Institut for Matematik, DTU: Gymnasieopgave. Cirkelbevægelsen og klotoiden

Størrelse: px
Starte visningen fra side:

Download "Institut for Matematik, DTU: Gymnasieopgave. Cirkelbevægelsen og klotoiden"

Transkript

1 Cirkelbeægelen og klotoiden ide Intitut for Matematik, DTU: Gymnaieopgae Cirkelbeægelen og klotoiden Teori: Erik Øhlenchlæger, Fyik for Diplomingeniører, Gyldendal 996, ide -4. Indledning Figur. Kørel i ejing. Når i kører i bil og ejen pludelig drejer f.ek. til entre, e fig., il man ofte ære tilbøjelig til at kære inget af ed at begynde at dreje, allerede før man kommer ind i inget. Singet blier hermed mindre karpt og kørlen føle behageligere. Hi man kører på et lige ejtykke og møder et ejing, der er udformet om en cirkelbue og amtidig prøer at holde bilen fart kontant, il man pludelig mærke en tærgående kraft eller et ryk, idet man kører ind i ejinget. Åragen til dette ryk er, at man for at følge bilen cirkelbane må ære påirket af en paende centripetalkraft. Jo karpere ejinget er, eller jo højere farten er, deto tørre blier kraften eller rykket. For at forøge køreikkerheden og kørekomforten, udforme ejene kurer derfor ikke om cirkelbuer, men om klotoider. e figur. Klotoiden er en kure, hi krumning forøge gradit. Hered undgår føreren af bilen det bratte ryk, når bilen kører ind i ejinget. Vi kal enere e nærmere på klotoiden udformning, men ført il i underøge cirkelbeægelen lidt nøjere. Figur. Motorejudfletning ed lbertlund.

2 Cirkelbeægelen og klotoiden ide Cirkelbeægelen Figur. Krumningcirklen En ilkårlig banekure kan i en omegn af et punkt P altid tilnærme med en cirkel, e figur. Cirklen kalde for banekuren krumningcirkel i P, og radiu ρ ( rho) kalde for banekuren krumningradiu i P. Jo tærkere ejen drejer eller krummer, de mindre er krumningradiu. Vi indfører et mål for ejen krumning κ ( kappa) om den reciprokke ærdi af krumningradiu el κ /ρ, krumningen Figur 4. Cirkelbeægelen Lad o betragte en partikel P, der beæger ig på en cirkel med radiu ρ, e figur 4. Vinkeldrejningen imellem x-aken og tedektoren OP kalde θ(t). Sammenhængen imellem inkeldrejningen og den tilbagelagte ejtrækning eller buelængde (t) er giet ed (t) ρ θ(t), buelængden

3 Cirkelbeægelen og klotoiden ide Vinkelhatigheden ω og inkelaccelerationen α er defineret ed ω θ(t) &, inkelhatighed α ω(t) & θ(t) &, inkelacceleration I det ite xy-koordinatytem kan tedektoren OP r r(t) r (t) krie [ x(t), y(t) ] [ ρ co θ(t), ρ in θ(t) ], tedektoren, hor x(t) ρ coθ (t) og y(t) ρ inθ(t) er koordinatfunktionerne. Hatigheden r (t) defineret r (t) [ x(t) &, y(t) & ] [ - in θ(t), co θ(t)] ρ θ & (t), hatigheden. Indfører i enhedtangentektoren e r t til cirklen e r t [ - in θ(t), co θ(t) ], kan r (t) krie r (t) ρ θ & (t) e r ρ ω e r. ccelerationen a r (t) er defineret t t r a (t) ( && x(t), & y(t) ) [- in θ(t), co θ(t)] ρ θ & (t) - [ co θ(t), in θ(t) ] ρ θ& (t). Indfører i enhednormalektoren r e ê n t om tærektoren til e r t kan a r (t) e r n - [ in θ(t), co θ(t)] krie a r (t) ρ θ & (t) e r + ρ t θ& (t) e r n ρ ω & e r t + ρω e r n, accelerationen ccelerationen i cirkelbeægelen a n og a t efter normalen og tangenten kan da krie an ρ ω, normalaccelerationen ρ at & ρ ω & ρ α, tangentialaccelerationen

4 Cirkelbeægelen og klotoiden ide 4 Figur 5. Normal- og tangentialaccelerationen. I figur 5 er it retningen af normal- og tangentialaccelerationen i en cirkelbeægele. Ekempel. Fig. 6. Bilkørel i ejing. Vi betragter en bil, der kører på en noet ejtrækning BC, e figur 6. I punktet er krumningradiu ρ 400 m, i punktet B er krumningradiu uendelig og krumningen κ 0, og i punktet C er krumningradiu igen ρ 400 m ( Vejtrækningen BC er udformet om en klotoide, hor krumning κ / ρ afhænger lineært af den kørte ejtrækning, e nærmere herom enere). I figur 6 er it krumningcirklerne i, B og C, hor krumningcirklen i B udarter til en ret linie. De to ejtrækninger B og BC er lige tore, og der gælder B BC 900 m.

5 Cirkelbeægelen og klotoiden ide 5 Vi il nu e på tilfælde. I. tilfælde antager i, at bilen kører med kontant fart på hele trækningen BC. I. tilfælde antager i at bilen bremer på trækningen BC med en kontant kraft, ålede farten aftager jænt. Den tidafledede & af farten er da en kontant.. tilfælde: Farten er kontant på trækningen BC. Vi antager, at farten er 0 m/ 7 km/h og er kontant på hele ejtrækningen BC. Vi ønker at beregne accelerationerne a, a B og a C af bilen i her punkterne, B og C. Ført er i på punktet. Bilen banekure er med tilnærmele cirkelformet med en radiu på ρ 400 m. Da farten er kontant, il bilen kun hae en normalacceleration a,n, altå a 0 a,n m/ m/. ρ 400 På grund af ymmetrien må accelerationen i C ogå ære a a m/. I punkt B er normalaccelerationen a B,n 0, da ρ. Tangentialaccelerationen i B a B,t er ligelede nul, da farten er kontant. Det betyder, at a B B 0 m/.. tilfælde: Farten aftager jænt. Vi antager, at farten i er 5 m/ 90 km/h men aftager på hele ejtrækningen BC, idet der gælder, at den tidafledede af farten & - /8 m/ er en kontant. Da farten aftager jænt på trækningen BC, kan i benytte formlen fra beægelen i tyngdefeltet til beregning af farten om funktion af ejtrækningen, idet i blot kal ertatte tyngdeaccelerationen g med & - /8 m/. Vi har da for farten () i et ilkårligt punkt af banen C () + & 5 8 m/. Indætter i B 900 m og C 800 m i oentående formel, får i V B 0 m/ 7,0 km/h og V C, m/ 47,6 km/h. Normalalacceleration a,n og a,t tangentialaccelerationen i er da 5 a, n m/,56 m/, ρ 400 a,t & - /8 m/ - 0,5 m/, horefter den reulterende acceleration blier a,56 + 0,5 m/, 57 m/. Ligeom i det. tilfælde er normalaccelerationen i punktet B, a B,n 0, da ρ. Tangentialaccelerationen, a B,t i B er den amme om i, nemlig a B,t & - /8 m/ - 0,5 m/.

