Skriftlig Eksamen Kombinatorik, sandsynlighed og randomiserede algoritmer (DM528)

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Starte visningen fra side:

Download "Skriftlig Eksamen Kombinatorik, sandsynlighed og randomiserede algoritmer (DM528)"

Transkript

1 Skriftlig Eksamen Kombinatorik, sandsynlighed og randomiserede algoritmer (DM58) Institut for Matematik & Datalogi Syddansk Universitet Torsdag den 7 Januar 010, kl Alle sædvanlige hjælpemidler (lærebøger, notater etc.) samt brug af lommeregner er tilladt. Brug af computer er ikke tilladt. Eksamenssættet består af 5 opgaver på 9 nummererede sider (1 9). Fuld besvarelse er besvarelse af alle 5 opgaver. De enkelte opgavers vægt ved bedømmelsen er angivet i procent. Der må gerne refereres til resultater fra lærebogen, samt noterne. Dette gælder også de opgaver der har været stillet til eksaminatorierne, eller til aflevering. Specielt må man gerne begrunde en påstand med at henvise til, at det umiddelbart følger fra et resultat i lærebogen, noterne, eller én af de opgaver, der har været stillet på ugesedlerne (hvis dette altså er sandt!). Henvisninger til andre bøger (ud over lærebogen) accepteres ikke som besvarelse af et spørgsmål! Husk at begrunde dine svar! I Opgave 5 kan flere af delspørgsmålene besvares uafhængigt. Husk at du gerne må bruge det du skulle vise i et delspørgsmål i et senere spørgsmål også selvom du ikke har besvaret delspørgsmålet. 1

2 OPGAVE 1 (10%) Bestem antallet af heltal n, hvor 1 n 999 som ikke har nogen ens cifre (f.eks. er, 3 og 34 sådanne tal, medens 171 ikke er det).

3 OPGAVE (15%) Marie skal giftes i morgen ved en udendørs ceremoni i ørkenen. Hun har valgt stedet fordi det statistisk set kun regner 5 dage om året (som vi regner med har 365 dage). Desværre forudser den lokale meteorolog Bill regn i morgen. Om Bill s meteorologiske evner vides det, at når det bliver regnvejr, har Bill forudsagt det i 90% af tilfældene og når det ikke bliver regnvejr, så Bill alligevel forudsagt regn i 10 % af tilfældene. Bestem sandsynligheden for, at det bliver regnvejr på Maries bryllupsdag. 3

4 OPGAVE 3 (5%) En lærer vil forhindre, at mange elever kan bestå hans multiple choice eksamen (to valg per spørgsmål) bare ved at gætte. Han laver derfor følgende regler: 1. Alle spørgsmål skal besvares.. Alle forkert besvarede spørgsmål tæller negativt. Dvs. hvis der er n 1 korrekte og n forkerte, så får man n 1 n points samlet. Dvs. med n spørgsmål og n 1 n korrekte svar får man n 1 n points. Man kan altså ende med negative points (helt ned til n points)! Læreren benytter sin nye eksamensform til en eksamen med 10 spørgsmål. I denne eksamen deltager blandt andre eleverne A, B og C. A har jævnt styr på pensum og forventes at svare rigtigt på et vilkårligt spørgsmål i testen med sandsynlighed 3. Elev B er bedre og svarer rigtigt på et vilkårligt spørgsmål 5 i testen med sandsynlighed 4. Elev C har ikke læst til eksamen og gætter 5 bare på det ene af de to mulige svar i hvert spørgsmål. Han bruger en fair mønt til sine gæt, så han svarer korrekt på et vilkårligt spørgsmål i testen med sandsynlighed 1. Spørgsmål a: Lad X A, X B, X C værre stokastiske variable der betegner antallet af points som elev A, B, C opnår ved eksamen (husk at dette er antal rigtige minus antal forkerte). Bestem middelværdierne E(X A ), E(X B ), E(X C ). Spørgsmål b: Bestem sandsynligheden for at X C > E(X C ). Opgaven fortsættes! 4

5 Læreren har vedtaget, at man skal have mindst points for at bestå eksamen. Spørgsmål c: Bestem sandsynligheden for at bestå, for hver af de tre studerende A, B, C. Spørgsmål d: Til eksamen er der 8 elever inklusive C som bare gætter. Hvor mange af disse må man forvente består eksamen? Antag, at man anvender lærens eksamensmetode til tre multiple choice eksaminer med henholdsvis 100, 00 og 500 spørgsmål. Antag også, at kriteriet for at bestå er, at man får mindst 0% af de mulige points, når vi følger reglen om at trække antal forkerte fra antal rigtige. Spørgsmål e: Brug Chernoff bounds til at give en øvre grænse for sandsynlighederne for at en elev som C ville bestå hver af de tre eksaminer. Du skal forklare hvorfor du kan bruge Chernoff bounds. Passer de grænser du får med din intuition om hvor godt C vil klare sig når der er mange spørgsmål? 5

6 OPGAVE 4 (18%) Bestem antallet af permutationer (π(1), π(), π(3), π(4), π(5)) af tallene 1,,3,4,5, som opfylder at π(i + 1) π(i) for i = 1,, 3, 4. Du kan foreksempel benytte inklusion-eksklusions princippet. 6

7 OPGAVE 5 (3%) Spørgsmål a: Bevis, at der for alle positive hele tal n, n 1, n,..., n k, hvor k n og ki=1 n i = n gælder ( ) ( ) ( ) ( ) n + 1 n1 + 1 n + 1 nk + 1 > (1) Du kan foreksempel anvende et kombinatorisk argument. Resten af denne opgave går ud på at analysere en randomiseret algoritme til at konstruere en sammenhængende graf med n punkter. Vi starter med at repetere lidt grafteori (du skal ikke vise noget af dette!). En graf med n punkter er sammenhængende hvis og kun hvis den har et udspændende træ; og ethvert sådant træ har n 1 kanter. Dette er også ækvivalent med at grafen har præcis én sammenhængskomponent. Hvis en graf har k sammenhængskomponenter C 1, C,..., C k og vi tilføjer en ny kant, som går mellem to forskellige sammenhængskomponenter C i og C j, så har den nye graf k 1 sammenhængskomponenter, idet punkterne i C i C j nu tilhører den samme sammenhængskomponent. Hvis vi derimod tilføjer en kant uv hvor både u og v ligger i C i for et eller andet i, så har den nye graf stadig k sammenhængskomponenter. Lad A være følgende randomiserede algoritme. Algoritmens output er en sammenhængende graf G = (V, E) med n punkter, som vi tænker på som en udspændende delgraf af den komplette graf K n = ({1,,..., n}, {ij : 1 i < j n}). Husk at K n har ( ) n kanter. 1. Sæt E :=, V = {1,,..., n}. Sålænge G = (V, E) har mindst sammenhængskomponenter: vælg 1 en tilfældig kant e = ij fra K n og tilføj den til E hvis den ikke allerede er med i E. 3. Returner G = (V, E). 1 Vi vil også sige at A genererer en tilfældig kant fra K n. 7

