Epidemiologi og biostatistik. Uge 3, torsdag. Erik Parner, Afdeling for Biostatistik. Eksempel: Systolisk blodtryk

Størrelse: px
Starte visningen fra side:

Download "Epidemiologi og biostatistik. Uge 3, torsdag. Erik Parner, Afdeling for Biostatistik. Eksempel: Systolisk blodtryk"

Transkript

1 Eksempel: Systolisk blodtryk Udgangspunkt: Vi ønsker at prædiktere det systoliske blodtryk hos en gruppe af personer. Epidemiologi og biostatistik. Uge, torsdag. Erik Parner, Afdeling for Biostatistik. Data: Systolisk blodtryk-målinger og andre baggrundsvariable for 68 personer. i Obs. no. 68 y i Syst. blodtryk xi Lineær regressionsanalyse - Simpel lineær regression - Multipel lineær regression Frekvens Prædiktionsinterval y = 9.9, sd Total = 5.45 ( n = 68) Hvis vi antager blodtryk er normalfordelt fås PI: 9.9 ± =(99.6;6.) Fortolkning: Personernes systoliske blodtryk er mellem 99.6 og 6.. Bemærk: Vores bedste bud på en persons systoliske blodtryk er altså intervallet (99.6;6.). Der er dog relativt stor variation i det systoliske blodtryk! 4 Regressionsanalyse Regressionsanalyser bruges til Beskrive sammenhængen mellem to variable. Eks: Kvantificere sammenhængen mellem alder og blodtryk. Prædiktere værdien af en variabel hvis værdien af én eller flere andre variable er kendt (referencemodel). Eks: Forudsige blodtrykket for en 5 årig person. Forudsige FEV for en årig mand. Korrektion for potentielle confoundere. Eks: Hvad er alderseffekten på blodtrykket korrigeret for? Den lineære regressionsanalyse kan anvendes når responsen er kontinuert.

2 y = α + β x + E i i i Formlen for en ret linie! Simpel lineær regression En simpel lineær afhængighed mellem y i og x i : Beskriver afvigelsen fra linien. Variablen E i beskriver den tilfældige/uforklarede variation omkring linien, og antages at have middelværdi og spredning σ Res (Res=Residual). En simpel lineær regressionsmodel har tre parametre: α = afskæringen med y-aksen (intercept) β = hældningen (regressionskoefficient) σ Res = et mål for variationen omkring linien. 7 Vil vores bud på personens systoliske blodtryk afhænge af persones alder? Ja, yngre personer har et lavere blodtryk end ældre personer! Vi kan lave et mere præcist prædiktionsinterval, hvis vi bruger oplysningen om personens alder. 5 Terminologi: y = responsvariabel = afhængige variabel = Systolisk blodtryk x = forklarende variabel = uafhængig variabel = Fortolkning af parametrene: β er forskellen i middel systolisk blodtryk mellem to personer med en aldersforskel på år. (Fortolkningen er ikke den forventede stigning i det systoliske blodtryk når man bliver et år ældre!) α har i denne situation ingen fornuftig fortolkning. (Middel blodtrykket for en år gammel person?) σ Res et mål for variationen omkring linien. 8 Én løsning er, at inddele i aldersgrupper og beregne prædiktionsintervaller indenfor hver aldersgrupper. En anden løsning er en regressionsanalyse, hvor personens præcise alder inddrages. En regressionsmodel er en model for sammenhængen mellem blodtryk og alder. Der ser ud til at være en lineær sammenhæng mellem blodtryk og alder. 6

3 Eksempel : Forskellen i middelblodtryk for 4 årige personer og 5 årige personer er Forskel = ( ˆ α + ˆ β 5) - ( ˆ α + ˆ β 4) = ˆ β (5 4) =.5 = se( ˆ β) = se( ˆ β) =.6 =.55 CI(Forskel) : 4.95 ± = (9.9; 9. 9) Middelforskellen mellem to personer med en aldersforskel på år er mellem 9.9 og 9.9. Generelt: Forskellen i middelblodtryk mellem personer med en aldersforskel på år er Forskel = ˆ β, se( ˆ β) = s e( ˆ β ) Estimation af α, β og σ Res : r = y ( ˆ α ˆ βx ) i i i Residual =afvigelsenaf observationen fra linien. Regressionslinien bestemmes ved mindste kvadrates metode, der minimerer (kvadratet på) afstandene fra observationerne til linien. σ Res estimeres ved standard deviationen af residualerne. 9 Eksempel : Hvad er vores bedste bud på en 5 årig persons systoliske blodtryk? Prædiktionsinterval= regressionslinie ±.96 sd Res Estimation af α, β og σ Res ogse erm.v.erkompliceret, men kan laves af de fleste statistikprogrampakker. Resultat: Intercept Estimat 6.5 se.99 (6.76;8.75) Regression.5.6 (.;.99) sd Res.6 Regressionsanalysen beskriver sammenhængen mellem middel (systolisk) Blodtrykogsom CI middel Blodtryk = () (/år) () PI( x) = ( ˆ α + ˆ β x) ±.96sd Res Eksempel : Middelblodtrykket for 5 årige personer er = 5.. CI kan vi ikke udregne på basis af ovenstående tal!

4 Antagelser bag den simple lineære regressionsanalyse Den statistiske model bygger på følgende antagelser: Uafhængige par af observationer (x,y ),...,(x n,y n ). Lineær sammenhæng mellem x i og y i : Prædiktionsinterval for de 5 årige personer bliver således Middelblodtryk: ˆ α + ˆ β 5 = 5. sd Res =.6 PI(5 årige): 5. ±.96.6 = (.; 59.8) y i = α + β x i +E i Variationen omkring linien, E i, er normalfordelt med middelværdi og spredning σ Res. Variationen omkring linien afhænger ikke af den forklarende variabel x i 5 Det generelle prædiktionsinterval (uden hensyntagen til alder) var PI: (99.6;6.). PI PI(5 årig) Modelkontrol: lineær sammenhæng Andel forklaret variation Prædiktionsintervallet fra regressionsanalysen er smallere end det generelle prædiktionsinterval (sd Res er mindre end sd Total ). Vi har forklaret noget af variationen i Blodtryk ved variationen i. Men hvor meget? Den relative reduktion i variationen er ( ) R = =.4 = 4% Det ser ud til, at den lineære sammenhæng er en rimelig beskrivelse! 6 Vi har således forklaret 4% af variationen i blodtryk ved variationen i alderen. R = andel forklaret variation af den totale variation (coefficient of determination). 4

5 Eksempel på en ikke-lineær sammenhæng Modelkontrol: konstant variation Glumerular filtrationsrate (GFR) 5 5 Nyrefunktion Residualer (Creatinin) Cr 8 9 Residualerne viser symmetri omkring og konstant variation uafhængig af. 7 Modelkontrol: normalfordeling 8 Residualer Frekvens Residualer efter lineær regression: - mangel på symmetri / systematisk afvigelser fra. - ikke konstant variation. 6 Cr Residualer Residualerne kan antages at være normalfordelt! Antagelserne bag den lineære regressionsanalyse synes at være opfyldt! 8