6 Cirkelbeægelen og klotoiden ide 6 Horefter den reulterende acceleration B blier a B 0 + 0,5 m/ 0.5 m/. Normalalacceleration a C,n og tangentialaccelerationen a C,t i C er C, ac, n m/ 0,48 m/, ρ 400 a C,t & - /8 m/ - 0,5 m/, horefter den reulterende acceleration C blier a C 0, ,5 m/ 0,455 m/. Ekempel. Fig. 7. Bilkørel i entreing. Vi betragter en ejtrækningen BC, e figur 7. På trækningen B er ejen lige. I B begynder ejen at inge til entre. Vi antager, at en bil kommer kørende på ejtrækningen B med kontant fart og fortætter ind i ejinget, amtidig med at den holder farten kontant. Lad betegne ejtrækningen eller buelængden regnet ud fra B, e figur 7. Vi il igen e på bilen acceleration under kørlen. På den lige ejtrækning B er accelerationen a 0, trækning B, lige ejtrækning da farten er kontant. Hi hele ejtrækningen BC ar udformet om en cirkelbue med kontant radiu ρ, il accelerationen a på tykket BC ære a. trækning BC, kontant cirkelradiu ρ. ρ Under denne forudætning il føreren af bilen pludelig blie påirket af en tærkraft F m a, når bilen kører ind på ejtykket BC, hor m er maen af føreren. Den pludelige

7 Cirkelbeægelen og klotoiden ide 7 tærkraft føle om et ryk og gør kørlen ubehagelig. Har føreren en mae på m 80 kg og er f.ek. ρ 400 m og bilen fart 5 m/ 90 km/h, blier tærkraften F 5 N,5 kp! For at undgå dette ryk ed oergang fra kørel på en lige ejtrækning til kørel på en cirkelbue, indkyder man i ejinget før cirkelbuen en oergangkure på en ådan måde, at tærkraften F forøge proportionalt med den kørte ejtrækning. For denne oergangkure har i da, at F k eller ma k, hor k er en kontant. Heraf er i, at m ρ k. For ejen krumning κ / ρ må der derfor gælde k κ kontant, ρ m det il ige, at krumningen i oergangkuren kal ære proportional med den kørte ejtrækning. En kure, der har den egenkab kalde for en klotoide. Vejtrækningen BC, der er it i figur 7, er netop udformet om en klotoide. Vi kal e nærmere på klotoiden i næte afnit. Klotoiden Fig. 8. Klotoiden. En klotoide er, om i tidligere har et, defineret om en kure, hor krumningen κ / ρ er proportional med buelængden, altå κ k, klotoiden,

8 Cirkelbeægelen og klotoiden ide 8 og hor k er en gien kontant. Vi kal nu udlede en parameterfremtilling for klotoiden. Vi måler tangenten inkeldrejning θ() med x-aken for, e figur 8, om funktion af. Krumningen κ() definere matematik om tangenten inkeldrejningen per buelængdeenhed eller dθ() κ( ), krumningen. ρ() d For klotoiden har i pecielt, at κ k. Hermed finder i for inkeldrejningen θ om funktion af θ() k, klotoiden. Er farten (t) kan hatigheden i et punkt på kuren krie r (t) (t) [ co θ(), in θ() ]. Sætter i farten (t), blier buelængden t, horefter hatigheden r (t) r () udtrykke kan r () [ co θ(), in θ() ]. Opfatter i x() og y() om funktioner af buelængden, er tangentektoren for klotoiden giet ed r () [x (), y () ] [ co θ(), in θ() ]. Heraf kan i finde udtryk for x() og y() x() y() co( k ' ) d' parameterfremtilling 0 in( k ' ) d' for en klotoide. 0 Oentående integraler kan kun udregne numerik ed brug af f.ek. MPLE. ccelerationen når farten er a r dθ() () [x (), y () ] [ -in θ(), co θ() ] k [ -in θ(), co θ() ], d og tørrelen a() af accelerationen blier derfor a() k. Er farten i banekuren imidlertid (t) kan normalaccelerationen a n udtrykke a n ρ κ k. Vi kal i næte afnit e horlede man benytter klotoiden til dimenionering af oergangkurer ejing.

9 Cirkelbeægelen og klotoiden ide 9 Dimenionering af oergangkurer Kører i med en kontant fart i et ejing, der er udformet om en klotoide, il normalaccelerationen, om i å i forrige afnit, ære a n k, hor ρ() k. ccelerationen og dermed den kraft, om føreren af bilen mærker, oker altå proportionalt med tiden. For at ikre kørekomforten og køreikkerheden har man edtaget at ændringen af accelerationen pr. tidenhed makimalt må ære 0,45 m/, eller dt da n k 0,45 m/, og dermed formlen ρ() 0,45m/ k, hor i har indført klotoide parameteren, der har enheden meter, ed 0,45m/ k, klotoide parameteren. Klotoiden benytte tidligere omtalt om en oergangkure imellem to ejtrækninger med forkellige krumningradier og. Den amlede længde L af klotoiden kan derfor udtrykke L e, Hor i har indført tørrelen den effektie radiu e ed e. For ændringen Θ i tangentretningen ( d... ændringen i kørelretningen) på trækningen L har i Θ ( ) k.

10 Cirkelbeægelen og klotoiden 0 ide I figur 9 er it klotoide længden L om funktion af den effektie radiu e for forkellige ærdier af hatigheden. Fig. 9. Klotoide længden om funktion af den effektie radiu. Ved må krumningradier i ejing blier oerigtforholdene dårlige og de tærkræfter føreren af bilen udætte for tore. Der er derfor græner for hor må krumningradier, man il tolerere af henyn til køreikkerheden. Hi i forlanger at den makimale kraft er 00 N, om en peron på 75 kg må udætte for i et ejing, hor bilen fart er, blier den mindte krumningradiu min og den tørte buelængde L max for klotoiden betemt ed min 75 kg 00 N, min Lmax 0,45m/ eller L,4 m. max min Denne ammenhæng imellem L max og min, der gier en middel god køreikkerhed, er it i fig. 9, om den tiplede kure middel. Ligger krumningradierne inden for den tiplede kure god, kan man helt undgå at benytte klotoider om oergangkurer i ejinget. t man gør det alligeel kylde alene ætetike grunde. Vi kal nu e på et ekempel på beregning udformningen af et ejing.

11 Cirkelbeægelen og klotoiden ide Ekempel. 0. Klotoide forbindee mellem motoreje, der kryder hinanden Vi ønker at udforme en forbindele fra en øt-et gående motorej til nord-yd gående motorej, e figur 0. Den anbefalede hatighed på forbindelen er at til 00 km/h. fkørlen tænke opbygget af to klotoide buer, horaf den ene har og en drejninginkel Θ på 45, meden den anden er pejlendt, e figur 0. Klotoide parameteren er 00 m / 8, m. 0,45m/,6 0,45m/ For Θ hae Θ π/4, hilket gier 8, 74, m Θ π L e 8, m 7,5 m 74, Den amlede forbindelelængde imellem motorejene blier 547 m. Den tørte centripetalacceleration ed en fart på 00 km/h 7,8 m/ er a n 7,8 m/ 4,44 m/. 74, Den tørte tærkraft en fører på 80 kg mærker i inget er derfor F 80 4,44 N 55 N 6 kp. Konkluion: Dette er elfølgelig helt uanarligt.