8 Bemærk, at A sagtens kan vælge den samme kant flere gange i forløbet og at dette naturligvis ikke fører til fremskridt, men stadig tæller med i det totale antal kanter som A når at vælge (generere). Algoritmen A terminerer når der er er præcis 1 sammenhængskomponent i den aktuelle graf G = (V, E), dvs. når A lige har tilføjet en kant uv mellem de entydigt bestemte forskellige sammenhængskomponenter i G = (V, E {uv}). Spørgsmål b: Gør rede for, at A skal lave mindst n 1 tilfældige kantvalg inden den terminerer og beskriv en situation hvor algoritmen kunne komme til at vælge Θ(n ) forskellige kanter (dvs. ingen kant vælges mere end én gang) inden den terminerer. For at analysere det forventede antal kanter som A samlet genererer inden den slutter, er det nyttigt at inddele forløbet af A s kørsel i n faser 0, 1,..., n 1, hvor vi siger at algoritmen er i fase i, hvis den aktuelle graf G = (V, E) har præcis n i sammenhængskomponenter. Vi starter altså i fase 0 og algoritmen terminerer så snart fase n 1 nås. En anden måde at tænke på betydningen af de forskellige faser er, at når vi er i fase i har A indtil nu fundet præcis i kanter som gik imellem forskellige sammenhængskomponenter i den aktuelle graf da kanten blev genereret første gang (dvs vi har slået to sammenhængskomponenter sammen præcis i gange siden A startede). Kald en kant uv god hvis u og v ligger i forskellige sammenhængskomponenter i den aktuelle graf G = (V, E). Dvs i fase 0 er alle kanter gode, medens der ikke er noget gode kanter når fase n 1 er nået. Hvis en god kant uv vælges i fase i er denne fase slut, dvs. vi starter fase i + 1, og vi kalder kanten uv vigtig, hvilket den forbliver i resten af algoritmen (vi starter altså med nul vigtige kanter og ender med præcis n 1 vigtige kanter som så udgør et udspændende træ i den endelige graf når A terminerer). Lad os inddele de vigtige kanter i hver fase i 1 efter de sammenhængskomponenter som de inducerer: lad i 1, i,..., i k, hvor i = i 1 + i i k være antallet af vigtige kanter i de k 1 sammenhængskomponenter af den aktuelle graf som har mere end et punkt (dvs mindst én vigtig kant i sig). Disse komponenter har så henholdsvis i 1 + 1, i +,... i k + 1 punkter i sig og de resterende n i k punkter fra G udgør hver deres egen sammenhængskomponent. 8

9 Spørgsmål c: Gør rede for, at sandsynligheden for at vælge en god kant i fase i er mindst ( ) ( ) n i+1 ( n. () ) Lad X i, i = 0, 1,..., n betegne antallet af tilfældige kanter som A genererer i fase i. Det vil sige X = n i=0 er det totale antal kanter som A genererer i løbet af konstruktionen af G (inklusive dem der ligger inden i en sammenhængskomponent i den aktuelle graf og derfor ikke bidrager til et fase skift). Spørgsmål d: Gør rede for, at Spørgsmål e: E(X i ) ( n ( n ) ) ( i+1 ). (3) Gør rede for, at E(X) ( ) n n i=0 ( n 1 ) ( i+1 ). (4) Spørgsmål f: Gør rede for, at der for alle heltal i, n med 0 i n gælder at ( ) n 1 1 ( ) ( ) n i+1 1 n i. (5) Spørgsmål g: Benyt (4) og (5) til at vise at Diskuter hvad dette siger om algoritmen A. E(X) = O(n ln n). (6) 9

Skriftlig Eksamen Algoritmer og sandsynlighed (DM538)

Skriftlig Eksamen Algoritmer og sandsynlighed (DM538) Skriftlig Eksamen Algoritmer og sandsynlighed (DM538) Institut for Matematik & Datalogi Syddansk Universitet Fredag den 9 Januar 2015, kl. 10 14 Alle sædvanlige hjælpemidler(lærebøger, notater etc.) samt

Læs mere

Skriftlig Eksamen Diskret Matematik (DM528)

Skriftlig Eksamen Diskret Matematik (DM528) Skriftlig Eksamen Diskret Matematik (DM528) Institut for Matematik & Datalogi Syddansk Universitet Tirsdag den 20 Januar 2009, kl. 9 13 Alle sædvanlige hjælpemidler (lærebøger, notater etc.) samt brug

Læs mere

Skriftlig Eksamen Introduktion til lineær og heltalsprogrammering (DM515)

Skriftlig Eksamen Introduktion til lineær og heltalsprogrammering (DM515) Skriftlig Eksamen Introduktion til lineær og heltalsprogrammering (DM55) Institut for Matematik & Datalogi Syddansk Universitet Tirsdag den Juni 009, kl. 9 Alle sædvanlige hjælpemidler (lærebøger, notater

Læs mere

Skriftlig Eksamen Beregnelighed (DM517)

Skriftlig Eksamen Beregnelighed (DM517) Skriftlig Eksamen Beregnelighed (DM517) Institut for Matematik & Datalogi Syddansk Universitet Torsdag den 1 November 212, kl. 1 14 Alle sædvanlige hjælpemidler (lærebøger, notater etc.) samt brug af computer

Læs mere

Skriftlig Eksamen Algoritmer og Datastrukturer (DM507)

Skriftlig Eksamen Algoritmer og Datastrukturer (DM507) Skriftlig Eksamen Algoritmer og Datastrukturer (DM507) Institut for Matematik og Datalogi Syddansk Universitet, Odense Onsdag den 0. juni 009, kl. 9 Alle sædvanlige hjælpemidler (lærebøger, notater, osv.)

