Trigonometri at beregne Trekanter

Størrelse: px
Starte visningen fra side:

Download "Trigonometri at beregne Trekanter"

Transkript

1 Trigonometri at beregne Trekanter Pythagoras, en stor matematiker fandt ud af, at der i en retvinklet trekant summen af kvadraterne på kateterne er lig med kvadratet på hypotenusen. ( a 2 + b 2 = c 2 ) Omvendt kan vi sige, at når summen af kvadraterne af 2 sider er lig med kvadratet af den sidste side, så har vi en retvinklet trekant. Når vi så kun har informationer om sidernes længde, kan vi med Pythagoras sætning hurtigt finde ud af, om trekanten er retvinklet. Pythagoras sætning er en stor hjælp til at beregne sidelængder. Når vi kigger på følgende 2 ensvinklede trekanter, kan vi opdage følgende: I den lille trekant er forholdet af kateten med længde 4 og hypotenusen 4 / 5. I den store trekant er forholdet af samme sider 8 / 10, som forkortet med 2 er intet andet end 4 / 5. Det samme gælder den anden katedes forhold til hypotenusen og katedernes forhold til hinanden. Forholdene er altid de samme, så det er uafhængig af om trekanten er forstørret op eller formindsket ned. Forholdene af en trekants tre sider til hinanden er derfor kun afhængig af trekantens vinkler. Når vi ser på kongruenssætningen kan vi se begrundelsen hertil. Med en vinkel og de to hosliggende sider kan enstydig konstrueres en trekant den sidste sides længde er her afhængig af vinklens størrelse Med en side og de to hosliggende vinkler kan man enstydig konstrueres en trekant. Afhængig af vinklernes størrelse kan de sidste sider tegnes indtil de skæres i punkt B

2 Flere matematikerne, som fx Al-Battani und Abu'l Wafa i året 900, beskæftigede sig med forhold af siderne og med vinklerne i en trekant. De forholde fik navne: Cosinus Sinus Tangens er forholdet fra b og c er forholdet fra a og c er forholdet fra a og b Disse forholde (cos A, sin A eller tan A) kunne vi indsætte i forskellige, ret komplicerede funktioner der giver os vinklens gradtal, meeen i dag har alle lommeregner disse funktioner integreret, så man bare bliver nødt til at indtaste tallet. Nedenfor kan ses nogle resultater Bemærk: de to vinkler der kan beregnes giver altid 90 o grad (den sidste vinkel, den rette vinkel, er jo 90 o grad og trekanten har kun 180 o grader) Dvs. når man har sinus, er cosinus det der komplementerer gradsummen op på 90 o grader. ( Her kommer navnet fra complementi sinus = cosinus.) Cosinus Sinus Tangens

3 Med denne viden behøver vi nu ikke mere at tegne og måle, men kan beregne sider og vinkler i en retvinklet trekant. Desværre er ikke alle trekanter retvinklet. Men som vi jo ved, kan vi dele et trekant med højden i to retvinklede trekanter. Nu kan vi sige Og på grund af at højden h er den samme, så kan man vidst sige, at : Når vi sætter højden ikke fra B til b, men fra A til a, for vi Så i det hele gælder :

4 Det vi nu fandt ud af kaldes for sinus relationen. Med sinusrelationen kan vi også bestemme arealet af en trekant, som jo er ½ * h * grundlinje. Vi har her grundlinjen b og højden enten defineret med c* sin(a) eller a* sin(c). Når højden ville gå fra A til a, ville vi få grundlinje a og h defineret med c * sin (B) Vi kan derfor beregne arealet med ½ * (højde = c*sin(a)) * (grundlinje = b) Forkortet og lidt omstillet siges arealet af en trekant kan beregnes med: Areal (Trekant) = ½ * b*c* sin (A) = ½ * a * c * sin (B) = ½ * a * b * sin (C) Eksempel: Når vi tager det samme trekant som i eksemplet før, kan vi benytte = ½ * a * b * sin (C) Side a kender vi og sin (C) kan vi beregne med lommeregner. Men vi mangler linje b for at finde arealet. Men sinusrelationen siger jo : omstillet er det og vinkel B kan vi hurtigt beregne med = 95 o. Så arealet er : ½ * 6 * ( ) * sin (55 o ) = ca. 29, 36

5 Prøv på at beholde tallene i lommeregneren (med gemfunktion ) for at få det nøjagtigste tal som muligt ( sinusværdierne kan have 117 decimaler ) Sinusrelationen er altså rigtigt nyttigt, men dog er der et lille manko. Man kan kun komme i gang med den, når man har en vinkel og dens modstående side (højden)! Når man har en vinkel og den hosliggende side, hjælper sinusrelationen ikke meget. Her benytter vi derfor cosinusrelationen. Her er et kort bevis til relationerne Cosinusrelationer er Gennem omstilling af ligninger får man mulighed til at beregne vinkler:

Geometri, (E-opgaver 9d)

