Morten Frydenberg 25. april 2006

Størrelse: px
Starte visningen fra side:

Download "Morten Frydenberg 25. april 2006"

Transkript

1 . gang: Introduktion til Logistisk Regression Morten Frydenberg 26 Afdeling for Biostatistik, Århus Universitet MPH. studieår specialmodul 4 Cand. San. uddannelsen. studieår Hvorfor logistisk regression Præsentation af Framingham databasen. Repetition af Odds Ratio beregning i 2x2 tabeller. Repetition af stratificeret (Mantel-Haenszel analyse. Logistic regression med en og to binære forklarende variable. Probability of Developing Coronary Heart Disease in 6 years. Women (Aged 35-7 Systolic Blod Pressure Left Ventricular Hypertrophy Glucose Intolerance Age Serum Cholesterol Points SBP LVH No Yes GLU No Yes 6 No Yes 7 27 Note: No points added for Smoking Age Chol Interaktion/effekt modifikation!! Calculation of Probability Enter Points (in red for 6 Systolici Blood Pressure + Left Ventricular Hypertrophy + 3 Glucose Intolerance + 24 Age/Serum Cholesterol = 33 Total Points TP Prob TP Prob TP Prob FRAMINGHAM HEART STUDY Follow-up undersøgelse påbegyndt i 48. Planlagt som et 2 års studie. Forekomst af cardio-vaskulære sygdomme. Klinisk undersøgelse hvert andet år. 52 personer (inkl. 74 frivillige. Vi/I har 3 ud af de oprindelige 34 variable. OBS, SEX, CHD, AGE, SBP, SBP, DBP, CHOL, FRW, CIG, YRS_CHD, YRS_DTH, DEATH, CAUSE. SEX,2 for mand, 2 for kvinde CHD, : ingen CHD diag. ved de første us. : CHD diag. ved. us (prævalent case 2-: us.-nummer ved første CHD diag. Vi/I har : AGE Alder i år ved første us. Oplysninger fra de første gen-undersøgelser (8 års follow-up for 46 personer. SBP -3 Systolisk blodtryk ved første us. Udeladt: Personer under 45 år ved. us.. Udeladt: Serum kolesterol værdi mangler ved. us.. 5 CIG -6 : Ikke ryger -6: Antal cigaretter pr. dag 6 MPH og Cand San. Logistisk regression

2 Hvad vil vi se på? Analysere den kumulerede incidens af hjertesygdom. Tidsperiode: Opfølgningsperioden efter us.! Risikopopulation: 363 personer uden CHD ved. us. 43 prævalente person udelades. Risikofaktorer/indikatorer: Systolisk blodtryk: over/under 6 mmhg. Rygning: ja/nej. Alder: 45-48, 4-52, og over 56 år. Køn. 7 STATA Syntax: use fram, clear generate chdever=chd> if( chd!=. generate age4=(age>48+(age>52+(age>56 if( age!=. generate sys6=sbp>6 if( sbp!=. generate smoke=cig> if( cig!=. drop if chd== tabodds chdever sex, base(2 w or tabodds chdever sys6, base( w or tabodds chdever smoke if smoke!=., base( w or tabodds chdever age4, base( w or if(cig!=. sikrer at missing cig giver missing i smoke Check altid hvordan dit program reagerer på missing!!! 8 Odds ratio beregning: Syg Rask Total +Exp a b a+b a d OR = -Exp c d c+d b c Total a+c b+c a+b+c+d Syg Rask Mand OR = = 2.3 Kvinde Rask Syg Mand Kvinde 66 4 OR = =.43 = SEX yes ( no ( Total kum.incidens OR ln(or male ( female ( ref.. Total SYS6 yes ( no ( Total kum.incidens OR ln(or >6 ( =<6 ( ref.. Total SMOKE yes ( no ( Total kum.incidens OR ln(or yes ( no ( ref.. Total AGE4 yes ( no ( Total kum.incidens OR ln(or ( ref ( ( ( Total =.43 Et eksempel på beregning i STATA. cs chdever sys6, w or sys6 Exposed Unexposed Total Cases Noncases Total Risk Point estimate [5% Conf. Interval Risk difference Risk ratio Attr. frac. ex Attr. frac. pop Odds ratio (Woolf chi2( = 3.4 Pr>chi2 =. Tilbage til vores problem: Køn, blodtryk og hjertesygdom. Forhøjet risiko for mænd Forhøjet risiko hvis SBP>6 Begge odds ratioer er ukorrigerede! estimeret OR=2.3. estimeret OR=2.48. SYS6 >6 <=6 Total OR SEX male female Total Mænd ikke så ofte har SBP>6. Dermed undervurderes betydningen af SBP>6! Kønnet er en mulig konfounder for SBP>6. 2 MPH og Cand San. Logistisk regression 2

