Stikprøvefordelinger og konfidensintervaller

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Starte visningen fra side:

Download "Stikprøvefordelinger og konfidensintervaller"

Transkript

1 Stikprøvefordeliger og kofidesitervaller Stikprøvefordelige for middelværdi De Cetrale Græseværdi Sætig Egeskaber Ved Estimatore Kofidesitervaller t-fordelige

2 Estimator og estimat E stikprøve statistik er et umerisk mål for e opsummerede karakteristik af stikprøve. f E populatios parameter er et umerisk mål for e opsummerede karakteristik af populatioe. f μ E estimator af e populatios parameter er e stikprøve statistik, der bruges til at estimere populatios parametere. Et estimat af e parameter er e bestemt umerisk værdi af e stikprøve statistik. Et pukt-estimat er e ekelt værdi, der bruges som et estimat for e populatios parameter. Et iterval-estimat estimat er et iterval, der bruges som et estimat for e populatios parameter. Eksempel: er e estimator for μ. er et (pukt) estimat af μ.

3 Populatios fordelig, stikprøve, populatios middelværdi og stikprøve geemsit. Populatios middelværdi (μ) = E[ ] Frekves fordelig af populatioe er selv e stokastisk variabel, der følger e fordelig. Stikprøve Stikprøve geemsit ( ) 1 = i = 1 i

4 Stikprøve-fordelig Atag 1,,, er e uafhægig stikprøve, hvor μ =E[] og =V[] er populatioes middelværdi og varias. 1 Stikprøve-middelværdie er = i = 1 i De forvetede værdi af stikprøve-middelværdie er lig med populatios-middelværdie E( ) = μ = Variase af stikprøve middelværdie er lig med populatios variase divideret med stikprøve-størrelse V ( ) μ = =

5 Stikprøve-fordelig Normalfordelt stikprøve Hvis ormal fordelt, så er ormalfordelt: ~ N μ, Hvilke fordelig følger, hvis stikprøve ikke er ormalfordelt?

6 Stikprøve fordeliger Uiform populatio af heltal fra 1 til 8: P() P() P() P() P() P() V() V() = = E[ E[ ] ] - - (E[]) (E[]) = = = = P() Uiform Distributio (1,8) E() = μ = 4.5 V() = = 5.5 SD() = =.913

7 Stikprøve fordeliger Der er 8*8 = 64 forskellige me lige sadsylige stikprøver af tal, ma ka tage (med tilbagelægig) fra e uiform populatio af heltallee fra 1 til 8: Stikprøver af tal fra Uiform (1,8) ,1 1, 1,3 1,4 1,5 1,6 1,7 1,8,1,,3,4,5,6,7,8 3 3,1 3, 3,3 3,4 3,5 3,6 3,7 3,8 4 4,1 4, 4,3 4,4 4,5 4,6 4,7 4,8 5 5,1 5, 5,3 5,4 5,5 5,6 5,7 5,8 6 6,1 6, 6,3 6,4 6,5 6,6 6,7 6,8 7 7,1 7, 7,3 7,4 7,5 7,6 7,7 7,8 8 8,1 8, 8,3 8,4 8,5 8,6 8,7 8,8 Hver af disse stikprøver har et geemsit. For eksempel er geemsittet af (1,4) lig.5 og geemsittet af (8,4) er 6.0. Stikprøve geemsit

8 Stikprøve fordeliger Sadsyligheds fordelige af stikprøve middelværdie kaldes stikprøve fordelige af stikprøve middelværdie rdie. Stikprøve fordelige P() P() -μ (-μ ) P()(-μ ) P() Stikpøve fordelig E( ) = 4,5 = μ V ( ) =,65 = = 5,5

9 Stikprøvefordelig af middelværdie Ved at at sammelige populatios-fordelige og og stikprøve-fordelige af af middelværdie, ser ser ma at: at: Stikprøve-fordelige er er mere klokkeformet og og de er er symmetrisk. Begge har samme middelværdi. Stikprøve fordelige er er mere kompakt, med e e midre varias. P() P() Uiform Distributio (1,8) Stikpøve-fordelig

10 De cetrale græseværdi sætig (CLT) Stikprøve fordelige af middelværdie af e stikprøve taget fra e vilkårlig populatio er approksimativ ormal fordelt for tilstrækkelig store. I adre ord: Hvis 1,, er e uafhægig stikprøve fra e vilkårlig populatio, så gælder ~ N μ, hvis er stor ok. Jo større er, jo tættere er stikprøve middelværdie på at følge e ormal-fordelig. I praksis er >30 ok.

11 Eksempler: Stikprøvefordelige for Normal Uiform Skewed Geeral Populatio = = 30 μ μ μ μ

12 Summeopgave Geemsitslø et år efter edt cad.oeco uddaelse: kr/md Hvad er sadsylighede for at 5 tilfældigt udvalgte cad.oeco er har e geemsitslø på midre ed 9.000kr/md? Atag, at stadard afvigelse er kedt og er.500kr/md.

13 Populatios og stikprøve adele Populatios adele er adele af succeser i populatioe: p = N Stikprøve adele er adele af succeser i stikprøve: p ˆ = Stikprøve adele er et estimat af populatios adele p.

14 Populatios og stikprøve adele - fortsat P( 5 ) = De tilsvarede estimator er P ˆ = Hvor følger e biomial fordelig med atals parameter og sadsyligshedparameter p, dvs. ~B(,p). Eksempel: =10 og p=0.40 P ( ˆ P 0.5) = P 0.5 = P( 5) Da ~B(5,0.4) ka vi slå op i Tabel 1 side 773 for de kumulerede biomialfordelig:

15 Populatios og stikprøve adele - fortsat Gekald at = 1 + +, hvor i er et Beroulli forsøg, hvor sadsylighede for succes er P( i =1)=p. Derfor E[ i ]=p og V[ i ]=p(1-p). Ifølge CLT har vi (approksimativt): Pˆ = ~ N p, ( 1 p) Approksimatioe er god, hvis både p og (1-p) er større ed 5. p Eksempel: =10 og p=0.40 (her er approksimatioe ikke god) ˆ ˆ P p p P P = P = P Z (1 ) / (1 ) / = p p p p ( ) ( ) 74

16 Cetral og ikke-cetral estimator E cetral (ubiased( ubiased) estimator rammer i geemsit målet. Bias E ikke-cetral (biased( biased) estimator rammer i geemsit ikke målet.

17 Effektiv estimator E E estimator er er effektiv hvis hvis de de har har e e relativ lille lille varias (og (og stadard afvigelse). E effektiv estimator er, geemsitlig set, tættest på parametere, der estimeres. E ieffektiv estimator er, geemsitlig set, lægere væk fra parametere, der estimeres.

18 Kosistet og sufficiet estimator E E estimator er er kosistet hvis hvis sadsylighede for for at at ligge ligge tæt tæt på påde parameter, de de estimerer, stiger, år år størrelse på påstikprøve stiger. Kosistes = 10 = 100

19 Estimatorere Alle de geemgåede estimatorer er de bedste i ovefor ævte forstad. Se på estimatet for variase: s = i= 1 ( i ) 1 Hvorfor divideres med -1 og ikke med? Fordi ellers er de ikke e cetral estimator. Desude hadler det også om atallet af frihedsgrader Bemærk: = ( ) = 0 i 1 i

20 Kofides itervaller Kofides itervaller for: Kofides iterval for middelværdi, varias kedt Kofides iterval for middelværdi, varias ukedt

21 Kofides itervaller Et pukt-estimat estimerer værdie af e ukedt populatios parameter ved e ekelt værdi. F: Middelhøjde bladt oeco studerde =17,73. Et kofides iterval er et iterval, der estimerer værdie af e ukedt populatios parameter. Kaldes også et iterval estimat. Samme med itervallet gives et mål for, hvor sikker ma er på, at de sade populatios parameter ligger i itervallet. Dette mål kaldes for kofides iveauet. Et pukt estimat ideholder ikke meget iformatio om de faktiske værdi af μ f hvor sikkert er vores pukt estimat? Et iterval estimat ideholder flere iformatioer, for eksempel: Vi er 95% sikre på, at itervallet [164,8 ; 180,7] ideholde de sade middelværdi μ. Eller vi er 90% sikre på, at itervallet [166,1 ; 179,3] ideholder de sade middelværdi μ.