6 Multipel lineær regression Effekten af alder er beskrevet ved hældningen (fra tidligere) ˆ β =.5 /år ( CI:..9 9) Ln-transformation af nyrefunktion: 6 5 Hældningen beskriver middelforskellen i systolisk blodtryk mellem to personer med en aldersforskel på år. Blodtrykket afhænger også af. Afhænger alderseffekten af personens? Mao. er en effektmodifikator for alderseffekten? ln(gfr) 4 Hvis ikke er en effektmodifikator for alderseffekten: Er en confounder for alderseffekten? ln(cr) Her er antagelserne bag regressionsanlysen opfyldt. Effektmodifikator? Hypoteser omkring β Blodtryk Foregår som sædvanlig! Hvis vi f.eks. ønsker at teste Hypotese: β = (ingen sammenhæng mellem Blodtryk og ) Confounder? ˆ β.5 z = = = 5.9, p<. se( ˆ) β. 6 Blodtryk 4

7 Er en effektmodifikator? Data: Samme data fra før, nu suppleret med oplysninger. Strata < Estimaterne er noget usikre! Hældning (-.54;.54) (.7;.8) (-.;.7) Hypotese: Samme alderseffekt i de grupper ( er ikke en effektmodifikator) Hypotesen testes vha. en multipel regressionsanalyse, p=.. Vi accepterer dermed hypotesen om den samme alderseffekt i de -grupper. Vi kan antage, at er ikke en effektmodifikator. CI 7 Obs. no. 68 Syst. blodtryk er inddelt i grupper: gruppe = hvis 5 = hvis 5 < = hvis < gruppe 5 En multipel regressionsanalyse med samme alderseffekt (hældning) i de -grupper: En regressionsanalyse for hver gruppe: <5 5<< < Modelkontrol: Som i den simple lineære regressionsanslyse, dog her noget mere kompliceret. 8 <5 5<< < Er effekten af alderen den samme i de grupper? 6

8 Betragt to personer: Eksempel 5: effekten af Person : =4 år, = kg/m Persen : =5 år, = kg/m Forskellen i middelblodtrykket er Middelblodtryk Middelblodtryk 5- + = ( ) ( ) ( ) =.8 =.8 =. 8 CI(Forskel): (.7;.64) = ( 76) ; 5- = + = Resultat: Estimat se CI p Intercept (5.5;9.9)..8. (.7;.64). 5 5< -.6. (-6.;5.58).95 > (8.84;4.49). sd Res. Hvordan skal vi fortolke dette resultat? middel Blodtryk = < = ellers + = > ellers 9 Betragt to personer: Eksempel 6: effekten af Person : =4 år, = kg/m Persen : =4 år, =7 kg/m Forskellen i middelblodtrykket er Middelblodtryk Middelblodtryk 5-5- = ˆ β =.6 CI(Forskel): (-6.; 5.58) Eksempel 4: beregning af det forventede blodtryk Betragt en person med følgende data: 5- = =5 år, =7 kg/m + = Middelblodtrykket udregnes til Middelblodtryk = = =.57 Et prædiktionsinterval kan udregnes som tidligere PI(5 årige, 5< ):.57 ±.96. = ( 9. ; 5. )

9 Multipel lineær regression - generelt Responsen (y) erenkontinuert variabel, f.eks. - blodtryk. -FEV. Den multiple lineære regressionsmodel beskriver hvordan responsen y i afhænger af forklarende variable x i,,x im via modelformlen y = α + β x + + β x + E i i... m im i Formlen for en lineær sammenhæng! Beskriver afvigelsen fra den lineære sammenhæng. Variablen E i beskriver den tilfældige/uforklarede variation, og antages at have middelværdi og spredning σ Res. 5 Betragt to nye personer: Person : =4 år, =7 kg/m Persen : =4 år, = kg/m Forskellen i middel blodtrykket er Middel blodtryk Middel blodtryk = ˆ β ˆ + β5- = 6.67 (. 6) = 7. CI(Forskel) kan vi ikke udregne på basis af denne analyse. Sikkerhedsintervallet kan findes ved at lave en ny regressionsanalyse med gruppe nr. som referencegruppe. Er en confounder for alderseffekten? Fra den simple lineære regressionsanalyse fik vi β ˆCrude =.5 CI( β ): (.,. 99) /år Crude Fra den multiple lineære regressionsanalyse hvor også -gruppe indgik i modellen fik vi β ˆAdjusted =.8 CI( β ): (.7,. 64) /år Adjusted Hvis β Crude β Adjusted så er en confounder. Det tyder således på, at er en confounder for alderseffekten. 4

Eksempel: PEFR. Epidemiologi og biostatistik. Uge 1, tirsdag. Erik Parner, Institut for Biostatistik.

Eksempel: PEFR. Epidemiologi og biostatistik. Uge 1, tirsdag. Erik Parner, Institut for Biostatistik. Epidemiologi og biostatistik. Uge, tirsdag. Erik Parner, Institut for Biostatistik. Generelt om statistik Dataanalysen - Deskriptiv statistik - Statistisk inferens Sammenligning af to grupper med kontinuerte

Læs mere

Analysestrategi. Lektion 7 slides kompileret 27. oktober 200315:24 p.1/17

Analysestrategi. Lektion 7 slides kompileret 27. oktober 200315:24 p.1/17 nalysestrategi Vælg statistisk model. Estimere parametre i model. fx. lineær regression Udføre modelkontrol beskriver modellen data tilstrækkelig godt og er modellens antagelser opfyldte fx. vha. residualanalyse

Læs mere

Program. Logistisk regression. Eksempel: pesticider og møl. Odds og odds-ratios (igen)

Program. Logistisk regression. Eksempel: pesticider og møl. Odds og odds-ratios (igen) Faculty of Life Sciences Program Logistisk regression Claus Ekstrøm E-mail: ekstrom@life.ku.dk Odds og odds-ratios igen Logistisk regression Estimation og inferens Modelkontrol Slide 2 Statistisk Dataanalyse

Læs mere

Epidemiologi og Biostatistik

Epidemiologi og Biostatistik Kapitel 1, Kliniske målinger Epidemiologi og Biostatistik Introduktion til skilder (varianskomponenter) måleusikkerhed sammenligning af målemetoder Mogens Erlandsen, Institut for Biostatistik Uge, torsdag

Læs mere

Statistik II 4. Lektion. Logistisk regression

Statistik II 4. Lektion. Logistisk regression Statistik II 4. Lektion Logistisk regression Logistisk regression: Motivation Generelt setup: Dikotom(binær) afhængig variabel Kontinuerte og kategoriske forklarende variable (som i lineær reg.) Eksempel:

Læs mere

Simpel Lineær Regression

Simpel Lineær Regression Simpel Lineær Regression Mål: Forklare variablen y vha. variablen x. Fx forklare Salg (y) vha. Reklamebudget (x). Vi antager at sammenhængen mellem y og x er beskrevet ved y = β 0 + β 1 x + u. y: Afhængige

Læs mere

Statikstik II 2. Lektion. Lidt sandsynlighedsregning Lidt mere om signifikanstest Logistisk regression

Statikstik II 2. Lektion. Lidt sandsynlighedsregning Lidt mere om signifikanstest Logistisk regression Statikstik II 2. Lektion Lidt sandsynlighedsregning Lidt mere om signifikanstest Logistisk regression Sandsynlighedsregningsrepetition Antag at Svar kan være Ja og Nej. Sandsynligheden for at Svar Ja skrives

Læs mere

Statistik FSV 4. semester 2014 Øvelser Uge 2: 11. februar

Statistik FSV 4. semester 2014 Øvelser Uge 2: 11. februar Århus 6. februar 2014 Morten Frydenberg Statistik FSV 4. semester 2014 Øvelser Uge 2: 11. februar Til disse øvelser har I brug for fishoil1.dta, der indeholder data fra det fiskeolie forsøg vi så på ved

Læs mere

1. Lav en passende arbejdstegning, der illustrerer samtlige enkeltobservationer.

1. Lav en passende arbejdstegning, der illustrerer samtlige enkeltobservationer. Vejledende besvarelse af hjemmeopgave Basal statistik, efterår 2008 En gruppe bestående af 45 patienter med reumatoid arthrit randomiseres til en af 6 mulige behandlinger, nemlig placebo, aspirin eller

Læs mere

Program. t-test Hypoteser, teststørrelser og p-værdier. Hormonkonc.: statistisk model og konfidensinterval. Hormonkoncentration: data

Program. t-test Hypoteser, teststørrelser og p-værdier. Hormonkonc.: statistisk model og konfidensinterval. Hormonkoncentration: data Faculty of Life Sciences Program t-test Hypoteser, teststørrelser og p-værdier Claus Ekstrøm E-mail: ekstrom@life.ku.dk Resumé og hængepartier fra sidst. Eksempel: effekt af foder på hormonkoncentration

Læs mere

Center for Statistik. Multipel regression med laggede responser som forklarende variable

Center for Statistik. Multipel regression med laggede responser som forklarende variable Center for Statistik Handelshøjskolen i København MPAS Tue Tjur November 2006 Multipel regression med laggede responser som forklarende variable Ved en tidsrække forstås i almindelighed et datasæt, der

Læs mere

Statistik II Lektion 3. Logistisk Regression Kategoriske og Kontinuerte Forklarende Variable

Statistik II Lektion 3. Logistisk Regression Kategoriske og Kontinuerte Forklarende Variable Statistik II Lektion 3 Logistisk Regression Kategoriske og Kontinuerte Forklarende Variable Setup: To binære variable X og Y. Statistisk model: Konsekvens: Logistisk regression: 2 binære var. e e X Y P

Læs mere

Program. Sammenligning af grupper Ensidet ANOVA. Case 3, del II: Fiskesmag i lammekød. Case 3, del I: A-vitamin i leveren

Program. Sammenligning af grupper Ensidet ANOVA. Case 3, del II: Fiskesmag i lammekød. Case 3, del I: A-vitamin i leveren Faculty of Life Sciences Program Sammenligning af grupper Ensidet ANOVA Claus Ekstrøm E-mail: ekstrom@life.ku.dk Sammenligning af to grupper: tre eksempler Sammenligning af mere end to grupper: ensidet

Læs mere

En teoretisk årsagsmodel: Operationalisering: Vurdering af epidemiologiske undersøgelser. 1. Informationsproblemer Darts et eksempel på målefejl

En teoretisk årsagsmodel: Operationalisering: Vurdering af epidemiologiske undersøgelser. 1. Informationsproblemer Darts et eksempel på målefejl Vurdering af epidemiologiske undersøgelser Jørn Attermann. februar 00 I denne forelæsning vil vi se på fejl, som kan have betydning for fortolkningen af resultater fra epidemiologiske undersøgelser. Traditionelt

Læs mere

Skriftlig Eksamen ST501: Science Statistik Mandag den 11. juni 2007 kl. 15.00 18.00

Skriftlig Eksamen ST501: Science Statistik Mandag den 11. juni 2007 kl. 15.00 18.00 Skriftlig Eksamen ST501: Science Statistik Mandag den 11. juni 2007 kl. 15.00 18.00 Forskningsenheden for Statistik IMADA Syddansk Universitet Alle skriftlige hjælpemidler samt brug af lommeregner er tilladt.

Læs mere

Model. (m separate analyser). I vores eksempel er m = 2, n 1 = 13 (13 journalister) og

Model. (m separate analyser). I vores eksempel er m = 2, n 1 = 13 (13 journalister) og Model M 0 : X hi N(α h + β h t hi,σ 2 h ), h = 1,...,m, i = 1,...,n h. m separate regressionslinjer. Behandles som i afsnit 3.3. (m separate analyser). I vores eksempel er m = 2, n 1 = 13 (13 journalister)

Læs mere

Tænk på a og b som to n 1 matricer. a 1 a 2 a n. For hvert i = 1,..., n har vi y i = x i β + u i.

Tænk på a og b som to n 1 matricer. a 1 a 2 a n. For hvert i = 1,..., n har vi y i = x i β + u i. Repetition af vektor-regning Økonometri: Lektion 3 Matrix-formulering Fordelingsantagelse Hypotesetest Antag vi har to n-dimensionelle (søjle)vektorer a 1 b 1 a 2 a =. og b = b 2. a n b n Tænk på a og

Læs mere

MPH specialmodul Epidemiologi og Biostatistik

MPH specialmodul Epidemiologi og Biostatistik MPH specialmodul Epidemiologi og Biostatistik Kvantitative udfaldsvariable 23. maj 2011 www.biostat.ku.dk/~sr/mphspec11 Susanne Rosthøj (Per Kragh Andersen) 1 Kapitelhenvisninger Andersen & Skovgaard:

Læs mere

Logistisk regression

Logistisk regression Logistisk regression Susanne Rosthøj Biostatistisk Afdeling Institut for Folkesundhedsvidenskab Københavns Universitet sr@biostat.ku.dk Kursushjemmeside: www.biostat.ku.dk/~sr/forskningsaar/regression2012/

Læs mere

Logistisk regression

Logistisk regression Logistisk regression Test af antagelsen om lineære effekter Modelkonstruktion og modelsøgning Hvilke variable og hvilke interaktioner skal inkluderes i regressionsmodellerne? 1 Logistiske regressionsmodeller

Læs mere

Skriftlig eksamen Science statistik- ST501

Skriftlig eksamen Science statistik- ST501 SYDDANSK UNIVERSITET INSTITUT FOR MATEMATIK OG DATALOGI Skriftlig eksamen Science statistik- ST501 Torsdag den 21. januar Opgavesættet består af 5 opgaver, med i alt 13 delspørgsmål, som vægtes ligeligt.