Geometri, (E-opgaver 9d) Geometri, (E-opgaver 9d) GEOMETRI, (E-OPGAVER 9D)... 1 Vinkler... 1 Trekanter... 2 Ensvinklede trekanter... 2 Retvinklede trekanter... 3 Pythagoras sætning... 3 Sinus, Cosinus og Tangens... 4 Vilkårlige

Læs mere

Matematik projekt. Klasse: Sh-mab05. Fag: Matematik B. Projekt: Trigonometri

Matematik projekt. Klasse: Sh-mab05. Fag: Matematik B. Projekt: Trigonometri Matematik projekt Klasse: Sh-mab05 Fag: Matematik B Projekt: Trigonometri Kursister: Anders Jørgensen, Kirstine Irming, Mark Petersen, Tobias Winberg & Zehra Köse Underviser: Vibeke Wulff Side 1 af 11

Læs mere

TREKANTER. Indledning. Typer af trekanter. Side 1 af 7. (Der har været tre kursister om at skrive denne projektrapport)

TREKANTER. Indledning. Typer af trekanter. Side 1 af 7. (Der har været tre kursister om at skrive denne projektrapport) Side 1 af 7 (Der har været tre kursister om at skrive denne projektrapport) TREKANTER Indledning Vi har valgt at bruge denne projektrapport til at udarbejde en oversigt over det mest grundlæggende materiale

Læs mere

5: Trigonometri Den del af matematik, der beskæftiger sig med figurer og deres egenskaber, kaldes for geometri. Selve

5: Trigonometri Den del af matematik, der beskæftiger sig med figurer og deres egenskaber, kaldes for geometri. Selve 5: Trigonometri Den del af matematik, der beskæftiger sig med figurer og deres egenskaber, kaldes for geometri. Selve ordet geometri er græsk og betyder jord(=geo)måling(=metri). Interessen for figurer

Læs mere

ØVEHÆFTE FOR MATEMATIK C GEOMETRI

ØVEHÆFTE FOR MATEMATIK C GEOMETRI ØVEHÆFTE FOR MATEMATIK C GEOMETRI Indhold Begreber i klassisk geometri + formelsamling... 2 Pythagoras Sætning... 8 Retvinklede trekanter. Beregn den ukendte side markeret med et bogstav.... 9 Øve vinkler

Læs mere

ØVEHÆFTE FOR MATEMATIK C GEOMETRI

ØVEHÆFTE FOR MATEMATIK C GEOMETRI ØVEHÆFTE FOR MATEMATIK C GEOMETRI Indhold Begreber i klassisk geometri + formelsamling... 2 Ensvinklede trekanter... 7 Pythagoras Sætning... 10 Øve vinkler i retvinklede trekanter... 15 Sammensatte opgaver....

Læs mere

Problemløsning i retvinklede trekanter

Problemløsning i retvinklede trekanter Problemløsning i retvinklede trekanter Frank Villa 14. februar 2012 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug

Læs mere

Trigonometri. for 9. klasse. Geert Cederkvist

Trigonometri. for 9. klasse. Geert Cederkvist Trigonometri Ved konstruktion af bygningsværker, hvor der kræves stor nøjagtighed, er der ofte brug for, at man kan beregne sider og vinkler i geometriske figurer. Alle polygoner kan deles op i trekanter,

Læs mere

Pythagoras og andre sætninger

Pythagoras og andre sætninger Pythagoras og andre sætninger Pythagoras Pythagoras fra den græske ø Samos levede i det 6. århundrede f.v.t. fra ca. 580 til ca. 500. Han lægger som sagt navn til den sætning, vi tidligere har nævnt,

Læs mere

I kapitlet arbejdes med følgende centrale matematiske objekter og begreber:

I kapitlet arbejdes med følgende centrale matematiske objekter og begreber: INTRO Efter mange års pause er trigonometri med Fælles Mål 2009 tilbage som fagligt emne i grundskolens matematikundervisning. Som det fremgår af den følgende sides udpluk fra faghæftets trinmål, er en

Læs mere

Eksamensspørgsmål: Trekantberegning

Eksamensspørgsmål: Trekantberegning Eksamensspørgsmål: Trekantberegning Indhold Definition af Sinus og Cosinus... 1 Bevis for Sinus- og Cosinusformlerne... 3 Tangens... 4 Pythagoras s sætning... 4 Arealet af en trekant... 7 Vinkler... 8

Læs mere

User s guide til cosinus og sinusrelationen

User s guide til cosinus og sinusrelationen User s guide til cosinus og sinusrelationen Frank Nasser 20. april 2011 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for

Læs mere

Kapitel 4. Trigonometri. Matematik C (må anvendes på Ørestad Gymnasium) Kapitel 4

Kapitel 4. Trigonometri. Matematik C (må anvendes på Ørestad Gymnasium) Kapitel 4 Matematik C (må anvendes på Ørestad Gymnasium) Trigonometri Den del af matematik, der beskæftiger sig med figurer og deres egenskaber, kaldes for geometri. Selve ordet geometri er græsk og betyder jord(=geo)måling(=metri).

