Dynamisk geometri i skolen med GeoGebra

Størrelse: px
Starte visningen fra side:

Download "Dynamisk geometri i skolen med GeoGebra"

Transkript

1 Dynamisk geometri i skolen med GeoGebra Der tages udgangspunkt i GeoGebra version 3,2 udgivet juni 2009 dog er nogle skærmdumps fra tidligere versioner af programmet. Projektleder: Markus Hohenwarter, Florida Atlantic University, Mathematical Sciences. GeoGebra er et dynamisk matematik værktøj som både kan arbejde med algebra og geometri. GeoGebra har modtaget flere internationale anerkendelser, og både europæiske og tyske undervisningspriser. Ovenstående er citater fra GeoGebras hjemmeside Tech Awards 2009: Markus receiving the Tech Award in Education for GeoGebra. 1

2 Side: Indhold: 1 Forside 2 Indholdsfortegnelse 3 Indledning 3 Brugerflade 4-6 Små indledende øvelser for nybegyndere 6-18 Hvordan kan dynamisk geometri understøtte intentionerne i Fælles Mål? Eksempel 1: Lav en flot flisebelægning med ens regulære polygoner Eksempel 2: Højder i trekanter Eksempel 3: Cirklers areal Eksempel 4: Hvornår kan en trekant konstrueres? Eksempel 5: Hvilke polygoner har en omskreven cirkel? Eksempel 6: Hvor høj er skolens flagstang? Eksempel 7: Den rette linje og symbolbehandlingskompetencen Eksempel 8: Den generelle formel for den rette linje: y = ax + b Eksempel 9: Hvornår er Tokyo og Delhi lige store? Eksempel 10: Hvornår døde Gravballemanden Konkrete tasteeksempler Eksempel 1: Undersøg egenskaber ved et linjestykkes midtnormal Eksempel 2: Lav en trekant og konstruer dens omskrevne cirkel Eksempel 3: Tegn en trekant ud fra givne oplysninger Eksempel 4: Konstruktion med 2 løsninger Eksempel 5: Analyse ved hjælp af kulstof 14 Eksempel 6: Afbildning af funktioner, som er defineret i bestemte intervaller Brug af regneark i GeoGebra Eksempel 1: Pris på æbler Eksempel 2: Regressionslinje Eksempel 3: Herons formel 35 GeoGebraWiki herunder vejledning til elever 36 Eksempler på typiske fejl Undersøgelseslandskabet Hvordan undgår vi burhøns? Ideer til opgaver og problemstillinger 2

3 Indledning Der er flere (heraf to oplagte) muligheder for at komme i gang. 1. Fra hjemmesiden kan du vælge Download Download GeoGebra. Herefter installerer du programmet på din maskine. Fordel: Du kan arbejde med programmet, selvom du ikke er på nettet, men du får ikke automatisk adgang til den nyeste version. 2. Du kan vælge Webstart. Denne fremgangsmåde sikrer, at du altid arbejder med den sidst opdaterede version af programmet. Programmet forbedres løbende, og på hjemmesiden kan du følge med i, hvad der for tiden arbejdes med. Hvis programmet ikke åbnes på dansk, vælger du sprog under Options Language. 3. Som noget nyt kan du også vælge Applet Start. Jeg har ikke umiddelbar et bud på, hvornår det er en fordel at bruge denne mulighed. 4. Hvis du er interesseret i at følge med i udviklingen af programmet, kan du gå ind under Fremtid - GeoGebra Pre-Release, hvor du kan afprøve den version, de p.t. er i gang med at udvikle. Hvis programmet ikke virker, skyldes det sikkert, at du ikke har en nyere JAVA-version installeret. Den kan hentes på I forhold til 8. udgave af vejledningen, er der nu også eksempler på brug af regneark. Brugerfladen: 3

4 Små indledende øvelser: OBS: Hvis et eller andet ikke fungerer, som du forventer, skal du nok vælge en anden tilstand. Dette ses til højre for ikonerne her Polygon. Kender du programmet, kan du helt eller delvist springe over følgende øvelser. Sådan fungerer det: I menulinjen under Vis kan koordinatsystemet vises og fjernes. Det samme gælder gitter. På værktøjslinjens ikoner er der små pile, hvor man kan få en rullemenu frem. Ændringer af koordinatsystemet alene ved hjælp af musen Forholdet mellem akserne kan ændres, så der er forskellige afstande mellem enhederne på de to akser. Dette gøres ved at højreklikke på tegnefladen og vælge xakse:yakse. Prøv selv: Afprøv mulighederne. Sørg for at koordinatsystemet vises. Undersøg de enkelte rullemenuer og find en metode til at flytte koordinatsystemet, samt til at gøre det større eller mindre. Prøv at ændre størrelsen af koordinatsystemet ved hjælp af hjulet på musen. Du kan også ændre enhederne på de enkelte akser ved at trække i dem. For at udnytte denne mulighed, skal du have aktiveret Flyt tegneflade Indret koordinatsystemet, så afstanden mellem enhederne på y-aksen er halvt så store som mellem enhederne på x-aksen. Afprøv selv andre muligheder. Afsat 2 punkter Programmet opererer med frie objekter og afhængige objekter. Bemærk: I tidligere udgaver af programmet kunne man kun trække i uafhængige objekter. Det gælder ikke mere. Nu kan man også ofte trække i de afhængige objekter Programmet er dynamisk. og tegn en linje igennem dem. I algebravinduet kan du nu se, at punkterne er frie objekter, medens linjen er afhængig. Overvej hvorfor. I algebravinduet kan du se linjens ligning, men formen er måske ikke, som du er vant til at se den. Det kan ændres ved at højreklikke på ligningen at vælge Ligning y=ax+b. Prøv herefter at trække i et af de to 4

5 Der betyder, at der kan eksperimenteres med de tegnede objekter. Hjælpe objekter De frie objekters værdier i algebravinduet kan ændres. Oplysningerne under afhængige objekter kan ændre form. I Input-ruden kan indtastes beregninger, ligninger, funktioner m.m. Bemærk: Funktioner kan indtastes på formen y = ax + b eller f(x) = ax + b. punkter. Prøv også at trække i linjen. Hvad sker der i algebravinduet, når du trækker i objekterne? Denne mappe kan vi få frem og fjerne igen ved at benytte menupunktet Vis. Prøv at overføre objekter til denne mappe ved at højreklikke på dem og vælge Egenskaber... Herefter kan mappen Hjælpeobjekter skjules igen. På denne måde kan du fjerne forstyrrende oplysninger fra algebravinduet. Dobbeltklik på et af punkterne og indsæt et nyt koordinatsæt. Hvad sker der på tegnefladen? Højreklik på udtrykket for linjen og vælg Ligning y = ax + b. Prøv følgende og se, hvad der sker (husk hver gang at taste Enter ) (3,5) A=(3,6) (4.2,8.9) y = 3x+2 f(x) = 2x^2 + 3x -1 Læg mærke til, hvad der sker, hvis du herefter indtaster: y = sin(x) f(x) = 1/x Gitterpunkter er punkter, hvor begge værdier er hele tal. Hvis musen placeres tæt på et gitterpunkt, vælges dette. Genveje til at finde arealer og længder. Sæt gitteret på, hvis det ikke er sat på. Prøv at afsætte nogle gitterpunkter på tegnefladen. Prøv at trække punkterne til andre gitterpunkter. Tegn en polygon husk at afslutte ved at klikke på begyndelsespunktet. Klik på din polygon for at finde arealet. Klik på en side og herefter indeni polygonen. Hvad er forskellen? Med musen kan du flytte målene til en 5

6 hensigtsmæssig position på figuren. Kommando.. Prøv nogle af værktøjerne under Kommando-. findes nederst til højre. Eksempel: Afsæt to punkter A og B og vælg Ellipse. Du skriver nu fx Ellipse[A,B,4]. Undersøg hvad der sker, når du flytter rundt med punkterne. Hvordan kan dynamisk geometri understøtte intentionerne I Fælles Mål? I det følgende nogle af mine ideer til brug af GeoGebra ud fra eksempler fra Fælles Mål Ideerne er ikke afprøvet på folkeskoleelever bortset fra eksempel 4. Jeg har kun i begrænset omfang vist, hvordan man bruger programmet rent teknisk, men i næste afsnit i denne vejledning er der konkrete tasteeksempler. I) Trinmål efter 6. klasse: bruge it til at undersøge og konstruere geometriske figurer. Eksempel 1: Lav en flot flisebelægning med ens regulære polygoner. Her er der et lille undersøgelseslandskab, hvor eleverne selv kan gå på opdagelse. Der vil sikkert komme eksempler med både trekanter, firkanter og sekskanter. Her et eksempel med sekskanter. 6

7 OBS: Man ville få en pænere flisebelægning, hvis man skjulte punkterne. Undersøgelser med andre regulære polygoner vil vise, at de ikke kan dække en flade uden huller. Hvis eleverne ved, at en cirkel er på 360 o, kan de slutte sig til, at den ligesidede trekant har vinkler på 60 0, kvadratet på 90 0 og den regulære sekskant på Et hint kunne være: Se på hvor mange vinkler der mødes i hvert hjørne. En udfordring til den stærke elev: Hvorfor er der ikke andre regulære polygoner, som kan bruges? Et argument kunne være: Efter 120 er det næste tal, som går op i 360, tallet 180, og man kan jo ikke lave polygoner med vinkler på 180 o! Bemærk: Man kunne begynde arbejdet med fliselægningsproblemstillingen ved hjælp af Geometriske brikker, som kan købes ved Matematiklærerforeningen for øre pr. stk. Se Eksempel 2: Højder i trekanter 7

8 Tegn en spidsvinklet trekant og undersøg, hvordan højderne ligger i forhold til hinanden. Ved at trække i hjørnerne ser eleverne, at højderne altid skærer hinanden i samme punkt. En udfordring til de stærke: Hvad sker der, hvis trekanten er retvinklet eller stumpvinklet? Eksempel 3: Cirklers areal. Hvad sker der med cirklens areal, hvis vi ændrer radius fx gør den dobbelt så stor? En umiddelbar elevreaktion vil nok være, at arealet bliver dobbelt så stort. Efter at have opdaget, at arealet bliver 4 gange så stort, kan skrappe elever udfordres med spørgsmål som: Hvad sker der, hvis radius gøre 3 gange så stor? 4 gange så stor? Osv. Kan I finde et system? Eksempel 4: Hvornår kan en trekant konstrueres? Forslag til værktøjer: 8