Læs mere

Skriftlig Eksamen DM507 Algoritmer og Datastrukturer

Skriftlig Eksamen DM507 Algoritmer og Datastrukturer Skriftlig Eksamen DM507 Algoritmer og Datastrukturer Institut for Matematik og Datalogi Syddansk Universitet, Odense Tirsdag den 24. juni 2014, kl. 10:00 14:00 Besvarelsen skal afleveres elektronisk. Se

Læs mere

Skriftlig Eksamen Introduktion til lineær og heltalsprogrammering (DM515)

Skriftlig Eksamen Introduktion til lineær og heltalsprogrammering (DM515) Skriftlig Eksamen Introduktion til lineær og heltalsprogrammering (DM55) Institut for Matematik & Datalogi Syddansk Universitet Mandag den 2 Juni 2008, kl. 9 Alle sædvanlige hjælpemidler (lærebøger, notater

Læs mere

Skriftlig Eksamen Algoritmer og Datastrukturer (DM507)

Skriftlig Eksamen Algoritmer og Datastrukturer (DM507) Skriftlig Eksamen Algoritmer og Datastrukturer (DM507) Institut for Matematik og Datalogi Syddansk Universitet, Odense Mandag den 7. juni 00, kl. 9 Alle sædvanlige hjælpemidler (lærebøger, notater, osv.)

Læs mere

Reeksamen i Diskret Matematik

Reeksamen i Diskret Matematik Reeksamen i Diskret Matematik Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet 21. august 2015 Nærværende eksamenssæt består af 10 nummererede sider med ialt 17 opgaver. Tilladte hjælpemidler:

Læs mere

Eksempel på muligt eksamenssæt i Diskret Matematik

Eksempel på muligt eksamenssæt i Diskret Matematik Eksempel på muligt eksamenssæt i Diskret Matematik Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet???dag den?.????, 20??. Kl. 9-13. Nærværende eksamenssæt består af 13 nummererede sider med

Læs mere

Reeksamen i Diskret Matematik

Reeksamen i Diskret Matematik Reeksamen i Diskret Matematik Første studieår ved Det Teknisk-Naturvidenskabelige Fakultet 23. august, 2016, 9.00-13.00 Dette eksamenssæt består af 11 nummerede sider med 16 opgaver. Alle opgaver er multiple

Læs mere

DATALOGISK INSTITUT, AARHUS UNIVERSITET

DATALOGISK INSTITUT, AARHUS UNIVERSITET DATALOGISK INSTITUT, AARHUS UNIVERSITET Det Naturvidenskabelige Fakultet EKSAMEN Grundkurser i Datalogi Algoritmer og Datastrukturer 1 (003-ordning) Antal sider i opgavesættet (incl. forsiden): 10 (ti)

Læs mere

Eksamen i Diskret Matematik

Eksamen i Diskret Matematik Eksamen i Diskret Matematik Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet 10. juni, 2016. Kl. 9-13. Nærværende eksamenssæt består af 11 nummererede sider med ialt 16 opgaver. Alle opgaver

Læs mere

DATALOGISK INSTITUT, AARHUS UNIVERSITET

DATALOGISK INSTITUT, AARHUS UNIVERSITET DATALOGISK INSTITUT, AARHUS UNIVERSITET Det Naturvidenskabelige Fakultet EKSAMEN Grundkurser i Datalogi Antal sider i opgavesættet (incl. forsiden): 5 (fem) Eksamensdag: Fredag den 10. august 007, kl.

Læs mere

Eksamen i Diskret Matematik

Eksamen i Diskret Matematik Eksamen i Diskret Matematik Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet 15. juni, 2015. Kl. 9-13. Nærværende eksamenssæt består af 12 nummererede sider med ialt 17 opgaver. Tilladte hjælpemidler:

Læs mere

DATALOGISK INSTITUT, AARHUS UNIVERSITET

DATALOGISK INSTITUT, AARHUS UNIVERSITET DATALOGISK INSTITUT, AARHUS UNIVERSITET Det Naturvidenskabelige Fakultet EKSAMEN Grundkurser i Datalogi Antal sider i opgavesættet (incl. forsiden): 12 (tolv) Eksamensdag: Fredag den 1. april 200, kl..00-11.00

Læs mere

Skriftlig eksamen Science statistik- ST501

Skriftlig eksamen Science statistik- ST501 SYDDANSK UNIVERSITET INSTITUT FOR MATEMATIK OG DATALOGI Skriftlig eksamen Science statistik- ST501 Torsdag den 21. januar Opgavesættet består af 5 opgaver, med i alt 13 delspørgsmål, som vægtes ligeligt.

Læs mere

Introduktion til Datalogi

Introduktion til Datalogi Introduktion til Datalogi DM534/DM558 Rolf Fagerberg Mål og midler Mål og midler Mål for kurset: 1. Hurtig indsigt i mange dele af datalogi. Dette giver perspektiv på faget og studiet og dermed øget motivation.

Læs mere

Reeksamen i Diskret Matematik

Reeksamen i Diskret Matematik Reeksamen i Diskret Matematik Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet Torsdag den 9. august, 202. Kl. 9-3. Nærværende eksamenssæt består af 9 nummererede sider med ialt 2 opgaver.

Læs mere

DATALOGISK INSTITUT, AARHUS UNIVERSITET. Det Naturvidenskabelige Fakultet EKSAMEN. Grundkurser i Datalogi

DATALOGISK INSTITUT, AARHUS UNIVERSITET. Det Naturvidenskabelige Fakultet EKSAMEN. Grundkurser i Datalogi DATALOGISK INSTITUT, AARHUS UNIVERSITET Det Naturvidenskabelige Fakultet EKSAMEN Grundkurser i Datalogi Antal sider i opgavesættet (incl. forsiden): 1 (tretten) Eksamensdag: Tirsdag den 8. april 2008,

Læs mere

CIVILINGENIØREKSAMEN Side 1 af 18 sider. Skriftlig prøve, den: XY. december 200Z Kursus nr : (navn) (underskrift) (bord nr)

CIVILINGENIØREKSAMEN Side 1 af 18 sider. Skriftlig prøve, den: XY. december 200Z Kursus nr : (navn) (underskrift) (bord nr) CIVILINGENIØREKSAMEN Side 1 af 18 sider Skriftlig prøve, den: XY. december 200Z Kursus nr : 02405 Kursus navn: Sandsynlighedsregning Tilladte hjælpemidler: Alle Dette sæt er besvaret af: (navn) (underskrift)

Læs mere

Gamle eksamensopgaver. Diskret Matematik med Anvendelser (DM72) & Diskrete Strukturer (DM504)