12 Cirkelbeægelen og klotoiden ide Opgae Beregn en -formet forbindele imellem motoreje til en anbefalet fart på 90 km/h. Motorejene ligger parallelforkudt i forhold til hinanden med en indbyrde aftand på km. Litteratur Det enke Vägerket har et afnit om oergangangkurer i afnit 6 om linieføring Ved dette link kan du blandt andet finde et klotoide beregningprogram, om du kan downloade

PIA JENSEN, 3.X MANDAG DEN 20. NOVEMBER 2006 ØVELSERNE ER UDFØRT MANDAG DEN 23. OKTOBER 2006 I SAMARBEJDE MED JESPER OG TOVE FYSIKRAPPORT SKRÅT KAST

PIA JENSEN, 3.X MANDAG DEN 20. NOVEMBER 2006 ØVELSERNE ER UDFØRT MANDAG DEN 23. OKTOBER 2006 I SAMARBEJDE MED JESPER OG TOVE FYSIKRAPPORT SKRÅT KAST PIA JENSEN, 3.X MANDAG DEN. NOVEMBER 6 ØVELSERNE ER UDFØRT MANDAG DEN 3. OKTOBER 6 I SAMARBEJDE MED JESPER OG TOVE FYSIKRAPPORT SKRÅT KAST Side 1 af FYSIKRAPPORT SKRÅT KAST FORORD OG INDHOLDSFORTEGNELSE

Læs mere

En varmluftsballon. s Kurvelængden fra ballonens toppunkt til punktet P. til symmetriaksen.

En varmluftsballon. s Kurvelængden fra ballonens toppunkt til punktet P. til symmetriaksen. P og En varmluftballon Denne artikel er en lettere revideret udgave af en artikel, om Dan Frederiken og Erik Vetergaard fra Haderlev Katedralkole havde i LMFK-bladet nr. 2, februar 1997. Enhver, om er

Læs mere

Kinematik. Ole Witt-Hansen 1975 (2015) Indhold. Kinematik 1

Kinematik. Ole Witt-Hansen 1975 (2015) Indhold. Kinematik 1 Kinematik Kinematik Indhold. Retlinet beægelse.... Jæn retlinet beægelse...3 3. Ujæn beægelse...4 4. Konstant accelereret beægelse...5 5. Tilbagelagt ej ed en konstant accelereret beægelse...8 6. Frit

Læs mere

Eksamentræning i mekanik, 10020/22/24, 2012

Eksamentræning i mekanik, 10020/22/24, 2012 Eamentræning i meani, 1//4, 1 Opgae 1 En lod ende af ted fra en pændt fjeder. Ført urer loden lang et andret underlag, der er glat. Ved B drejer underlaget opad, og på det rå tye fra B til C er der frition.

Læs mere

Sammenhængen mellem strækning og tid Farten angiver den tilbagelagte strækning i et tidsrum. Farten kan bestemmes ved brug af formlen:

Sammenhængen mellem strækning og tid Farten angiver den tilbagelagte strækning i et tidsrum. Farten kan bestemmes ved brug af formlen: Oplag 8: FORMLHÅNDTRING Sammenhængen mellem trækning og tid Farten angiver den tilbagelagte trækning i et tidrum. Farten kan betemme ved brug af formlen: fart = trækning tid Anvender vi i tedet ymboler,

Læs mere

Fag: Fysik - Matematik - IT Elever: Andreas Bergström, Mads Paludan, Jakob Poulsgærd & Mathias Elmhauge Petersen. Det skrå kast

Fag: Fysik - Matematik - IT Elever: Andreas Bergström, Mads Paludan, Jakob Poulsgærd & Mathias Elmhauge Petersen. Det skrå kast Det krå kat Data Forøg 1: = 38 V 0 = 4, 94 K vidde = 2, 058 H = 0, 406 t = 0, 53 Forøg 2 (60 ): = 60 V 0 = 4, 48 K vidde = 1, 724 H = 0, 788 t = 0, 77 Fyik del Udførel af forøg Kat på 38 : Forøgoptilling:

Læs mere

Lidt om plane kurver og geometrisk kontinuitet

Lidt om plane kurver og geometrisk kontinuitet Lidt om plane kurver og geometrisk kontinuitet Jesper Møller og Rasmus P. Waagepetersen, Institut for Matematiske Fag, Aalborg Universitet September 3, 2003 1 Indledning Dette notesæt giver en oversigt

Læs mere

Lorentz kraften og dens betydning

Lorentz kraften og dens betydning Lorentz kraften og dens betydning I dette tillæg skal i se, at der irker en kraft på en ladning, der beæger sig i et agnetfelt, og i skal se på betydninger heraf. Før i gør det, skal i dog kigge på begrebet

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet Danmark Teknike Univeritet Side 1 af 7 Skriftlig prøve, tordag den 6 maj, 1, kl 9:-1: Kuru navn: Fyik 1 Kuru nr 1 Tilladte hjælpemidler: Alle hjælpemidler er tilladt "Vægtning": Bevarelen bedømme om en

Læs mere

Hjemmeopgave 1 Makroøkonomi, 1. årsprøve, foråret 2005 Vejledende besvarelse

Hjemmeopgave 1 Makroøkonomi, 1. årsprøve, foråret 2005 Vejledende besvarelse Hjemmeopgave Makroøkonomi,. årprøve, foråret 2005 Vejledende bevarele Opgave. Korrekt. Arbejdtyrken er en beholdning- (tock) variabel, idet man på et givet tidpunkt (fx. jan) kan tælle, hvor mange der

Læs mere

Højere Teknisk Eksamen maj 2008. Matematik A. Forberedelsesmateriale til 5 timers skriftlig prøve NY ORDNING. Undervisningsministeriet

Højere Teknisk Eksamen maj 2008. Matematik A. Forberedelsesmateriale til 5 timers skriftlig prøve NY ORDNING. Undervisningsministeriet Højere Teknisk Eksamen maj 2008 HTX081-MAA Matematik A Forberedelsesmateriale til 5 timers skriftlig prøve NY ORDNING Undervisningsministeriet Fra onsdag den 28. maj til torsdag den 29. maj 2008 Forord

Læs mere

Matematisk modellering og numeriske metoder

Matematisk modellering og numeriske metoder Matematik modellering og numerike metoder Morten Grud Ramuen 4. oktober 26 Laplace-tranformationer. Definitionen af Laplace-tranformationen Definition. (Laplace-tranformation). Lad f være en funktion defineret

Læs mere

Keplers ellipse. Perihel F' Aphel

Keplers ellipse. Perihel F' Aphel Keplers ellipse Keplers udgangspunkt er ellipsen opfattet som en fladtrykt cirkel. Han har selfølgelig stadigæk brug for brændpunkter mm. Konstruktionen af disse er simpel ud fra ellipsens omskrene rektangel.

Læs mere

Fra en kastebevægelse til et maratonløb Jeg kaster mig ud i luften 180 gange i minuttet og tænker over hvad der foregår.