9 Prøv at konstruere følgende 6 trekanter: AB BC AC 1 3 cm 3 cm 3 cm 2 3 cm 4 cm 5 cm 3 3 cm 3 cm 2 cm 4 5 cm 8 cm 2 cm 5 5 cm 8 cm 3 cm 6 2,5 cm 3,5 cm 4,5 cm Kan du lave en regel for, hvornår en trekant kan konstrueres? Et tilsvarende forløb er afprøvet af Anne Bavnbæk i 4. års praktik II) Vi vil nu se på følgende trinmål for 9. klasse: bruge it til tegning, undersøgelser, beregninger og ræsonnementer vedrørende geometriske figurer undersøge, systematisere og ræsonnere med henblik på at generalisere Eksempel 5: Vi ser på et rent matematisk problem: Hvilke polygoner har en omskreven cirkel? a) Lad os begynde med at se på trekanter: Vi laver en vilkårlig trekant, finder midtnormalernes skæringspunkt og tegner en cirkel, som går gennem alle 3 vinkelspidser. Mon vi var heldige? Vi ændrer nu på trekantens udseende ved at trække i punkterne. Uanset hvor meget vi ændrer udseendet af vores trekant, følger cirklen med. Vi vil herefter nok konkludere, at alle trekanter har en omskreven cirkel. Når jeg formulerer det på denne måde, skyldes det, at der ikke er tale om et matematisk bevis. 9

10 Det eksperimenterende arbejde i GeoGebra udgør den induktive fase i arbejdet. Bevisdelen udgør den deduktive fase. Den matematiske begrundelse (beviset) vil i dette tilfælde være så enkelt, at i hvert fald en stor del af eleverne vil kunne forstå det: Det kunne fx ske på følgende måde (se skærmdump nedenfor). Eleven tegner et linjestykke med tilhørende midtnormal. På midtnormalen afsættes et frit punkt C, som automatisk låses til linjen. Eleven kan nu flytte C til nye positioner på midtnormalen og samtidig hold øje med, hvad der sker i algebravinduet. Eleven skulle nu gerne opdage, at de to afstande altid er den samme (det er selvfølgelig heller ikke et matematisk bevis, men alle beviser bygger på grundsætninger eller aksiomer, som ikke bevises). Når eleven har erkendt, at alle punkter på en midtnormal har samme afstanden til 2 punkter, vil det være let at erkende, at skæringspunktet mellem 2 midtnormaler har samme afstand til 3 punkter. Hvis denne afstand bruges som radius, må der således kunne tegnes en cirkel, som går igennem alle 3 vinkelspidser. b) Vi vil nu se på firkanter: Eleverne vil sikkert hurtigt finde ud af, at alle kvadrater har en omskreven cirkel og sikkert også, at det gælder for alle rektangler. Under elevernes fortsatte undersøgelse vil der sikkert dukke forslag op. Tænkt eksempel: Elev: Jeg har lavet en drage, som kan lige inden i en cirkel! Lærer: Rører cirklen alle 4 vinkelspidser? Elev: Ja, jeg flyttede bare lidt på det øverste punkt! Lærer: Mon det gælder alle drager? Elev: Det ved jeg ikke. Hvis jeg gør den mere spids, så..! Nej det gælder ikke alle drager! 10

11 Hvis der ikke er elever, som hurtigt kommer med nye ideer, kunne læreren komme med det første hint: I stedet for at begynde med at tegne firkanten, kunne vi i stedet begynde med at tegne en cirkel og afsætte 4 punkter på cirkelperiferien, som vi forbinder til en firkant, så kunne vi eksperimentere med firkanten for at finde fælles egenskaber. Det er imidlertid svært at finde fælles egenskaber. Man kunne evt. begynde med at finde typer, som ikke har en omskreven firkant: Med udfordrende spørgsmål kunne eleverne sikkert finde frem til: Ingen konkave firkanter har en omskreven firkant. Romber har kun, hvis vinklerne er rette (kvadrater). Trapezer har ikke, med mindre de er ligebenede. Næste hint kunne være at opfordre til at undersøge vinklerne: Bemærk: En række oplysninger fra algebravinduet er flyttet til mappen Hjælpe objekter, som efterfølgende er skjult. For at gøre tallene mere overskuelige, angives tallene uden decimaler. Er der brug for endnu et hint: Undersøg summen af modstående vinkler. Disse summer bliver altid 180 o! Hvis dette skal begrundes matematisk, kræver det kendskab til periferivinkler: En periferivinkel er halvt så mange grader som den bue, den spænder over. Denne viden har eleverne måske ikke. Da to modstående vinkler tilsammen spænder over hele cirklen, som er 360 o, må de 2 vinkler samlet være 180 o. De elever, som fortsætter undersøgelsen, vil fx nå frem til, at alle regulære polygoner har en omskreven cirkel. Eksempel 6: Hvor høj er skolens flagstang? (en landmålingsproblemstilling): Problem: Eleverne diskuterer, hvor høj skolens flagstang er. Solen skinner, så du foreslår dem, at de finder skyggens længde og måler solhøjden med en teodolit. 11

12 Skyggens længde måles til 5,3 m og solhøjden til 57 o. Eleverne kender ikke til trigonometri, så hvordan kommer de videre? 1) De kunne lave en tegning med traditionelle tegnerekvisitter ud fra de målte værdier fx i målestoksforholdet 1:100 og herefter måle højden. 2) De kan indtaste værdierne i INFA-programmet Trigonometri, som tegner figuren og viser de manglende værdier. 3) Løsningen findes ved hjælp af GeoGebra: Bemærk: Jeg har her vist et eksempel på, hvordan man for overskuelighedens skyld kan skjule frie og afhængige objekter. Desuden har jeg overført de relevante dele til Hjælpe objekter, som til gengæld vises. Hjælpeobjekter kan således bruges til både at skjule og vise oplysninger. Læseplanen for faget matematik 3. forløb Klassetrin Beskrivelse af både lineære og ikke-lineære sammenhænge indgår i forbindelse med funktionsbegrebet. Desuden indgår begreberne ligefrem og omvendt proportionalitet. Arbejdet med funktionsbegrebet skal foregå i nært samspil med praktiske problemstillinger fra dagligliv, samfundsliv og naturforhold. It kan med fordel anvendes i udforskningen af sammenhængen Under matematiske kompetencer efter 9. klassetrin står der: forstå og benytte variable og symboler, bl.a. når regler og sammenhænge skal vises, samt oversætte mellem dagligsprog og symbolsprog (symbolbehandlingskompetence). kende forskellige hjælpemidler, herunder it, og deres muligheder og begrænsninger, samt anvende dem hensigtsmæssigt, bl.a. til eksperimenterende udforskning af matematiske sammenhænge, til beregninger og til præsentationer (hjælpemiddelkompetence). Under Arbejdsmåder for samme klassetrin står der: undersøge, systematisere og ræsonnere med henblik på at generalisere. 12

13 Eksempel 7: Den rette linje og symbolbehandlingskompetencen. Danske skoleelever har løst massevis af rene matematikopgaver af typen: Tegn det grafiske billede af y = x +1. Løsningen vil for mange ske rent mekanisk ved fx at udfylde et sildeben og indsætte værdierne i et koordinatsystem. Men hvor mange vil egentlig kunne afkode formlen og udtrykke sammenhængen noget i retning af: Vi har to størrelser, hvor den ene altid er en større end den anden? Det vil antagelig hjælpe at koble til praktiske problemer, som Fælles Mål anfører. Her vil jeg vise et eksempel, som måske kan støtte eleverne i denne afkodningsproces: I GeoGebra kunne eleverne lave en lille undersøgelse: Indtast i Inputfeltet y=x+1 og afsæt et punkt A på den tegnede linje. (Bemærk: Punktet er nu låst til linjen, men kan flyttes til andre positioner på linjen). Flyt rundt med punktet A og find ud af, om der er en sammenhæng mellem de 2 koordinater. Når der arbejdes med begreber, er det vigtigt, at de præsenteres på flere forskellige måder. Ved den traditionelle sildebensfremgangsmåde begynder eleverne med at finde koordinater, og tegner herefter linjen. Her er fremgangsmåden omvendt. Eksempel 8: Den generelle formel for den rette linje: y = ax + b. Vi vil nu se et eksempel på, hvordan eleverne kan arbejde eksperimenterende med den generelle formel for den rette linje y = ax +b, hvor de skal finde betydningen af parametrene a og b: Undersøgelsen begynder med at eleverne indsætter 2 skydere, som fx kan lige mellem -5 og 5. I Inputfeltet indtastes y = a*x + b. Herefter kan eleverne gå i gang med undersøgelsen. 13

14 Først kunne der trækkes i skyderen a, så b fastholdes. Herefter fastholdes a og b undersøges. Bl.a. for at styrke kommunikationskompetencen er det vigtigt, at eleverne sætter ord på deres iagttagelser. III) I den vejledende læseplan fra Fælles Mål er der under 10. klasse anført følgende: Beskrivelse af både lineære og ikke-lineære sammenhænge indgår i forbindelse med funktionsbegrebet. På 10. klassetrin lægges der særlig vægt på at arbejde med procentuel vækst i forskellige sammenhænge. Desuden indgår begreberne ligefrem og omvendt proportionalitet. It kan med fordel anvendes i udforskningen af sammenhængen mellem funktionsforskrifter og grafer. Undervisningen skal fortsat forankres i overskuelige forhold fra hverdagen og den samfundsmæssige udvikling. I takt med, at eleverne gradvis møder mere komplicerede problemstillinger, øges kravene til en mere bevidst brug af de matematiske kompetencer i arbejdet med problemstillingerne. Undervisningen skal give eleverne mulighed for at bruge matematikken som et redskab til at behandle problemstillinger knyttet til dagligdagen og den samfundsmæssige udvikling, herunder økonomi, teknologi og miljø. Eleverne skal arbejde med matematiske modeller, fx formler og funktioner, samt anvendelse af enkle matematiske modeller i forbindelse med brug af computeren til undersøgelser og beskrivelser af samfundsmæssige forhold. Når Fælles Mål nævner procentuel vækst, hvad er det så? Ved opsalg i Det Digitale Matematikleksikon af Jørgen Ole Knudsen, alinea 2005, får vi: 14