Læs mere

Ib Michelsen: Matematik C, Geometri 2011 Version 7.1 03-10-11 rettet fejl side 47 sin G:\_nyBog\1-2-trig\nyTrigonometri12.odt

Ib Michelsen: Matematik C, Geometri 2011 Version 7.1 03-10-11 rettet fejl side 47 sin G:\_nyBog\1-2-trig\nyTrigonometri12.odt Trigonometri Vinkel v sin(v) Vinkel v sin(v) Vinkel v sin(v) 0,00 0,00 30,00 0,50 60,00 0,87 1,00 0,02 31,00 0,52 61,00 0,87 2,00 0,03 32,00 0,53 62,00 0,88 3,00 0,05 33,00 0,54 63,00 0,89 4,00 0,07 34,00

Læs mere

VUC Vestsjælland Syd, Slagelse Nr. 1 Institution: Projekt Trigonometri

VUC Vestsjælland Syd, Slagelse Nr. 1 Institution: Projekt Trigonometri VUC Vestsjælland Syd, Slagelse Nr. 1 Institution: 333247 2015 Anders Jørgensen, Mark Kddafi, David Jensen, Kourosh Abady og Nikolaj Eriksen 1. Indledning I dette projekt, vil man kunne se definitioner

Læs mere

Undersøgelser af trekanter

Undersøgelser af trekanter En rød tråd igennem kapitlet er en søgen efter svar på spørgsmålet: Hvordan kan vi beregne os frem til længder, vi ikke kan komme til at måle?. Hvordan kan vi fx beregne højden på et træ eller et hus,

Læs mere

06 Formler i retvinklede trekanter del 2

06 Formler i retvinklede trekanter del 2 06 Formler i retvinklede trekanter del 2 I del 2 udledes (nogle af) de generelle formler, der gælder for sinus, cosinus og tangens i retvinklede trekanter. Sætning 1 For enhver vinkel v gælder der BEVIS

Læs mere

MATEMATIK C. Videooversigt

MATEMATIK C. Videooversigt MATEMATIK C Videooversigt Deskriptiv statistik... 2 Eksamensrelevant... 2 Eksponentiel sammenhæng... 2 Ligninger... 3 Lineær sammenhæng... 3 Potenssammenhæng... 3 Proportionalitet... 4 Rentesregning...

Læs mere

Projekt Beholderkonstruktion. Matematik - A

Projekt Beholderkonstruktion. Matematik - A Projekt Beholderkonstruktion Matematik - A [Skriv et resume af dokumentet her. Resumeet er normalt en kort beskrivelse af dokumentets indhold. Skriv et resume af dokumentet her. Resumeet er normalt en

Læs mere

Matematik A1. Mike Auerbach. c h A H

Matematik A1. Mike Auerbach. c h A H Matematik A1 Mike Auerbach B c h a A b x H x C Matematik A1 2. udgave, 2015 Disse noter er skrevet til matematikundervisning på stx og kan frit anvendes til ikke-kommercielle formål. Noterne er skrevet

Læs mere

Matematik 2011/2012 Skovbo Efterskole Trigonometri. Trigonometri

Matematik 2011/2012 Skovbo Efterskole Trigonometri. Trigonometri Trigonometri Spidse og stumpe vinkler En vinkel kaldes spids, når den er mindre end 90. En vinkel kaldes ret, når den er 90. En vinkel kaldes stump, når den er større end 90. En vinkel kaldes lige, når

Læs mere

GEOMETRI og TRIGONOMETRI del 2

GEOMETRI og TRIGONOMETRI del 2 GEOMETRI og TRIGONOMETRI del x-klasserne Gammel Hellerup Gymnasium 1 Indholdsfortegnelse COS, SIN, TAN og RETVINKLEDE TREKANTER... 3 Vinkler målt i radianer:... 6 Grundrelationen:... 8 Overgangsformler:...

Læs mere

Matematik B1. Mike Auerbach. c h A H

Matematik B1. Mike Auerbach. c h A H Matematik B1 Mike Auerbach B c h a A b x H x C Matematik B1 2. udgave, 2015 Disse noter er skrevet til matematikundervisning på stx og kan frit anvendes til ikke-kommercielle formål. Noterne er skrevet

Læs mere

Trekantsberegning 25 B. 2009 Karsten Juul

Trekantsberegning 25 B. 2009 Karsten Juul Trekantsberegning 7,0 3 5 009 Karsten Juul ette häfte indeholder den del af trekantsberegningen som skal kunnes på - niveau i gymnasiet (stx) og hf ra sommer 0 kräves mere remstillingen undgår at forudsätte

Læs mere

Pythagoras Sætning. Frank Nasser. 20. april 2011

Pythagoras Sætning. Frank Nasser. 20. april 2011 Pythagoras Sætning Frank Nasser 20. april 2011 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Bemærk: Dette er

Læs mere

Introduktion til cosinus, sinus og tangens

Introduktion til cosinus, sinus og tangens Introduktion til cosinus, sinus og tangens Jes Toft Kristensen 24. maj 2010 1 Forord Her er en lille introduktion til cosinus, sinus og tangens. Det var et af de emner jeg selv havde svært ved at forstå,