Gamle eksamensopgaver. Diskret Matematik med Anvendelser (DM72) & Diskrete Strukturer (DM504) Gamle eksamensopgaver Diskret Matematik med Anvendelser (DM72) & Diskrete Strukturer (DM54) Institut for Matematik & Datalogi Syddansk Universitet, Odense Alle sædvanlige hjælpemidler (lærebøger, notater

Læs mere

INSTITUT FOR DATALOGI, AARHUS UNIVERSITET

INSTITUT FOR DATALOGI, AARHUS UNIVERSITET INSTITUT FOR DTLOGI, RHUS UNIVERSITET Science and Technology EKSEN lgoritmer og Datastrukturer (00-ordning) ntal sider i opgavesættet (incl. forsiden): 11 (elleve) Eksamensdag: Torsdag den 1. juni 01,

Læs mere

DATALOGISK INSTITUT, AARHUS UNIVERSITET

DATALOGISK INSTITUT, AARHUS UNIVERSITET DATALOGISK INSTITUT, AARHUS UNIVERSITET Det Naturvidenskabelige Fakultet EKSAMEN Grundkurser i Datalogi Antal sider i opgavesættet (incl. forsiden): 6 (seks) Eksamensdag: Fredag den 24. juni 2011, kl.

Læs mere

DATALOGISK INSTITUT, AARHUS UNIVERSITET

DATALOGISK INSTITUT, AARHUS UNIVERSITET DATALOGISK INSTITUT, AARHUS UNIVERSITET Det Naturvidenskabelige Fakultet EKSAMEN Grundkurser i Datalogi Algoritmer og Datastrukturer (00-ordning) Antal sider i opgavesættet (incl. forsiden): 6 (seks) Eksamensdag:

Læs mere

Skriftlig Eksamen Algoritmer og Datastrukturer (dads)

Skriftlig Eksamen Algoritmer og Datastrukturer (dads) Skriftlig Eksamen Algoritmer og Datastrukturer (dads) Datalogisk Institut Aarhus Universitet Tirsdag den 27. maj 2003, kl. 9.00 3.00 Opgave (25%) For konstanten π = 3.4592... gælder identiteten π 2 6 =

Læs mere

DM72 Diskret matematik med anvendelser

DM72 Diskret matematik med anvendelser DM72 Diskret matematik med anvendelser En hurtig gennemgang af de vigtigste resultater. (Dvs. ikke alle resultater). Logik Åbne udsagn 2 + 3 = 5 Prædikater og kvantorer P (x) := x er et primtal x N : n

Læs mere

INSTITUT FOR DATALOGI, AARHUS UNIVERSITET

INSTITUT FOR DATALOGI, AARHUS UNIVERSITET INSTITUT FOR DTOI, RUS UNIVERSITET Science and Technology ESEN lgoritmer og Datastrukturer (00-ordning) ntal sider i opgavesættet (incl. forsiden): (elleve) Eksamensdag: Fredag den. juni 0, kl. 9.00-.00

Læs mere

INSTITUT FOR DATALOGI, AARHUS UNIVERSITET

INSTITUT FOR DATALOGI, AARHUS UNIVERSITET NSTTUT OR TO, RUS UNVRSTT Science and Technology SN lgoritmer og atastrukturer (00-ordning) ntal sider i opgavesættet (incl. forsiden): 11 (elleve) ksamensdag: redag den 1. august 015, kl. 9.00-.00 Tilladte

Læs mere

Gamle eksamensopgaver. Diskret Matematik med Anvendelser (DM72) & Diskrete Strukturer (DM504)

Gamle eksamensopgaver. Diskret Matematik med Anvendelser (DM72) & Diskrete Strukturer (DM504) For et givent positivt heltal n og en given mængde af familier, antages at sandsynligheden for at familien har i børn, for 1 i n, er p i, således at n i=1 p i = 1. Endvidere er de 2 i mulige måder at få

Læs mere

INSTITUT FOR DATALOGI, AARHUS UNIVERSITET

INSTITUT FOR DATALOGI, AARHUS UNIVERSITET INSTITUT FOR DTLOGI, RHUS UNIVERSITET Science and Technology EKSMEN ntal sider i opgavesættet (incl. forsiden): (elleve) Eksamensdag: Mandag den. august 07, kl. 9.00-.00 Tilladte medbragte hjælpemidler:

Læs mere

Sammenhængskomponenter i grafer

Sammenhængskomponenter i grafer Sammenhængskomponenter i grafer Ækvivalensrelationer Repetition: En relation R på en mængde S er en delmængde af S S. Når (x, y) R siges x at stå i relation til y. Ofte skrives x y, og relationen selv

Læs mere

Skriftlig eksamen BioMatI (MM503)

Skriftlig eksamen BioMatI (MM503) INSTITUT FOR MATEMATIK OG DATALOGI SYDDANSK UNIVERSITET, ODENSE Skriftlig eksamen BioMatI (MM503) 14. januar 2009 2 timer med alle sædvanlige hjælpemidler, inklusive brug af lommeregner/computer. OPGAVESÆTTET

Læs mere

Skriftlig Eksamen Algoritmer og Datastrukturer 1. Datalogisk Institut Aarhus Universitet. Mandag den 22. marts 2004, kl

Skriftlig Eksamen Algoritmer og Datastrukturer 1. Datalogisk Institut Aarhus Universitet. Mandag den 22. marts 2004, kl Skriftlig Eksamen Algoritmer og Datastrukturer 1 Datalogisk Institut Aarhus Universitet Mandag den. marts 00, kl..00 11.00 Navn Gerth Stølting Brodal Årskort 1 Dette eksamenssæt består af en kombination

Læs mere

Skriftlig eksamen Vejledende besvarelse MATEMATIK B (MM02)

Skriftlig eksamen Vejledende besvarelse MATEMATIK B (MM02) SYDDANSK UNIVERSITET ODENSE UNIVERSITET INSTITUT FOR MATEMATIK OG DATALOGI Skriftlig eksamen Vejledende besvarelse MATEMATIK B (MM2) Fredag d. 2. januar 22 kl. 9. 3. 4 timer med alle sædvanlige skriftlige

Læs mere

P (n): rekursiv beregning af f n kræver f n beregninger af f 1. P (n) er sand for alle n 2.