Fra en kastebevægelse til et maratonløb Jeg kaster mig ud i luften 180 gange i minuttet og tænker over hvad der foregår. Fra en katebeæele til et aratnløb Je kater i ud i luften ane i inuttet tænker er had der freår. Print pdf Katebeæelen. Det krå kat ( V ) af en partikel kan pfatte aenat af en andret beæele ( V ). Bendelehatiheden

Læs mere

Statistisk mekanik 12 Side 1 af 9 Van der Waals-gas

Statistisk mekanik 12 Side 1 af 9 Van der Waals-gas Statistisk mekanik Side af 9 Ideale gasmolekyler har pr. definition ingen udstrækning og påirker ikke hinanden med kræfter. En an der Waals-gas, hor der tages højde for såel molekylær udstrækning som er-molekylære

Læs mere

Det teknisk-naturvidenskabelige basisår Matematik 1A, Efterår 2005, Hold 3 Prøveopgave A

Det teknisk-naturvidenskabelige basisår Matematik 1A, Efterår 2005, Hold 3 Prøveopgave A Det teknisk-naturvidenskabelige basisår Matematik 1A, Efterår 2005, Hold 3 Prøveopgave A Opgaven består af tre dele, hver med en række spørgsmål, efterfulgt af en liste af teorispørgsmål. I alle opgavespørgsmålene

Læs mere

Løsninger til eksamensopgaver på fysik A-niveau 2014. 23. maj 2014

Løsninger til eksamensopgaver på fysik A-niveau 2014. 23. maj 2014 Løningerne er hentet på www.zyankipil.dk Løninger til ekaenopgaver på fyik A-niveau 014. aj 014 Opgave 1: Poelukker a) Den oatte effekt i en leder er givet ved P U I, og Oh 1. lov giver aenhængen elle

Læs mere

KØBENHAVNS UNIVERSITET NATURVIDENSKABELIG BACHELORUDDANNELSE Skriftlig prøve i Fysik 4 (Elektromagnetisme) 26. juni 2009

KØBENHAVNS UNIVERSITET NATURVIDENSKABELIG BACHELORUDDANNELSE Skriftlig prøve i Fysik 4 (Elektromagnetisme) 26. juni 2009 KØBENHAVNS UNIVERSITET NATURVIDENSKABELIG BACHELORUDDANNELSE Skriftlig prøve i Fyik 4 (Elektromagnetime) 26. juni 2009 Tilladte hjælpemidler: Medbragt litteratur, noter og lommeregner. Der må bevare med

Læs mere

Bevægelsens Geometri

Bevægelsens Geometri Bevægelsens Geometri Vi vil betragte bevægelsen af et punkt. Dette punkt kan f.eks. være tyngdepunktet af en flue, et menneske, et molekyle, en galakse eller hvad man nu ellers har lyst til at beskrive.

Læs mere

Matematik F2 Opgavesæt 1

Matematik F2 Opgavesæt 1 Opgaer uge 1 I denne uge er temaet komplekse tal og komplekse funktioner af en kompleks ariabel. De første opgaer skulle gerne øge jeres fortrolighed med komplekse tal. I kan med fordel repetere de basale

Læs mere

Termodynamik - Statistisk fysik - Termodynamiske relationer - Fri energi - Entropi

Termodynamik - Statistisk fysik - Termodynamiske relationer - Fri energi - Entropi Fag: Termodynamik - Statitik fyik - Termodynamike relationer - Fri energi - Entropi 1 Indholdfortegnele... 2 Forord... 3 Formelle definitioner... 3 Et ytem... 3 Et lukket ytem... 3 Et ioleret ytem... 3

Læs mere

Det skrå kast uden luftmodstand

Det skrå kast uden luftmodstand Det skrå kast uden luftmodstand I dette lille tillæg skal i smart benytte ektorer til at udlede udtryk for stedfunktionen og hastigheden i det skrå kast uden luftmodstand. Vi il gøre brug af de fundamentale

Læs mere

Tennis eksempel på opgaveløsning i MatematiKan.nb

Tennis eksempel på opgaveløsning i MatematiKan.nb Opgave 1 1.1 Caroline alder, da hun blev profeionel: 2005-1990 15 18-11 7 Caroline var 15 år og 7 dage gammel. 1.2-1.6 1.5 Det er ud til, at den ekponentielle tendenlinje følger punkterne bedt. 1.6 R-kvadreret

Læs mere

Bølgeligningen. Indhold. Udbredelseshastighed for bølger i forskellige stoffer 1

Bølgeligningen. Indhold. Udbredelseshastighed for bølger i forskellige stoffer 1 Udbredelseshastighed for bølger i forskellige stoffer 1 Bølgeligningen Indhold 1. Bølgeligningen.... Udbredelseshastigheden for bølger på en elastisk streng...3 3. Udbredelseshastigheden for longitudinalbølger

Læs mere

GEOMETRI-TØ, UGE 3. og resultatet følger fra [P] Proposition 2.3.1, der siger, at

GEOMETRI-TØ, UGE 3. og resultatet følger fra [P] Proposition 2.3.1, der siger, at GEOMETRI-TØ, UGE 3 Hvis I falder over tryk- eller regne-fejl i nedenstående, må I meget gerne sende rettelser til fuglede@imf.au.dk. Opvarmningsopgave 1. Lad γ : (α, β) R 2 være en regulær kurve i planen.

Læs mere

Vanskelige vilkår for generationsskifte med nye regler - Afskaffelse af formueskattekursen samt svækkelse af sikkerheden trods bindende svar

Vanskelige vilkår for generationsskifte med nye regler - Afskaffelse af formueskattekursen samt svækkelse af sikkerheden trods bindende svar - 1 Vankelige vilkår for generationkifte med nye regler - Afkaffele af formuekattekuren amt vækkele af ikkerheden trod bindende var Af advokat (L) Bodil Chritianen og advokat (H), cand. merc. (R) Tommy

Læs mere

Afleveringsopgaver i fysik i 08-y2 til

Afleveringsopgaver i fysik i 08-y2 til Page 1 of 6 Afleveringopgaver i fyik i 08-y2 til 04.01.11 Fra hæftet: pgaver i fyik A-Niveau pgave A11 ide 33 A11a I kernekortet e det, at Si-31 er beta-radioaktiv. Da ladningtal og aetal kal være bevaret,

Læs mere

6 ARMEREDE BJÆLKER 1

6 ARMEREDE BJÆLKER 1 BETONELEMENTER, SEP. 009 6 ARMEREDE BJÆLKER 6 ARMEREDE BJÆLKER 1 6.1 Brudgrænetiltande 3 6.1.1 Bøjning 3 6.1.1.1 Tværnitanalye generel metode 3 6.1.1. Kanttøjning 5 6.1.1.3 Bøjning uden trykarmering 5

Læs mere

En mekanisk analog til klassisk elektrodynamik

En mekanisk analog til klassisk elektrodynamik En mekanisk analog til klassisk elektrodynamik Af (f. 1970) er cand.scient i fysik fra Niels Bohr Institutet i 2000. Artiklen bygger på hans speciale. I dag arbejder han som softwareudikler på Danmarks

Læs mere

Program. Statistik og Sandsynlighedsregning 2 Normalfordelingens venner og bekendte. χ 2 -fordelingen

Program. Statistik og Sandsynlighedsregning 2 Normalfordelingens venner og bekendte. χ 2 -fordelingen Program Statitik og Sandynlighedregning 2 Normalfordelingen venner og bekendte Helle Sørenen Uge 9, ondag Reultaterne fra denne uge kal bruge om arbejdhete i projekt 1. I formiddag: χ 2 -fordelingen, t-fordelingen,

Læs mere

Den Teknisk-Naturvidenskabelige Basisuddannelse Storgruppe 9736

Den Teknisk-Naturvidenskabelige Basisuddannelse Storgruppe 9736 Den Teknik-Naturvidenkabelige aiuddannele Storgruppe 9736 Titel: Digital ignalbehandling Synopi: Projektperiode: P //98-9/5/98 Projektgruppe: 347 Deltagere: Clau Albøge Mad Chritenen Tonny Gregeren Karten

Læs mere

Løsninger til eksamensopgaver på fysik A-niveau 2013. 27. maj 2013

Løsninger til eksamensopgaver på fysik A-niveau 2013. 27. maj 2013 Løninger til ekaenopgaver på fyik A-niveau 01 7. aj 01 Opgave 1: Springvand ed olceller a) Det er elektronerne, der tranporterer energien, og da pændingfaldet er defineret o E pot U, dv. tabet i elektrik

Læs mere

Projektopgave 1. Navn: Jonas Pedersen Klasse: 3.4 Skole: Roskilde Tekniske Gymnasium Dato: 5/ Vejleder: Jørn Christian Bendtsen Fag: Matematik

Projektopgave 1. Navn: Jonas Pedersen Klasse: 3.4 Skole: Roskilde Tekniske Gymnasium Dato: 5/ Vejleder: Jørn Christian Bendtsen Fag: Matematik Projektopgave 1 Navn: Jonas Pedersen Klasse:.4 Skole: Roskilde Tekniske Gymnasium Dato: 5/9-011 Vejleder: Jørn Christian Bendtsen Fag: Matematik Indledning Jeg har i denne opgave fået følgende opstilling.