Læs mere

Matematik A. Bind 1. Mike Auerbach. c h A H

Matematik A. Bind 1. Mike Auerbach. c h A H Matematik A Bind 1 B c h a A b x H x C Mike Auerbach Matematik A, bind 1 1. udgave, 2014 Disse noter er skrevet til matematikundervisning på stx og kan frit anvendes til ikke-kommercielle formål. Noterne

Læs mere

7 Trekanter. Faglige mål. Linjer i trekanter. Ligedannethed. Pythagoras. Trigonometri

7 Trekanter. Faglige mål. Linjer i trekanter. Ligedannethed. Pythagoras. Trigonometri 7 Trekanter Faglige mål Kapitlet Trekanter tager udgangspunkt i følgende faglige mål: Linjer i trekanter: kende til højde, vinkelhalveringslinje, midtnormal og median, kunne tegne indskrevne og omskrevne

Læs mere

TRIGONOMETRI, 4 UGER, 9.KLASSE.

TRIGONOMETRI, 4 UGER, 9.KLASSE. TRIGONOMETRI, 4 UGER, 9.KLASSE. FRA FÆLLES MÅL Målsætninger for undervisningsforløbet er opsat efter kompetence, færdigheds og vidensmål samt læringsmål i lærersprog. Geometri og måling Fase 3 Geometriske

Læs mere

Opgave 1 Til denne opgave anvendes bilag 1.

Opgave 1 Til denne opgave anvendes bilag 1. Opgave 1 Til denne opgave anvendes bilag 1. a) Undersøg figur 1. Mål og noter vinklerne Mål og noter længderne b) Undersøg figur 2. Mål og noter vinklerne Mål og noter længderne c) Undersøg figur 3. Mål

Læs mere

M A T E M A T I K B 1

M A T E M A T I K B 1 M A T E M A T I K B 1 M I K E A U E R B A C H WWW.MATHEMATICUS.DK B c h a A b x H x C Matematik B1 3. udgave, 2016 Disse noter er skrevet til matematikundervisning på stx og kan frit anvendes til ikke-kommercielle

Læs mere

Projekt 8.12 Firkantstrigonometri og Ptolemaios sætning i cykliske firkanter

Projekt 8.12 Firkantstrigonometri og Ptolemaios sætning i cykliske firkanter Projekter: Kapitel 8 Projekt 8. Firkantstrigonometri og Ptolemaios sætning i cykliske firkanter Projekt 8. Firkantstrigonometri og Ptolemaios sætning i cykliske firkanter Trigonometrien til beregning af

Læs mere

Trigonometri. Store konstruktioner. Måling af højde

Trigonometri. Store konstruktioner. Måling af højde Trigonometri Ordet trigonometri er sammensat af de to ord trigon og metri, hvor trigon betyder trekant og metri kommer af det græske ord metros, som kan oversættes til måling. Så ordet trigonometri er

Læs mere

dvs. vinkelsummen i enhver trekant er 180E. Figur 11

dvs. vinkelsummen i enhver trekant er 180E. Figur 11 Sætning 5.8: Vinkelsummen i en trekant er 180E. Bevis: Lad ÎABC være givet. Gennem punktet C konstrueres en linje, som er parallel med linjen gennem A og B. Dette lader sig gøre på grund af sætning 5.7.

Læs mere

Maria Solstar Vestergaard 30-11-2006 Roskilde Tekniske Gymnasium Klasse 1.4g. Matematik B Klasse 1.4g Hjemmeopgaver

Maria Solstar Vestergaard 30-11-2006 Roskilde Tekniske Gymnasium Klasse 1.4g. Matematik B Klasse 1.4g Hjemmeopgaver Matematik B Hjemmeopgaver 1) opgave 107c, side 115 Jeg skal tegne en trekant og estemme vinklerne A og C og siderne a, og c. Jeg har følgende mål: Jeg har ikke nok mål til at kunne regne nogle af vinklerne

Læs mere

Enhedscirklen og de trigonometriske Funktioner

Enhedscirklen og de trigonometriske Funktioner Enhedscirklen og de trigonometriske Funktioner Frank Nasser 12. april 2011 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for

Læs mere

Beregning til brug for opmåling, udfoldning og konstruktion

Beregning til brug for opmåling, udfoldning og konstruktion VVS-branchens efteruddannelse Beregning til brug for opmåling, udfoldning og konstruktion Beregning til brug for opmåling, udfoldning og konstruktion Med de trigonometriske funktioner, kan der foretages

Læs mere

M A T E M A T I K A 1

M A T E M A T I K A 1 M A T E M A T I K A 1 M I K E A U E R B A C H WWW.MATHEMATICUS.DK B c a h A b C x H Matematik A1 3. udgave, 2016 Disse noter er skrevet til matematikundervisning på stx og kan frit anvendes til ikke-kommercielle