22 Kofidesiterval for middelværdie - år er ormal-fordelt eller stikprøve er stor Da ~ N( μ, ) gælder følgede: P μ 1.96 < < μ = 0.95 P 1.96 < μ < = 0.95 E 95% kofidesiterval for middelværdi Bemærk at estimatore er ± 1.96 er ersattet med estimatet.

23 Mellemregiger , , , ,96 / 1.96 ) ( (0,1) ,96) 1.96 ( = + < < = + < < = < < = < < = < < P P P P μ, ~N Z ~N Z P μ μ μ μ μ : at gælder Da hvor, ,05 0,05 0,95

24 Kofides iterval for middelværdi f() % falder edefor itervallet Samplig Distributio of the Mea.5% μ % μ 95% falder idefor itervallet.5% μ % falder over itervallet Approksimativt 95% af af stikprøve middelværdiere ka ka forvetes at at falde idefor itervallet μ 196., μ Omvedt, cirka.5% ka ka forvetes at at være uder μ 196. og ka og.5% ka at forvetes at være over μ Så Så5% ka ka forvetes at at være udefor itervallet...

25 Kofides iterval for middelværdi f() * Samplig Distributio of the Mea 95%.5%.5% μ μ 196. μ * Approksimativt 95% 95% af af itervallere ±1.96 omrig stikprøve middelværdie ka ka forvetes at at ideholde de de faktiske værdi af af populatios middelværdie, μ. μ *5% *5% af af sådae itervaller omkrig stikprøve middelværdie ka ka forvetes ikke ikke at at ikludere de de faktiske værdi af af populatios middelværdie.

26 Et (1-α )100% kofides iterval for μ z α Vi defierer som de z-værdi, hvor sadsylighede for at Z er α α højere ed dee værdi, er. Kaldes også fraktile eller de kritiske værdi. (1-α)100% kaldes kofides-iveauet. f(z) α -5-4 Stad ard Norm al z α 0 Z fordelig 1 z α ( 1 α ) 3 α 4 5 P z > z = α/ α P z < z = α/ α P z < z < z = α α α ( 1 ) (1 α) 100% kofidesiterval: ± z α

27 Kritiske værdier for z og kofides-iveauer ( 1 α) α z α f(z) α -5-4 Stad ard Norm al Distrib utio z α 0 Z 1 z α ( 1 α ) 3 α 4 5

28

29 Kofides iveau og bredde af kofidesitervallet Når Når ma ma tager tager stikprøver fra fra de de samme samme populatio og og bruger bruger de de samme samme stikprøve størrelse, så såjo jo højere højere et et kofides-iveau, jo jo bredere et et kofides-iterval. Sta d ard Nor m al Distri b uti o Sta d ard Nor m al Distri b uti o f(z) 0. f(z) Z 80% kofides iterval : ± Z 95% kofides iterval : ±

30 Stikprøvestørrelse og bredde af kofidesitervallet Når ma tager stikprøver fra fra de samme populatio og og bruger det det samme kofides iveau, så såjo jo større stikprøvestørrelse,,, jo jo smallere et et kofides iterval. S am p lig D is trib utio o f the M e a S am p lig D is trib utio o f the M e a f() 0. f() % kofidesiterval: = 0 95% kofidesiterval: = 40

31 Eksempel på tavle

32 Studet s t fordelig Hvis populatios stadard afvigelse,, er ukedt, erstat med stikprøve stadard afvigelse, s. Hvis populatioe er ormal, så er: t = μ s / t-fordelt med (-1) frihedsgrader (degrees of freedom). t fordelige er klokkeformet og symmetrisk og defieret ved atal frihedsgrader (df). Middelværdie er altid lig 0. Variase af t er større ed 1, me går mod 1, år atallet af frihedsgrader vokser. t fordelige er fladere og har tykkere haler e stadard ormal fordelige. t fordelige går mod stadard ormal fordelige å atallet af frihedsgrader vokser. 0 μ Stadard ormal t, df=0 t, df=10

33 Kofides iterval for μ år er ukedt - t fordelige Et Et (1-α)100% kofides iterval for for μ år år er er ukedt (og (og ma atager e e ormalfordelt populatio): ± t α s hvor t er i t -1 α er værdie i t fordelige med -1 frihedsgraders, hvor α sadsylighede for for at at t t er er højere ed ed dee værdi, er er..

34 t Fordelige df t t t 0.05 t t f(t) t D is trib utio : d f=1 0 Areal = 0.10 Areal = 0.10 } } -.8 } t.8 } Areal = 0.05 Arela = 0.05 For For store store frihedsgrader ka kat t fordelige approksimeres ved ved e e stadard ormal ormal fordelig.

35 Eksempel 6- E E aktie aalytiker vil vil estimere de geemsitlige gevist på påe bestemt aktie. E E stikprøve på på15 dage giver e e geemsitlig gevist på på =10.37% og og e e stadard afvigelse på pås = 3.5%. Atag e e ormal populatio og og giv giv et et 95% kofides iterval for for de geemsitlige gevist på pådee aktie. df t t t 0.05 t t De kritiske værdi af t for df = ( -1) = (15-1) = 14 og et højre halet areal på α/ = 0.05 er: t = Kofides itervallet er: s ± t0. 05 = ± = ± = , [ ]

36 Kofides iterval for populatios adele, p, for store stikprøver Estimatore af populatios adele, p, er stikprøve adele, pˆ. Hvis stikprøve størrelse er stor, så er pˆ approksimativ ormal fordelt, med E( pˆ) = p og pq V( pˆ) =, hvor q=(1- p). Når populatio adele er ukedt, bruges de estimerede værdi, pˆ. E stikprøve er stor ok, år både p og q er større ed 5. Et (1-α)100% kofides iterval for populatios adele, p, er givet ved: ˆ ˆ p± ˆ z pq α hvor stikprøve adele, pˆ, er lig med atallet af succes'er i stikprøve,, divideret med atallet af forsøg (stikprøve størrelse),, og qˆ =1-pˆ.

37 Eksempel 6-4 Hvor stor stor e e adel har har udeladske firmaer af af det det amerikaske marked for for et et eller eller adet produkt. E E stikprøve på på100 forbrugere udtages og og af af disse bruger det det udeladske produkt; reste bruger det det amerikaske produkt. Giv Giv et et 95% 95% kofidesiterval for for adele af af brugere af af udeladske produkter. pˆ ± z α pq ˆ ˆ (0.34)(0.66) = 0.34 ± = 0.34 ± (1.96)( ) = 0.34 ± = [ 0.47,0.438]

38 Kofides iterval for populatios variase: Chi i ade (χ ) fordelige Stikprøve variase, s², er e cetral estimator for populatios variase ². Kofides itervaller for populatios variase baseres på χ fordelige. χ fordelige er sadsyligheds fordelige for e sum af uafhægige kvadrerede stadard ormal fordelte stokastiske variable. Middelværdie er lig med atallet af frihedsgrade, E()=df Variase er lig med to gage atallet af frihedsgrader, V()=df

39 χ fordelige E χ fordelt stokastisk variabel ka ikke være egativ, så de er begræset af 0 til vestre. Fordelige er højre skæv. Fordelige går mod ormal fordelige, år atallet af frihedsgrader vokser. f ( χ ) C hi-sq uare D istrib utio: df=10, df=3 0, df= df = df = df = χ Hvis stikprøve er taget fra e ormal fordelig, så er de stokastisk e variabel : ( 1) s χ = χ fordelt med ( -1) frihedsgra der.