3 STATA syntaks for stratificeret analyse cs chdever sys6, by(sex w or!"#$$"#"%!&!% ##"!'%'( %%!!# *&#%! % #*&#$$'( +,!&'&!##"&!"%%*%&'$ -.,! %#$!!#$""$% $!$&" / (-!(#*''&23-!*%' # /-.,#4 5 -!(##'! 23-!***** Odds ratio mellem SBP>6 og CHD i opfølgningsperioden: For mænd estimeret OR=2.56. For kvinder estimeret OR=3.36. Fælles (korrigeret for køn estimeret OR=2.3. Ukorrigeret estimeret OR=2.48. Det korrigerede noget større. Målet for i dag: At beregne det ukorrigerede estimat At beregne det korrigerede estimat ved hjælp af logistisk regression! 3 4 Analyse af en 2 2 tabel vha. logistik regression. Sammenligning af to grupper vha. odds ratio: SYS6 Total Total p : Risiko (kumuleret incidens p odds odds = eller p = p + odds Bemærk: p odds ( SYS6= odds ( OR = = odds ( SYS6= odds ( odds ( ln ( OR = ln = ln[ odds ( ln[ odds ( odds ( ln[ odds ( = ln[ odds ( + ln ( OR = ln[ odds ( + ln ( OR odds > ln ( odds ubegrænset 5 β β ln[ odds ( SYS6 + β SYS6 6 ln[ odds ( SYS6 + β SYS6 Lad os gøre prøve: β = ln [ odds ( β SYS6=: ln[ odds ( + β = ln [ OR = ln[ odds ( SYS6=: ln [ odds ( + β + β = ln [ odds ( + ln [ OR = ln [ odds ( + ln [ odds ( ln [ odds ( = ln [ odds ( 7 SYS6 Odds Ln(odds OR Ln(OR STATA: eller eller logit chdever sys6 ˆ β =. 662 ˆ β =.6 ^: Estimat for logit chdever sys6,or logistic chdever sys6 Giver ln(odds ratio i output Giver odds ratio i output 8 MPH og Cand San. Logistisk regression 3

4 logit chdever sys6 -, 6,75235 #$* *$&#&'!%$#$****$#'"&$## & ' 8-#$$#!*"&&## $ ****#"!'%$#& $& βˆ βˆ OR = exp( ˆ β ( ( ˆ β ( = ln se se OR P-værdi for hypotesen: β = dvs. OR=. Intet nyt: Det ku vi godt i forvejen! Men med logistik regression kan vi mere!! Sikkerhedsinterval for β logit chdever sys6,or Sikkerhedsinterval for OR -,,,6,75235 #$*!&'&!#%$&&#$#$****#"&!"%%*%&'$ Analyse af en tabel vha. logistisk regression. Køn og forhøjet blodtryk : SEX og SYS6 Mantel-Haenszel analyse kan give: OR for SYS6 korrigeret for SEX (har vi lavet OR for SEX korrigeret for SYS6 (har vi ikke lavet To analyser for at få de to korrigerede estimater. Én logistisk regression vil give to korrigerede estimater! 2 SEX SBP CHD CHD Odds ln(odds OR ln(or Mand > Mand Kvinde > Kvinde Referenceværdi odds(,2, dvs. kvinde med lavt blodtryk odds(, odds(, odds(,2 odds(,2 Ny variabel: MALE = 2 SEX hvis mand og hvis kvinde Logistisk regression med SEX og SYS6 som forklarende variable: ln ( odds ( SYS6, SEX + β SYS6 + β2 ln ( odds ( SYS6, SEX + β SYS6 + β2 + β SYS6 + β ( 2 SEX Hvad er β, β og β? β + β ( ln ( odds (, 2 + β + β ( β 2 + β + β ( 2 + β 2 2 ln ( odds (, + β + β ( 2 + β + β ln ( odds (, 2 + β + β2 ln ( odds (, + β + β 2 β = 2 β = ln ( odds (, 2 2 = ln ( ORSYS6 for KVINDER β = ln ( odds (, = ln ( ORSYS6 for MÆND Effekten af forhøjet blodtryk antages er være uafhængig af køn!! Når den beskrives ved odds ratio! Ingen effektmodifikation! Præcis som den stratificerede analyse, Mantel-Haenszel! 23 2 ln ( odds (, 2 + β + β2 ln ( odds (, + β + β 2 = 2 = ln ( ORSEX for SBP 6 β < 2 = ln ( odds (, ln ( odds (, 2 = ln ( ORSEX for SBP 6 β > Effekten af køn antages er være uafhængig af forhøjet blodtryk!! Når den beskrives ved odds ratio! Ingen effektmodifikation! 2 Præcis som den stratificerede analyse, Mantel-Haenszel! 24 MPH og Cand San. Logistisk regression 4