Læs mere

Theory Danish (Denmark)

Theory Danish (Denmark) Q1-1 To mekanikopgaver (10 points) Læs venligst den generelle vejledning i en anden konvolut inden du går i gang. Del A. Den skjulte metalskive (3.5 points) Vi betragter et sammensat legeme bestående af

Læs mere

z j 2. Cauchy s formel er værd at tænke lidt nærmere over. Se på specialtilfældet 1 dz = 2πi z

z j 2. Cauchy s formel er værd at tænke lidt nærmere over. Se på specialtilfældet 1 dz = 2πi z Matematik F2 - sæt 3 af 7 blok 4 f(z)dz = 0 Hovedemnet i denne uge er Cauchys sætning (den der står i denne sides hoved) og Cauchys formel. Desuden introduceres nulpunkter og singulariteter: simple poler,

Læs mere

Opgave 1 Opskriv følgende vinkler i radianer 180, 90, 135, 270, 60, 30.

Opgave 1 Opskriv følgende vinkler i radianer 180, 90, 135, 270, 60, 30. Opgaver Polære koordinater Opgave 1 Opskriv følgende vinkler i radianer 180, 90, 15, 70, 60, 0. Opgave Bestem sin π Opgave. Et punkt p i xy-planen er givet ved de kartesiske koordinater,. Bestem p s polære

Læs mere

Eksamentræning i mekanik, 10020/22/24, 2011

Eksamentræning i mekanik, 10020/22/24, 2011 Eamentræning i meani, 1//4, 11 Opgave 1 En lod ende af ted fra en pændt fjeder ørt urer loden lang et vandret underlag der er glat Ved B drejer underlaget opad, og på det rå tye er der frition Kloden,

Læs mere

David Kallestrup, Aarhus School of Engineering, SRP-forløb ved Maskinteknisk retning 1

David Kallestrup, Aarhus School of Engineering, SRP-forløb ved Maskinteknisk retning 1 1 Pendul David Kallestrup, Aarhus School of Engineering, SRP-forløb ved Maskinteknisk retning 1 1.1 Hvad er et pendul? En matematiker og en ingeniør ser tit ens på mange ting, men ofte er der forskelle

Læs mere

Institut for Matematik, DTU: Gymnasieopgave. Togopgave

Institut for Matematik, DTU: Gymnasieopgave. Togopgave Togopgae side 1 Institut for Mateatik, DTU: Gynasieopgae Togopgae Teori: Erik Øhlenschlæger, Grundlæggende Fysik 1 For dgangskursus og HTX, Gyldendal 1993,. udgae, siderne 73-75, 94-95 og 116-117. Grundlæggende

Læs mere

KAPACITET AF RUF SYSTEMET KAN DET LADE SIG GØRE?

KAPACITET AF RUF SYSTEMET KAN DET LADE SIG GØRE? KAPACITET AF RUF SYSTEMET KAN DET LADE SIG GØRE? Af Torben A. Knudsen, Sud. Poly. & Claus Rehfeld, Forskningsadjunk Cener for Trafik og Transporforskning (CTT) Danmarks Tekniske Uniersie Bygning 115, 800

Læs mere

Besvarelse til eksamen i Matematik F2, 2012

Besvarelse til eksamen i Matematik F2, 2012 Besvarelse til eksamen i Matematik F2, 202 Partiel besvarelse - har ikke inkluderet alle detaljer! Med forbehold for tastefejl. Opgave Find og bestem typen af alle singulariteter for følgende funktioner:

Læs mere

Løsning, Bygningskonstruktion og Arkitektur, opgave 7

Løsning, Bygningskonstruktion og Arkitektur, opgave 7 Løning, Bygningkonuktion og rkitektur, opgave 7 Dækelementerne er 0, m tykke og pænder over m. Der anvende ølgende regningmæige materialeparamee: Beton: 8, MPa α 8 rmering: 8 MPa. E d, 0 MPa E k 0 MPa

Læs mere

Betonkonstruktioner, 2 (Brudstyrke af bøjningspåvirkede tværsnit)

Betonkonstruktioner, 2 (Brudstyrke af bøjningspåvirkede tværsnit) Chritian Frier Aalborg Univeritet 006 Betonkontruktioner, (Brudtrke a bøjningpåvirkede tværnit) Jernbeton / arbejdkurver / ikkerheder Bæreevne a jernbetontværnit ved ren bøjning -Normaltarmeret tværnit

Læs mere

Rejsen over Limfjorden

Rejsen over Limfjorden Rejsen oer Limfjorden Indledning Der har gennem de senere år æret stor diskussion om at forandre infrastrukturen omkring Limfjorden i Aalborg ed at oprette en 3. Limfjordsforbindelse. Et spørgsmål som

Læs mere

Heisenbergs usikkerhedsrelationer. Abstrakt. Hvorfor? Funktionsrum. Nils Byrial Andersen Institut for Matematik. Matematiklærerdag 2013

Heisenbergs usikkerhedsrelationer. Abstrakt. Hvorfor? Funktionsrum. Nils Byrial Andersen Institut for Matematik. Matematiklærerdag 2013 Heisenbergs usikkerhedsrelationer Nils Byrial Andersen Institut for Matematik Matematiklærerdag 013 1 / 17 Abstrakt Heisenbergs usikkerhedsrelationer udtrykker at man ikke på samme tid både kan bestemme

Læs mere

Matematik. Formlen for en Kugle: 3 V = 4/3»r *n. Formlen for et Kugleafsnit: Formlen for en Keglestub: 2 2 V =n/3»h»(r + r + R*r)

Matematik. Formlen for en Kugle: 3 V = 4/3»r *n. Formlen for et Kugleafsnit: Formlen for en Keglestub: 2 2 V =n/3»h»(r + r + R*r) Matematik Vi har fået til opgave at bygge en ballon hvis volume mindst må være 1,2 Kubikmeter og max 1,5 kubikmeter. Så for at løse dette problem valgte vi at finde formlerne for en kugle, kugleafsnit

Læs mere

Prøveeksamen MR1 januar 2008

Prøveeksamen MR1 januar 2008 Skriftlig eksamen Matematik 1A Prøveeksamen MR1 januar 2008 Tilladte hjælpemidler Alle sædvanlige hjælpemidler er tilladt (lærebøger, notater, osv.), og også elektroniske hjælpemidler som lommeregner og

Læs mere

Vejgeometri. Erik Vestergaard

Vejgeometri. Erik Vestergaard Vejgeometri Erik Vestergaard Erik Vestergaard www.matematiksider.dk Erik Vestergaard, Haderslev 007 Erik Vestergaard www.matematiksider.dk 3 Indholdsfortegnelse. Indledning... 5. Plane kurver... 5. Parametriserede

Læs mere

TIL FORÆLDRE TIL BØRN I DAGTILBUD (DAGINSTITUTION, DAGPLEJE OG SÆRLIGE DAGTILBUD)