40 Sadsyligheder i χ fordelige Areal i højre hale Areal i vestre hale df

41 Kofides iterval for populatios variase Et (1-α)100% kofides iterval for populatios variase * (hvis populatioe er ormal fordelt) er givet som: ( ) s 1, ( 1 ) s χ α χ α 1 α hvor er fraktile i χ fordelige og χ α χ α 1 er 1 α fraktile. Bemærk: Bemærk: Fordi Fordi χχ fordelige fordelige er er skæv, skæv, er er kofides-itervallet kofides-itervalletfor for populatiosvariasevariase ikke ikke symmetrisk. populatios- symmetrisk.

42 Eksempel 6-5 E E maskie fylder kaffekader (med kaffe ;-) ;-) Hvis Hvis det det geemsitlige idhold er er forskellig fra fra hvad det det skal skal være, ka ka maskie justeres. Hvis Hvis variase er er for for høj, høj, skal skal maskie sedes til til reparatio. E E stikprøve på på30 30 kader giver et et varias estimat på påss = 18,540. Giv Giv et et 95% 95% kofides iterval for for populatios variase,.. ( 1) s ( 1) s, χ χ 1 α α (30 1)18540 (30 1)18540 =, = [ 11765,33604]

43 Eksempel Areal i højre hale df Chi-Square Distributio: df = f(χ ) χ χ 40 = χ =

Konfidens intervaller

Konfidens intervaller Kofides itervaller Kofides itervaller for: Kofides iterval for middelværdi, varias kedt Kofides iterval for middelværdi, varias ukedt Kofides iterval for adel Kofides iterval for varias Bestemmelse af

Læs mere

Dagens program. Estimation: Kapitel Eksempler på middelrette og/eller konsistente estimator (de sidste fra sidste forelæsning)

Dagens program. Estimation: Kapitel Eksempler på middelrette og/eller konsistente estimator (de sidste fra sidste forelæsning) Dages program Estimatio: Kapitel 9.4-9.7 Eksempler på middelrette og/eller kosistete estimator (de sidste fra sidste forelæsig) Ko desiterval for store datasæt kap. 9.4 Ko desiterval for små datasæt kap.

Læs mere

Test i to populationer. Hypotesetest for parrede observationer Test for ens varians Gensyn med flyskræk!

Test i to populationer. Hypotesetest for parrede observationer Test for ens varians Gensyn med flyskræk! Test i to populatioer Hypotesetest for parrede observatioer Test for es varias Gesy med flyskræk! Afhægige og uafhægige stikprøver Ved e uafhægig stikprøve udtages e stikprøve fra hver gruppe.. Mæd og

Læs mere

Definition: Normalfordelingen. siges at være normalfordelt med middelværdi µ og varians σ 2, hvor µ og σ er reelle tal og σ > 0.

Definition: Normalfordelingen. siges at være normalfordelt med middelværdi µ og varians σ 2, hvor µ og σ er reelle tal og σ > 0. Repetitio: Normalfordelige Ladmåliges fejlteori Lektio Trasformatio af stokastiske variable - kkb@math.aau.dk http://people.math.aau.dk/ kkb/udervisig/lf13 Istitut for Matematiske Fag Aalborg Uiversitet

Læs mere

Statistik Lektion 8. Parrede test Test for forskel i andele Test for ens varians Gensyn med flyskræk!

Statistik Lektion 8. Parrede test Test for forskel i andele Test for ens varians Gensyn med flyskræk! Statistik Lektio 8 Parrede test Test for forskel i adele Test for es varias Gesy med flyskræk! Afhægige og uafhægige stikprøver Ved e uafhægig stikprøve udtages e stikprøve fra hver gruppe.. Mæd og kviders

Læs mere

Løsninger til kapitel 7

Løsninger til kapitel 7 Løsiger til kapitel 7 Opgave 7.1 a) HpoStat giver resultatet: Pop. varias er ukedt, me 30, så Normalf. bruges approksimativt = 54,400 s 1.069,90 = 00,000 0,95 49,868 58,93 Dette betder, at med 95% sikkerhed

Læs mere

hvor i er observationsnummeret, som løber fra 1 til stikprøvestørrelsen n, X i

hvor i er observationsnummeret, som løber fra 1 til stikprøvestørrelsen n, X i Normalfordeliger For at e stokastisk variabel X ka være ormalfordelt, skal X agive værdie af e eller ade målig, f.eks. tid, lægde, vægt, beløb osv. Notatioe er: Xi ~ N( μ, σ hvor i er observatiosummeret,

Læs mere

Statistik Lektion 7. Hypotesetest og kritiske værdier Type I og Type II fejl Styrken af en test Sammenligning af to populationer

Statistik Lektion 7. Hypotesetest og kritiske værdier Type I og Type II fejl Styrken af en test Sammenligning af to populationer Statistik Lektio 7 Hpotesetest og kritiske værdier Tpe I og Tpe II fejl Strke af e test Sammeligig af to populatioer 1 Tri I e Hpotesetest E hpotesetest består af 5 elemeter: I. Atagelser Primært hvilke

Læs mere

Stikprøver og stikprøve fordelinger. Stikprøver Estimatorer og estimater Stikprøve fordelinger Egenskaber ved estimatorer Frihedsgrader

Stikprøver og stikprøve fordelinger. Stikprøver Estimatorer og estimater Stikprøve fordelinger Egenskaber ved estimatorer Frihedsgrader Stikprøver og stikprøve fordelinger Stikprøver Estimatorer og estimater Stikprøve fordelinger Egenskaber ved estimatorer Frihedsgrader Statistik Statistisk Inferens: Prediktere og forekaste værdier af

Læs mere

Diskrete og kontinuerte stokastiske variable

Diskrete og kontinuerte stokastiske variable Diskrete og kotiuerte stokastiske variable Beroulli Biomial fordelig Negativ biomial fordelig Hypergeometrisk fordelig Poisso fordelig Kotiuerte stokastiske variable Uiform fordelig Ekspoetial fordelig

Læs mere

Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab

Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab Statistik ved Bachelor-uddaelse i folkesudhedsvideskab Græseværdisætiger Det hadler om geemsit Statistikere elsker geemsit Det er oplagt e god ide at tage geemsit. Hvis jeg f.eks skal gætte på vægte af

Læs mere

Statistik 8. gang 1 KONFIDENSINTERVALLER. Konfidensintervaller: kapitel 11. Valg og test af fordelingsfunktion

Statistik 8. gang 1 KONFIDENSINTERVALLER. Konfidensintervaller: kapitel 11. Valg og test af fordelingsfunktion Statistik 8. gag 1 KONIDENSINTERVALLER Kofidesitervaller: kapitel 11 Valg og test af fordeligsfuktio Statistik 8. gag 11. KONIDENS INTERVALLER Et kofides iterval udtrykker itervallet hvori de rigtige værdi

Læs mere

Estimation ved momentmetoden. Estimation af middelværdiparameter

Estimation ved momentmetoden. Estimation af middelværdiparameter Statistik og Sadsylighedsregig 1 STAT kapitel 4.2 4.3 Susae Ditlevse Istitut for Matematiske Fag Email: susae@math.ku.dk http://math.ku.dk/ susae Estimatio ved mometmetode Idimellem ka det være svært (eller

Læs mere

Sammenligning af to grupper

Sammenligning af to grupper Sammeligig af to gruer Reetitio, heruder om kritiske værdier Sammeligig af to gruer Sammeligig af to middelværdier Sammeligig af to adele Sammeligig af to variaser yoteser og hyotesetest. E hyotese er

Læs mere

24. januar Epidemiologi og biostatistik. Forelæsning 1 Uge 1, tirsdag. Niels Trolle Andersen, Afdelingen for Biostatistik.