15 Der er tale om en eksponentiel vækst når en sammenhæng kan beskrives med forskriften f(x) = b * a x, hvor a og b er positive tal. En eksponentiel vækst kaldes også en eksponentiel udvikling eller en konstant relativ vækst. For a = 1 + p kaldes p for den procentuelle vækst eller vækstraten. Det undrer mig, at der på C-niveau i ungdomsuddannelserne stadig indgår logaritmer. Der kan for mig at se kun være 2 grunde: Bruges i visse typer beviser. Bruges til at løse problemstillinger, hvor eksponentialfunktioner kan bruges som modeller. Beviser vægtes imidlertid meget lavt på C-niveau, så det kan ikke være begrundelsen. Nu skal vi se, at den anden begrundelse også er tynd, da problemstillinger med eksponentiel vækst kan løses ved hjælp af moderne IT-værktøjer. Vi vil nu se et par eksempler, hvor eleverne ved hjælp af GeoGebra kan arbejde med vækst uden kendskab til logaritmer. Problemer kan dog også løses ved hjælp af solve i et CAS-program. I eksempel 9 har vi en eksponentielt voksende funktioner og i eksempel 10 en eksponentielt aftagende funktion. Eksempel 9: Hvornår er Tokyo og Delhi lige store? I var forventningerne til det nye årtusinde, at Tokyo i år 2000 ville få et indbyggertal på 20 mio. med en årlig vækstrate på 0,5 % og Delhi et indbyggertal på 13 mio. med en vækstrate på 4,6%. En problemstilling kunne være: Hvornår vil de 2 byer være lige store? I algebravinduet kan vi se formlerne, der beskriver de 2 eksponentielle udviklinger. Som det ses, er der også mulighed for at indsætte en konkluderende tekst på tegnefladen, hvis man ønsker det. 1 Tor Nørretranders i Asiatisk i vælde er angsten fra Person på en planet, Aschehoug. 15

16 Hvis vi ser på de 8 kompetencer, vil der bl.a. være gode muligheder for her at arbejde med modelleringskompetencen. Her et eksempel, der kunne udfordre de stærke elever: Hvis vi antager, at leverne har mulighed for at få fat i oplysninger om de 2 byers indbyggertal i 2000 og 2007, kan de Undersøge hvor god modellen er. Korrigere modellen Undersøge hvad en ændring af modellerne betyder for svaret på spørgsmålet: Hvordan kan eleverne korrigere modellen? Lad os antage, at indbyggertallet i år 2000 var på 12,9 mio. og i 2007 på 16,5 mio. Heraf kan vi x konkludere, at funktionen er af formen f ( x) = 12, 9 a, hvis der tages udgangspunkt i året Eleverne kan nu prøve sig frem. De kan på forhånd se, at væksten må være mindre en 4,6%. De prøver måske at ændre det til 3,0 % og ser, at det er for lidt. Efter nogle forsøg kan man se, at den bedste model, hvor væksten er angivet i procent med 1 decimal, er 3,6 % - se følgende graf: 16

17 Eksempel 10: Hvornår døde Gravballemanden? Når en levende organisme dør, vil andelen af C14 (kulstof 14) henfalde efter forskriften x f ( x) = 100 0, Da Gravballemanden i 1952 blev fundet, var der 76% C14 tilbage. Hvornår døde han? 17

18 Konkrete tasteeksempler: Eksempel 1: Undersøg egenskaber ved et linjestykkes midtnormal Forslag til fremgangsmåde: Antag at linjestykket hedder PQ. Fjern koordinatsystemet, hvis du synes, det virker generende. Angiv fx længden til 8. Linjestykkets endepunkter får automatisk navnene A og B. De kan omdøbes ved at højreklikke på dem og Omdøb. Du kan fjerne uønskede navne ved at højreklikke på dem og fjerne fluebenet ved Vis navn. Klik på linjestykket. og Afsæt et punkt på midtnormalen og forbind det til P og Q med linjestykker. Prøv at gøre dem stiplede ved at højreklikke på dem - Egenskaber -! 18

19 I algebravinduet er anført en række oplysninger, som kan sløre det, som vi vil fokusere på i dette tilfælde afstandene c og d. Vi kan flytte de irrelevante oplysninger til en mappe Hjælpe objekter : Vis Hjælpe objekter. Træk A frem og tilbage på midtnormalen og undersøg afstandene til P og Q i algebravinduet. Hvad opdager du? Eksempel 2: Lav en trekant og konstruer dens omskrevne cirkel 19

20 Forslag til fremgangsmåde: Fjern koordinatsystemet, hvis du synes, det virker generende. Klik herefter 3 steder på tegnefladen, så de 3 punkter ikke ligger på linje. Afslut med at klikke på begyndelsespunktet, hvorefter trekanten er tegnet. Klik på to af siderne. Klik på de to linjer, hvorefter skæringspunktet markeres. Angiv først centrum og klik herefter på en af vinkelspidserne. Hvis du ønsker at indsætte tekst, sker det via musen til en hensigtsmæssig placering.. Efterfølgende kan teksten flyttes med Eksperimenter herefter med trekanten ved at trække i vinkelspidserne. Hvis cirklen er tegnet rigtig, vil den fortsat gå gennem alle 3 vinkelspidser. Opgave: Forklar ud fra erfaringerne fra eksempel 1, at midtnormalernes skæringspunkt er centrum for den omskrevne cirkel. Bemærk: Cirklen kunne også tegnes ved hjælp af værktøjet Cirkel gennem, 3 punkter: Bruges denne genvej, bliver elevernes tænkning ikke udfordret. Eksempel 3: Tegn en trekant ud fra givne oplysninger Tegn en retvinklet trekant, hvor den ene katete er 5,6 og hypotenusen er 9,1 Find de to sidste vinkler. Find den sidste katete. Forslag til fremgangsmåde: Den rette vinkel benævnes C. Klik på tegnefladen. I den dialogboks, som kommer frem, anføres længden 5,6 (husk at bruge punktum). Omdøb punktet B til C og linjestykket a til b (højreklik og omdøb). Klik på C og b. Tegn med A som centrum en cirkel med radius 9,1. Klik på cirklen og den vinkelrette linje. Cirklen skærer denne linje 2 steder. Vælg et af dem som punktet B. Skjul cirklen og den vinkelrette linje ved at højreklikke på dem og fjerne fluebenet ved Vis objekt. 20

21 Forbind B med A og C og sørg for, at de 2 linjestykker får de korrekte navne a og c. Vinklerne findes ved at klikke på vinklens højre ben og herefter på venstre ben. Ind imellem er man nødt til at benytte an anden måde for at finde vinklen. Fx kan vinklen A findes ved at klikke på vinkelspidserne i følgende rækkefølge: C A B. Med musen flyttes navne og værdier, så det hele kommer til at stå pænt. Algebravinduet er skjult, da alle oplysninger står på tegningen. Målene kan man fx få frem på tegningen ved at vælge Rediger Egenskaber. Vælg Navn & Værdi. Eksempel 4: Konstruktion med 2 løsninger. Opgave: Tegn en trekant, hvor der er en vinkel på 40 o. Vinklens ene hosliggende side er 6 cm og den modstående side er 5 cm. Find de to sidste vinkler. Kontroller, at de 3 vinkler tilsammen er 180 o. Forslag til fremgangsmåde opdelt i 2 trin: Trin 1: Klik på tegnefladen og angiv længden til 6 Klik først på B og herefter på A. I pop-up-vinduet står der nok 45 o. Lad gradtegnet stå og ret 45 til 40. Der er nu markeret en lille vinkel ved A samt et punkt C i forlængelse af venstre ben. Klik på A og herefter C. Klik på B og anfør længden af radius. Der fremkommer nu 2 skæringspunkter på vinkel A s venstre ben, som hver svarer til en løsning. Skæringspunkternes navne kan evt. ændres ved at højreklikke på dem. 21

22 Ønsker man at ændre farverne på siderne, kan det også ske ved at højreklikke på dem og vælge Egenskaber. Trin 2: De overflødige dele af tegningen fjernes. Det gøres ved at højreklikke på dem og vælge Vis objekt, som er en tænd/sluk funktion. A og D2 forbindes med et linjestykke. Vinklerne findes. Det kan fx gøres ved at klikke på 3 vinkelspidser, med den der skal måles i midten. Eksempelvis findes vinkel u ved at klikke A D1 B. Vinklerne får græske betegnelser. Hvis du ønsker at ændre dem til latinske bogstaver, som anført på skærmkopien, højreklikkes på dem og navnene kan ændres. Til sidst skrives i Inputfeltet u + v + w. Summen anføres i algebravinduet. Navnet kan passende ændres til sum se algebravinduet. 22

23 Man kunne evt. afslutte med at skjule irrelevante oplysninger fra algebravinduet fx punkternes koordinater. Eksempel 5: Analyse ved hjælp af kulstof 14 Når en levende organisme dør, vil andelen af C14 (kulstof 14) henfalde efter forskriften x f ( x) = 100 0, Da gravballemanden i 1952 blev fundet, var der 76 % C14 tilbage. Hvornår døde han? Forslag til fremgangsmåde: Under Input skrives o f(x)=100* ^x (Bemærk: Du kan antagelig ikke se decimalerne i algebravinduet. Hvis du ønsker at se dem, skal du ændre indstillingerne) o y=76. Højreklik på tegnefladen og vælg xakse:yakse og sæt dem til 100:1. Reguler tegnefladens størrelse til den bliver hensigtsmæssig. Find skæringspunktet og lav ændringer i indstillingerne, så koordinatsættet bliver uden decimaler. 23

24 Sæt teksten på. Eksempel 6: Afbildning af funktioner, som er defineret i bestemte intervaller Vi vil her se på 3 konkrete tilfælde: a) Vi har en by på 4,2 mio. indbyggere med en årlig vækstrate på 5 %, hvor vi ønsker at undersøge udviklingen over de næste 12 år, hvis væksten fortsætter uændret. I Kommandofeltet vælges Funktion. I Inputfeltet skrives herefter: Funktion[4.2*1.05^x,0,12]. Resultatet ses her: 24