P (n): rekursiv beregning af f n kræver f n beregninger af f 1. P (n) er sand for alle n 2. P (n): rekursiv beregning af f n kræver f n beregninger af f 1. P (n) er sand for alle n 2. Bevis ved stærk induktion. Basisskridt: P (2) er sand og P (3) er sand. Induktionsskridt: Lad k 2 og antag P

Læs mere

DATALOGISK INSTITUT, AARHUS UNIVERSITET

DATALOGISK INSTITUT, AARHUS UNIVERSITET DATALOGISK INSTITUT, AARHUS UNIVERSITET Det Naturvidenskabelige Fakultet EKSAMEN Grundkurser i Datalogi Antal sider i opgavesættet (incl. forsiden): 6 (seks) Eksamensdag: Fredag den 25. juni 200, kl. 9.00-.00

Læs mere

DATALOGISK INSTITUT, AARHUS UNIVERSITET

DATALOGISK INSTITUT, AARHUS UNIVERSITET DTLOS NSTTUT, RUS UNVERSTET Det Naturvidenskabelige akultet ESMEN rundkurser i Datalogi ntal sider i opgavesættet (incl. forsiden): 7 (syv) Eksamensdag: Torsdag den 14. juni 007, kl. 9.00-1.00 Eksamenslokale:

Læs mere

Minimum udspændende Træer (MST)

Minimum udspændende Træer (MST) Minimum udspændende Træer (MST) Træer Et (frit/u-rodet) træ er en uorienteret graf G = (V, E) som er Sammenhængende: der er en sti mellem alle par af knuder. Acyklisk: der er ingen kreds af kanter. Træer

Læs mere

Eksamen i Calculus Fredag den 8. januar 2016

Eksamen i Calculus Fredag den 8. januar 2016 Eksamen i Calculus Fredag den 8. januar 2016 Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet og Det Sundhedsvidenskabelige Fakultet Nærværende eksamenssæt består af 7 nummererede sider med

Læs mere

Skriftlig Eksamen ST501: Science Statistik Tirsdag den 8. juni 2010 kl

Skriftlig Eksamen ST501: Science Statistik Tirsdag den 8. juni 2010 kl Skriftlig Eksamen ST501: Science Statistik Tirsdag den 8. juni 2010 kl. 9.00 12.00 IMADA Syddansk Universitet Alle skriftlige hjælpemidler samt brug af lommeregner er tilladt. Opgavesættet består af 5

Læs mere

Mindste udspændende træ

Mindste udspændende træ Mindste udspændende træ Introduktion Repræsentation af vægtede grafer Egenskaber for mindste udspændende træer Prims algoritme Kruskals algoritme Philip Bille Mindste udspændende træ Introduktion Repræsentation

Læs mere

INSTITUT FOR DATALOGI, AARHUS UNIVERSITET

INSTITUT FOR DATALOGI, AARHUS UNIVERSITET STTUT R T, RUS UVRSTT Science and Technology S lgoritmer og atastrukturer (00-ordning) ntal sider i opgavesættet (incl. forsiden): (elleve) ksamensdag: Tirsdag den. august 0, kl. 9.00-.00 Tilladte medbragte

Læs mere

Kønsproportion og familiemønstre.

Kønsproportion og familiemønstre. Københavns Universitet Afdeling for Anvendt Matematik og Statistik Projektopgave forår 2005 Kønsproportion og familiemønstre. Matematik 2SS Inge Henningsen februar 2005 Indledning I denne opgave undersøges,

Læs mere

Skriftlig Eksamen Kombinatorik, Sandsynlighed og Randomiserede Algoritmer (DM528)

Skriftlig Eksamen Kombinatorik, Sandsynlighed og Randomiserede Algoritmer (DM528) Skriftlig Eksamen Kombinatorik, Sandsynlighed og Randomiserede Algoritmer (DM58) Institut for Matematik og Datalogi Syddansk Universitet, Odense Torsdag den 1. januar 01 kl. 9 13 Alle sædvanlige hjælpemidler

Læs mere

Kvantitative Metoder 1 - Efterår 2006. Dagens program

Kvantitative Metoder 1 - Efterår 2006. Dagens program Dagens program Afsnit 2.4-2.5 Bayes sætning Uafhængige stokastiske variable - Simultane fordelinger - Marginale fordelinger - Betingede fordelinger Uafhængige hændelser - Indikatorvariable Afledte stokastiske

Læs mere

INSTITUT FOR DATALOGI, AARHUS UNIVERSITET

INSTITUT FOR DATALOGI, AARHUS UNIVERSITET INSTITUT FOR DATALOGI, AARHUS UNIVERSITET Science and Technology EKSAMEN Antal sider i opgavesættet (incl. forsiden): 6 (seks) Eksamensdag: Fredag den 22. juni 2012, kl. 9.00-13.00 Eksamenslokale: Finlandsgade

Læs mere

K 7 - og K 4,4 -minors i grafer

K 7 - og K 4,4 -minors i grafer Aalborg Universitet Det Teknisk-Naturvidenskabelige Fakultet Institut for Matematiske Fag K 7 - og K 4,4 -minors i grafer Aalborg Universitet Det Teknisk-Naturvidenskabelige Fakultet Institut for Matematiske

Læs mere

INSTITUT FOR DATALOGI, AARHUS UNIVERSITET

INSTITUT FOR DATALOGI, AARHUS UNIVERSITET INSTITUT FOR ATALOGI, AARHUS UNIVERSITET Science and Technology EKSAMEN Algoritmer og atastrukturer (00-ordning) Antal sider i opgavesættet (incl. forsiden): (elleve) Eksamensdag: Fredag den. august 0,

Læs mere

Prøveeksamen A i Lineær Algebra

Prøveeksamen A i Lineær Algebra Prøveeksamen A i Lineær Algebra Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet og Det Sundhedsvidenskabelige Fakultet Der må gøres brug af bøger, noter mv Der må ikke benyttes lommeregner,

Læs mere

Skriftlig Eksamen ST501: Science Statistik Mandag den 11. juni 2007 kl. 15.00 18.00

Skriftlig Eksamen ST501: Science Statistik Mandag den 11. juni 2007 kl. 15.00 18.00 Skriftlig Eksamen ST501: Science Statistik Mandag den 11. juni 2007 kl. 15.00 18.00 Forskningsenheden for Statistik IMADA Syddansk Universitet Alle skriftlige hjælpemidler samt brug af lommeregner er tilladt.

Læs mere

Primtal - hvor mange, hvordan og hvorfor?