TIL FORÆLDRE TIL BØRN I DAGTILBUD (DAGINSTITUTION, DAGPLEJE OG SÆRLIGE DAGTILBUD) Underøgele af forældre brugerhed med dagilbud i kommun Apr. 2012 SPØRGESKEMA TIL FORÆLDRE TIL BØRN I DAGTILBUD (DAGINSTITUTION, DAGPLEJE OG SÆRLIGE DAGTILBUD) De er valgfri for kommun, om de pørgmål, der

Læs mere

Matematik F2 - sæt 1 af 7, f(z)dz = 0 1

Matematik F2 - sæt 1 af 7, f(z)dz = 0 1 f(z)dz = 0 1 I denne uge er det meningen, at I skal blie fortrolige med komplekse tal og komplekse funktioner af en kompleks ariabel. Vi skal kigge nærmere på, hornår komplekse funktioner er differentiable

Læs mere

Geometri med Geometer II

Geometri med Geometer II hristian Madsen & Frans Kappel Øre, Morsø Gymnasium Geometri med Geometer II I det første forløb om geometri med Geometer beskæftigede i os især med at konstruere på skærmen. Ved hjælp af konstruktionerne

Læs mere

Svar til eksamen i Matematik F2 d. 23. juni 2016

Svar til eksamen i Matematik F2 d. 23. juni 2016 Svar til eksamen i Matematik F d. 3. juni 06 FORBEHOLD FOR FEJL! Bemærk, i modsætning til herunder, så skal det i besvarelsen fremgå tydeligt, hvordan polerne ndes og hvordan de enkelte residuer udregnes.

Læs mere

Den Naturvidenskabelige Bacheloreksamen Københavns Universitet. Fysik september 2006

Den Naturvidenskabelige Bacheloreksamen Københavns Universitet. Fysik september 2006 Den Naturvidenskabelige acheloreksamen Københavns Universitet Fysik 1-14. september 006 Første skriftlige evaluering 006 Opgavesættet består af 4 opgaver med i alt 9 spørgsmål. Skriv tydeligt navn og fødselsdato

Læs mere

Dynamik. 1. Kræfter i ligevægt. Overvejelser over kræfter i ligevægt er meget vigtige i den moderne fysik.

Dynamik. 1. Kræfter i ligevægt. Overvejelser over kræfter i ligevægt er meget vigtige i den moderne fysik. M4 Dynamik 1. Kræfter i ligevægt Overvejelser over kræfter i ligevægt er meget vigtige i den moderne fysik. Fx har nøglen til forståelsen af hvad der foregår i det indre af en stjerne været betragtninger

Læs mere

En ny mellemfristet holdbarhedsindikator

En ny mellemfristet holdbarhedsindikator En ny mellemfrie holdbarhedindikaor Andrea Øergaard Iveren Danih aional Economic Agen Model, DEAM Peer Sephenen Danih aional Economic Agen Model, DEAM DEAM Arbejdpapir 03: Februar 03 Abrac Arbejdpapire

Læs mere

KØBENHAVNS UNIVERSITET NATURVIDENSKABELIG BACHELORUDDANNELSE

KØBENHAVNS UNIVERSITET NATURVIDENSKABELIG BACHELORUDDANNELSE KØBENHAVNS UNIVERSITET NATURVIDENSKABELIG BACHELORUDDANNELSE Fysik 2, Klassisk mekanik 2 - ny og gammel ordning Vejledende eksamensopgaver 16. januar 2008 Tilladte hjælpemidler: Medbragt litteratur, noter

Læs mere

Løsning, Beton opgave 5.1

Løsning, Beton opgave 5.1 Løning, Beton opgave 5. Dækelementerne er 0, m tykke og pænder over 5 m. Der anvende ølgende materialeparamee: Beton: 8, MPa α 8 rmering: 85 MPa. E d,5 0 5 MPa E k 0 5 MPa tanden ra armeringen tyngdepunkt

Læs mere

Bygningsfilm Isoleringsfilm s Sikringsfilm Autofilm

Bygningsfilm Isoleringsfilm s Sikringsfilm Autofilm Trit punktum for Schioldan Side 28-29 TIRSDAG 15. mart 2011 NS 245. årgang Uge 11 Nr. 72 Kr. 20,00 Sej kamp mod brand i køleolie Klichéfyldt, men flot Side 4-5 Side 24-25 Hårdt pre på læger 159 kilo lettere

Læs mere

Einsteins tog. og hvad deraf følger. SelvTryk -

Einsteins tog. og hvad deraf følger. SelvTryk - Eintein tog l l og had deraf følger SelTryk la@nhownet - http://lanhownet Eintein tog 1 1 Indledning 1 Lyet hatighed 1 3 Eintein tog og lyd 4 Eintein tog og ly 4 5 Satidigheden relatiitet 4 6 Længden relatiitet,

Læs mere

8 Regulære flader i R 3

8 Regulære flader i R 3 8 Regulære flader i R 3 Vi skal betragte særligt pæne delmængder S R 3 kaldet flader. I det følgende opfattes S som et topologisk rum i sportopologien, se Definition 5.9. En åben omegn U af p S er således

Læs mere

A8 1 De termodynamiske potentialer eller termodynamik for materialefysikere

A8 1 De termodynamiske potentialer eller termodynamik for materialefysikere A8 1 De terodynaiske potentialer eller terodynaik or aterialeysikere Mogens Stibius Jensen Indledning I denne artikel il de ire terodynaiske potentialer: indre energi (U), enthalpi (H), Helholtz ri energi

Læs mere

Projekt 2.3 Euklids konstruktion af femkanten

Projekt 2.3 Euklids konstruktion af femkanten Projekter: Kapitel. Projekt.3 Euklids konstruktion af femkanten Projekt.3 Euklids konstruktion af femkanten Et uddrag af sætninger fra Euklids Elementer, der fører frem til konstruktionen af den regulære

Læs mere

SHARKY varmeenergimålere

SHARKY varmeenergimålere SHARKY varmeenergimålere SHARKY 773 er kabt til måling af varmeenergi i tørre og mindre varmeanlæg. Den er let at intallere og er meget betjeningvenlig. Med it patenterede måleytem og indat ikre tor måletabilitet,

Læs mere

Brugerundersøgelse 2013 Plejebolig

Brugerundersøgelse 2013 Plejebolig Brugerunderøgele 2013 Plejebolig Brugerunderøgelen er udarbejdet af Epinion AS og Afdeling for Data og Analye, Sundhed- og Omorgforvaltningen, København Kommune. Layout: KK deign Foridefoto: Henrik Friberg

Læs mere

Hvor lang tid varer et stjerneskud?