Læs mere

Ovenstående figur viser et (lidt formindsket billede) af 25 svampekolonier på en petriskål i et afgrænset felt på 10x10 cm.

Ovenstående figur viser et (lidt formindsket billede) af 25 svampekolonier på en petriskål i et afgrænset felt på 10x10 cm. Multiple choice opgaver Der gøres opmærksom på, at ideen med opgaverne er, at der er ét og kun ét rigtigt svar på de enkelte spørgsmål. Endvidere er det ikke givet, at alle de anførte alternative svarmuligheder

Læs mere

Normalfordelingen. Statistik og Sandsynlighedsregning 2

Normalfordelingen. Statistik og Sandsynlighedsregning 2 Statistik og Sandsynlighedsregning 2 Repetition og eksamen T-test Normalfordelingen Erfaringsmæssigt er normalfordelingen velegnet til at beskrive variationen i mange variable, blandt andet tilfældige

Læs mere

Statistik i GeoGebra

Statistik i GeoGebra Statistik i GeoGebra Peter Harremoës 13. maj 2015 Jeg vil her beskrive hvordan man kan lave forskellige statistiske analyser ved hjælp af GeoGebra 4.2.60.0. De statistiske analyser svarer til pensum Matematik

Læs mere

Regneregler for middelværdier M(X+Y) = M X +M Y. Spredning varians og standardafvigelse. 1 n VAR(X) Y = a + bx VAR(Y) = VAR(a+bX) = b²var(x)

Regneregler for middelværdier M(X+Y) = M X +M Y. Spredning varians og standardafvigelse. 1 n VAR(X) Y = a + bx VAR(Y) = VAR(a+bX) = b²var(x) Formelsamlingen 1 Regneregler for middelværdier M(a + bx) a + bm X M(X+Y) M X +M Y Spredning varians og standardafvigelse VAR(X) 1 n n i1 ( X i - M x ) 2 Y a + bx VAR(Y) VAR(a+bX) b²var(x) 2 Kovariansen

Læs mere

Økonometri: Lektion 4. Multipel Lineær Regression: F -test, justeret R 2 og aymptotiske resultater

Økonometri: Lektion 4. Multipel Lineær Regression: F -test, justeret R 2 og aymptotiske resultater Økonometri: Lektion 4 Multipel Lineær Regression: F -test, justeret R 2 og aymptotiske resultater 1 / 35 Hypotesetest for én parameter Antag vi har model y = β 0 + β 1 x 2 + β 2 x 2 + + β k x k + u. Vi

Læs mere

Demo af PROC GLIMMIX: Analyse af gentagne observationer

Demo af PROC GLIMMIX: Analyse af gentagne observationer Demo af PROC GLIMMIX: Analyse af gentagne observationer Kristina Birch, seniorkonsulent, PS Banking Agenda Uafhængige vs. afhængige observationer Analyse af uafhængige vs. afhængige observationer Lille

Læs mere

Projekt 6.1 Rygtespredning - modellering af logistisk vækst

Projekt 6.1 Rygtespredning - modellering af logistisk vækst Projekt 6.1 Rygtespredning - modellering af logistisk vækst (Projektet anvender værktøjsprogrammet TI Nspire) Alle de tilstedeværende i klassen tildeles et nummer, så med 28 elever i klassen uddeles numrene

Læs mere

Skriftlig Eksamen ST501: Science Statistik Mandag den 11. juni 2007 kl. 15.00 18.00

Skriftlig Eksamen ST501: Science Statistik Mandag den 11. juni 2007 kl. 15.00 18.00 Skriftlig Eksamen ST501: Science Statistik Mandag den 11. juni 2007 kl. 15.00 18.00 Forskningsenheden for Statistik IMADA Syddansk Universitet Alle skriftlige hjælpemidler samt brug af lommeregner er tilladt.

Læs mere

Program. 1. Varianskomponent-modeller (Random Effects) 2. Transformation af data. 1/12

Program. 1. Varianskomponent-modeller (Random Effects) 2. Transformation af data. 1/12 Program 1. Varianskomponent-modeller (Random Effects) 2. Transformation af data. 1/12 Dæktyper og brændstofforbrug Data fra opgave 10.43, side 360: cars 1 2 3 4 5... radial 4.2 4.7 6.6 7.0 6.7... belt

Læs mere

Fagplan for statistik, efteråret 2015

Fagplan for statistik, efteråret 2015 Side 1 af 7 M Fagplan for statistik, efteråret 20 Litteratur Kenneth Hansen & Charlotte Koldsø (HK): Statistik I økonomisk perspektiv, Hans Reitzels Forlag 2012, 2. udgave, ISBN 9788741256047 HypoStat

Læs mere

Dansk Erhvervs gymnasieeffekt - sådan gjorde vi

Dansk Erhvervs gymnasieeffekt - sådan gjorde vi Dansk Erhvervs gymnasieeffekt - sådan gjorde vi INDHOLD Formålet har været at undersøge, hvor dygtige de enkelte gymnasier er til at løfte elevernes faglige niveau. Dette kan man ikke undersøge blot ved

Læs mere

Konfidensintervaller og Hypotesetest

Konfidensintervaller og Hypotesetest Konfidensintervaller og Hypotesetest Konfidensinterval for andele χ -fordelingen og konfidensinterval for variansen Hypoteseteori Hypotesetest af middelværdi, varians og andele Repetition fra sidst: Konfidensintervaller

Læs mere

Sommereksamen 2015. Bacheloruddannelsen i Medicin/Medicin med industriel specialisering

Sommereksamen 2015. Bacheloruddannelsen i Medicin/Medicin med industriel specialisering Sommereksamen 2015 Titel på kursus: Uddannelse: Semester: Statistik og evidensbaseret medicin Bacheloruddannelsen i Medicin/Medicin med industriel specialisering 2. semester Eksamensdato: 16-06-2015 Tid:

Læs mere

Betinget fordeling Uafhængighed. Beregning af forventet tabel Chi-kvadrat teststatistik Chi-kvadrat test. Chi-kvadratfordelingen Agresti - Summary

Betinget fordeling Uafhængighed. Beregning af forventet tabel Chi-kvadrat teststatistik Chi-kvadrat test. Chi-kvadratfordelingen Agresti - Summary 1 Kontingenstabeller Betinget fordeling Uafhængighed 2 Chi-kvadrat test for uafhængighed Beregning af forventet tabel Chi-kvadrat teststatistik Chi-kvadrat test. Chi-kvadratfordelingen Agresti - Summary

Læs mere

MOGENS ODDERSHEDE LARSEN. VIDEREGÅENDE STATISTIK II Regressionsanalyse (TI-89 og Statgraphics)