Læs mere

Formelsamling Matematik C

Formelsamling Matematik C Formelsamling Matematik C Ib Michelsen Ikast 2011 Ligedannede trekanter Hvis to trekanter er ensvinklede har de proportionale sider (dvs. alle siderne i den ene er forstørrelser af siderne i den anden

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj juni 2012 Institution Uddannelse Fag og niveau Lærer(e) VUF - Voksenuddannelsescenter Frederiksberg Hf

Læs mere

Eksamensspørgsmål 4emacff1

Eksamensspørgsmål 4emacff1 Eksamensspørgsmål 4emacff1 1. Funktioner, Lineære funktioner Gør rede for den lineære funktion y ax b. Forklar herunder betydningen af a og b, og kom ind på det grafiske forløb af en lineær funktion. Kom

Læs mere

Gør rede for begrebet fremskrivningsfaktor og giv eksempler på anvendelse heraf.

Gør rede for begrebet fremskrivningsfaktor og giv eksempler på anvendelse heraf. Eksamensspørgsmål i ma til 1p sommeren 2009 (revideret) 1. Procent- og rentesregning Gør rede for begrebet fremskrivningsfaktor og giv eksempler på anvendelse heraf. Forklar formlen til kapitalfremskrivning

Læs mere

Mine matematik noter C

Mine matematik noter C Mine matematik noter C Ib Michelsen mimimi.dk Ikast 2006 Indholdsfortegnelse Indledning...5 Geometri...7 Om geometri...9 Navne...11 Definition: Trekanten...11 Ensvinklede og ligedannede trekanter13 Definition:

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 2018 Institution Marie Kruses Skole Uddannelse Fag og niveau Lærer(e) Hold Stx Matematik A Klaus

Læs mere

Oversigt over undervisningen i matematik - 1x 04/05

Oversigt over undervisningen i matematik - 1x 04/05 Oversigt over undervisningen i matematik - 1x 04/05 side1 Der undervises efter: TGF Claus Jessen, Peter Møller og Flemming Mørk : Tal, Geometri og funktioner. Gyldendal 1997 EKS Knud Nissen : TI-84 familien

Læs mere

MATEMATIK C. Videooversigt

MATEMATIK C. Videooversigt MATEMATIK C Videooversigt Deskriptiv statistik... 2 Eksamensrelevant... 2 Eksponentiel sammenhæng... 2 Ligninger... 3 Lineær sammenhæng... 3 Potenssammenhæng... 4 Proportionalitet... 4 Rentesregning...

Læs mere

1q + 1qs Ikast-Brande Gymnasium maj 2015. 1. Procent og rente Forklar hvad betyder begrebet procent og hvordan man beregner det.

1q + 1qs Ikast-Brande Gymnasium maj 2015. 1. Procent og rente Forklar hvad betyder begrebet procent og hvordan man beregner det. Emne: procent og rente: 1. Procent og rente Forklar hvad betyder begrebet procent og hvordan man beregner det. Forklar, hvordan man lægger procenter til og trækker procenter fra. Gør rede for begrebet

Læs mere

Matematik for stx C-niveau

Matematik for stx C-niveau Thomas Jensen og Morten Overgård Nielsen Matematik for stx C-niveau Frydenlund Nu 2. reviderede, udvidede og ajourførte udgave Nu 2. reviderede, udvidede og ajourførte udgave Matema10k Matematik for stx

Læs mere

Løsninger til eksamensopgaver på B-niveau 2015

Løsninger til eksamensopgaver på B-niveau 2015 Løsninger til eksamensopgaver på B-niveau 2015 22. maj 2015: Delprøven UDEN hjælpemidler Opgave 1: Ligningen løses ved at isolere x i det åbne udsagn: 4 x 7 81 4 x 88 88 x 22 4 Opgave 2: y 87 0,45 x Det

Læs mere

RENTES REGNING SIMULATION LANDMÅLING MÅLSCORE I HÅNDBO . K R I S T I A N S E N KUGLE G Y L D E N D A L

RENTES REGNING SIMULATION LANDMÅLING MÅLSCORE I HÅNDBO . K R I S T I A N S E N KUGLE G Y L D E N D A L SIMULATION 4 2 RENTES REGNING F I NMED N H REGNEARK. K R I S T I A N S E N KUGLE 5 LANDMÅLING 3 MÅLSCORE I HÅNDBO G Y L D E N D A L Faglige mål: Anvende simple geometriske modeller og løse simple geometriske

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-Juni 2016 Institution VUC Vest Esbjerg Afdeling, Eksamens nr. 582 / Skolenummer 561 248 Uddannelse Fag

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 2016 Institution Marie Kruses Skole Uddannelse Fag og niveau Lærer(e) Hold Stx Matematik C Klaus

Læs mere

Noter til læreren side 1 I Trinmål for faget matematik står der bl.a.