Hvor lang tid varer et stjerneskud? Hvor lang id varer e jernekud? Ole Wi-Hanen, Køge Gymnaium Hvordan kan man ud fra en meeor mae og haighed bekrive den vej ned gennem amofæren? Her giver forfaeren en fremilling af fyikken bag. Søndag den

Læs mere

Definition 13.1 For en delmængde af vektorer X R n er det ortogonale komplement. v 2

Definition 13.1 For en delmængde af vektorer X R n er det ortogonale komplement. v 2 Oersigt [LA],, Komplement Nøgleord og begreber Ortogonalt komplement Tømrerprincippet Ortogonal projektion Projektion på ektor Projektion på basis Kortest afstand August 00, opgae 6 Tømrermester Januar

Læs mere

Banach-Tarski Paradokset

Banach-Tarski Paradokset 32 Artikeltype Banach-Tarski Paradokset Uden appelsiner Andreas Hallbäck Langt de fleste af os har nok hørt om Banach og Tarskis såkaldte paradoks fra 1924. Vi har hørt diverse poppede formuleringer af

Læs mere

Noter til Computerstøttet Beregning Taylors formel

Noter til Computerstøttet Beregning Taylors formel Noter til Computerstøttet Beregning Taylors formel Arne Jensen c 23 1 Introduktion I disse noter formulerer og beviser vi Taylors formel. Den spiller en vigtig rolle ved teoretiske overvejelser, og også

Læs mere

Opgave 1 10. Opgave 2 Andengradsligningen løses, idet. Opgave 3. 11 er en løsning til ligningen, da:

Opgave 1 10. Opgave 2 Andengradsligningen løses, idet. Opgave 3. 11 er en løsning til ligningen, da: 7. marts 0 FVU AVU HF X FAG : Matematik B ark nr. antal ark 8 Opgave 0 a b 5 a b 5 = b 3 er en løsning til ligningen, da: = 9 = 3 Opgave Andengradsligningen løses, idet a = b = 3 c = 4 d (diskriminanten)

Læs mere

Skråplan. Dan Elmkvist Albrechtsen, Edin Ikanović, Joachim Mortensen. 8. januar Hold 4, gruppe n + 1, n {3}, uge 50-51

Skråplan. Dan Elmkvist Albrechtsen, Edin Ikanović, Joachim Mortensen. 8. januar Hold 4, gruppe n + 1, n {3}, uge 50-51 Skråplan Dan Elkvist Albrechtsen, Edin Ikanović, Joachi Mortensen Hold 4, gruppe n + 1, n {3}, uge 50-51 8. januar 2008 Figurer Sider ialt: 5 Indhold 1 Forål 3 2 Teori 3 3 Fregangsåde 4 4 Resultatbehandling

Læs mere

1. Lineær kinematik. 1.1 Kinematiske størrelser

1. Lineær kinematik. 1.1 Kinematiske størrelser . Lineær kinematik Kinematik anaye og dermed kinematik udgør en tor og vigtig de af biomekanikken. I en tørre biomekanik anaye vi kinematikken normat være det ted man tarter, da begrebet omhander ammenhængen

Læs mere

Hvad betyder økonomi og helbred for tilbagetrækningen

Hvad betyder økonomi og helbred for tilbagetrækningen Hvad beyder økonomi og helbred for ilbagerækningen Profeor Paul Bingley og PHD Michael Jørgenen SFI De Naionale Forkningcener for Velfærd 1. Formåle med præenaionen. Dagorden 2. De Danke ilbagerækninglandkab.

Læs mere

guide skift elselskab og spar en formue billigere Januar 2015 Se flere guider på bt.dk/plus og b.dk/plus

guide skift elselskab og spar en formue billigere Januar 2015 Se flere guider på bt.dk/plus og b.dk/plus guide Januar 2015 få billigere el kift elelkab og par en formue Se flere guider på bt.dk/plu og b.dk/plu 2 SKIFT ELSELSKAB SPAR EN FORMUE INDHOLD SIDE 4 Mange kan core hurtige og nemme penge ved at kifte

Læs mere

Spor Matematiske eksperimenter. Komplekse tal af Michael Agermose Jensen og Uwe Timm.

Spor Matematiske eksperimenter. Komplekse tal af Michael Agermose Jensen og Uwe Timm. Homografier Möbius transformationer Følgende tema, handler om homografier, inspireret af professor Børge Jessens noter, udgivet på Københavns Universitet 965-66. Noterne er herefter blevet bearbejdet og

Læs mere

Keplers Love. Om Kinematik og Dynamik i Renæssancens Astronomi. Folkeuniversitetet 9. oktober 2007

Keplers Love. Om Kinematik og Dynamik i Renæssancens Astronomi. Folkeuniversitetet 9. oktober 2007 Keplers Love Om Kinematik og Dynamik i Renæssancens Astronomi Folkeuniversitetet 9. oktober 2007 Poul Hjorth Institut for Matematik Danmarke Tekniske Universitet Middelalderens astronomi var en fortsættelse

Læs mere

Stuart H. Walker EN HÅNDBOG OM SEJLTRIM. En håndbog om SEJL TRIM. En håndbog om sejltrim. Stuart H. Walker

Stuart H. Walker EN HÅNDBOG OM SEJLTRIM. En håndbog om SEJL TRIM. En håndbog om sejltrim. Stuart H. Walker 1 Stuart H. Walker EN HÅNDBOG OM SEJLTRIM En håndbog om En håndbog om ejltrim SEJL TRIM Stuart H. Walker 2 Andre bøger af Stuart H. Walker The Technique of Small Boat Racing (ed.) The Tactic of Small Boat

Læs mere

Regulering af dynamiske systemer

Regulering af dynamiske systemer Regulering af dynamike ytemer p. / Regulering af dynamike ytemer Seminar 2 Tom Pederen, Jan Dimon Bendten Aalborg Univeritet Regulering af dynamike ytemer p. 2/ deign Sytem V For () R() E() D() U() 0 5

Læs mere

Eulers equidimensionale differentialligning

Eulers equidimensionale differentialligning Eulers equidimensionale differentialligning Projektbesvarelse for MM501, udformet af Hans J. Munkholm Differentialligningen September-oktober 2009 For at kunne referere let og elegant gentages differentialligningen

Læs mere

Vi begynder med at repetere noget af det tidligere gennemgåede som vi skal bruge.

Vi begynder med at repetere noget af det tidligere gennemgåede som vi skal bruge. Cykloider Vi begynder med at repetere noget af det tidligere gennemgåede som vi skal bruge Retningspunkt (repetition) Figur 1 viser enhedscirklen Det viste punkt P er anbragt sådan at den øverste af buerne

Læs mere

Antal Antal STU- Erhverv STU Ungdom I alt

Antal Antal STU- Erhverv STU Ungdom I alt Ungdomuddannelerne (STU) årrapport 2013 STU på CSU-Slagele Unge under 25 år, der af fyike eller pykike grunde ikke, elv med pecialpædagogik tøtte, vil kunne gennemføre en ungdomuddannele på normale vilkår,

Læs mere

SCANTRUCK A/S. SCANTRUCK AVISEN z NR. 1 z JANUAR 2008. s. 3 Nyt samarbejde s. 4-5 Salg- og marketingafdelingen s. 6-7 Bejstrup Maskinstation

SCANTRUCK A/S. SCANTRUCK AVISEN z NR. 1 z JANUAR 2008. s. 3 Nyt samarbejde s. 4-5 Salg- og marketingafdelingen s. 6-7 Bejstrup Maskinstation SCANTRUCK A/S SCANTRUCK AVISEN z NR. 1 z JANUAR 2008. 3 Nyt amarbejde. 4-5 Salg- og marketingafdelingen. 6-7 Bejtrup Makintation Forhandler af CASE, MANITOU, ATLAS og McCLOSKEY SCANTRUCK A/S Peter Daugbjerg

Læs mere

Optimale konstruktioner - når naturen former. Opgaver. Opgaver og links, der knytter sig til artiklen om topologioptimering

Optimale konstruktioner - når naturen former. Opgaver. Opgaver og links, der knytter sig til artiklen om topologioptimering Opgaver Opgaver og links, der knytter sig til artiklen om solsikke Opgave 1 Opgave 2 Opgaver og links, der knytter sig til artiklen om bobler Opgave 3 Opgave 4 Opgaver og links, der knytter sig til artiklen