25 b) Lav en graf, der viser arealet af et kvadrat som en funktion af sidelængden. Denne funktion er kun defineret for positive sidelængder. Til gengæld er der ingen øvre begrænsning. I Inputfeltet skrives: Funktion[x², 0, ]. Bemærk: findes i feltet til højre for inputfeltet. Grafen ses til højre: c) Lav en graf der vises prisen på levering af sodavand, når flg. tilbud er giver: Der betales 10 kr. pr stk. for de første 20 og 8 kr. for resten. Der kan højst leveres 100 stk.: I inputfeltet skrives: Funktion[10 x, 0, 20] og herefter Funktion[(x - 20) , 20, 100]. Vi får en graf, som er stykvis lineær. 25

26 d) Grafen ovenfor er strengt taget ikke en korrekt model af situationen, da den er tegnet kontinuert, og man kan jo ikke købe 5,3 sodavand! Det kan afhjælpes ved at indsætte en talrække. Eksempel: Vi vil lave en graf over prisen for æblekøb, når æblerne koster 2,50kr. pr. stk. Hvis vi vil have en oversigt fra 0-10 æbler, kunne vi i Inputfeltet skrive: Talrække[(æ, 2.5 æ), æ, 0, 10, 1] I parentesen anføres først koordinaterne til punkterne, herefter variablens navn, mindsteværdien, størsteværdien og til sidst hvor stort et spring, der skal være mellem værdierne. En mere oplagt fremgangsmåde er nok at bruge et regneark se næste afsnit. 26

27 Brug af regneark i GeoGebra: Fra version 3.2 har det været muligt at arbejde med regneark i programmet. Ved at vælge Vis Regneark fås følgende brugerflade: Eksempel 1: Pris på æbler Vi kunne nu arbejde videre med 6c fra forrige afsnit, hvor æblerne kostede 2,50 kr. pr. stk. op til 10 stk. Hvis vi yderligere antager, at prisen for de følgende kun er 2 kr. pr. stk., kunne vi lavet et regneark som vist i det følgende. Der kan herefter laves en liste ved at afmærke de første to koloner (minus overskriften) og højreklik lav liste af punkter. Vi får nu et skærmbillede som vist i det følgende: 27

28 Hvis der skal redigeres i en formel, dobbeltklikkes på cellen, hvorefter følgende dialogboks dukker op: Der er klikket på B12, hvor tankegangen bag sidste del af formlen er vist. Er du vant til at bruge Excel, vil du opdage, at der er enkelte forskelle i fremgangsmåderne. 28

29 Der laves ikke her en tastevejledning, da det er mit indtryk, at man hurtigt finder ud af fremgangsmåden ved at prøve sig frem. Vi får herefter det grafiske billede frem ved at skjule regnearket. Enhederne justeres på akserne og koordinatsystemet flyttes, så det kun bliver første kvadrant, som vises. Nu får vi et grafisk billede, hvor alle punkterner antagelig er navngivet fra P1 P20 (det kan undgås ved på forhånd at have valgt Indstillinger Labels Ingen nye objekter). Disse navne kan fjernes ved at afmærke dem alle højreklikke, hvor følgende dialogboks antagelig komme frem. Klik på Punkt til venstre, så kommer der en ny dialogboks. (Lidt afhængig af din fremgangsmåde, kom denne dialogboks måske i første forsøg) 29

30 Fjern fluebenet ved vis navn. Grafen skulle nu gerne få følgende udseende: 30

31 Her kunne man også måske endda med fordel bruge et traditionelt regneark fx Excel. Det vil være oplagt at bruge regnearket i GeoGebra, hvis det kobles direkte til et arbejde med geometri. De næste to eksempler er derfor taget fra geometriens verden. Eksempel 2: Regressionslinje Vi forestiller os, at en gruppe elever arbejder med trekanter og deres omskrevne cirkler. De har den formodning, at større omkreds af trekanten vil give en større omkreds af cirklen. Efter en snak med den, giver de udtryk for, at de forventer, at en fordobling af trekantens omkreds vil give en fordobling af cirklens omkreds dvs. at der er en lineær sammenhæng mellem de to størrelser. Værktøjer: Hvorefter der klikkes på cirklen for at få omkredsen frem. Klik indeni trekanten, så kommer arealet frem. Vi sætter dem derfor til at undersøge sammenhængen ved at inddrage regnearket. På følgende skærmdump vises, hvordan eleverne kunne gå i gang med undersøgelsen. Ved at trække i trekantens vinkelspidser, får vi både ændringer af trekanten og cirklen. Efter hver ændring indskrives de to omkredse manuelt i regnearket. 31

32 For at undersøge, om der er en lineær sammenhæng, laves en liste over de registrerede 10 punkter. Herefter vælges Bedste rette linje se 4. ikon på værktøjslinjen nedenfor. Som det ses af følgende graf, er der ikke en fuldstændig lineær sammenhæng. En nærmere undersøgelse tyder på, at jo mere trekanten afviger fra en regulær trekant jo større vil afvigelsen blive. 32

33 Hypotesen kunne nu være, at der er en lineær sammenhæng mellem ligesidede trekanter og deres omskrevne cirkler. Værktøjer: Hvorefter der klikkes indeni trekanten og på cirkelperiferien. Hvis man i stedet klikker på en side i trekanten, får man i stedet sidelængden af den pågældende side. Sådan kunne undersøgelsen laves: En ligesidet trekant tegnes sammen med dens omcirkel. I celle A2 skrives: =omkredspolygon1 det fulde navn kan ses i algebravinduet. I celle B2 skrives =omskrevenc. I C2 beregnes kvotienten. Vi eksperimenterer nu med trekantens størrelse og følger udviklingen i regnearket: De to omkredse ændres, men kvotienten ændres ikke, så her er der en lineær sammenhæng, som kan beskrives som: cirkelomkreds = 1,21*trekantomkreds 33

34 Eksempel 3: Herons formel. Vi vil eksperimentelt eftervise, at formlen, hvor passer uanset trekantens form. Værktøjer: Hvorefter der klikkes på alle tre sider i trekanten. Klik indeni trekanten, så kommer arealet frem. Når trekanten er tegnet, laves regnearket på følgende måde: I A-søjlen skrives teksten og i B-søjlen tal og formler. For at på det dynamiske frem, skrives i B2 =a i B3 =b osv. I B6 skrives =(B5 (B5 - B2) (B5 - B3) (B5 - B4))^0.5. Arealet indsættes også på tegningen, så de to måder at finde arealet på kan sammenlignes. 34

35 GeoGebraWiki: Når du går ind på GeoGebras hjemmeside, kan du i nederste venstre hjørne finde et link til GeoGebraWiki, hvor der kan hentes mange ideer. Det direkte link er Fra de nordiske lande har der hidtil været mest at finde under Norge. Prøv fx under Grunnskolen Barnetrinnet at finde et indlæg, der viser, hvordan man kan illustrere multiplikation af 2 brøker. Under Grunnskolen Ungdomstrinnet kan du se et eksempel på en perspektivtegning af en sal. Hvad sker der, når man flytter forsvindingspunktet? Vejledning til elever: Hvis du vil lave en vejledning til eleverne, vil det ofte være en fordel at indsætte ikoner for de værktøjer, som eleverne skal bruge. På den engelske del af Wiki findes en link til et Word Template. Direkte link: s I dette Worddokument kan man under Tilføjelsesprogrammer se alle ikoner, som kan indsættes med et museklik. I klippet ovenfor ses en del af værktøjslinjen med ikonerne. Når vi laver vejledninger (fx den, jeg laver her), er det en fordel at kunne indsætte skærmdumps især af det forreste vindue. På nogle maskiner (typisk stationære) klares det med Alt + PrtSc. På andre maskiner typisk bærbare klares dette med Fn + Alt + PrtSc 35

36 Eksempler på typiske fejl: Kommaet i tal bruges på den internationale måde, som man ofte ser i andre programmer og på lommeregnere. o I fx koordinatsæt bruges kommaet, som vi er vant til i Danmark: (x, y) = (3, 2). o I tal erstattes kommaet af et punktum: 3,14 skal i programmet skrives som Det giver for øvrigt den fordel, at et koordinatsæt angivet som (3.5,2) klart viser, at førstekoordinaten er 3,5 og andenkoordinaten er 2. Overvej tolkningsmulighederne, hvis der står (3,5,2) Ukorrekt brug af store og små bogstaver accepteres ikke. Hvis fx ligningen for linjen y=3x+6 skrives som Y=3x+6, kommer der en fejlmeddelelse. 36

37 Undersøgelseslandskabet Hvordan undgår vi burhøns I det følgende et lille undersøgelseslandskab lavet i GeoGebra. Et forløb, som jeg har plaget alle mine studerende med i de senere år. På de følgende sider er vist klip fra en PowerPointpræsentation. Det er brugt til et lille undersøgelseslandskab: Hvordan kan GeoGebra bruges til at arbejde undersøgende og eksperimenterende? Hvordan undgår vi burhøns? Den ideelle hønsegård Burhøns har det trangt! 37

38 Vores høns skal have plads! Krav: Hønsegården skal være firkantet Vi har 24 m hegn og en mur: 38

39 En algebraisk løsning for en rektangulær fold Vi opstiller en funktion for arealet: f(x) = x(24-2x) Den rektangulære fold: 39

40 Regulære polygoner Regulære polygoner har det største areal i forhold til omkredsen. Jo flere kanter jo større areal. Lad os undersøge muligheder med udgangspunkt i regulære polygoner. Løsningen var et halvt kvadrat! 40

41 Lad os udnytte GeoGebras dynamiske muligheder: Vi indsætter en skyder Se følgende fra en GeoGebrafil 41

42 ½ regulær femkant forøgelse på 7,3 m 3 ½ regulær sekskant bliver endnu bedre! Vejledningen kan hentes på www. emu.dk. Søg evt. i Google på GeoGebra og Erik Vangsted 42

43 Ideer til opgaver og problemstillinger: 1. De yngste lærer at bruge programmet og arbejder med begreber: a) Lav en tegning af jeres hus. o Hvilke figurer kan man se på huset? b) Lav en tegning af et fint hus. o Hvilke figurer har du brugt? c) Lav en fantasidyr, som kun består af trekanter, firkanter og cirkler. En ekstra udfordring kunne være at lægge farve på. 2) Lav dit eget logo: Eksempel: Mål: Ud over at arbejde undersøgende og eksperimenterende, kunne eleverne fx komme til at arbejde med spejlinger drejninger, vinkler, symmetrier og forskellige geometriske figurer. 3) Vinkler i regulære polygoner: Sider n En vinkel: 135 o Vinkelsum:

44 Kan du finde et mønster for vinkelsummen? Udfordring: Kan du lave en formel for en n- kant? Mål: Arbejdsformer: Undersøgende og systematiseringer. Kompetencer: Ræsonnementskompetencen. 4) Hvilke heltallige arealer kan kvadrater få, hvis vinkelspidserne ligger i gitterpunkter? Her et kvadrat med arealet 5. Vink: Begynd under indstillinger at sætte Fang punkt til gitter. Tegn en regulær firkant og flyt rundt med den (bemærk: Det er ikke alle vinkelspidserne, man kan trække i). Kan du finde et mønster? En udfordring til de stærke: Kan du lave en tegning, som viser, at 8 2 2? Eksempler på faglige begreber i arbejdet: Pythagoras' sætning og irrationale tal. 44

Undervisningen skal lede frem mod, at eleverne har tilegnet sig kundskaber og færdigheder, der sætter dem i stand til i arbejdet med geometri at:

Undervisningen skal lede frem mod, at eleverne har tilegnet sig kundskaber og færdigheder, der sætter dem i stand til i arbejdet med geometri at: Noter til læreren side 1 I Trinmål for faget matematik står der bl.a. Undervisningen skal lede frem mod, at eleverne har tilegnet sig kundskaber og færdigheder, der sætter dem i stand til i arbejdet med

Læs mere

Computerundervisning

Computerundervisning Frederiksberg Seminarium Computerundervisning Koordinatsystemer og Funktioner Lærervejledning 12-02-2009 Udarbejdet af: Pernille Suhr Poulsen Christina Klitlyng Julie Nielsen Indhold Introduktion... 3

Læs mere

GeoGebra 3.0.0.0 Quickstart. det grundlæggende

GeoGebra 3.0.0.0 Quickstart. det grundlæggende GeoGebra 3.0.0.0 Quickstart det grundlæggende Grete Ridder Ebbesen frit efter GeoGebra Quickstart af Markus Hohenwarter Virum, 28. februar 2009 Introduktion GeoGebra er et gratis og meget brugervenligt

Læs mere

Introduktion til GeoGebra

Introduktion til GeoGebra Introduktion til GeoGebra Om navne Ib Michelsen Herover ses GeoGebra's brugerflade. 1 I øverste linje finder du navnet GeoGebra og ikoner til at minimere vinduet, ændre til fuldskærm og lukke I næste linje

Læs mere

3. klasse 6. klasse 9. klasse

3. klasse 6. klasse 9. klasse Børne- og Undervisningsudvalget 2012-13 BUU Alm.del Bilag 326 Offentligt Elevplan 3. klasse 6. klasse 9. klasse Matematiske kompetencer Status tal og algebra sikker i, er usikker i de naturlige tals opbygning

Læs mere

Selam Friskole Fagplan for Matematik

Selam Friskole Fagplan for Matematik Selam Friskole Fagplan for Matematik Formål Formålet med undervisningen er, at eleverne udvikler matematiske kompetencer og opnår viden og kunnen således, at de bliver i stand til at begå sig hensigtsmæssigt

Læs mere

Matematik. Matematiske kompetencer

Matematik. Matematiske kompetencer Matematiske kompetencer formulere sig skriftligt og mundtligt om matematiske påstande og spørgsmål og have blik for hvilke typer af svar, der kan forventes (tankegangskompetence) løse matematiske problemer

Læs mere

Årsplan 9. klasse matematik 2013-2014 Uge Emne Faglige mål Trinmål Materialer/ systemer 33 Årsprøven i matematik

Årsplan 9. klasse matematik 2013-2014 Uge Emne Faglige mål Trinmål Materialer/ systemer 33 Årsprøven i matematik Årsplan 9. klasse matematik 2013-2014 33 Årsprøven i matematik Årsprøve og rettevejledledning 34-35 36 og løbe nde Talmængder og regnemetoder Mundtlig matematik 37 Fordybelses uge 38-39 Procent - Gennemgå

Læs mere

Evaluering af matematik undervisning

Evaluering af matematik undervisning Evaluering af matematik undervisning Udarbejdet af Khaled Zaher, matematiklærer 6-9 klasse og Boushra Chami, matematiklærer 2-5 klasse Matematiske kompetencer. Fællesmål efter 3.klasse indgå i dialog om

Læs mere

Årsplan for 5. klasse, matematik

Årsplan for 5. klasse, matematik Årsplan for 5. klasse, matematik I matematik bruger vi bogsystemet Sigma som grundmateriale. I systemet er der, ud over også kopiark og tests tilknyttet de enkelte kapitler. Systemet er udarbejdet så det

Læs mere

Klassen er sammenlæst, altså 5 og 6 klasse på en og samme tid. Samtidig er klassen pt på ca 11 elever ialt.

Klassen er sammenlæst, altså 5 og 6 klasse på en og samme tid. Samtidig er klassen pt på ca 11 elever ialt. Introduktion til mat i 5/6 klasse Vejle Privatskole 13/14: Klassen er sammenlæst, altså 5 og 6 klasse på en og samme tid. Samtidig er klassen pt på ca 11 elever ialt. Udgangspunktet bliver en blød screening,

Læs mere

Årsplan for 7. klasse, matematik

Årsplan for 7. klasse, matematik Årsplan for 7. klasse, matematik I matematik bruger vi bogsystemet Sigma som grundmateriale. I systemet er der, ud over grundbogen, også kopiark og tests tilknyttet de enkelte kapitler. Systemet er udarbejdet

Læs mere

Undervisningsplan: Matematik Skoleåret 2014/2015 Strib Skole: 5B Ugenumre: Hovedområder: Emner og temaer: Side 1 af 5

Undervisningsplan: Matematik Skoleåret 2014/2015 Strib Skole: 5B Ugenumre: Hovedområder: Emner og temaer: Side 1 af 5 Ugenumre: Hovedområder: Emner og temaer: 33 Addition og subtraktion Anvendelse af regningsarter 34 Multiplikation og division Anvendelse af regningsarter 35 Multiplikation med decimaltal Anvendelse af

Læs mere

Fælles Mål 2009. Matematik. Faghæfte 12

Fælles Mål 2009. Matematik. Faghæfte 12 Fælles Mål 2009 Matematik Faghæfte 12 Undervisningsministeriets håndbogsserie nr. 14 2009 Fælles Mål 2009 Matematik Faghæfte 12 Undervisningsministeriets håndbogsserie nr. 14 2009 Indhold Formål for faget

Læs mere

Funktioner og ligninger

Funktioner og ligninger Eleverne har både i Kolorit på mellemtrinnet og i Kolorit 7 matematik grundbog arbejdet med funktioner. I 7. klasse blev funktionsbegrebet defineret, og eleverne arbejdede med forskellige måder at beskrive

Læs mere

Matematik - undervisningsplan

Matematik - undervisningsplan I 4. klasse starter man på andet forløb i matematik, der skal lede frem mod at eleverne kan opfylde fagets trinmål efter 6. klasse. Det er dermed det som undervisningen tilrettelægges ud fra og målsættes

Læs mere

Årsplan matematik 4.klasse - skoleår 11/12- Ida Skov Andersen Med ret til ændringer og justeringer

Årsplan matematik 4.klasse - skoleår 11/12- Ida Skov Andersen Med ret til ændringer og justeringer Basis: Klassen består af 22 elever og der er afsat 4 ugentlige timer. Grundbog: Vi vil arbejde ud fra Matematrix 4, arbejds- og grundbog, kopisider, Rema, ekstraopgaver og ugentlige afleveringsopgaver

Læs mere

Årsplan 8. klasse matematik 2013-2014 Uge Emne Faglige mål Trinmål Materialer/ systemer 33 og løbende

Årsplan 8. klasse matematik 2013-2014 Uge Emne Faglige mål Trinmål Materialer/ systemer 33 og løbende Årsplan 8. klasse matematik 2013-2014 33 løbende 33-34 løbende Løbende Problemregning ( faglig læsning) Mundtlig matematik (forberede oplæg til 6. klasse) - flere forskellige trinmål Ben, formelsamlingen,

Læs mere

MATEMATIK. Formål for faget

MATEMATIK. Formål for faget Fælles Mål II MATEMATIK Formål for faget Fælles Mål Formålet med undervisningen i matematik er, at eleverne bliver i stand til at forstå og anvende matematik i sammenhænge, der vedrører dagligliv, samfundsliv

Læs mere

Eksperimenter med areal og rumfang. Aktivitet Emne Klassetrin Side

Eksperimenter med areal og rumfang. Aktivitet Emne Klassetrin Side VisiRegn ideer 5 Eksperimenter med areal og rumfang Inge B. Larsen ibl@dpu.dk INFA juli 2001 Indhold: Aktivitet Emne Klassetrin Side Vejledning til Areal og Rumfang 2 Red burhønsene. Vejledn. 3-7 Største

Læs mere

Geogebra. Dynamisk matematik. Version: August 2012

Geogebra. Dynamisk matematik. Version: August 2012 Geogebra Dynamisk matematik Version: August 2012 Indholdsfortegnelse Hvad er Geogebra?...4 Denne manual...4 Hent og installer programmet...4 Geogebra gennemgang og praktiske eksempler...4 Menuerne...5

Læs mere

Undersøgelse af funktioner i GeoGebra

Undersøgelse af funktioner i GeoGebra Undersøgelse af funktioner i GeoGebra GeoGebra er tænkt som et dynamisk geometriprogram, men det kan også anvendes til undersøgelser og opdagelser omkring funktioner. Eksempel Tegn linjen med ligningen:

Læs mere

LÆRINGSMÅL PÅ NIF MATEMATIK 2014-15

LÆRINGSMÅL PÅ NIF MATEMATIK 2014-15 LÆRINGSMÅL PÅ NIF MATEMATIK 2014-15 Mål for undervisningen i Matematik på NIF Følgende er baseret på de grønlandske læringsmål, tilføjelser fra de danske læringsmål står med rød skrift. Læringsmål Yngstetrin

Læs mere

Graph brugermanual til matematik C

Graph brugermanual til matematik C Graph brugermanual til matematik C Forord Efterfølgende er en guide til programmet GRAPH. Programmet kan downloades gratis fra nettet og gemmes på computeren/et usb-stik. Det betyder, det også kan anvendes

Læs mere

Sådan gør du i GeoGebra.