24. januar Epidemiologi og biostatistik. Forelæsning 1 Uge 1, tirsdag. Niels Trolle Andersen, Afdelingen for Biostatistik. Epidemiologi og biostatistik. Forelæsig Uge, tirsdag. Niels Trolle Aderse, Afdelige for Biostatistik. Geerelt om kurset: - Formål - Forelæsiger - Øvelser - Forelæsigsoter - Bøger - EpiBasic: http://www.biostat.au.dk/teachig/software

Læs mere

antal gange krone sker i første n kast = n

antal gange krone sker i første n kast = n 1 Uge 15 Teoretisk Statistik, 5. april 004 1. Store tals lov Eksempel: møtkast Koverges i sadsylighed Tchebychevs ulighed Sætig: Store tals lov. De cetrale græseværdisætig 3. Approksimatio af sadsyligheder

Læs mere

Opsamling. Lidt om det hele..!

Opsamling. Lidt om det hele..! Opsamlig Lidt om det hele..! Kursus oversigt Hvad har vi været igeem: Deskriptiv statistik Sadsyligheder Stokastiske variable diskrete og kotiuerte Fordeliger Estimatio Test Iferes Sammeligig af middelværdier

Læs mere

13. februar Resumé: En statistisk analyse resulterer ofte i : Et estimat ˆ θ med en tilhørende se( ˆ θ )

13. februar Resumé: En statistisk analyse resulterer ofte i : Et estimat ˆ θ med en tilhørende se( ˆ θ ) 3. februar 003 Epidemiologi og biostatistik. Uge, torag d. 3. februar 003 Morte Frydeberg, Istitut for Biostatistik. Type og type fejl Nogle specielle metoder: Test i RxC tabeller Test i x tabeller Fishers

Læs mere

29. januar Epidemiologi og biostatistik Forelæsning 2 Uge 1, torsdag 2. februar 2006 Michael Væth, Afdeling for Biostatistik.

29. januar Epidemiologi og biostatistik Forelæsning 2 Uge 1, torsdag 2. februar 2006 Michael Væth, Afdeling for Biostatistik. Epidemiologi og biostatistik Forelæsig Uge 1, torsdag. februar 006 ichael Væth, Afdelig for Biostatistik. Sammeligig af to middelværdier sikkerhedsitervaller statistisk test Sammeligig af to proportioer

Læs mere

Motivation. En tegning

Motivation. En tegning Motivatio Scatter-plot at det mådelige salg mod det måedlige reklamebudget. R: plot(salg ~ budget, data = salg) Økoometri Lektio Simpel Lieær Regressio salg 400 450 500 550 20 25 30 35 40 45 50 budget

Læs mere

Hypotesetest. Hypotesetest og kritiske værdier Type 1 og Type 2 fejl Styrken af en test Sammenligning af to populationer

Hypotesetest. Hypotesetest og kritiske værdier Type 1 og Type 2 fejl Styrken af en test Sammenligning af to populationer Hypoteetet Hypoteetet og kritike værdier Type og Type fejl Styrke af e tet Sammeligig af to populatioer Kofideiterval for σ tore tikprøver. Hvi X følger e χ -fordelig med frihedgrader, dv. X~χ (), gælder

Læs mere

Indholdsfortegnelse Generelt Diskrete stokastiske variable: Kontinuerte stokastiske variable: Regneregler for stokastiske variable

Indholdsfortegnelse Generelt Diskrete stokastiske variable: Kontinuerte stokastiske variable: Regneregler for stokastiske variable Idholdsfortegelse Geerelt:...3 Stokastisk variabel:...3 Tæthedsfuktio/sadsylighedsfuktio for stokastisk variabel:...3 Fordeligsfuktio/sumfuktio for stokastisk variabel:...3 Middelværdi:...4 Geemsit:...4

Læs mere

30. august Epidemiologi og biostatistik. Forelæsning 3 Uge 2, torsdag d. 8. september 2005 Michael Væth, Afdeling for Biostatistik.

30. august Epidemiologi og biostatistik. Forelæsning 3 Uge 2, torsdag d. 8. september 2005 Michael Væth, Afdeling for Biostatistik. 30. august 005 Epidemiologi og biostatistik. Forelæsig 3 Uge, torag d. 8. september 005 Michael Væth, Afdelig for Biostatistik. Mere om kategoriske data Test for uafhægighed I RxC tabeller Test for uafhægighed

Læs mere

Konfidensintervaller og Hypotesetest

Konfidensintervaller og Hypotesetest Konfidensintervaller og Hypotesetest Konfidensinterval for andele χ -fordelingen og konfidensinterval for variansen Hypoteseteori Hypotesetest af middelværdi, varians og andele Repetition fra sidst: Konfidensintervaller

Læs mere

Sætning: Middelværdi og varians for linearkombinationer. Lad X 1,X 2,...,X n være stokastiske variable. Da gælder. Var ( a 0 + a 1 X a n X n

Sætning: Middelværdi og varians for linearkombinationer. Lad X 1,X 2,...,X n være stokastiske variable. Da gælder. Var ( a 0 + a 1 X a n X n Ladmåliges fejlteori Lektio 3 Estimatio af σ Dobbeltmåliger Geometrisk ivellemet Lieariserig - rw@math.aau.dk Istitut for Matematiske Fag Aalborg Uiversitet Repetitio: Middelværdi og Varias Sætig: Middelværdi

Læs mere

Generelle lineære modeller

Generelle lineære modeller Geerelle lieære modeller Regressiosmodeller med é uafhægig itervalskala variabel: Y e eller flere uafhægige variable: X,..,X k De betigede fordelig af Y givet X,..,X k atages at være ormal med e middelværdi,

Læs mere

9. Binomialfordelingen

9. Binomialfordelingen 9. Biomialfordelige 9.. Gekedelse Hvert forsøg ka ku resultere i to mulige udfald; succes og fiasko. I modsætig til poissofordelige er atallet af forsøg edeligt. 9.. Model X : Stokastisk variabel, der

Læs mere

Statistiske test. Efteråret 2010 Jens Friis, AAU. Hjemmeside :

Statistiske test. Efteråret 2010 Jens Friis, AAU. Hjemmeside : Statistiske test Efteråret 00 Jes Friis, AAU Hjemmeside : http://akaaudk/jfj Kotiuerte fordeliger Defiitio: Tæthedsfuktio E sadsylighedstæthedsfuktio på R er e itegrabel fuktio f : R [0; [ hvor f d = Defiitio:

Læs mere

Normalfordelingen og Stikprøvefordelinger

Normalfordelingen og Stikprøvefordelinger Normalfordelingen og Stikprøvefordelinger Normalfordelingen Standard Normal Fordelingen Sandsynligheder for Normalfordelingen Transformation af Normalfordelte Stok.Var. Stikprøver og Stikprøvefordelinger

Læs mere

Oversigt. 1 Fordelingen for gennemsnittet t-fordelingen. 3 Den statistiske sprogbrug og formelle ramme