Læs mere

Devran Kücükyildiz Tværfagligt projekt Studieområdet i Studieretningsforløbet. Klasse 1.4. Tværfagligt projekt:

Devran Kücükyildiz Tværfagligt projekt Studieområdet i Studieretningsforløbet. Klasse 1.4. Tværfagligt projekt: Studieområdet i Studieretningsforløbet Klasse 1.4 Tværfagligt projekt: Fysik, kemi, matematik og teknologi Tema: Ballonflyvning Gruppemedlemmer: Christian Krintel, Andreas Dahl, Devran Kücükyildiz Navn:

Læs mere

Pendling på cykel i Københavnsområdet

Pendling på cykel i Københavnsområdet Cykelpendlerruter over længere aftande - I København Området København Kommune - creening Pendling på cykel i Københavnområdet - creening af 13 trækninger til og fra København Centrum Via Trafik December

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet Danmarks Tekniske Universitet Side 1 af 11 sider Skriftlig prøve, lørdag den 22. august, 2015 Kursus navn Fysik 1 Kursus nr. 10916 Varighed: 4 timer Tilladte hjælpemidler: Alle hjælpemidler tilladt "Vægtning":

Læs mere

Semesterprojekt 2007 - Svingningssystemer mekanisk/elektrisk analogi

Semesterprojekt 2007 - Svingningssystemer mekanisk/elektrisk analogi Semeterprojekt SDU - Det Teknik Fakultet Gruppe 6 DDF1 Vejleder: Henning Bremøe Hanen Projektperiode: 10. eptember 007-14. december 007 Semeterprojekt 007 - Svingningytemer mekanik/elektrik analogi Udarbejdet

Læs mere

Dynamikrapport. Projektopgave 1, Dynamik og Svingninger. Jakob Wulff Andersen, s / Underskrift

Dynamikrapport. Projektopgave 1, Dynamik og Svingninger. Jakob Wulff Andersen, s / Underskrift Projektopgave 1, 41035 Dynamik og Svingninger, s11985 Underskrift 31/10-1 Indholdsfortegnelse K1 SPORDESIGN 3 K1 SPORLOKALITETER 4 K MAXIMAL FART 4 K3 MAXIMALGRÆNSER FOR PASSAGERERNES OPLEVEDE G- PÅVIRKNING

Læs mere

FYN RUNDT 9. April afdeling FDM DASU Classic

FYN RUNDT 9. April afdeling FDM DASU Classic : Højme : FTZ : Radby.0 m Driing time: min. km/t Kør den nærmeste ej på kortet fra OTK til OTK Gennem punkterne og pilene - E OTK km/t Selstartspunkt:.00 m :00 min. selstartspunkt:.00 m B Fortsættes OTK

Læs mere

Billeder af Julia-mængder

Billeder af Julia-mængder 1 Billeder af Julia-mængder af Gert Buschmann Vi identificerer planen med de komplekse tal og lader f(z) være en afbildning af planen på sig selv som er defineret og kontinuert-differentiabel næsten overalt.

Læs mere

Differentialligninger. Ib Michelsen

Differentialligninger. Ib Michelsen Differentialligninger Ib Michelsen Ikast 203 2 Indholdsfortegnelse Indholdsfortegnelse Indholdsfortegnelse...2 Ligninger og løsninger...3 Indledning...3 Lineære differentialligninger af første orden...3

Læs mere

A4: Introduction to Cosmology. Forelæsning 2 (kap. 4-5): Kosmisk Dynamik

A4: Introduction to Cosmology. Forelæsning 2 (kap. 4-5): Kosmisk Dynamik A4: Introduction to Cosmology Forelæsning (kap. 4-5): Kosmisk Dynamik 1-komponent modeller Robertson-Walker metrikken ds = c dt² a t [ Metrik med medfølgende koordinater (x,θ,φ), x= S κ (r) i den rumlige

Læs mere

Søgning i decentrale og ustrukturerede P2P netværk

Søgning i decentrale og ustrukturerede P2P netværk Speciale Mart 2003 Internetteknologilinjen IT-højkolen i København Glentevej 67 2400 København NV Søgning i decentrale og utrukturerede P2P netværk Sune Kloppenborg Jeppeen Vejleder: Kåre Jelling Kritofferen

Læs mere

Udledning af den barometriske højdeformel. - Beregning af højde vha. trykmåling. af Jens Lindballe, Silkeborg Gymnasium

Udledning af den barometriske højdeformel. - Beregning af højde vha. trykmåling. af Jens Lindballe, Silkeborg Gymnasium s.1/5 For at kunne bestemme cansatsondens højde må vi se på, hvorledes tryk og højde hænger sammen, når vi bevæger os opad i vores atmosfære. I flere fysikbøger kan man læse om den Barometriske højdeformel,

Læs mere

Planstrategi. s s. Hverdag og fællesskab i bevægelse

Planstrategi. s s. Hverdag og fællesskab i bevægelse Plantrategi 2015 Hverdag og fællekab i bevægele Hverdag og fællekab i bevægele Byrådet i Egedal har en viion for kommunen fremtidige udvikling. Viionen handler om, at alle kal have en god og velfungerende

Læs mere

Løsninger til Opgaver i fysik A-niveau Fysikforlaget 2007 (blå bog)

Løsninger til Opgaver i fysik A-niveau Fysikforlaget 2007 (blå bog) Løningerne er hentet på www.zyankipil.dk Løninger til Opgaver i fyik A-niveau Fyikforlaget 007 (blå bog) Opgave V1 ide 5: Effektfuld laer a) Energien af de enkelte fotoner betee: 4 8 6,66 10 J,9979 10

Læs mere

Parameterkurver. Et eksempel på en rapport

Parameterkurver. Et eksempel på en rapport x Parameterkurver Et eksempel på en rapport Parameterkurver 0x MA side af 7 Hypocykloiden A B Idet vi anvender startværdierne for A og B som angivet, er en generel parameterfremstilling for hypocykloiden

Læs mere

Youngs dobbeltspalteforsøg 1

Youngs dobbeltspalteforsøg 1 Kvantemekanik Side af Youngs dobbeltspalteforsøg Klassisk beskrivelse Inden for den klassiske fysik kan man forklare forekomsten af et interferensmønster ud fra flg. bølgemodel. x Før spalterne beskrives

Læs mere

Ballerup Kommune. Beskrivelse af vejbump

Ballerup Kommune. Beskrivelse af vejbump Ballerup Kommune Beskrivelse af vejbump Center for Miljø og Teknik - Vejteamet 2015 Indhold Vejbump... 3 Godkendte vejbump... 3 Permanente bump... 4 Cirkelformede bump... 4 Kombibump... 5 Kuppelformede

Læs mere

Kapitel 1. Planintegraler

Kapitel 1. Planintegraler Kapitel Planintegraler Denne tekst er en omarbejdet version af kapitel 7 i Gunnar Mohrs noter til faget DiploMat 2, og opgaverne er et lille udpluk af opgaver fra Mogens Oddershede Larsens bog Matematik

Læs mere

Løsninger til eksamensopgaver på fysik A-niveau 2008-2012. Maj 2008

Løsninger til eksamensopgaver på fysik A-niveau 2008-2012. Maj 2008 Løningerne er hentet på www.zyankipil.dk Quizpillene ASHRAM, MIR og SPORTSNØRD Løninger til ekaenopgaver på fyik A-niveau 008-01 Maj 008 Opgave 1: Geoterik anlæg a) Ved at uere de to effekter til en alet

Læs mere