Sådan gør du i GeoGebra. Sådan gør du i GeoGebra. Det første vi skal prøve er at tegne matematiske figurer. Tegne: Lad os tegne en trekant. Klik på trekant knappen Klik på punktet ved (1,1), (4,1) (4,5) og til sidst igen på (1,1)

Læs mere

Årsplan for matematik 2012-13

Årsplan for matematik 2012-13 Årsplan for matematik 2012-13 Uge Tema/emne Metode/mål 32 Matematiske arbejdsmåder(metode) 33 Intro 34 Tal + talforståelse 35 Brøker-procent 36 Potens+kvadrat-og kubikrod 37 Emneuge 38 Ligninger-uligheder

Læs mere

geometri trin 2 brikkerne til regning & matematik preben bernitt

geometri trin 2 brikkerne til regning & matematik preben bernitt brikkerne til regning & matematik geometri trin 2 preben bernitt brikkerne til regning & matematik geometri, trin 2 ISBN: 978-87-92488-16-9 1. Udgave som E-bog 2003 by bernitt-matematik.dk Kopiering er

Læs mere

Fag- og indholdsplan 9. kl.:

Fag- og indholdsplan 9. kl.: Fag- og indholdsplan 9. kl.: Indholdsområder: Tal og algebra: Tal - regneregler og formler Størrelser måling, beregning og sammenligning. Matematiske udtryk Algebra - teoretiske sammenhænge absolut og

Læs mere

Eleven kan handle med overblik i sammensatte situationer med matematik. Eleven kan anvende rationale tal og variable i beskrivelser og beregninger

Eleven kan handle med overblik i sammensatte situationer med matematik. Eleven kan anvende rationale tal og variable i beskrivelser og beregninger Kompetenceområde Efter klassetrin Efter 6. klassetrin Efter 9. klassetrin Matematiske kompetencer handle hensigtsmæssigt i situationer med handle med overblik i sammensatte situationer med handle med dømmekraft

Læs mere

Når vi forbereder et nyt emne eller område vælger vi de metoder, materialer og evalueringsformer, der egner sig bedst til forløbet.

Når vi forbereder et nyt emne eller område vælger vi de metoder, materialer og evalueringsformer, der egner sig bedst til forløbet. MATEMATIK Delmål for fagene generelt. Al vores undervisning hviler på de i Principper for skole & undervisning beskrevne områder (- metoder, materialevalg, evaluering og elevens personlige alsidige udvikling),

Læs mere

Års- og aktivitetsplan i matematik hold 4 2014/2015

Års- og aktivitetsplan i matematik hold 4 2014/2015 Års- og aktivitetsplan i matematik hold 4 2014/2015 Der arbejdes hen mod slutmålene i matematik efter 10. klassetrin. www.uvm.dk => Fælles Mål 2009 => Faghæfter alfabetisk => Matematik => Slutmål for faget

Læs mere

Emne Tema Materiale r - - - - - aktiviteter

Emne Tema Materiale r - - - - - aktiviteter Fag: Matematik Hold: 24 Lærer: TON Undervisningsmål Læringsmål 9 klasse 32-34 Introforløb: række tests, som viser eleverne faglighed og læringsstil. Faglige aktiviteter Emne Tema Materiale r IT-inddragelse

Læs mere

brikkerne til regning & matematik geometri F+E+D preben bernitt

brikkerne til regning & matematik geometri F+E+D preben bernitt brikkerne til regning & matematik geometri F+E+D preben bernitt brikkerne til regning & matematik geometri, F+E+D ISBN: 978-87-92488-16-9 1. Udgave som E-bog 2010 by bernitt-matematik.dk Kopiering er kun

Læs mere

Kapitel 2 Tal og variable

Kapitel 2 Tal og variable Tal og variable Uden tal ingen matematik - matematik handler om tal og anvendelse af tal. Matematik beskæftiger sig ikke udelukkende med konkrete problemer fra andre fag, og de konkrete tal fra andre fagområder

Læs mere

Matematik. Matematikundervisningen tager udgangspunkt i Folkeskolens Fælles Mål

Matematik. Matematikundervisningen tager udgangspunkt i Folkeskolens Fælles Mål Matematik Matematikundervisningen tager udgangspunkt i Folkeskolens Fælles Mål Formålet med undervisningen i matematik er, at eleverne bliver i stand til at forstå og anvende matematik i sammenhænge, der

Læs mere

Matematik. Trinmål 2. Nordvestskolen 2006 Forord. Trinmål 2 (4. 6. klasse)

Matematik. Trinmål 2. Nordvestskolen 2006 Forord. Trinmål 2 (4. 6. klasse) Matematik Trinmål 2 Nordvestskolen 2006 Forord Forord For at sikre kvaliteten og fagligheden i folkeskolen har Undervisningsministeriet udarbejdet faghæfter til samtlige fag i folkeskolen med bindende

Læs mere

Fagårsplan 10/11 Fag: Matematik Klasse: 7.ABC Lærer: Henrik Stillits. Fagområde/ emne

Fagårsplan 10/11 Fag: Matematik Klasse: 7.ABC Lærer: Henrik Stillits. Fagområde/ emne Fagårsplan 10/11 Fag: Matematik Klasse: 7.ABC Lærer: Henrik Stillits. Fagområde/ emne Matematiske færdigheder Grundlæggende færdigheder - plus, minus, gange, division (hele tal, decimaltal og brøker) Identificer

Læs mere

Computerundervisning

Computerundervisning Frederiksberg Seminarium Computerundervisning Koordinatsystemer og funktioner Elevmateriale 30-01-2009 Udarbejdet af: Pernille Suhr Poulsen Christina Klitlyng Julie Nielsen Opgaver GeoGebra Om at genkende

Læs mere

Læseplan for faget matematik. 1. 9. klassetrin

Læseplan for faget matematik. 1. 9. klassetrin Læseplan for faget matematik 1. 9. klassetrin Matematikundervisningen bygger på elevernes mange forudsætninger, som de har med når de starter i skolen. Der bygges videre på elevernes forskellige faglige

Læs mere

Space Challenge og Undervisningsminsteriets Fælles Mål for folkeskolen

Space Challenge og Undervisningsminsteriets Fælles Mål for folkeskolen Space Challenge og Undervisningsminsteriets Fælles Mål for folkeskolen I dette kapitel beskrives det, hvilke Fælles Mål man kan nå inden for udvalgte fag, når man i skolen laver aktiviteter med Space Challenge.

Læs mere

SMARTBOARD. Hvordan fungerer det? Et kursusmateriale

SMARTBOARD. Hvordan fungerer det? Et kursusmateriale SMARTBOARD Hvordan fungerer det? Et kursusmateriale Materialet må ikke kopieres eller på anden måde videredistribueres Opgave 1 Det grundlæggende a) Skriv med håndskrift på tavlen følgende brug pen eller

Læs mere

matematikhistorie og dynamisk geometri

matematikhistorie og dynamisk geometri Pythagoras matematikhistorie og dynamisk geometri med TI-Nspire Indholdsfortegnelse Øvelse 1: Hvem var Pythagoras?... 2 Pythagoras læresætning... 2 Geometrisk konstruktion af Pythagoræisk tripel... 3 Øvelse

Læs mere

Tip til 1. runde af Georg Mohr-Konkurrencen Geometri

Tip til 1. runde af Georg Mohr-Konkurrencen Geometri Tip til. runde af - Geometri, Kirsten Rosenkilde. Tip til. runde af Geometri Her er nogle centrale principper om og strategier for hvordan man løser geometriopgaver. et er ikke en særlig teoretisk indføring,

Læs mere

Kære matematiklærer. Når vi er færdige med dette forløb skal du (eleven):

Kære matematiklærer. Når vi er færdige med dette forløb skal du (eleven): Kære matematiklærer Formålet med denne materialekasse er, at eleverne med konkrete materialer og it får mulighed for at gøre sig erfaringer, der kan føre til, at de erkender de sammenhænge, der gør sig

Læs mere

Matematik. Læseplan og formål:

Matematik. Læseplan og formål: Matematik Læseplan og formål: Formålet med undervisningen i matematik er, at eleverne bliver i stand til at forstå og anvende matematik i sammenhænge, der vedrører dagligliv, samfundsliv og naturforhold.

Læs mere

Tal og algebra. I kapitlet arbejdes med følgende centrale matematiske begreber: algebra variable. Huskeliste: Tændstikker (til side 146) FRA FAGHÆFTET

Tal og algebra. I kapitlet arbejdes med følgende centrale matematiske begreber: algebra variable. Huskeliste: Tændstikker (til side 146) FRA FAGHÆFTET I kapitlet skal eleverne arbejde med fire forskellige vinkler på algebra de præsenteres på kapitlets første mundtlige opslag. De fire vinkler er algebra som et redskab til at løse matematiske problemer.

Læs mere

Foreløbig udgave af læringsmål til: Kapitel 1 Regn med store tal Fælles Mål Læringsmål Forslag til tegn på læring

Foreløbig udgave af læringsmål til: Kapitel 1 Regn med store tal Fælles Mål Læringsmål Forslag til tegn på læring Foreløbig udgave af læringsmål til: Kapitel 1 Regn med store tal Fælles Mål Læringsmål Forslag til tegn på læring udføre beregninger med de fire regningsarter inden for naturlige tal, herunder beregninger

Læs mere

Eleverne skal lære at:

Eleverne skal lære at: PK: Årsplan 8.Ga. M, matematik Tid og fagligt område Aktivitet Læringsmål Uge 32 uge 50 Tal og algebra Eleverne skal arbejde med at: kende de reelle tal og anvende dem i praktiske og teoretiske sammenhænge

Læs mere

dvs. vinkelsummen i enhver trekant er 180E. Figur 11

dvs. vinkelsummen i enhver trekant er 180E. Figur 11 Sætning 5.8: Vinkelsummen i en trekant er 180E. Bevis: Lad ÎABC være givet. Gennem punktet C konstrueres en linje, som er parallel med linjen gennem A og B. Dette lader sig gøre på grund af sætning 5.7.