Oversigt. 1 Fordelingen for gennemsnittet t-fordelingen. 3 Den statistiske sprogbrug og formelle ramme Itroduktio til Statistik Forelæsig 4: Kofidesiterval for middelværdi (og spredig) Peder Bacher DTU Compute, Dyamiske Systemer Bygig 303B, Rum 009 Damarks Tekiske Uiversitet 2800 Lygby Damark e-mail: pbac@dtu.dk

Læs mere

Simpel Lineær Regression. Opsplitning af variationen Determinations koefficient Variansanalyse F-test Model-kontrol

Simpel Lineær Regression. Opsplitning af variationen Determinations koefficient Variansanalyse F-test Model-kontrol Simpel Lieær Regressio Opsplitig af variatioe Determiatios koefficiet Variasaalse F-test Model-kotrol Opbgig af statistisk model Specificer model Ligiger og atagelser Estimer parametre Modelkotrol Er modelle

Læs mere

Vejledende besvarelser til opgaver i kapitel 15

Vejledende besvarelser til opgaver i kapitel 15 Vejledede besvarelser til opgaver i apitel 5 Opgave a) De teststatistier, ma aveder til at teste om to middelværdier er es, består af et estimat på forselle mellem middelværdiere,, divideret med et udtry

Læs mere

Oversigt. Kursus 02402/02323 Introducerende Statistik. Forelæsning 12: Inferens for andele. Klaus K. Andersen og Per Bruun Brockhoff

Oversigt. Kursus 02402/02323 Introducerende Statistik. Forelæsning 12: Inferens for andele. Klaus K. Andersen og Per Bruun Brockhoff Kursus 02402/02323 Itroducerede Statistik Forelæsig 12: Iferes for adele Klaus K. Aderse og Per Bruu Brockhoff DTU Compute, Statistik og Dataaalyse Damarks Tekiske Uiversitet 2800 Lygby Damark e-mail:

Læs mere

Økonometri 1. Inferens i den lineære regressionsmodel 29. september Økonometri 1: F7 1

Økonometri 1. Inferens i den lineære regressionsmodel 29. september Økonometri 1: F7 1 Økoometri 1 Iferes i de lieære regressiosmodel 9. september 006 Økoometri 1: F7 1 Dages program Opsamlig af hemmeopgave om Mote Carlo eksperimeter Mere om hypotesetest: Ekelt lieær restriktio på koefficieter

Læs mere

Program. Middelværdi af Y = t(x ) Transformationssætningen

Program. Middelværdi af Y = t(x ) Transformationssætningen Program Statistik og Sadsylighedsregig 2 Trasformatio af kotiuerte fordeliger på R, flerdimesioale kotiuerte fordeliger, mere om ormalfordelige Helle Sørese Uge 7, osdag I formiddag: Opfølgig på trasformatiossætige

Læs mere

Økonometri 1. Definition og motivation. Definition og motivation. Dagens program. Den multiple regressionsmodel 15. februar 2006

Økonometri 1. Definition og motivation. Definition og motivation. Dagens program. Den multiple regressionsmodel 15. februar 2006 Dages program Økoometri De multiple regressiosmodel 5. februar 006 Emet for dee forelæsig er de multiple regressiosmodel (Wooldridge kap 3.-3.3+appedix E.-E.) Defiitio og motivatio Fortolkig af parametree

Læs mere

Spørgsmål 3 (5 %) Bestem sandsynligheden for at et tilfældigt valgt vindue har en fejl ved listerne, når man ved at der er fejl i glasset.

Spørgsmål 3 (5 %) Bestem sandsynligheden for at et tilfældigt valgt vindue har en fejl ved listerne, når man ved at der er fejl i glasset. STATISTIK Skriftlig evaluerig, 3. semester, madag de 30. auar 006 kl. 9.00-3.00. Alle hælpemidler er tilladt. Opgaveløsige forsyes med av og CPR-r. OPGAVE Ved e produktio af viduer er der mulighed for,

Læs mere

Program. Statistisk inferens En enkelt stikprøve og lineær regression Stat. modeller, estimation og konfidensintervaller. Fordeling af gennemsnit

Program. Statistisk inferens En enkelt stikprøve og lineær regression Stat. modeller, estimation og konfidensintervaller. Fordeling af gennemsnit Faculty of Life Sciece Program Statitik ifere E ekelt tikprøve og lieær regreio Stat. modeller, etimatio og kofideitervaller Clau Ektrøm E-mail: ektrom@life.ku.dk Fordelig af geemit Statitik ifere for

Læs mere

STATISTIKNOTER Simple normalfordelingsmodeller

STATISTIKNOTER Simple normalfordelingsmodeller STATISTIKNOTER Simple ormalfordeligsmodeller Jørge Larse IMFUFA Roskilde Uiversitetsceter Februar 1999 IMFUFA, Roskilde Uiversitetsceter, Postboks 260, DK-4000 Roskilde. Jørge Larse: STATISTIKNOTER: Simple

Læs mere

Program. Ensidet variansanalyse Normalfordelingen. Antibiotika og nedbrydning af organisk materiale. Tegninger

Program. Ensidet variansanalyse Normalfordelingen. Antibiotika og nedbrydning af organisk materiale. Tegninger Faculty of Life Scieces Program Esidet variasaalyse Normalfordelige Claus Ekstrøm E-mail: ekstrom@life.ku.dk Esidet variasaalyse (oe-way ANOVA) Hvilke type data? Hvad er problemstillige? Variatio mellem

Læs mere

Statistik Lektion 8. Test for ens varians

Statistik Lektion 8. Test for ens varians Statitik Lektio 8 Tet for e varia ra tidligere Hvi populatioe er ormalfordelt med varia, å gælder ( ) S ~ χ hvor er tikprøve tørrele og S er tikprøvevariae. χ -fordelig med - frihedgrader χ Tet af Variae

Læs mere

Mikroøkonomi, matematik og statistik Eksamenshjemmeopgave 14. 20. december 2007

Mikroøkonomi, matematik og statistik Eksamenshjemmeopgave 14. 20. december 2007 Mikroøkoomi, matematik og statistik Eksameshjemmeopgave 14. 20. december 2007 Helle Buzel, Tom Egsted og Michael H.J. Stæhr 14. december 2007 R E T N I N G S L I N I E R F O R E K S A M E N S H J E M M

Læs mere

Estimation og test i normalfordelingen

Estimation og test i normalfordelingen af Birger Stjerholm Made Samfudlitteratur 07 Etimatio og tet i ormalfordelige Dee tekt ideholder et overblik over ogle grudlæggede pricipper for etimatio og tet i ormalfordelige i hyppigt forekommede ituatioer:

Læs mere

STATISTISKE GRUNDBEGREBER

STATISTISKE GRUNDBEGREBER MOGENS ODDERSHEDE LARSEN STATISTISKE GRUNDBEGREBER med avedelse af TI 89 og Excel 8 5 9 6 3 0 Histogram for ph 6,9 7, 7,3 7,5 7,7 7,9 ph. udgave 0 FORORD Der er i dee bog søgt at give letlæst og askuelig

Læs mere

Morten Frydenberg version dato:

Morten Frydenberg version dato: Morte Frdeberg versio dato: 4--4 Itroduktio til kurset Statistik Forelæsig Morte Frdeberg, Sektio for Biostatistik af Biostatistik dele af. semester kurset. Statistiske modeller Biomialfordelige Normalfordelige