MOGENS ODDERSHEDE LARSEN. VIDEREGÅENDE STATISTIK II Regressionsanalyse (TI-89 og Statgraphics) MOGENS ODDERSHEDE LARSEN VIDEREGÅENDE STATISTIK II Regressionsanalyse (TI-89 og Statgraphics) DANMARKS TEKNISKE UNIVERSITET 6 udgave 005 FORORD Dette notat kan læses på baggrund af en statistisk viden

Læs mere

Analyse af binære responsvariable

Analyse af binære responsvariable Analyse af binære responsvariable Susanne Rosthøj Biostatistisk Afdeling Institut for Folkesundhedsvidenskab Københavns Universitet 23. november 2012 Har mænd lettere ved at komme ind på Berkeley? UC Berkeley

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Termin Efterår 2014 Institution Niels Brock Uddannelse Fag og niveau Lærer Hold HHX Matematik - Niveau A Peter Harremoës GSK hold t14gymaau1o2 Oversigt over gennemførte undervisningsforløb

Læs mere

INDLEDNING...2 DATAMATERIALET... 2 KARAKTERISTIK AF POPULATIONEN... 4

INDLEDNING...2 DATAMATERIALET... 2 KARAKTERISTIK AF POPULATIONEN... 4 Indholdsfortegnelse INDLEDNING...2 DATAMATERIALET... 2 KARAKTERISTIK AF OULATIONEN... 4 DELOGAVE 1...5 BEGREBSVALIDITET... 6 Differentiel item funktionsanalyser...7 Differentiel item effekt...10 Lokal

Læs mere

2 0.9245. Multiple choice opgaver

2 0.9245. Multiple choice opgaver Multiple choice opgaver Der gøres opmærksom på, at ideen med opgaverne er, at der er ét og kun ét rigtigt svar på de enkelte spørgsmål. Endvidere er det ikke givet, at alle de anførte alternative svarmuligheder

Læs mere

Flerniveau modeller. Individuelt studieforløb. Efterårssemesteret 2002. Folkesundhedsvidenskab ved Københavns Universitet

Flerniveau modeller. Individuelt studieforløb. Efterårssemesteret 2002. Folkesundhedsvidenskab ved Københavns Universitet Individuelt studieforløb Efterårssemesteret 2002 Flerniveau modeller Folkesundhedsvidenskab ved Københavns Universitet Vejleder: Jørgen Holm Petersen Eksamensnummer 20 Indholdsfortegnelse 1. Indledning...3

Læs mere

Betydningen af konjunktur og regelændringer for udviklingen i sygedagpengemodtagere

Betydningen af konjunktur og regelændringer for udviklingen i sygedagpengemodtagere DET ØKONOMISKE RÅD S E K R E T A R I A T E T d. 20. maj 2005 SG Betydningen af konjunktur og regelændringer for udviklingen i sygedagpengemodtagere Baggrundsnotat vedr. Dansk Økonomi, forår 2005, kapitel

Læs mere

MPH Introduktionsmodul: Epidemiologi og Biostatistik 23.09.2003

MPH Introduktionsmodul: Epidemiologi og Biostatistik 23.09.2003 Opgave 1 (mandag) Figuren nedenfor viser tilfælde af mononukleose i en lille population bestående af 20 personer. Start og slut på en sygdoms periode er angivet med. 20 15 person number 10 5 1 July 1970

Læs mere

Ekstremregn i Danmark

Ekstremregn i Danmark Ekstremregn i Danmark Supplement til statistisk bearbejdning af nedbørsdata fra Spildevandskomiteens regnmålersystem 1979-96 Henrik Madsen August 2002 Miljø & Ressourcer DTU Danmark Tekniske Universitet

Læs mere

Dig og din puls Lærervejleding

Dig og din puls Lærervejleding Dig og din puls Lærervejleding Indledning I det efterfølgende materiale beskrives et forløb til matematik C, hvori eleverne skal måle hvilepuls og arbejdspuls og beskrive observationerne matematisk. Materialet

Læs mere

Introduktion til GLIMMIX

Introduktion til GLIMMIX Introduktion til GLIMMIX Af Jens Dick-Nielsen jens.dick-nielsen@haxholdt-company.com 21.08.2008 Proc GLIMMIX GLIMMIX kan bruges til modeller, hvor de enkelte observationer ikke nødvendigvis er uafhængige.

Læs mere

SKRIFTLIG EKSAMEN I BIOSTATISTIK OG EPIDEMIOLOGI Cand.Scient.San, 2. semester 20. februar 2015 (3 timer)

SKRIFTLIG EKSAMEN I BIOSTATISTIK OG EPIDEMIOLOGI Cand.Scient.San, 2. semester 20. februar 2015 (3 timer) D E T S U N D H E D S V I D E N S K A B E L I G E F A K U L T E T K Ø B E N H A V N S U N I V E R S I T E T B l e g d a m s v e j 3 B 2 2 0 0 K ø b e n h a v n N SKRIFTLIG EKSAMEN I BIOSTATISTIK OG EPIDEMIOLOGI

Læs mere

Statistik viden eller tilfældighed

Statistik viden eller tilfældighed MATEMATIK i perspektiv Side 1 af 9 DNA-analyser 1 Sandsynligheden for at en uskyldig anklages Følgende histogram viser, hvordan fragmentlængden for et DNA-område varierer inden for befolkningen. Der indgår

Læs mere

BOLIGØKONOMISK VIDENCENTER

BOLIGØKONOMISK VIDENCENTER BOLIGØKONOMISK VIDENCENTER WORKING PAPER FEBRUAR 2015 Fællesudgifter i ejerlejligheder Fællesudgifter i ejerlejligheder Marc Lund Andersen Februar 2015 Boligøkonomisk Videncenter 1 Indholdsfortegnelse

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin maj-juni 11/12 Institution VUC Holstebro-Lemvig-Struer Uddannelse Fag og niveau Lærer(e) Hold Hf/hfe Matematik

Læs mere

Opgave I II III IV V VI Spørgsmål (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) Svar 5 4 4 2 3 1 1 5 4 1

Opgave I II III IV V VI Spørgsmål (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) Svar 5 4 4 2 3 1 1 5 4 1 Danmarks Tekniske Universitet Side 1 af 18 sider. Skriftlig prøve: 1. juni 2005 Kursus navn og nr: Introduktion til Statistik, 02402 Tilladte hjælpemidler: Alle sædvanlige Dette sæt er besvaret af (navn)

Læs mere

Stastistik og Databehandling på en TI-83

Stastistik og Databehandling på en TI-83 Stastistik og Databehandling på en TI-83 Af Jonas L. Jensen (jonas@imf.au.dk). 1 Fordelingsfunktioner Husk på, at en fordelingsfunktion for en stokastisk variabel X er funktionen F X (t) = P (X t) og at

Læs mere

Spar Nord Banks ansøgningsscoremodel. - et ekspertbaseret ratingsystem for nye udlånskunder

Spar Nord Banks ansøgningsscoremodel. - et ekspertbaseret ratingsystem for nye udlånskunder Spar Nord Banks ansøgningsscoremodel - et ekspertbaseret ratingsystem for nye udlånskunder Mål for ansøgningsscoremodel Rating af nye udlånskunder som beskrives vha. en række variable: alder, boligform,

Læs mere

MPH specialmodul i biostatistik og epidemiologi SAS-øvelser vedr. case-control studie af malignt melanom.