Noter til læreren side 1 I Trinmål for faget matematik står der bl.a. Noter til læreren side 1 I Trinmål for faget matematik står der bl.a. Undervisningen skal lede frem mod, at eleverne har tilegnet sig kundskaber og færdigheder, der sætter dem i stand til i arbejdet med

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-Juni 2013 Institution VUC Vest Esbjerg Afdeling, Eksamens nr. 582 / Skolenummer 561 248 Uddannelse Fag

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni, 2016 Institution Frederiksberg HF Uddannelse Fag og niveau Lærer(e) HF Matematik C Kasper Jønsson

Læs mere

Tip til 1. runde af Georg Mohr-Konkurrencen Geometri

Tip til 1. runde af Georg Mohr-Konkurrencen Geometri Tip til. runde af - Geometri, Kirsten Rosenkilde. Tip til. runde af Geometri Her er nogle centrale principper om og strategier for hvordan man løser geometriopgaver. et er ikke en særlig teoretisk indføring,

Læs mere

Læringsprogram Pro C

Læringsprogram Pro C Læringsprogram Pro C TriangleSolver Emil Lynegaard & Steffen Immerkær 3.6i Emil Lynegaard (emilcl10) Steffen Immerkær (steffenhi10) 1 Indholdsfortegnelse Emil Lynegaard & Steffen Immerkær 3.6i Abstract...

Læs mere

Forklar hvad betyder begrebet procent og hvordan man beregner det. Forklar, hvordan man lægger procenter til og trækker procenter fra.

Forklar hvad betyder begrebet procent og hvordan man beregner det. Forklar, hvordan man lægger procenter til og trækker procenter fra. 1. Procent og rente Forklar hvad betyder begrebet procent og hvordan man beregner det. Forklar, hvordan man lægger procenter til og trækker procenter fra. Gør rede for begrebet fremskrivningsfaktor. Vis,

Læs mere

1,0. sin(60º) 1,0 cos(60º) I stedet for cosinus til 60º og sinus til 60º skriver man cos(60º) og sin(60º).

1,0. sin(60º) 1,0 cos(60º) I stedet for cosinus til 60º og sinus til 60º skriver man cos(60º) og sin(60º). Mtemtik på VU Eksempler til niveu F, E og D Til lle vinkler hører der to tl, som kldes osinus og sinus. Mn finder sinus og osinus ved først t tegne vinklen i et koordint-system som vist til venstre. Derefter

Læs mere

Gør rede for begrebet fremskrivningsfaktor og giv eksempler på anvendelse heraf.

Gør rede for begrebet fremskrivningsfaktor og giv eksempler på anvendelse heraf. Eksamensspørgsmål 1a sommeren 2009 (reviderede) 1. Procent- og rentesregning Gør rede for begrebet fremskrivningsfaktor og giv eksempler på anvendelse heraf. Forklar renteformlen og forklar hvorledes hver

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj 2014 Institution Uddannelse Fag og niveau Lærer(e) VUF - Voksenuddannelsescenter Frederiksberg Hf Matematik

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Sommer 2015 Institution 414 Københavns VUC Uddannelse Fag og niveau Lærer(e) Hold Hf2 Matematik C Michael

Læs mere

10 Elevplan. en tværfaglig læringsaktivitet. Når eleven skal have afvinket en læringsaktivitet eller et læringselement, vil det være samtlige

10 Elevplan. en tværfaglig læringsaktivitet. Når eleven skal have afvinket en læringsaktivitet eller et læringselement, vil det være samtlige 10 Elevplan Organisatoriske forhold Matematik kan i Elevplan udbydes som en selvstændig læringsaktivitet og/eller som elementer i tværfaglige aktiviteter. Beskrivelsen i Elevplan er en uddybning og præcisering

Læs mere

Ib Michelsen Vejledende løsning stxb 101 1

Ib Michelsen Vejledende løsning stxb 101 1 Ib Michelsen Vejledende løsning stxb 101 1 Opgave 1 Løs ligningen: 3(2 x+1)=4 x+9 Løsning 3(2 x+1)=4 x+9 6 x+3=4 x+9 6 x+3 3=4 x+9 3 6 x=4 x+6 6x 4 x=4 x+6 4 x 2 x=6 2 x 2 = 6 2 x=3 Opgave 2 P(3,1) er

Læs mere

Arealet af en trekant Der er mange formler for arealet af en trekant. Den mest kendte er selvfølgelig

Arealet af en trekant Der er mange formler for arealet af en trekant. Den mest kendte er selvfølgelig Arealet af en trekant Der er mange formler for arealet af en trekant. Den mest kendte er selvfølgelig som også findes i en trigonometrisk variant, den såkaldte 'appelsin'-formel: Men da en trekants form

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Retur Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj/juni 2016 Institution VUC Syd Uddannelse Fag og niveau Lærer(e) 2-årigt hf Hf matematik C Hanne

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni, 2015 Institution Frederiksberg HF Uddannelse Fag og niveau Lærer(e) HF Matematik C Kasper Jønsson

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Sommer 2015 Institution VUC Lyngby Uddannelse Fag og niveau Lærer Hold Hf MATEMATIK C Lene Kærgaard Jensen