Læs mere

Den flerdimensionale normalfordeling

Den flerdimensionale normalfordeling De flerdimesioale ormalfordelig Stokastiske vektorer Ved e stokastisk vektor skal vi forstå e vektor, hvor de ekelte kompoeter er sædvalige stokastiske variable. For de stokastiske vektor Y = Y,..., Y

Læs mere

Kvantitative metoder 2

Kvantitative metoder 2 Dages program Kvatitative metoder De multiple regressiosmodel 6. februar 007 Emet for dee forelæsig er de multiple regressiosmodel (Wooldridge kap 3.- 3.+appedix E.) Defiitio og motivatio Fortolkig af

Læs mere

Tests for forskel i central tendens for data på ordinal- og intervalskala. Typer af statistiske test:

Tests for forskel i central tendens for data på ordinal- og intervalskala. Typer af statistiske test: Statistik for biologer 005-6, modul 7: Tests for forskel i cetral tedes for data på ordial- og itervalskala M7, slide M7, slide Typer af statistiske test: Parametrisk statistik: - Tester for forskel i

Læs mere

Vejledende opgavebesvarelser

Vejledende opgavebesvarelser Vejledede opgavebesvarelser 1. Atal hæder er lig med K(52,5), altså 2598960. Ved brug af multiplikatiospricippet ka atal hæder med 3 ruder og 2 spar udreges som K(13, 3) K(13, 2), hvilket giver 22308.

Læs mere

Matematisk Modellering 1 Hjælpeark

Matematisk Modellering 1 Hjælpeark Matematisk Modellerig Hjælpeark Kaare B. Mikkelse 2005090 3. september 2007 Idhold Formler 2 2 Aalyse af k ormalfordelte prøver 2 2. Modelcheck............................................ 2 2.2 Test af

Læs mere

Uge 40 I Teoretisk Statistik, 30. september 2003

Uge 40 I Teoretisk Statistik, 30. september 2003 Uge 40 Teoretis tatisti, 30. september 003 Esidet variasaalyse Model, otatio, hypotese og hælpehypotese Test af hælpehypotese Opdaterig af variasestimat Test af hypotese om es middelværdier Variasaalysesema

Læs mere

Oversigt over emner. Punktestimatorer: Centralitet(bias) og efficiens

Oversigt over emner. Punktestimatorer: Centralitet(bias) og efficiens Oversigt Oversigt over emner 1 Punkt- og intervalestimation Punktestimatorer: Centralitet(bias) og efficiens 2 Konfidensinterval Konfidensinterval for andel Konfidensinterval - normalfordelt stikprøve

Læs mere

Asymptotisk estimationsteori

Asymptotisk estimationsteori Kapitel 5 Asymptotisk estimatiosteori De fleste eksperimeter har e idbygget størrelse, som regel kaldet eller N. Dette repræseterer typisk atallet af foretage måliger, atallet af udersøgte idivider, atallet

Læs mere

STATISTISKE GRUNDBEGREBER

STATISTISKE GRUNDBEGREBER MOGENS ODDERSHEDE LARSEN STATISTISKE GRUNDBEGREBER 18 15 1 9 6 3 0 Histogram for ph 6,9 7,1 7,3 7,5 7,7 7,9 ph 13 udgave 013 FORORD Der er i dee bog søgt at give letlæst og askuelig fremstillig af de statistiske

Læs mere

Elementær Matematik. Polynomier

Elementær Matematik. Polynomier Elemetær Matematik Polyomier Ole Witt-Hase 2008 Køge Gymasium Idhold 1. Geerelle polyomier...1 2. Divisio med hele tal....1 3. Polyomiers divisio...2 4. Polyomiers rødder....4 5. Bestemmelse af røddere

Læs mere

Skitse til notat om hvor de forskellige sandsynlighedsfordelinger kan tænkes at komme fra

Skitse til notat om hvor de forskellige sandsynlighedsfordelinger kan tænkes at komme fra E6 efterår 1999 Notat 8 Jørge Larse 12. oktober 1999 Skitse til otat om hvor de forskellige sadsylighedsfordeliger ka tækes at komme fra I statistik opererer ma i vid udstrækig med et lille atal»stadardfordeliger«.

Læs mere

Program. Populationer og stikprøver. Praktiske oplysninger. Eksempel vaccine mod miltbrand hos får. Praktiske oplysninger

Program. Populationer og stikprøver. Praktiske oplysninger. Eksempel vaccine mod miltbrand hos får. Praktiske oplysninger Faculty of Life Scieces Program Populatioer og stikprøver Claus Ekstrøm E-mail: ekstrom@life.ku.dk Praktiske oplysiger Populatioer og stikprøver Data Datatyper Visualiserig Cetrum og spredig af e fordelig

Læs mere

Sandsynlighedsregning 9. forelæsning Bo Friis Nielsen

Sandsynlighedsregning 9. forelæsning Bo Friis Nielsen Dages eer afsit 5.3 og 5.4 Siultae kotiuerte fordeliger P(X dx,y dy = f(x,ydxdy Sadsylighedsregig 9. forelæsig Bo Friis Nielse Mateatik og Coputer Sciece Daarks Tekiske Uiversitet 8 Kgs. Lygby Daark Eail:

Læs mere

Supplement til Kreyszig

Supplement til Kreyszig Supplemet til Kreyszig Forelæsigsoter til Matematik F Idholdsfortegelse side 1. Numerisk itegratio. Fejlvurderig af trapez og Simpso algoritmere 1. Dekompoerig af brøker (Laplace trasformatio) 3. Permutatioer

Læs mere

Introduktion til Statistik

Introduktion til Statistik Itroduktio til Statistik 4. udgave Susae Ditlevse og Helle Sørese Susae Ditlevse, susae@math.ku.dk Helle Sørese, helle@math.ku.dk Istitut for Matematiske Fag Købehavs Uiversitet Uiversitetsparke 5 2100

Læs mere

Forelæsning 5: Kapitel 7: Inferens for gennemsnit (One-sample setup)

Forelæsning 5: Kapitel 7: Inferens for gennemsnit (One-sample setup) Kursus 02402 Introduktion til Statistik Forelæsning 5: Kapitel 7: Inferens for gennemsnit (One-sample setup) Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske

Læs mere

Dansk. Oversigt. 1 Fordelingen for gennemsnittet t-fordelingen. 2 Konfidensintervallet for µ Eksempel. 3 Den statistiske sprogbrug og formelle ramme

Dansk. Oversigt. 1 Fordelingen for gennemsnittet t-fordelingen. 2 Konfidensintervallet for µ Eksempel. 3 Den statistiske sprogbrug og formelle ramme Itroduktio til Statistik enote 3: Kofidesitervaller for é gruppe/stikprøve Egelsk Forelæsig 4: Kofidesiterval for middelværdi (og spredig) Peder Bacher DTU Compute, Dyamiske Systemer Bygig 303B, Rum 009

Læs mere

Projekt 4.8 De reelle tal og 1. hovedsætning om kontinuerte funktioner

Projekt 4.8 De reelle tal og 1. hovedsætning om kontinuerte funktioner Projekter: Kapitel 4 Projekt 48 De reelle tal og hovedsætig om kotiuerte fuktioer Projekt 48 De reelle tal og hovedsætig om kotiuerte fuktioer Kotiuitet og kotiuerte fuktioer Ord som kotiuert og kotiuerlig

Læs mere

STATISTISKE GRUNDBEGREBER

STATISTISKE GRUNDBEGREBER MOGENS ODDERSHEDE LARSEN STATISTISKE GRUNDBEGREBER 18 15 1 9 6 3 0 Histogram for ph 6,9 7,1 7,3 7,5 7,7 7,9 ph 17. udgave 016 FORORD Der er i dee bog søgt at give letlæst og askuelig fremstillig af de

Læs mere

6 Populære fordelinger

6 Populære fordelinger 6 Populære fordeliger I apitel 4 itroducerede vi stoastise variabler so e åde at repræsetere udfald af et esperiet på. De stoastise variabler ue være både disrete (fx terigslag) og otiuerte (fx vareægder).