MPH specialmodul i biostatistik og epidemiologi SAS-øvelser vedr. case-control studie af malignt melanom. MPH specialmodul i biostatistik og epidemiologi SAS-øvelser vedr. case-control studie af malignt melanom. For at I skal kunne regne på tallene fra undersøgelsen har vi taget en delmængde af variablene

Læs mere

Side 1 af 8. Undervisningsbeskrivelse. Stamoplysninger til brug ved prøver til gymnasiale uddannelser. Termin Maj-juni 2010/11.

Side 1 af 8. Undervisningsbeskrivelse. Stamoplysninger til brug ved prøver til gymnasiale uddannelser. Termin Maj-juni 2010/11. Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 2010/11 Institution Uddannelse Fag og niveau Lærer(e) Hold Zealand Business College Hhx Matematik

Læs mere

UNDERVISNINGSEFFEKT-MODELLEN 2006 METODE OG RESULTATER

UNDERVISNINGSEFFEKT-MODELLEN 2006 METODE OG RESULTATER UNDERVISNINGSEFFEKT-MODELLEN 2006 METODE OG RESULTATER Undervisningseffekten udregnes som forskellen mellem den forventede og den faktiske karakter i 9. klasses afgangsprøve. Undervisningseffekten udregnes

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Sommer 2015 Institution Campus vejle Uddannelse Fag og niveau Lærer(e) Hold HHX Matematik B (Valghold) PEJE

Læs mere

Bilag 1: Beregning af omkostningsækvivalenter

Bilag 1: Beregning af omkostningsækvivalenter Bilag 1: Beregning af omkostningsækvivalenter Bilaget indeholder den tekniske beregning af omkostningsækvivalenterne til brug for benchmarkingen 2013. FORSYNINGSSEKRETARIATET FEBRUAR 2013 INDLEDNING...

Læs mere

Vejledning til GYM17 Copyright Adept Nordic 2013

Vejledning til GYM17 Copyright Adept Nordic 2013 Vejledning til GYM17 Copyright Adept Nordic 2013 Vejledning i brug af Gym17-pakken... iv 1 Deskriptiv statistik... 1 1.1 Ikke-grupperede observationssæt... 1 1.2 Grupperede observationssæt... 4 2 Regressioner...

Læs mere

Bilag 1: Prisudvikling, generelt effektiviseringskrav og robusthedsanalyser FORSYNINGSSEKRETARIATET AUGUST 2014 VERSION 3

Bilag 1: Prisudvikling, generelt effektiviseringskrav og robusthedsanalyser FORSYNINGSSEKRETARIATET AUGUST 2014 VERSION 3 Bilag 1: Prisudvikling, generelt effektiviseringskrav og robusthedsanalyser FORSYNINGSSEKRETARIATET AUGUST 2014 VERSION 3 Indholdsfortegnelse Indledning Prisudvikling 2.1 Prisudviklingen fra 2014 til

Læs mere

Basal statistik for sundhedsvidenskabelige forskere, efterår 2015 Udleveret 29. september, afleveres senest ved øvelserne i uge 44 (27.-30.

Basal statistik for sundhedsvidenskabelige forskere, efterår 2015 Udleveret 29. september, afleveres senest ved øvelserne i uge 44 (27.-30. Hjemmeopgave Basal statistik for sundhedsvidenskabelige forskere, efterår 2015 Udleveret 29. september, afleveres senest ved øvelserne i uge 44 (27.-30. oktober) En undersøgelse blandt fødende kvinder

Læs mere

Vejledning til Gym18-pakken

Vejledning til Gym18-pakken Vejledning til Gym18-pakken Copyright Maplesoft 2014 Vejledning til Gym18-pakken Contents 1 Vejledning i brug af Gym18-pakken... 1 1.1 Installation... 1 2 Deskriptiv statistik... 2 2.1 Ikke-grupperede

Læs mere

Supplement til kapitel 4 Om sandsynlighedsmodeller for flere stokastiske variable

Supplement til kapitel 4 Om sandsynlighedsmodeller for flere stokastiske variable IMM, 00--6 Poul Thyregod Supplement til kapitel 4 Om sandsynlighedsmodeller for flere stokastiske variable Todimensionale stokastiske variable Lærebogens afsnit 4 introducerede sandsynlighedsmodeller formuleret

Læs mere

Side 1 af 21 sider. Danmarks Tekniske Universitet. Skriftlig prøve: 15. december 2003. Kursus navn og nr: Introduktion til Statistik, 02402

Side 1 af 21 sider. Danmarks Tekniske Universitet. Skriftlig prøve: 15. december 2003. Kursus navn og nr: Introduktion til Statistik, 02402 Danmarks Tekniske Universitet Side 1 af 21 sider Skriftlig prøve: 15. december 2003 Kursus navn og nr: Introduktion til Statistik, 02402 Tilladte hjælpemidler: Alle sædvanlige Dette sæt er besvaret af

Læs mere

Helt overordnet er der to skridt i udvælgelsen af sammenlignelige kommuner:

Helt overordnet er der to skridt i udvælgelsen af sammenlignelige kommuner: N OTAT Metode, FLIS sammenligningskommuner Dette notat præsenterer metoden bag udregning af sammenligningskommuner i FLIS. Derudover præsenteres de første tre modeller der anvendes til at finde sammenligningskommuner

Læs mere

Projekt 8.3 Hvordan undersøges om et talmateriale normalfordelt?

Projekt 8.3 Hvordan undersøges om et talmateriale normalfordelt? Projekt 8.3 Hvordan undersøges om et talmateriale normalfordelt? Projektet drejer sig om at udvikle en metode, til at undersøge om et givet talmateriale med rimelighed kan siges at være normalfordelt.

Læs mere

Baggrundsnotat: Lærernes gymnasiekarakterer og elevernes eksamensresultater

Baggrundsnotat: Lærernes gymnasiekarakterer og elevernes eksamensresultater 17. december 2013 Baggrundsnotat: Lærernes gymnasiekarakterer og elevernes eksamensresultater Dette notat redegør for den økonometriske analyse af betydningen af grundskolelæreres gennemsnit fra gymnasiet

Læs mere

Basal statistik. Logaritmer og kovariansanalyse. Nyt eksempel vedr. sammenligning af målemetoder. Scatter plot af de to metoder

Basal statistik. Logaritmer og kovariansanalyse. Nyt eksempel vedr. sammenligning af målemetoder. Scatter plot af de to metoder Faculty of Health Sciences Logaritmer og kovariansanalyse Basal statistik Logaritmer. Kovariansanalyse Lene Theil Skovgaard 29. september 2015 Parret sammenligning, målemetoder med logaritmer Tosidet variansanalyse

Læs mere

Faculty of Health Sciences. Basal statistik. Logaritmer. Kovariansanalyse. Lene Theil Skovgaard. 29. september 2015

Faculty of Health Sciences. Basal statistik. Logaritmer. Kovariansanalyse. Lene Theil Skovgaard. 29. september 2015 Faculty of Health Sciences Basal statistik Logaritmer. Kovariansanalyse Lene Theil Skovgaard 29. september 2015 1 / 84 Logaritmer og kovariansanalyse Parret sammenligning, målemetoder med logaritmer Tosidet

Læs mere

Reeksamen i Statistik for biokemikere. Blok 3 2007.

