms Education EV3 Projektarbejde med Lego Mindstorms version EV3. til Windows 7og 8 og Mac Apparatur: 1 EV3 startkasse, målebånd, sort bred lærredstape, oplader, kan benyttes som passer, kridt,

Læs mere

MATEMATIK. Basismål i matematik på 1. klassetrin:

MATEMATIK. Basismål i matematik på 1. klassetrin: MATEMATIK Basismål i matematik på 1. klassetrin: at kunne indgå i samtale om spørgsmål og svar, som er karakteristiske i arbejdet med matematik at kunne afkode og anvende tal og regnetegn og forbinde dem

Læs mere

Titalssystemet. Vi har 10 cifre at gøre brug af, nemlig 0, 1, 2, 3, 4, 5, 6, 7, 8 og 9

Titalssystemet. Vi har 10 cifre at gøre brug af, nemlig 0, 1, 2, 3, 4, 5, 6, 7, 8 og 9 VUCFYN Odense januar 2010 Titalssystemet Vi har 10 cifre at gøre brug af, nemlig 0, 1, 2, 3, 4, 5, 6, 7, 8 og 9 Pladsen et ciffer står på i et tal viser os hvilken værdi cifret har! 1. 0 0 0. 0 0 0. 0

Læs mere

xxx xxx xxx Potensfunktioner Potensfunktioner... 2 Opgaver... 8 Side 1

xxx xxx xxx Potensfunktioner Potensfunktioner... 2 Opgaver... 8 Side 1 Potensfunktioner Potensfunktioner... Opgaver... 8 Side Potensfunktioner Funktioner der kan skrives på formen y a = b kaldes potensfunktioner. Her er nogle eksempler på potensfunktioner: y = y = y = - y

Læs mere

TAL OG ALGEBRA/GEOMETRI

TAL OG ALGEBRA/GEOMETRI Navn: CPR: TAL OG ALGEBRA/GEOMETRI 1. 376 + 2489 = 2. 367 120 = 3. 16 40 = 4. 216 : 12 = Løs ligningen 14. x - 6 = 4 x = 15. 3x = 24 x = Afrund til nærmeste hele tal 5. 21,88 6. 3 3 1 16. 17. 1 4 + 6 6

Læs mere

MATEMATIK ( 5 h ) DATO: 4. juni 2010

MATEMATIK ( 5 h ) DATO: 4. juni 2010 EUROPÆISK STUDENTEREKSAMEN 2010 MATEMATIK ( 5 h ) DATO: 4. juni 2010 PRØVENS VARIGHED: 4 timer (240 minutter) TILLADTE HJÆLPEMIDLER Europaskolernes formelsamling Ikke-grafisk, ikke-programmerbar lommeregner

Læs mere

Arealet af en trekant Der er mange formler for arealet af en trekant. Den mest kendte er selvfølgelig

Arealet af en trekant Der er mange formler for arealet af en trekant. Den mest kendte er selvfølgelig Arealet af en trekant Der er mange formler for arealet af en trekant. Den mest kendte er selvfølgelig som også findes i en trigonometrisk variant, den såkaldte 'appelsin'-formel: Men da en trekants form

Læs mere

brikkerne til regning & matematik formler og ligninger basis+g preben bernitt

brikkerne til regning & matematik formler og ligninger basis+g preben bernitt brikkerne til regning & matematik formler og ligninger basis+g preben bernitt brikkerne til regning & matematik formler og ligninger G ISBN: 978-87-92488-07-7 10. Udgave som E-bog 2010 by bernitt-matematik.dk

Læs mere

3. klasse 6. klasse 9. klasse

3. klasse 6. klasse 9. klasse Børne- og Undervisningsudvalget 2012-13 BUU Alm.del Bilag 326 Offentligt Elevplan 3. klasse 6. klasse 9. klasse Matematiske kompetencer Status tal og algebra sikker i, er usikker i de naturlige tals opbygning

Læs mere

Gratisprogrammet 27. september 2011

Gratisprogrammet 27. september 2011 Gratisprogrammet 27. september 2011 1 Brugerfladen: Små indledende øvelser: OBS: Hvis et eller andet ikke fungerer, som du forventer, skal du nok vælge en anden tilstand. Dette ses til højre for ikonerne

Læs mere

Matematik A. Studentereksamen. Fredag den 9. december 2011 kl. 9.00-14.00. stx113-mat/a-09122011

Matematik A. Studentereksamen. Fredag den 9. december 2011 kl. 9.00-14.00. stx113-mat/a-09122011 Matematik A Studentereksamen stx113-mat/a-09122011 Fredag den 9. december 2011 kl. 9.00-14.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål. Delprøven

Læs mere

Klassen er sammenlæst, altså 5 og 6 klasse på en og samme tid. Samtidig er klassen pt på ca 11 elever ialt.

Klassen er sammenlæst, altså 5 og 6 klasse på en og samme tid. Samtidig er klassen pt på ca 11 elever ialt. Introduktion til mat i 5/6 klasse Vejle Privatskole 13/14: Klassen er sammenlæst, altså 5 og 6 klasse på en og samme tid. Samtidig er klassen pt på ca 11 elever ialt. Udgangspunktet bliver en blød screening,

Læs mere

Matematik A. Studentereksamen

Matematik A. Studentereksamen Matematik A Studentereksamen stx11-mat/a-310501 Torsdag den 31. maj 01 kl. 9.00-14.00 Side 1 af 7 sider Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål.

Læs mere

matematikhistorie og dynamisk geometri

matematikhistorie og dynamisk geometri Pythagoras matematikhistorie og dynamisk geometri med TI-Nspire Indholdsfortegnelse Øvelse 1: Hvem var Pythagoras?... 2 Pythagoras læresætning... 2 Geometrisk konstruktion af Pythagoræisk tripel... 3 Øvelse

Læs mere

RENTES REGNING SIMULATION LANDMÅLING MÅLSCORE I HÅNDBO . K R I S T I A N S E N KUGLE G Y L D E N D A L

RENTES REGNING SIMULATION LANDMÅLING MÅLSCORE I HÅNDBO . K R I S T I A N S E N KUGLE G Y L D E N D A L SIMULATION 4 2 RENTES REGNING F I NMED N H REGNEARK. K R I S T I A N S E N KUGLE 5 LANDMÅLING 3 MÅLSCORE I HÅNDBO G Y L D E N D A L Faglige mål: Anvende simple geometriske modeller og løse simple geometriske

Læs mere