Læs mere

Velkommen. Program. Statistik og Sandsynlighedsregning 2 Sandsynlighedstætheder og kontinuerte fordelinger på R. Praktiske ting og sager

Velkommen. Program. Statistik og Sandsynlighedsregning 2 Sandsynlighedstætheder og kontinuerte fordelinger på R. Praktiske ting og sager Program Statistik og Sadsylighedsregig 2 Sadsylighedstætheder og kotiuerte fordeliger på R Helle Sørese Uge 6, madag Velkomme I dag: Praktiske bemærkiger Hvad skal vi lave på SaSt2? Sadsylighedstætheder

Læs mere

Teoretisk Statistik, 9. februar Beskrivende statistik

Teoretisk Statistik, 9. februar Beskrivende statistik Uge 7 I Teoretisk Statistik, 9 februar 004 Beskrivede statistik Kategoriserede variable 3 Kvatitative variable 4 Fraktiler for ugrupperede observatioer 5 Fraktiler for grupperede observatioer 6 Beliggeheds-

Læs mere

Løsning eksamen d. 15. december 2008

Løsning eksamen d. 15. december 2008 Informatik - DTU 02402 Introduktion til Statistik 2010-2-01 LFF/lff Løsning eksamen d. 15. december 2008 Referencer til Probability and Statistics for Engineers er angivet i rækkefølgen [8th edition, 7th

Læs mere

Anvendt Statistik Lektion 6. Kontingenstabeller χ 2- test [ki-i-anden-test]

Anvendt Statistik Lektion 6. Kontingenstabeller χ 2- test [ki-i-anden-test] Anvendt Statistik Lektion 6 Kontingenstabeller χ 2- test [ki-i-anden-test] Kontingenstabel Formål: Illustrere/finde sammenhænge mellem to kategoriske variable Opbygning: En celle for hver kombination af

Læs mere

x-klasserne Gammel Hellerup Gymnasium

x-klasserne Gammel Hellerup Gymnasium SANDSYNLIGHEDSREGNING OG KOMBINATORIK x-klassere Gammel Hellerup Gymasium Idholdsfortegelse SANDSYNLIGHEDSREGNING... 3 SANDSYNLIGHEDSFELT... 3 DE STORE TALS LOV... 4 Sadsyligheder og frekveser:... 4 STOKASTISK

Læs mere

Sandsynlighedsregning

Sandsynlighedsregning Sadsylighedsregig E ote om sadsylighedsregig. Via basal sadsylighedsregig gøres læsere klar til forstå biomialfordelige. Herik S. Hase, Sct. Kud Versio 5.0 Opgaver til hæftet ka hetes her. PDF Facit til

Læs mere

Supplerende noter II til MM04

Supplerende noter II til MM04 Supplerede oter II til MM4 N.J. Nielse 1 Uiform koverges af følger af fuktioer Vi starter med følgede defiitio: Defiitio 1.1 Lad S være e vilkårlig mægde og (X, d et metrisk rum. E følge (f af fuktioer

Læs mere

vejer (med fortegn). Det vil vi illustrere visuelt og geometrisk for (2 2)-matricer og (3 3)-matricer i enote 6.

vejer (med fortegn). Det vil vi illustrere visuelt og geometrisk for (2 2)-matricer og (3 3)-matricer i enote 6. enote 5 enote 5 Determiater I dee enote ser vi på kvadratiske matricer. Deres type er altså for 2, se enote 4. Det er e fordel, me ikke absolut ødvedigt, at kede determiatbegrebet for (2 2)-matricer på

Læs mere

STATISTISKE GRUNDBEGREBER

STATISTISKE GRUNDBEGREBER MOGENS ODDERSHEDE LARSEN STATISTISKE GRUNDBEGREBER 18 15 1 9 6 3 0 Histogram for ph 6,9 7,1 7,3 7,5 7,7 7,9 ph 14 udgave 014 FORORD Der er i dee bog søgt at give letlæst og askuelig fremstillig af de statistiske

Læs mere

Matematik A. Studentereksamen. Forberedelsesmateriale. Forsøg med digitale eksamensopgaver med adgang til internettet.

Matematik A. Studentereksamen. Forberedelsesmateriale. Forsøg med digitale eksamensopgaver med adgang til internettet. Matematik A Studetereksame Forsøg med digitale eksamesopgaver med adgag til iterettet Forberedelsesmateriale Vejledede opgave Forår 0 til stx-a-net MATEMATIK Der skal afsættes 6 timer af holdets sædvalige

Læs mere

Modul 14: Goodness-of-fit test og krydstabelanalyse

Modul 14: Goodness-of-fit test og krydstabelanalyse Forskigsehede for Statistik ST01: Elemetær Statistik Bet Jørgese Modul 14: Goodess-of-fit test og krydstabelaalyse 14.1 Idledig....................................... 1 14.2 χ 2 -test i e r c krydstabel.............................

Læs mere

Asymptotisk optimalitet af MLE

Asymptotisk optimalitet af MLE Kapitel 4 Asymptotisk optimalitet af MLE Lad Y 1, Y 2,... være uafhægige, idetisk fordelte variable med værdier i et rum (Y,K). Vi har givet e model (ν θ ) θ Θ for fordelige af Y 1 (og dermed også for

Læs mere

Teoretisk Statistik, 18. november Stikprøveteori: hvor er vi, og hvor skal vi hen? Proportional allokering Optimal allokering

Teoretisk Statistik, 18. november Stikprøveteori: hvor er vi, og hvor skal vi hen? Proportional allokering Optimal allokering Uge 47 I Teoretisk Statistik, 8. oveber 003 Stikprøveteori: hvor er vi, og hvor skal vi he? Proportioal allokerig Optial allokerig Heruder: Saeligig af variaser og ødvedige stikprøvestørrelser for de forskellige

Læs mere

Statistik Lektion 4. Kovarians og korrelation Mere om normalfordelingen Den centrale grænseværdi sætning Stikprøvefordelingen

Statistik Lektion 4. Kovarians og korrelation Mere om normalfordelingen Den centrale grænseværdi sætning Stikprøvefordelingen Sttistik Lektio 4 Kovris og korreltio Mere om ormlfordelige De cetrle græseværdi sætig Stikprøvefordelige Repetitio: Kotiuerte stokstiske vrible f (x) er e sdsylighedstæthedsfuktio, hvis f ( x) 0 for lle

Læs mere

Kapitel 10 KALIBRERING AF STRØMNINGSMODEL

Kapitel 10 KALIBRERING AF STRØMNINGSMODEL Kapitel 0 KALIBRERING AF STRØMNINGSMODEL Torbe Obel Soeborg Hydrologisk afdelig, GEUS Nøglebegreber: Kalibrerigsprotokol, observatiosdata, kalibrerigskriterier, idetificerbarhed, etydighed, parameterestimatio,

Læs mere

IMFUFA TEKST NR TEKSTER fra ROSKILDE UNIVERSITETSCENTER. Jørgen Larsen

IMFUFA TEKST NR TEKSTER fra ROSKILDE UNIVERSITETSCENTER. Jørgen Larsen TEKST NR 435 2004 Basisstatistik 2. udgave Jørge Larse August 2006 TEKSTER fra IMFUFA INSTITUT ROSKILDE UNIVERSITETSCENTER FOR STUDIET AF MATEMATIK OG FYSIK SAMT DERES FUNKTIONER I UNDERVISNING, FORSKNING

Læs mere

og Fermats lille sætning

og Fermats lille sætning Projekter: Kaitel 0. Projekt 0. Modulo-regig, restklassegruer og Fermats lille sætig Projekt 0. Modulo-regig, restklassegruere ( { 0 }, ) og Fermats lille sætig Vi aveder moduloregig og restklasser mage

Læs mere

Anvendt Statistik Lektion 5. Sammenligning af to grupper * Sammenligning af middelværdier * Sammenligning af andele

Anvendt Statistik Lektion 5. Sammenligning af to grupper * Sammenligning af middelværdier * Sammenligning af andele Anvendt Statistik Lektion 5 Sammenligning af to grupper * Sammenligning af middelværdier * Sammenligning af andele Motiverende eksempel Antal minutter brugt på rengøring/madlavning: Rengøring/Madlavning

Læs mere

GENEREL INTRODUKTION.