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-Juni 2015 Institution VUC Vest Esbjerg Afdeling, Eksamens nr. 582 / Skolenummer 561 248 Uddannelse Fag

Læs mere

Repetition til eksamen. fra Thisted Gymnasium

Repetition til eksamen. fra Thisted Gymnasium Repetition til eksamen fra Thisted Gymnasium 20. oktober 2015 Kapitel 1 Introduktion til matematikken 1. Fortegn Husk fortegnsregnereglerne for multiplikation og division 2. Hierarki Lær sætningen om regnearternes

Læs mere

IT - Opgave. Produkt til Læring

IT - Opgave. Produkt til Læring IT - Opgave Produkt til Læring Navn: Ugur Kitir Skole: Roskilde - HTX Klasse: 2.4 Vejledere: Karl Afleveringsdato: 03/03 2009 0 Indholdsfortegnelse Planlægning... 2 Problemstilling... 2 Problemformulering...

Læs mere

Matematik. Formlen for en Kugle: 3 V = 4/3»r *n. Formlen for et Kugleafsnit: Formlen for en Keglestub: 2 2 V =n/3»h»(r + r + R*r)

Matematik. Formlen for en Kugle: 3 V = 4/3»r *n. Formlen for et Kugleafsnit: Formlen for en Keglestub: 2 2 V =n/3»h»(r + r + R*r) Matematik Vi har fået til opgave at bygge en ballon hvis volume mindst må være 1,2 Kubikmeter og max 1,5 kubikmeter. Så for at løse dette problem valgte vi at finde formlerne for en kugle, kugleafsnit

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Vinter 2014/15 Institution 414 Københavns VUC Uddannelse Fag og niveau Lærer(e) Hold Hf2 Matematik C Michael

Læs mere

Opgave 1 - Eksponentiel funktion/procent og renter

Opgave 1 - Eksponentiel funktion/procent og renter Alle beregninger er, hvis ikke andet angivet, udført med WordMat. Opgave 1 - Eksponentiel funktion/procent og renter Jeg vil nu finde ud af hvor stort et beløb der står på kontoen efter 1 år med en starts

Læs mere

1hf Spørgsmål til mundtlig matematik eksamen sommer 2014

1hf Spørgsmål til mundtlig matematik eksamen sommer 2014 1. Procent og rente Vis, hvordan man beregner gennemsnitlig procentændring 2. Procent og rente Vis hvordan man beregner indekstal. 3. Procent og rente Vis, hvordan man kan beregne forskellige størrelser

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin August 2014 - Juni 2015 Institution Uddannelse Fag og niveau Lærer(e) Hold Herning HF og VUC Hf Matematik

Læs mere

Forslag til løsning af Opgaver om areal (side296)

Forslag til løsning af Opgaver om areal (side296) Forslag til løsning af Opgaver om areal (side96) Opgave 1 6 0 8 Vi kan beregne arealet af 6 8 0 s 4. ved hjælp af Heron s formel: ( ) 4 4 6 4 8 4 0 6. Parallelogrammets areal er det dobbelte af trekantens

Læs mere

Rentesregning. Procent- og rentesregning. Rentesregning. Opsparingsannuitet

Rentesregning. Procent- og rentesregning. Rentesregning. Opsparingsannuitet Rentesregning 1 Forklar begrebet fremskrivningsfaktor. Forklar kapitalfremskrivningsformlen (renteformlen), og opstil/omskriv denne så du kan bestemme 1 af størrelserne, ud fra de 3 andre. Giv eksempler,

Læs mere

Kalkulus 1 - Opgaver. Anne Ryelund, Anders Friis og Mads Friis. 20. januar 2015

Kalkulus 1 - Opgaver. Anne Ryelund, Anders Friis og Mads Friis. 20. januar 2015 Kalkulus 1 - Opgaver Anne Ryelund, Anders Friis og Mads Friis 20. januar 2015 Mængder Opgave 1 Opskriv følgende mængder med korrekt mængdenotation. a) En mængde A indeholder alle hele tal fra og med 1

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 2015 Institution VUC Vest - Esbjerg Uddannelse Fag og niveau Lærer(e) Hold Hfe Matematik C Peter

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj 2013 Institution Uddannelse Fag og niveau Lærer(e) VUF - Voksenuddannelsescenter Frederiksberg hf Matematik

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 2015 Institution Marie Kruses Skole Uddannelse Fag og niveau Lærer(e) Hold Stx Matematik C Angela

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 2015 Institution VUC Hvidovre-Amager Uddannelse Fag og niveau Lærer(e) Hold hf Matematik C Rukiye

Læs mere

Løsninger til eksamensopgaver på B-niveau 2015

Løsninger til eksamensopgaver på B-niveau 2015 Løsninger til eksamensopgaver på B-niveau 2015 22. maj 2015: Delprøven UDEN hjælpemidler Opgave 1: Ligningen løses ved at isolere x i det åbne udsagn: 4 x 7 81 4 x 88 88 x 22 4 Opgave 2: y 87 0,45 x Det

Læs mere

Flemmings Maplekursus 1. Løsning af ligninger a) Ligninger med variabel og kun en løsning.