Reeksamen i Statistik for biokemikere. Blok 3 2007. Københavns Universitet Det Naturvidenskabelige Fakultet Reeksamen i Statistik for biokemikere. Blok 3 2007. Opgave 1. 3 timers skriftlig prøve. Alle hjælpemidler - også blyant - er tilladt. Opgavesættet

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin aug-juni 10/11 Institution Campus Vejle Handelsgymnasie Uddannelse Fag og niveau Lærer(e) Hold HHX Statistik

Læs mere

Schweynoch, 2003. Se eventuelt http://www.mathematik.uni-kassel.de/~fathom/projekt.htm.

Schweynoch, 2003. Se eventuelt http://www.mathematik.uni-kassel.de/~fathom/projekt.htm. Projekt 8.5 Hypotesetest med anvendelse af t-test (Dette materiale har været anvendt som forberedelsesmateriale til den skriftlige prøve 01 for netforsøget) Indhold Indledning... 1 χ -test... Numeriske

Læs mere

INTRODUKTION TIL dele af SAS

INTRODUKTION TIL dele af SAS INTRODUKTION TIL dele af SAS Der er flere forskellige angrebsvinkler ved statistiske analyser i SAS. Vi skal her kun beskæftige os med to af disse, nemlig Direkte programmering. Brug af SAS ANALYST Hvilken

Læs mere

Eksponentielle modeller

Eksponentielle modeller Eksponentielle modeller Fag: Matematik A og Informationsteknologi B Vejledere: Jørn Christian Bendtsen og Karl G Bjarnason Side 1 af 20 Indholdsfortegnelse Introduktion 1.Indledning... 3 2. Formål... 3

Læs mere

1 enote 1: Simple plots og deskriptive statistik. 2 enote2: Diskrete fordelinger. 3 enote 2: Kontinuerte fordelinger

1 enote 1: Simple plots og deskriptive statistik. 2 enote2: Diskrete fordelinger. 3 enote 2: Kontinuerte fordelinger Kursus 02402/02323 Introduktion til statistik Forelæsning 13: Et overblik over kursets indhold Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Building 324, Room 220 Danish Technical University

Læs mere

Referencelaboratoriet for måling af emissioner til luften

Referencelaboratoriet for måling af emissioner til luften Referencelaboratoriet for måling af emissioner til luften Rapport nr.: 77 Titel Hvordan skal forekomsten af outliers på lugtmålinger vurderes? Undertitel - Forfatter(e) Arne Oxbøl Arbejdet udført, år 2015

Læs mere

Dansk Erhvervs gymnasieeffekt - sådan gjorde vi

Dansk Erhvervs gymnasieeffekt - sådan gjorde vi Dansk Erhvervs gymnasieeffekt - sådan gjorde vi AF ANALYSECHEF GEERT LAIER CHRISTENSEN, CAND. SCIENT. POL. OG MAKROØKONOMISK MEDARBEJDER ASBJØRN HENNEBERG SØRENSEN, BA.POLIT. Formål Formålet har været

Læs mere

EVALUERINGSENHEDEN. Analyse af karaktereffekten af. deltagelse i manuduktion på HA 2. år. Copenhagen Business School

EVALUERINGSENHEDEN. Analyse af karaktereffekten af. deltagelse i manuduktion på HA 2. år. Copenhagen Business School EVALUERINGSENHEDEN Copenhagen Business School Analyse af karaktereffekten af deltagelse i manuduktion på HA 2. år 12. april 2011 INDHOLD 1. Undersøgelsens metode og formål 3 1.1. Evalueringernes gennemførelse.

Læs mere

MAT A HHX FACITLISTE TIL KAPITEL 8. Øvelser. Øvelse 1 Graf tegnes med CAS. Øvelse 2. Bedste rette linie: Øvelse 3. Øvelse 4.

MAT A HHX FACITLISTE TIL KAPITEL 8. Øvelser. Øvelse 1 Graf tegnes med CAS. Øvelse 2. Bedste rette linie: Øvelse 3. Øvelse 4. 1 af 12 MAT A HHX Udskriv siden FACITLISTE TIL KAPITEL 8 Øvelser Øvelse 1 Graf tegnes med CAS. Øvelse 2 Bedste rette linie: Øvelse 3 Bedste rette linie: Øvelse 4 Bedste rette linie: Øvelse 5 ad øvelse

Læs mere

Eksamen ved. Københavns Universitet i. Kvantitative forskningsmetoder. Det Samfundsvidenskabelige Fakultet

Eksamen ved. Københavns Universitet i. Kvantitative forskningsmetoder. Det Samfundsvidenskabelige Fakultet Eksamen ved Københavns Universitet i Kvantitative forskningsmetoder Det Samfundsvidenskabelige Fakultet 14. december 2011 Eksamensnummer: 5 14. december 2011 Side 1 af 6 1) Af boxplottet kan man aflæse,

Læs mere

Statistik med TI-Nspire CAS version 3.2. Bjørn Felsager September 2012. [Fjerde udgave]

Statistik med TI-Nspire CAS version 3.2. Bjørn Felsager September 2012. [Fjerde udgave] Statistik med TI-Nspire CAS version 3.2 Bjørn Felsager September 2012 [Fjerde udgave] Indholdsfortegnelse Forord Beskrivende statistik 1 Grundlæggende TI-Nspire CAS-teknikker... 4 1.2 Lister og regneark...

Læs mere

Statistik for ankomstprocesser

Statistik for ankomstprocesser Statistik for ankomstprocesser Anders Gorst-Rasmussen 20. september 2006 Resumé Denne note er en kortfattet gennemgang af grundlæggende statistiske værktøjer, man kunne tænke sig brugt til at vurdere rimeligheden

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Institution Uddannelse Fag og niveau Lærer Hold IBC Aabenraa HHX Matematik C Lars Erik Henriksen 1HHI 1 Funktioner og polynomier a) Lave en grafisk funktionsanalyse. 1. Definitionsmængde.