GENEREL INTRODUKTION. Study Guide til Matematik C. OVERSIGT. Dee study guide ideholder følgede afsit - Geerel itroduktio. - Emeliste. - Eksame. - Bilag. Udervisigsmiisteriets bekedtgørelse for matematik C. GENEREL INTRODUKTION.

Læs mere

Kvantitative Metoder 1 - Forår 2007

Kvantitative Metoder 1 - Forår 2007 Dagens program Estimation: Kapitel 9.1-9.3 Estimation Estimationsfejlen Bias Eksempler Bestemmelse af stikprøvens størrelse Konsistens De nitioner påkonsistens Eksempler på konsistente og middelrette estimatorer

Læs mere

Renteformlen. Erik Vestergaard

Renteformlen. Erik Vestergaard Reteformle Erik Vestergaard 2 Erik Vestergaard www.matematikfysik.dk Erik Vestergaard, 2010. Billeder: Forside: istock.com/ilbusca Side 4: istock.com/adresrimagig Desude ege illustratioer. Erik Vestergaard

Læs mere

Tema. Dagens tema: Indfør centrale statistiske begreber.

Tema. Dagens tema: Indfør centrale statistiske begreber. Tema Dagens tema: Indfør centrale statistiske begreber. Model og modelkontrol Estimation af parametre. Fordeling. Hypotese og test. Teststørrelse. konfidensintervaller Vi tager udgangspunkt i Ex. 3.1 i

Læs mere

Sandsynlighedsregning og statistisk

Sandsynlighedsregning og statistisk Sadsylighedsregig og statistisk J. C. F. Gauss 777 855) Peter Haremoës Niels Brock 2. april 23 Idledig Dette hæfte er lavet som supplemet til 2. udgave af boge Mat B. Der er lagt vægt på at give e bedre

Læs mere

Produkt og marked - matematiske og statistiske metoder

Produkt og marked - matematiske og statistiske metoder Produkt og marked - matematiske og statistiske metoder Rasmus Waagepetersen Institut for Matematiske Fag Aalborg Universitet February 19, 2016 1/26 Kursusindhold: Sandsynlighedsregning og lagerstyring

Læs mere

Gamle eksamensopgaver. Diskret Matematik med Anvendelser (DM72) & Diskrete Strukturer(DM504)

Gamle eksamensopgaver. Diskret Matematik med Anvendelser (DM72) & Diskrete Strukturer(DM504) Gamle eksamesopgaver Diskret Matematik med Avedelser (DM72) & Diskrete Strukturer(DM504) Istitut for Matematik& Datalogi Syddask Uiversitet, Odese Alle sædvalige hjælpemidler(lærebøger, otater etc.), samt

Læs mere

Statistik Lektion 3. Simultan fordelte stokastiske variable Kontinuerte stokastiske variable Normalfordelingen

Statistik Lektion 3. Simultan fordelte stokastiske variable Kontinuerte stokastiske variable Normalfordelingen Statistik Lektion 3 Simultan fordelte stokastiske variable Kontinuerte stokastiske variable Normalfordelingen Repetition En stokastisk variabel er en funktion defineret på S (udfaldsrummet, der antager

Læs mere

Anvendt Statistik Lektion 5. Sammenligning af to grupper * Sammenligning af middelværdier * Sammenligning af andele

Anvendt Statistik Lektion 5. Sammenligning af to grupper * Sammenligning af middelværdier * Sammenligning af andele Anvendt Statistik Lektion 5 Sammenligning af to grupper * Sammenligning af middelværdier * Sammenligning af andele Motiverende eksempel Antal minutter brugt på rengøring/madlavning: Rengøring/Madlavning

Læs mere

Undersøgelse af numeriske modeller

Undersøgelse af numeriske modeller Udersøgelse af umeriske modeller Formål E del af målsætige med dette delprojekt er at give kedskab til de begræsiger, fejl og usikkerheder, som optræder ved modellerig. I de forbidelse er følgede udersøgelse

Læs mere

Kursusindhold: Produkt og marked - matematiske og statistiske metoder. Monte Carlo

Kursusindhold: Produkt og marked - matematiske og statistiske metoder. Monte Carlo Kursusindhold: Produkt og marked - matematiske og statistiske metoder Rasmus Waagepetersen Institut for Matematiske Fag Aalborg Universitet Sandsynlighedsregning og lagerstyring Normalfordelingen og Monte

Læs mere

Om Følger og Rækker. Nyttige Grænseværdier. Nyttige Rækker. Carsten Lunde Petersen. lim. lim = 0. lim (1 + x n n )n = e x. n n n.

Om Følger og Rækker. Nyttige Grænseværdier. Nyttige Rækker. Carsten Lunde Petersen. lim. lim = 0. lim (1 + x n n )n = e x. n n n. IMFUFA Carste Lude Peterse Om Følger og Ræer Nyttige Græseværdier lim = 1 lim! = x = 0! lim lim (1 + x ) = e x! lim = e 1 Nyttige Ræer 1 p < p > 1 1 log p ( + 1) < p > 1 x = = x 1 x for x < 1 og Z, diverget

Læs mere

RESEARCH PAPER. Nr. 2, En model for lagerstørrelsen som determinant for købs- og brugsadfærden for et kortvarigt forbrugsgode.

RESEARCH PAPER. Nr. 2, En model for lagerstørrelsen som determinant for købs- og brugsadfærden for et kortvarigt forbrugsgode. RESEARCH PAPER Nr., 005 E model for lagerstørrelse som determiat for købs- og brugsadfærde for et kortvarigt forbrugsgode af Jørge Kai Olse INSTITUT FOR AFSÆTNINGSØKONOMI COPENHAGEN BUSINESS SCHOOL SOLBJERG

Læs mere

Sandsynlighedsteori 1.2 og 2 Uge 5.

Sandsynlighedsteori 1.2 og 2 Uge 5. Istitut for Matematiske Fag Aarhus Uiversitet De 27. jauar 25. Sadsylighedsteori.2 og 2 Uge 5. Forelæsiger: Geemgage af emere karakteristiske fuktioer og Mometproblemet afsluttes, og vi starter på afsittet

Læs mere

Matematikkens mysterier - på et obligatorisk niveau. 7. Ligninger, polynomier og asymptoter

Matematikkens mysterier - på et obligatorisk niveau. 7. Ligninger, polynomier og asymptoter Matematikkes mysterier - på et obligatorisk iveau af Keeth Hase 7. Ligiger, polyomier og asymptoter Hvad er e asymotote? Og hvorda fides de? 7. Ligiger, polyomier og asymptoter Idhold 7.0 Idledig 7.1 Udsag

Læs mere