Primtal - hvor mange, hvordan og hvorfor? Johan P. Hansen 1 1 Institut for Matematiske Fag, Aarhus Universitet Gult foredrag, EULERs Venner, oktober 2009 Disposition 1 EUKLIDs sætning. Der er uendelig mange primtal! EUKLIDs bevis Bevis baseret

Læs mere

Symmetrisk Traveling Salesman Problemet

Symmetrisk Traveling Salesman Problemet Symmetrisk Traveling Salesman Problemet Videregående Algoritmik, Blok 2 2008/2009, Projektopgave 2 Bjørn Petersen 9. december 2008 Dette er den anden af to projektopgaver på kurset Videregående Algoritmik,

Læs mere

Eksamen i Calculus. Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet og Det Sundhedsvidenskabelige Fakultet. 6.

Eksamen i Calculus. Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet og Det Sundhedsvidenskabelige Fakultet. 6. Eksamen i Calculus Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet og Det Sundhedsvidenskabelige Fakultet 6. juni 16 Dette eksamenssæt består af 1 nummererede sider med 14 afkrydsningsopgaver.

Læs mere

.. if L(u) + w(u, v) < L(v) then.. begin... L(v) := L(u) + w(u, v)... F (v) := u.. end. med længde L(z)}

.. if L(u) + w(u, v) < L(v) then.. begin... L(v) := L(u) + w(u, v)... F (v) := u.. end. med længde L(z)} Procedure Dijkstra(G = (V, E): vægtet sh. graf,. a, z: punkter) { Det antages at w(e) > 0 for alle e E} For alle v V : L(v) := L(a) := 0, S := while z / S begin. u := punkt ikke i S, så L(u) er mindst

Læs mere

Mindste udspændende træ. Mindste udspændende træ. Introduktion. Introduktion

Mindste udspændende træ. Mindste udspændende træ. Introduktion. Introduktion Philip Bille Introduktion (MST). Udspændende træ af minimal samlet vægt. Introduktion (MST). Udspændende træ af minimal samlet vægt. 0 0 Graf G Ikke sammenhængende Introduktion (MST). Udspændende træ af

Læs mere

Multiple Choice Prøver

Multiple Choice Prøver Teori og Praksis for Multiple Choice Prøver Michael I. Schwartzbach Multiple Choice ved Datalogi Anvendt i mange datalogikurser siden 2006: Oversættelse Databaser Webteknologi Programmingssprog Dynamiske

Læs mere

CIVILINGENIØREKSAMEN Side 1 af 16 sider. Skriftlig prøve, den: 27. maj 2011 Kursus nr : (navn) (underskrift) (bord nr)

CIVILINGENIØREKSAMEN Side 1 af 16 sider. Skriftlig prøve, den: 27. maj 2011 Kursus nr : (navn) (underskrift) (bord nr) CIVILINGENIØREKSAMEN Side af 6 sider Skriftlig prøve, den: 27. maj 20 Kursus nr : 02405 Kursus navn: Sandsynlighedsregning Tilladte hjælpemidler: Alle Dette sæt er besvaret af: (navn) (underskrift) (bord

Læs mere

Matematik B. Højere handelseksamen

Matematik B. Højere handelseksamen Matematik B Højere handelseksamen hhx132-mat/b-16082013 Fredag den 16. august 2013 kl. 9.00-13.00 Matematik B Prøven består af to delprøver. Delprøven uden hjælpemidler består af opgave 1 til 5 med i alt

Læs mere

Skriftlig eksamen - med besvarelse Topologi I (MM508)

Skriftlig eksamen - med besvarelse Topologi I (MM508) INSTITUT FOR MATEMATIK OG DATALOGI SYDDANSK UNIVERSITET, ODENSE Skriftlig eksamen - med besvarelse Topologi I (MM508) Mandag d. 14. januar 2007 2 timer med alle sædvanlige hjælpemidler tilladt. Opgavesættet

Læs mere

eksamens snyd UNDGÅ EKSAMENSSNYD En hjælp til universitetets studerende AARHUS UNIVERSITET

eksamens snyd UNDGÅ EKSAMENSSNYD En hjælp til universitetets studerende AARHUS UNIVERSITET eksamens snyd UNDGÅ EKSAMENSSNYD En hjælp til universitetets studerende AARHUS UNIVERSITET 2 UNDGÅ EKSAMENSSNYD UNDGÅ EKSAMENSSNYD Eksamenssnyd er en forseelse, som universitetet ser med største alvor

Læs mere

GOD AKADEMISK PRAKSIS. - Sådan håndterer du kilder og undgår eksamenssnyd

GOD AKADEMISK PRAKSIS. - Sådan håndterer du kilder og undgår eksamenssnyd GOD AKADEMISK PRAKSIS - Sådan håndterer du kilder og undgår eksamenssnyd UNDGÅ EKSAMENSSNYD SDU forudsætter, at du kan arbejde selvstændigt og at eksamen altid afspejler dit arbejde. Når du står med dit

Læs mere

Matematik A. Højere handelseksamen. Mandag den 15. december 2014 kl. 9.00-14.00. hhx143-mat/a-15122014

Matematik A. Højere handelseksamen. Mandag den 15. december 2014 kl. 9.00-14.00. hhx143-mat/a-15122014 Matematik A Højere handelseksamen hh143-mat/a-151014 Mandag den 15. december 014 kl. 9.00-14.00 Matematik A Prøven består af to delprøver. Delprøven uden hjælpemidler består af opgave 1 til 5 med i alt

Læs mere

Tip til 1. runde af Georg Mohr-Konkurrencen Kombinatorik

Tip til 1. runde af Georg Mohr-Konkurrencen Kombinatorik Tip til 1. runde af - Kombinatorik, Kirsten Rosenkilde. Tip til 1. runde af Kombinatorik Her er nogle centrale principper om og strategier for hvordan man tæller et antal kombinationer på en smart måde,

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet side af sider Danmarks Tekniske Universitet Skriftlig prøve, den. maj 00. Kursusnavn Algoritmer og datastrukturer I Kursus nr. 005. Tilladte hjælpemidler: Alle skriftlige hjælpemidler. Vægtning af opgaverne:

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet side af sider Danmarks Tekniske Universitet Skriftlig prøve, den. maj 00. Kursusnavn Algoritmer og datastrukturer Kursus nr. 06. Tilladte hjælpemidler: Alle hjælpemidler. Vægtning af opgaverne: Opgave

Læs mere

P2-gruppedannelsen for Mat og MatØk

P2-gruppedannelsen for Mat og MatØk Institut for Matematiske Fag Aalborg Universitet Danmark 1-02-2012 Vejledere Bo Hove E-mail: bh@thisted-gymnasium.dk 3 Mat grupper (semesterkoordinator) E-mail: diego@math.aau.dk. Web page: http://people.math.aau.dk/~diego/