Læs mere

Interaktiv Whiteboard og geometri

Interaktiv Whiteboard og geometri Interaktiv Whiteboard og geometri Nærværende dokumentation af et undervisningsforløb til undervisning i geometri er blevet til som et resultat af initiativet Spredningsprojektet. Spredningsprojektet er

Læs mere

1. Opbygning af et regneark

1. Opbygning af et regneark 1. Opbygning af et regneark Et regneark er et skema. Vandrette rækker og lodrette kolonner danner celler, hvori man kan indtaste tal, tekst, datoer og formler. De indtastede tal og data kan bearbejdes

Læs mere

Matematik. Jonas Albrekt Karmann (JK) Mål for undervisningen:

Matematik. Jonas Albrekt Karmann (JK) Mål for undervisningen: Matematik Årgang: Lærer: 9. årgang Jonas Albrekt Karmann (JK) Mål for : Formålet med er, at udvikler matematiske kompetencer og opnår viden og kunnen således, at de bliver i stand til at begå sig hensigtsmæssigt

Læs mere

2 Erik Vestergaard www.matematikfysik.dk

2 Erik Vestergaard www.matematikfysik.dk Erik Vestergaard www.matematikfysik.dk Erik Vestergaard www.matematikfysik.dk 3 Lineære funktioner En vigtig type funktioner at studere er de såkaldte lineære funktioner. Vi skal udlede en række egenskaber

Læs mere

Symbolbehandlingskompetencen er central gennem arbejdet med hele kapitlet i elevernes arbejde med tal og regneregler.

Symbolbehandlingskompetencen er central gennem arbejdet med hele kapitlet i elevernes arbejde med tal og regneregler. Det første kapitel i grundbogen til Kolorit i 8. klasse handler om tal og regning. Kapitlet indledes med, at vores titalssystem som positionssystem sættes i en historisk sammenhæng. Gennem arbejdet med

Læs mere

Læseplan for matematik på Aalborg Friskole

Læseplan for matematik på Aalborg Friskole Læseplan for matematik på Aalborg Friskole LÆSEPLAN FOR MATEMATIK PÅ AALBORG FRISKOLE 1 1. FORLØB 1.-3. KLASSETRIN 2 ARBEJDET MED TAL OG ALGEBRA 2 ARBEJDET MED GEOMETRI 2 MATEMATIK I ANVENDELSE 3 KOMMUNIKATION

Læs mere

ÅRSPLAN MATEMATIK 5.KLASSE

ÅRSPLAN MATEMATIK 5.KLASSE ÅRSPLAN MATEMATIK 5.KLASSE Matematiklærerens tænkebobler illustrerer, at matematikundervisning ikke udelukkende handler om opgaver, men om en (lige!) blanding af: Kompetencer Indhold Arbejdsmåder CENTRALE

Læs mere

Fagplan for faget matematik

Fagplan for faget matematik Fagplan for faget matematik Der undervises i matematik på alle klassetrin (0. - 7. klasse). De centrale kundskabs- og færdighedsområder er: I matematik skal de grundlæggende kundskaber og færdigheder i

Læs mere

Årsplan for matematik 10. klassetrin. 2012 2013 v. CJU

Årsplan for matematik 10. klassetrin. 2012 2013 v. CJU Årsplan for matematik 10. klassetrin 2012 2013 v. CJU Når dette skoleår er omme, så er det målet, at undervisningen har bidraget til, at formålet for faget er opfyldt: Formålet med undervisningen er, at

Læs mere

Mathcad Survival Guide

Mathcad Survival Guide Mathcad Survival Guide Mathcad er en blanding mellem et tekstbehandlingsprogram (Word), et regneark (Ecel) og en grafisk CAS-lommeregner. Programmet er velegnet til matematikopgaver, fysikrapporter og

Læs mere

MODELSÆT 2; MATEMATIK TIL LÆREREKSAMEN

MODELSÆT 2; MATEMATIK TIL LÆREREKSAMEN MODELSÆT ; MATEMATIK TIL LÆREREKSAMEN Forberedende materiale Den individuelle skriftlige røve i matematik vil tage udgangsunkt i følgende materiale:. En diskette med to regnearks-filer og en MathCad-fil..

Læs mere

Matematik UVMs Trinmål synoptisk fremstillet

Matematik UVMs Trinmål synoptisk fremstillet Matematik UVMs Trinmål synoptisk fremstillet Matematiske kompetencer Trinmål efter 3. klassetrin Trinmål efter 6. klassetrin Trinmål efter 9. klassetrin indgå i dialog om spørgsmål og svar, som er karakteristiske

Læs mere

Grupperede observationer

Grupperede observationer Grupperede observationer Tallene i den følgende tabel viser antallet af personer på Læsø 1.januar 2012, opdelt i 10-års intervaller. alder antal 0 131 10 181 20 66 30 139 40 251 50 318 60 421 70 246 80

Læs mere

Emne Tema Materialer

Emne Tema Materialer 32 36 Uge 35 Fag: Matematik Hold: 20 Lærer: Trine Koustrup Undervisningsmål 9. klasse Læringsmål Faglige aktiviteter Emne Tema Materialer Målsætningen med undervisningen er at eleverne udvikler deres kunnen,opnår

Læs mere

Kompendium i faget. Matematik. Tømrerafdelingen. 2. Hovedforløb. Y = ax 2 + bx + c. (x,y) Svendborg Erhvervsskole Tømrerafdelingen Niels Mark Aagaard

Kompendium i faget. Matematik. Tømrerafdelingen. 2. Hovedforløb. Y = ax 2 + bx + c. (x,y) Svendborg Erhvervsskole Tømrerafdelingen Niels Mark Aagaard Kompendium i faget Matematik Tømrerafdelingen 2. Hovedforløb. Y Y = ax 2 + bx + c (x,y) X Svendborg Erhvervsskole Tømrerafdelingen Niels Mark Aagaard Indholdsfortegnelse for H2: Undervisningens indhold...

Læs mere

Emmas og Frederiks nye værelser - maling eller tapet?

Emmas og Frederiks nye værelser - maling eller tapet? Emmas og Frederiks nye værelser - maling eller tapet? Emmas og Frederiks familie skal flytte til et nyt hus. De har fået lov til at bestemme, hvordan væggene på deres værelser skal se ud. Emma og Frederik

Læs mere

It i Fælles mål 2009- Matematik

It i Fælles mål 2009- Matematik It i Fælles mål 2009- Matematik Markeringer af hvor it er nævnt. Markeringen er ikke udtømmende og endelig. Flemming Holt, PITT Aalborg Kommune Fælles Mål 2009 - Matematik Faghæfte 12 Formål for faget

Læs mere

Årsplan 7. klasse matematik 2012/2013 til lærerbrug

Årsplan 7. klasse matematik 2012/2013 til lærerbrug Årsplanen for 7. klasse udarbejdes i samarbejde mellem 7. klasses matematiklærere (Helle og Ditte). Overordnet er året inddelt i uger, hvor der til hver ugeforløb er et Tema. Organisering af matematikundervisningen:

Læs mere

Arealet af en trekant Der er mange formler for arealet af en trekant. Den mest kendte er selvfølgelig

Arealet af en trekant Der er mange formler for arealet af en trekant. Den mest kendte er selvfølgelig Arealet af en trekant Der er mange formler for arealet af en trekant. Den mest kendte er selvfølgelig som også findes i en trigonometrisk variant, den såkaldte 'appelsin'-formel: Men da en trekants form

Læs mere

Matematik for stx C-niveau

Matematik for stx C-niveau Thomas Jensen og Morten Overgård Nielsen Matematik for stx C-niveau Frydenlund Nu 2. reviderede, udvidede og ajourførte udgave Nu 2. reviderede, udvidede og ajourførte udgave Matema10k Matematik for stx

Læs mere

En lille vejledning til lærere og elever i at bruge matematikprogrammet WordMat (begynderniveau)

En lille vejledning til lærere og elever i at bruge matematikprogrammet WordMat (begynderniveau) Matematik i WordMat En lille vejledning til lærere og elever i at bruge matematikprogrammet WordMat (begynderniveau) Indholdsfortegnelse 1. Introduktion... 3 2. Beregning... 4 3. Beregning med brøker...

Læs mere

Inspirationsforløb i faget matematik i 7.- 9. klasse. Trekanter et inspirationsforløb om geometri i 8. klasse

Inspirationsforløb i faget matematik i 7.- 9. klasse. Trekanter et inspirationsforløb om geometri i 8. klasse Inspirationsforløb i faget matematik i 7.- 9. klasse Trekanter et inspirationsforløb om geometri i 8. klasse Indhold Indledning 2 Undervisningsforløbet 3 Mål for forløbet 3 Relationsmodellen 3 Planlægningsfasen

Læs mere

Lineær Programmering i GeoGebra Side 1 af 8

Lineær Programmering i GeoGebra Side 1 af 8 Lineær Programmering i GeoGebra Side 1 af 8 Grundlæggende find selv flere funktioner, fx i GG s indbyggede hjælpefunktion. Vær opmærksom på at grænsefladen i GeoGebra ændrer sig med tiden, da værktøjet

Læs mere

Bemærkninger til den mundtlige årsprøve i matematik

Bemærkninger til den mundtlige årsprøve i matematik Spørgsmål til årsprøve 1v Ma 2008 side 1/5 Steen Toft Jørgensen Bemærkninger til den mundtlige årsprøve i matematik IT-værktøjer Jeg forventer, at I er fortrolige med lommeregner TI-89 og programmerne

Læs mere

Årsplan for matematik i 3. klasse

Årsplan for matematik i 3. klasse www.aalborg-friskole.dk Sohngårdsholmsvej 47, 9000 Aalborg, Tlf.98 14 70 33, E-mail: kontor@aalborg-friskole.dk Årsplan for matematik i 3. klasse Mål Eleverne bliver i stand til at forstå og anvende matematik

Læs mere

Lærervejledning Matematik 1-2-3 på Smartboard

Lærervejledning Matematik 1-2-3 på Smartboard Lærervejledning Matematik 1-2-3 på Smartboard Lærervejledning til Matematik 1-2-3 på Smartboard Materialet består af 33 færdige undervisningsforløb til brug i matematikundervisningen i overbygningen. Undervisningsforløbene

Læs mere

Formål for faget Matematik

Formål for faget Matematik Formål for faget Matematik Formålet med undervisningen i matematik er, at eleverne bliver i stand til at forstå og anvende matematik i sammenhænge, der vedrører dagligliv, samfundsliv og naturforhold.