Læs mere

Analyse af sociale baggrundsfaktorer for elever, der opnår bonus A

Analyse af sociale baggrundsfaktorer for elever, der opnår bonus A Analyse af sociale baggrundsfaktorer for elever, der opnår bonus A Analyse af sociale baggrundsfaktorer for elever, der opnår Bonus A Forfattere: Jeppe Christiansen og Lone Juul Hune UNI C UNI C, juni

Læs mere

Introduktion til overlevelsesanalyse

Introduktion til overlevelsesanalyse Faculty of Health Sciences Introduktion til overlevelsesanalyse Kaplan-Meier estimatoren Susanne Rosthøj Biostatistisk Afdeling Institut for Folkesundhedsvidenskab Københavns Universitet sr@biostat.ku.dk

Læs mere

Bilag til Statistik i løb : Statistik og Microsoft Excel tastevejledning / af Lars Bo Kristensen

Bilag til Statistik i løb : Statistik og Microsoft Excel tastevejledning / af Lars Bo Kristensen Bilag til Statistik i løb : Statistik og Microsoft Excel tastevejledning / af Lars Bo Kristensen Microsoft Excel har en del standard anvendelsesmuligheder i forhold til den beskrivende statistik og statistisk

Læs mere

1 enote 1: Simple plots og deskriptive statistik. 2 enote 2: Diskrete fordelinger. 3 enote 2: Kontinuerte fordelinger

1 enote 1: Simple plots og deskriptive statistik. 2 enote 2: Diskrete fordelinger. 3 enote 2: Kontinuerte fordelinger Kursus 02402/02323 Introduktion til statistik Forelæsning 13: Et overblik over kursets indhold Peder Bacher DTU Compute, Dynamiske Systemer Building 303B, Room 017 Danish Technical University 2800 Lyngby

Læs mere

Betydning af elevernes sociale baggrund. Undervisningsministeriet

Betydning af elevernes sociale baggrund. Undervisningsministeriet Betydning af elevernes sociale baggrund Undervisningsministeriet Betydning af elevernes sociale baggrund Pointe 1: Der er flest fagligt svage elever på hf...... 4 Pointe 2: Et fagligt svagt elevgrundlag

Læs mere

Københavnske ejerlejlighedspriser en meget begrænset indikator for hele landets boligmarked

Københavnske ejerlejlighedspriser en meget begrænset indikator for hele landets boligmarked N O T A T Københavnske ejerlejlighedspriser en meget begrænset indikator for hele landets boligmarked Baggrund og resume Efter i årevis at have rapporteret om et fastfrosset boligmarked, har de danske

Læs mere

Gennemsnit og normalfordeling illustreret med terningkast, simulering og SLUMP()

Gennemsnit og normalfordeling illustreret med terningkast, simulering og SLUMP() Gennemsnit og normalfordeling illustreret med terningkast, simulering og SLUMP() John Andersen, Læreruddannelsen i Aarhus, VIA Et kast med 10 terninger gav følgende udfald Fig. 1 Result of rolling 10 dices

Læs mere

Baggrundsnotat: Søskendes uddannelsesvalg og indkomst

Baggrundsnotat: Søskendes uddannelsesvalg og indkomst 17. december 2013 Baggrundsnotat: Søskendes uddannelsesvalg og indkomst Dette notat redegør for den økonometriske analyse af indkomstforskelle mellem personer med forskellige lange videregående uddannelser

Læs mere

Kursusindhold: X i : tilfældig værdi af ite eksperiment. Antag X i kun antager værdierne 1, 2,..., M.

Kursusindhold: X i : tilfældig værdi af ite eksperiment. Antag X i kun antager værdierne 1, 2,..., M. Kursusindhold: Produkt og marked - matematiske og statistiske metoder Rasmus Waagepetersen Institut for Matematiske Fag Aalborg Universitet February 9, 2015 Sandsynlighedsregning og lagerstyring Normalfordelingen

Læs mere

To-sidet varians analyse

To-sidet varians analyse To-sidet varians analyse Repetition En-sidet ANOVA Parvise sammenligninger, Tukey s test Model begrebet To-sidet ANOVA Tre-sidet ANOVA Blok design SPSS ANOVA - definition ANOVA (ANalysis Of VAriance),

Læs mere

Kapitel 4 Sandsynlighed og statistiske modeller

Kapitel 4 Sandsynlighed og statistiske modeller Kapitel 4 Sandsynlighed og statistiske modeller Peter Tibert Stoltze stat@peterstoltze.dk Elementær statistik F2011 1 Indledning 2 Sandsynlighed i binomialfordelingen 3 Normalfordelingen 4 Modelkontrol

Læs mere

Kildeopsplitning. - Ska' vi holde balancen fremover? Asger Roer Pedersen Afd. f. Ferskvandsøkologi Danmarks Miljøundersøgelser

Kildeopsplitning. - Ska' vi holde balancen fremover? Asger Roer Pedersen Afd. f. Ferskvandsøkologi Danmarks Miljøundersøgelser Kildeopsplitning - Ska' vi holde balancen fremover? Asger Roer Pedersen Afd. f. Ferskvandsøkologi Danmarks Miljøundersøgelser NOVANA Erik Jeppesen (ca. 1992): - Det er verdens bedste datasæt!!! Vandbalancer

Læs mere

Anvendt Statistik Lektion 4. Hypotesetest generelt Test for middelværdi Test for andele

Anvendt Statistik Lektion 4. Hypotesetest generelt Test for middelværdi Test for andele Anvendt Statistik Lektion 4 Hypotesetest generelt Test for middelværdi Test for andele Hypoteser og Test Hypotese I statistik er en hypotese en påstand om en populationsparameter. Typisk en påstand om

Læs mere

Matematik A. Studentereksamen. Forberedelsesmateriale til de digitale eksamensopgaver med adgang til internettet

Matematik A. Studentereksamen. Forberedelsesmateriale til de digitale eksamensopgaver med adgang til internettet Matematik A Studentereksamen Forberedelsesmateriale til de digitale eksamensopgaver med adgang til internettet stx11-matn/a-080501 Tirsdag den 8. maj 01 Forberedelsesmateriale til stx A Net MATEMATIK Der

Læs mere

Kap2: Suttons nedre grænse for markedskoncentrationen

Kap2: Suttons nedre grænse for markedskoncentrationen Side 1 af 8 Kap2: Suttons nedre grænse for markedskoncentrationen Den teoretiske model er oprindeligt udviklet af John Sutton. Sutton har bl.a. beskrevet modellen i bøgerne "Sunk Costs and Market Structure

Læs mere

Projekt 1 Spørgeskemaanalyse af Bedst på Nettet

Projekt 1 Spørgeskemaanalyse af Bedst på Nettet Projekt 1 Spørgeskemaanalyse af Bedst på Nettet D.29/2 2012 Udarbejdet af: Katrine Ahle Warming Nielsen Jannie Jeppesen Schmøde Sara Lorenzen A) Kritik af spørgeskema Set ud fra en kritisk vinkel af spørgeskemaet

Læs mere

Fokus på køns betydning for løn

Fokus på køns betydning for løn Juli 2010 Fokus på køns betydning for løn Er der forskel på, hvad mænd og kvinder tjener, når de har en videregående uddannelse som ingeniør, cand. scient. eller anden naturvidenskabelig uddannelse og

Læs mere