Læs mere

Eksamensopgaver i matematik

Eksamensopgaver i matematik Eksamensopgaver i matematik med TI-Nspire CAS ver. 2.0 Udarbejdet af: Brian M.V. Olesen Marts 2010 Indholdsfortegnelse Indledning...1 Bedømmelse af besvarelse...2 Eksempel 1 Lineære sammenhænge...3 Eksempel

Læs mere

GOD AKADEMISK PRAKSIS. - Sådan håndterer du kilder og undgår eksamenssnyd

GOD AKADEMISK PRAKSIS. - Sådan håndterer du kilder og undgår eksamenssnyd GOD AKADEMISK PRAKSIS - Sådan håndterer du kilder og undgår eksamenssnyd UNDGÅ EKSAMENSSNYD SDU forudsætter, at du kan arbejde selvstændigt og at eksamen altid afspejler dit arbejde. Når du står med dit

Læs mere

Tidligere Eksamensopgaver MM505 Lineær Algebra

Tidligere Eksamensopgaver MM505 Lineær Algebra Institut for Matematik og Datalogi Syddansk Universitet Tidligere Eksamensopgaver MM55 Lineær Algebra Indhold Typisk forside.................. 2 Juni 27.................... 3 Oktober 27..................

Læs mere

DM507 Algoritmer og datastrukturer

DM507 Algoritmer og datastrukturer DM507 Algoritmer og datastrukturer Forår 2016 Projekt, del III Institut for matematik og datalogi Syddansk Universitet 20. april, 2016 Dette projekt udleveres i tre dele. Hver del har sin deadline, således

Læs mere

Mindste udspændende træ. Mindste udspændende træ. Introduktion. Introduktion

Mindste udspændende træ. Mindste udspændende træ. Introduktion. Introduktion Philip Bille Introduktion (MST). Udspændende træ af minimal samlet vægt. Introduktion (MST). Udspændende træ af minimal samlet vægt. 0 0 Graf G Ikke sammenhængende Introduktion (MST). Udspændende træ af

Læs mere

Reeksamen i Calculus Onsdag den 17. februar 2016

Reeksamen i Calculus Onsdag den 17. februar 2016 Reeksamen i Calculus Onsdag den 17. februar 216 Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet og Det Sundhedsvidenskabelige Fakultet Nærværende eksamenssæt består af 7 nummererede sider

Læs mere

Reeksamen i Calculus

Reeksamen i Calculus Reeksamen i Calculus Torsdag den 11. august 2011 Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet og Det Sundhedsvidenskabelige Fakultet Nærværende eksamenssæt består af 8 nummererede sider

Læs mere

Sprog L : mængden af instanser for et afgørlighedsproblem

Sprog L : mængden af instanser for et afgørlighedsproblem 26. marts Resume sidste to gang Sprog L : mængden af instanser for et afgørlighedsproblem hvor svaret er 1. P NP L : L genkendes af en algoritme i polynomiel tid L : L verificeres af en polynomiel tids

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet Eksamen 02105, F14 side 1 af 14 Danmarks Tekniske Universitet Skriftlig prøve, den 22. maj 2014. Kursusnavn: Algoritmer og datastrukturer 1 Kursusnummer: 02105 Hjælpemidler: Skriftlige hjælpemidler. Det

Læs mere

Eksamen i Calculus Mandag den 4. juni 2012

Eksamen i Calculus Mandag den 4. juni 2012 Eksamen i Calculus Mandag den 4. juni 212 Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet og Det Sundhedsvidenskabelige Fakultet Nærværende eksamenssæt består af 7 nummererede sider med ialt

Læs mere

Eksamen i Lineær Algebra

Eksamen i Lineær Algebra Eksamen i Lineær Algebra Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet & Det Sundhedsvidenskabelige Fakultet Tirsdag den 8 januar, Kl 9- Nærværende eksamenssæt består af 8 nummererede sider

Læs mere

Eksamen i Calculus. Første Studieår ved Det Tekniske Fakultet for IT og Design samt Det Ingeniør- og Naturvidenskabelige Fakultet. 3.

Eksamen i Calculus. Første Studieår ved Det Tekniske Fakultet for IT og Design samt Det Ingeniør- og Naturvidenskabelige Fakultet. 3. Eksamen i Calculus Første Studieår ved Det Tekniske Fakultet for IT og Design samt Det Ingeniør- og Naturvidenskabelige Fakultet. januar 7 Dette eksamenssæt består af 9 nummererede sider med afkrydsningsopgaver.

Læs mere

Skriftlig Eksamen Diskret matematik med anvendelser (DM72)

Skriftlig Eksamen Diskret matematik med anvendelser (DM72) Skriftlig Eksamen Diskret matematik med anvendelser (DM72) Institut for Matematik & Datalogi Syddansk Universitet, Odense Onsdag den 18. januar 2006 Alle sædvanlige hjælpemidler (lærebøger, notater etc.),

Læs mere

Grafteori. 1 Terminologi. Grafteori, Kirsten Rosenkilde, august fra V. (Engelsk: subgraph, spanning subgraph, the subgraph

Grafteori. 1 Terminologi. Grafteori, Kirsten Rosenkilde, august fra V. (Engelsk: subgraph, spanning subgraph, the subgraph Grafteori, Kirsten Rosenkilde, august 2010 1 Grafteori Dette er en introduktion til de vigtigste begreber i grafteori, udvalgt teori samt eksempler på opgavetyper inden for emnet med fokus på den type

Læs mere

dpersp Uge 40 - Øvelser Internetalgoritmer

dpersp Uge 40 - Øvelser Internetalgoritmer Øvelse 1 dpersp Uge 40 - Øvelser Internetalgoritmer (Øvelserne 4 og 6 er afleveringsopgaver) a) Hver gruppe får en terning af instruktoren. Udfør 100 skridt af nedenstående RandomWalk på grafen, som også

Læs mere

IMADAs Fagråd. Evalueringsrapport. Matematik & Datalogi. 2. juni 2011. Kontaktpersoner

IMADAs Fagråd. Evalueringsrapport. Matematik & Datalogi. 2. juni 2011. Kontaktpersoner Evalueringsrapport Matematik & Datalogi 2. juni 2011 Kontaktpersoner Christian Kudahl - chkud08@student.sdu.dk Maria Buhl Hansen - marih09@student.sdu.dk Indhold Indhold 2 1 Indledning 4 1.1 Matematik-økonomi.......................