Læs mere

Kapitel 3 Lineære sammenhænge

Kapitel 3 Lineære sammenhænge Matematik C (må anvendes på Ørestad Gymnasium) Lineære sammenhænge Det sker tit, at man har flere variable, der beskriver en situation, og at der en sammenhæng mellem de variable. Enhver formel er faktisk

Læs mere

APPENDIX A INTRODUKTION TIL DERIVE

APPENDIX A INTRODUKTION TIL DERIVE APPENDIX A INTRODUKTION TIL DERIVE z x y z=exp( x^2 0.5y^2) CAS er en fællesbetegnelse for matematikprogrammer, som foruden numeriske beregninger også kan regne med symboler og formler. Det betyder: Computer

Læs mere

Øresunds Internationale Skole Engvej 153, 2300 København S. Tlf.: 32598002 www.o-i-s.dk ois@mail.sonofon.dk

Øresunds Internationale Skole Engvej 153, 2300 København S. Tlf.: 32598002 www.o-i-s.dk ois@mail.sonofon.dk Øresunds Internationale Skole Engvej 153, 2300 København S. Tlf.: 32598002 www.o-i-s.dk ois@mail.sonofon.dk Øresunds Internationale Skole læseplan for matematik. Formål for faget matematik Formålet med

Læs mere

Anvendt litteratur : Mat C v. Bregendal, Nitschky Schmidt og Vestergård, Systime 2005

Anvendt litteratur : Mat C v. Bregendal, Nitschky Schmidt og Vestergård, Systime 2005 Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin juni 2011 Institution Campus Bornholm Uddannelse Fag og niveau Lærer Hold Hhx Matematik C Peter Seide 1AB

Læs mere

Faglig årsplan 2010-2011 Skolerne i Oure Sport & Performance. Emne Tema Materialer Regneregler og Algebra. Læringsmål Faglige aktiviteter

Faglig årsplan 2010-2011 Skolerne i Oure Sport & Performance. Emne Tema Materialer Regneregler og Algebra. Læringsmål Faglige aktiviteter Fag: Matematik Hold: 26 Lærer: Harriet Tipsmark Undervisningsmål 9/10 klasse Læringsmål Faglige aktiviteter 33-35 Målet for undervisningen er, at eleverne tilegner sig gode matematiske færdigheder og at

Læs mere

Kalkulus 1 - Opgaver. Anne Ryelund, Anders Friis og Mads Friis. 20. januar 2015

Kalkulus 1 - Opgaver. Anne Ryelund, Anders Friis og Mads Friis. 20. januar 2015 Kalkulus 1 - Opgaver Anne Ryelund, Anders Friis og Mads Friis 20. januar 2015 Mængder Opgave 1 Opskriv følgende mængder med korrekt mængdenotation. a) En mængde A indeholder alle hele tal fra og med 1

Læs mere

Studentereksamen i Matematik B 2012

Studentereksamen i Matematik B 2012 Studentereksamen i Matematik B 2012 (Gammel ordning) Besvarelse Ib Michelsen Ib Michelsen stx_121_b_gl 2 af 11 Opgave 1 På tegningen er gengivet 3 grafer for de nævnte funktioner. Alle funktionerne er

Læs mere

Tak for kaffe! 17-10-2004 Tak for kaffe! Side 1 af 16

Tak for kaffe! 17-10-2004 Tak for kaffe! Side 1 af 16 Tak for kaffe! Jette Rygaard Poulsen, Frederikshavn Gymnasium og HF-kursus Hans Vestergaard, Frederikshavn Gymnasium og HF-kursus Søren Lundbye-Christensen, AAU 17-10-2004 Tak for kaffe! Side 1 af 16 Tak

Læs mere

Animationer med TI-Nspire CAS

Animationer med TI-Nspire CAS Animationer med TI-Nspire CAS Geometrinoter til TI-Nspire CAS version 2.0 Brian Olesen & Bjørn Felsager Midtsjællands Gymnasieskoler Marts 2010 Indholdsfortegnelse: Indledning side 1 Eksempel 1: Pythagoras

Læs mere

Dagens program. Velkommen og præsentation.

Dagens program. Velkommen og præsentation. Dagens program Velkommen og præsentation. Evt. udveksling af mailadresser. Forenklede Fælles Mål om geometri og dynamiske programmer. Screencast, hvordan og hvorfor? Opgave om polygoner i GeoGebra, løst

Læs mere

matematik Demo excel trin 1 preben bernitt bernitt-matematik.dk 1 excel 1 2007 by bernitt-matematik.dk

matematik Demo excel trin 1 preben bernitt bernitt-matematik.dk 1 excel 1 2007 by bernitt-matematik.dk matematik excel trin 1 preben bernitt bernitt-matematik.dk 1 excel 1 2007 by bernitt-matematik.dk matematik excel 1 1. udgave som E-bog 2007 by bernitt-matematik.dk Kopiering af denne bog er kun tilladt

Læs mere

TW 2011/12. Fag: Matematik Klasse: 9. Mandag, Tirsdag, fredag. Formål for faget matematik:

TW 2011/12. Fag: Matematik Klasse: 9. Mandag, Tirsdag, fredag. Formål for faget matematik: TW 2011/12 Fag: Matematik Klasse: 9. Mandag, Tirsdag, fredag Formål for faget matematik: Formålet med undervisningen er, at eleverne udvikler matematiske kompetencer og opnår viden og kunnen således, at

Læs mere

Årsplan for matematik i 1.-2. kl.

Årsplan for matematik i 1.-2. kl. Årsplan for matematik i 1.-2. kl. Lærer Martin Jensen Mål for undervisningen Målet for undervisningen er, at eleverne tilegner sig matematiske kompetencer og arbejdsmetoder jævnfør Fælles Mål. Eleverne

Læs mere

Maple. Skærmbilledet. Vi starter med at se lidt nærmere på opstartsbilledet i Maple. Værktøjslinje til indtastningsområdet. Menulinje.

Maple. Skærmbilledet. Vi starter med at se lidt nærmere på opstartsbilledet i Maple. Værktøjslinje til indtastningsområdet. Menulinje. Maple Dette kapitel giver en kort introduktion til hvordan Maple 12 kan benyttes til at løse mange af de opgaver, som man bliver mødt med i matematiktimerne på HHX. Skærmbilledet Vi starter med at se lidt

Læs mere

Løsninger til eksamensopgaver på B-niveau 2015

Løsninger til eksamensopgaver på B-niveau 2015 Løsninger til eksamensopgaver på B-niveau 2015 22. maj 2015: Delprøven UDEN hjælpemidler Opgave 1: Ligningen løses ved at isolere x i det åbne udsagn: 4 x 7 81 4 x 88 88 x 22 4 Opgave 2: y 87 0,45 x Det

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin maj-juni 200/2010 Institution Herning HF og VUC Uddannelse Fag og niveau Lærer(e) Hf Matematik C, HF Johnny

Læs mere

Fagplan for matematik på Bakkelandets Friskole

Fagplan for matematik på Bakkelandets Friskole Fagplan for matematik på Bakkelandets Friskole Formål for faget matematik: Formålet med undervisningen i matematik er, at eleverne bliver i stand til at forstå og anvende matematik i sammenhænge, der vedrører

Læs mere

forstå, arbejde med og analysere problemstillinger af matematisk art i sammenhænge, der vedrører dagligliv, samfundsliv og naturforhold

forstå, arbejde med og analysere problemstillinger af matematisk art i sammenhænge, der vedrører dagligliv, samfundsliv og naturforhold Årsplan for undervisningen i matematik på 4. klassetrin 2006/2007 Retningslinjer for undervisningen i matematik: Da Billesborgskolen ikke har egne læseplaner for faget matematik, udgør folkeskolens formål

Læs mere

Matematik i Word. En manual til elever og andet godtfolk. Indhold med hurtig-links. Kom godt i gang med Word Matematik. At regne i Word Matematik

Matematik i Word. En manual til elever og andet godtfolk. Indhold med hurtig-links. Kom godt i gang med Word Matematik. At regne i Word Matematik Matematik i Word En manual til elever og andet godtfolk. Indhold med hurtig-links Kom godt i gang med Word Matematik At regne i Word Matematik Kom godt i gang med WordMat Opsætning, redigering og kommunikationsværdi

Læs mere

Løsningsforslag til Geometri 1.-6. klasse

Løsningsforslag til Geometri 1.-6. klasse 1 Løsningsforslag til Geometri 1.-6. klasse Bemærk, at vi benytter betegnelsen øvelser som en meget bred betegnelse. Derfor er der også nogle af vores øvelser, der nærmer sig kategorien undersøgelser,

Læs mere

Undervisningsbeskrivelse & Oversigt over projektrapporter

Undervisningsbeskrivelse & Oversigt over projektrapporter Undervisningsbeskrivelse & Oversigt over projektrapporter Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Sommer 2015 Institution VUC Lyngby Uddannelse Fag og niveau Lærer(e) Hold

Læs mere

Vejledende besvarelse

Vejledende besvarelse Ib Michelsen Svar: stx B 29. maj 2013 Side 1 1. Udfyld tabellen Vejledende besvarelse Givet funktionen f (x)=4 5 x beregnes f(2) f (2)=4 5 2 =4 25=100 Den udfyldte tabel er derfor: x 0 1 2 f(x) 4 20 100

Læs mere

Ib Michelsen Vejledende løsning stxb 101 1

Ib Michelsen Vejledende løsning stxb 101 1 Ib Michelsen Vejledende løsning stxb 101 1 Opgave 1 Løs ligningen: 3(2 x+1)=4 x+9 Løsning 3(2 x+1)=4 x+9 6 x+3=4 x+9 6 x+3 3=4 x+9 3 6 x=4 x+6 6x 4 x=4 x+6 4 x 2 x=6 2 x 2 = 6 2 x=3 Opgave 2 P(3,1) er

Læs mere

1gma_tændstikopgave.docx

1gma_tændstikopgave.docx ulbh 1gma_tændstikopgave.docx En lille simpel opgave med tændstikker Læg 10 tændstikker op på en række som vist Du skal nu danne 5 krydser med de 10 tændstikker, men du skal overholde 3 regler: 1) når

Læs mere