Flemmings Maplekursus 1. Løsning af ligninger a) Ligninger med variabel og kun en løsning. Flemmings Maplekursus 1. Løsning af ligninger a) Ligninger med variabel og kun en løsning. Ligningen løses 10 3 Hvis vi ønsker løsningen udtrykt som en decimalbrøk i stedet: 3.333333333 Løsningen 3 er

Læs mere

Bemærkninger til den mundtlige årsprøve i matematik

Bemærkninger til den mundtlige årsprøve i matematik Spørgsmål til årsprøve 1v Ma 2008 side 1/5 Steen Toft Jørgensen Bemærkninger til den mundtlige årsprøve i matematik IT-værktøjer Jeg forventer, at I er fortrolige med lommeregner TI-89 og programmerne

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Juni 2017 Institution HANSENBERG Gymnasium Uddannelse Fag og niveau Lærer(e) Hold htx Matematik A Irina Kristensen

Læs mere

brikkerne til regning & matematik geometri F+E+D preben bernitt

brikkerne til regning & matematik geometri F+E+D preben bernitt brikkerne til regning & matematik geometri F+E+D preben bernitt brikkerne til regning & matematik geometri, F+E+D ISBN: 978-87-92488-16-9 1. Udgave som E-bog 2010 by bernitt-matematik.dk Kopiering er kun

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Sommer 2016 Institution VUC Lyngby Uddannelse Fag og niveau Lærer(e) Hold e-hf Matematik B Ashuak Jakob France

Læs mere

År 2000 2001 2002 2003 2004 2005. Løn (kr.) 108,95 112,79 117,69 122,92 127,17 130,76

År 2000 2001 2002 2003 2004 2005. Løn (kr.) 108,95 112,79 117,69 122,92 127,17 130,76 Eksamensspørgsmål i ma til 1b sommeren 2010 1. Procent og rentesregning Gør rede for begrebet fremskrivningsfaktor og giv eksempler på anvendelse heraf. Forklar formlen til kapitalfremskrivning (i daglig

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Januar-maj 16 Institution Kolding HF & VUC Uddannelse Fag og niveau Lærer(e) Hold Hfe Matematik C Glenn Aarhus

Læs mere

Trigonometri og afstandsbestemmelse i Solsystemet

Trigonometri og afstandsbestemmelse i Solsystemet Trigonometri og afstandsbestemmelse i Solsystemet RT1: fstandsberegning (Fra katederet) 5 RT2: Bold og Glob 6 OT1:Bestemmelse af Jordens radius 9 OT2:Modelafhængighed 11 OT3:fstanden til Månen 12 OT4:Månens

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin December 2015 Institution Kolding HF og VUC, Kolding Åpark 16, 6000 Kolding Uddannelse HF net-undervisning,

Læs mere

Matematik B. Bind 1. Mike Auerbach. c h A H

Matematik B. Bind 1. Mike Auerbach. c h A H Matematik B Bind 1 B c h a A b x H x C Mike Auerbach Matematik B, bind 1 1. udgave, 2014 Disse noter er skrevet til matematikundervisning på stx og kan frit anvendes til ikke-kommercielle formål. Noterne

Læs mere

Projekt 3.7. Pythagoras sætning

Projekt 3.7. Pythagoras sætning Projekt 3.7. Pythagoras sætning Flere beviser for Pythagoras sætning... Bevis for Pythagoras sætning ved anvendelse af ensvinklede trekanter... Opgave 1: Et kinesisk og et indisk bevis for Pythagoras sætning...

Læs mere

Opg. 1-1 B Da trekant ABC er retvinklet, kan vi anvende Pythagoras: +kat 2. De oplyste tal indsættes; ligningen løses.

Opg. 1-1 B Da trekant ABC er retvinklet, kan vi anvende Pythagoras: +kat 2. De oplyste tal indsættes; ligningen løses. 18-02-2009 16:13:02 Opg. 1-1 B Da trekant ABC er retvinklet, kan vi anvende Pythagoras: hyp 2 = kat 1 2 +kat 2 2 12 De oplyste tal indsættes; ligningen løses. hyp 2 = 5 2 +12 2 hyp 2 = 25 + 144 = 169 hyp

Læs mere

Retningslinjer for bedømmelsen. Georg Mohr-Konkurrencen 2010 2. runde

Retningslinjer for bedømmelsen. Georg Mohr-Konkurrencen 2010 2. runde Retningslinjer for bedømmelsen. Georg Mohr-Konkurrencen 2010 2. runde Det som skal vurderes i bedømmelsen af en besvarelse, er om deltageren har formået at analysere problemstillingen, kombinere de givne

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 14/15 Institution Th. Langs HF og VUC Uddannelse Fag og niveau Lærer Hold Hf Mat C Viktor Kristensen

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni, 2014 Institution Frederiksberg HF Uddannelse Fag og niveau Lærer(e) HF Matematik C Dorthe Jørgensen

Læs mere