Læs mere

UNDGÅ EKSAMENSSNYD. - hjælp til selvhjælp

UNDGÅ EKSAMENSSNYD. - hjælp til selvhjælp UNDGÅ EKSAMENSSNYD - hjælp til selvhjælp UNDGÅ EKSAMENSSNYD SDU forudsætter, at du kan arbejde selvstændigt og at eksamen altid afspejler dit arbejde. Når du står med dit eksamensbevis i hånden, skal man

Læs mere

Rettevejledning til Kvantitative metoder 1, 2. årsprøve 18. juni timers prøve med hjælpemidler

Rettevejledning til Kvantitative metoder 1, 2. årsprøve 18. juni timers prøve med hjælpemidler Rettevejledning til Kvantitative metoder 1, 2. årsprøve 18. juni 2007 4 timers prøve med hjælpemidler Opgaven består af re delopgaver, som alle skal besvares. De re opgaver indgår med samme vægt. Opgaverne

Læs mere

Videregående Algoritmik. Version med vejledende løsninger indsat!

Videregående Algoritmik. Version med vejledende løsninger indsat! Videregående Algoritmik DIKU, timers skriftlig eksamen, 1. april 009 Nils Andersen og Pawel Winter Alle hjælpemidler må benyttes, dog ikke lommeregner, computer eller mobiltelefon. Opgavesættet består

Læs mere

STUDENTEREKSAMEN DECEMBER 2007 MATEMATIK B-NIVEAU. Tirsdag den 18. december 2007. Kl. 09.00 13.00 STX073-MAB

STUDENTEREKSAMEN DECEMBER 2007 MATEMATIK B-NIVEAU. Tirsdag den 18. december 2007. Kl. 09.00 13.00 STX073-MAB STUDENTEREKSAMEN DECEMBER 2007 MATEMATIK B-NIVEAU Tirsdag den 18. december 2007 Kl. 09.00 13.00 STX073-MAB Bedømmelsen af det skriftlige eksamenssæt I bedømmelsen af besvarelsen af de enkelte spørgsmål

Læs mere

Noter til Perspektiver i Matematikken

Noter til Perspektiver i Matematikken Noter til Perspektiver i Matematikken Henrik Stetkær 25. august 2003 1 Indledning I dette kursus (Perspektiver i Matematikken) skal vi studere de hele tal og deres egenskaber. Vi lader Z betegne mængden

Læs mere

Skriftlig Eksamen Algoritmer og Datastrukturer (dads)

Skriftlig Eksamen Algoritmer og Datastrukturer (dads) Skriftlig Eksamen Algoritmer og Datastrukturer (dads) Datalogisk Institut Aarhus Universitet Onsdag den. august 200, kl. 9.00.00 Opgave (25%) Lad A = A[] A[n] være et array af heltal. Længden af det længste

Læs mere

Nye eksamensformer - mulige scenarier

Nye eksamensformer - mulige scenarier Nye eksamensformer - mulige scenarier Matematik på hf Marts 2015 Bodil Bruun, fagkonsulent i matematik stx/hf Nye eksamensformer?? Problemer, der skal løses: Internet er et vilkår mundtligt og skriftligt

Læs mere

Eksamen i Lineær Algebra

Eksamen i Lineær Algebra Eksamen i Lineær Algebra Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet & Det Sundhedsvidenskabelige Fakultet Tirsdag den 4 januar, 2 Kl 9-3 Nærværende eksamenssæt består af 8 nummererede

Læs mere

Matematik B. Højere handelseksamen

Matematik B. Højere handelseksamen Matematik B Højere handelseksamen hh141-mat/b-23052014 Fredag den 23. maj 2014 kl. 9.00-13.00 Matematik B Prøven består af to delprøver. Delprøven uden hjælpemidler består af opgave 1 til 5 med i alt 5

Læs mere

Undgå eksamenssnyd en hjælp til studerende

Undgå eksamenssnyd en hjælp til studerende Undgå eksamenssnyd en hjælp til studerende Eksamenssnyd er en forseelse, som Erhvervsakademi Aarhus ser med største alvor på, fordi forseelsen medfører, at man ikke kan stole på erhvervsakademiets eksamensbeviser.

Læs mere

(Prøve)eksamen i Lineær Algebra

(Prøve)eksamen i Lineær Algebra (Prøve)eksamen i Lineær Algebra Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet & Det Sundhedsvidenskabelige Fakultet Nærværende eksamenssæt bestaår af 9 nummererede sider med ialt 15 opgaver.

Læs mere

Varmeligningen og cosinuspolynomier.

Varmeligningen og cosinuspolynomier. Varmeligningen og cosinuspolynomier. Projekt for MM50 Marts 009 Hans J. Munkholm 0. Praktiske oplysninger Dette projekt besvares af de studerende, som er tilmeldt eksamen i MM50 uden at være tilmeldt eksamen

Læs mere

Grafteori. 1 Terminologi. Indhold

Grafteori. 1 Terminologi. Indhold Grafteori Dette er en introduktion til de vigtigste begreber i grafteori, udvalgt teori samt eksempler på opgavetyper inden for emnet med fokus på de opgavetyper der typisk er til internationale matematikkonkurrencer.

Læs mere

Løsning til eksaminen d. 14. december 2009

Løsning til eksaminen d. 14. december 2009 DTU Informatik 02402 Introduktion til Statistik 200-2-0 LFF/lff Løsning til eksaminen d. 4. december 2009 Referencer til Probability and Statistics for Engineers er angivet i rækkefølgen [8th edition,

Læs mere

Kursusindhold: Produkt og marked - matematiske og statistiske metoder. Monte Carlo

Kursusindhold: Produkt og marked - matematiske og statistiske metoder. Monte Carlo Kursusindhold: Produkt og marked - matematiske og statistiske metoder Rasmus Waagepetersen Institut for Matematiske Fag Aalborg Universitet Sandsynlighedsregning og lagerstyring Normalfordelingen og Monte

Læs mere

Matematik A. Højere handelseksamen. Vejledende opgave 2

Matematik A. Højere handelseksamen. Vejledende opgave 2 Matematik A Højere handelseksamen Vejledende opgave Efterår 01 Prøven består af to delprøver. Delprøven uden hjælpemidler består af opgave 1 til 5 med i alt 5 spørgsmål. Besvarelsen af denne delprøve skal

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet Eksamen 0205, Forår 205 side af 5 Danmarks Tekniske Universitet Skriftlig prøve, den 22. maj 205. Kursusnavn: Algoritmer og datastrukturer Kursusnummer: 0205 Hjælpemidler: Skriftlige hjælpemidler. Det

Læs mere