5 ln ( odds ( SYS6, SEX + β SYS6 + β2 ln ( odds ( SBP 6, kvinde ln ( OR SYS6 ln ( OR SEX Tre ukendte størrelser, der skal findes!? Det klarer statistikprogrammet for os! char sex[omit 2 char sys6[omit xi: logit chdever i.sys6 i.sex xi: logit chdever i.sys6 i.sex, or Kvinder er reference gruppe Lavt blodtryk er reference gruppe xi og i erne betyder at disse variable er kategoriske , #$* #$* SYS6 -,6, #$*8##*'! #%$" #'******''&*$ #%'$#$ 88#"'& $#&'%* $******" %%'% ##$*! 8-!#'*%#!' $! #$ $****!&!##!&# # # ln ( odd s ( SBP 6, kvinde ˆ β = ln ( OR ˆ β 2 = ln ( ORSEX 4 -, #$* #$* ORSYS6 -,,,6, #$*8#! %*"&&*&%""'******!#$"$ % $#*'$ 88#!% "' %& '' $******#"*!' % %# #"!! OR SEX Korrektion for køn vha. logistiske regression : OR SYS6 = 2.3 Den stratificerede (Mantel-Haenszel analysen gav 2.32 En lille og ubetydelig forskel. 26 MPH og Cand San. Logistisk regression 5

25. april Probability of Developing Coronary Heart Disease in 6 years. Women (Aged 35-70) 160 No Yes

25. april Probability of Developing Coronary Heart Disease in 6 years. Women (Aged 35-70) 160 No Yes 25. april 2. gang: Introduktion til Logistisk Regression Morten Frydenberg 22 Institut for Biostatistik, Århus Universitet MPH. studieår specialmodul Cand. San. uddannelsen. studieår Hvorfor logistisk

Læs mere

Morten Frydenberg 26. april 2004

Morten Frydenberg 26. april 2004 Introduktion til Logistisk Regression Morten Frydenberg, Inst. f. Biostatistik RESUME: 2 2. gang: 2002 Institut for Biostatistik, Århus Universitet MPH. studieår Specialmodul 4 Cand. San. uddannelsen.

Læs mere

Morten Frydenberg Biostatistik version dato:

Morten Frydenberg Biostatistik version dato: Caerphilly studiet Design og Data Biostatistik uge 14 mandag Morten Frydenberg, Afdeling for Biostatistik Poisson regression En primær tidsakse og ikke stykkevise konstante rater Cox proportional hazard

Læs mere

Det kunne godt se ud til at ikke-rygere er ældre. Spredningen ser ud til at være nogenlunde ens i de to grupper.

Det kunne godt se ud til at ikke-rygere er ældre. Spredningen ser ud til at være nogenlunde ens i de to grupper. 1. Indlæs data. * HUSK at angive din egen placering af filen; data framing; infile '/home/sro00/mph2016/framing.txt' firstobs=2; input id sex age frw sbp sbp10 dbp chol cig chd yrschd death yrsdth cause;

Læs mere

Logistisk regression

Logistisk regression Logistisk regression Susanne Rosthøj Biostatistisk Afdeling Institut for Folkesundhedsvidenskab Københavns Universitet sr@biostat.ku.dk Kursushjemmeside: www.biostat.ku.dk/~sr/forskningsaar/regression2012/

Læs mere

Morten Frydenberg Biostatistik version dato:

Morten Frydenberg Biostatistik version dato: Tye og Tye 2 fejl Statistisk styrke Biostatistik uge 2 mandag Morten Frydenberg, Afdeling for Biostatistik Styrkeovervejelser i lanlægning af et studie Logistisk regression Præterm fødsel, rygning, alder,

Læs mere

Epidemiologi og Biostatistik Opgaver i Biostatistik Uge 4: 2. marts

Epidemiologi og Biostatistik Opgaver i Biostatistik Uge 4: 2. marts Århus 27. februar 2011 Morten Frydenberg Epidemiologi og Biostatistik Opgaver i Biostatistik Uge 4: 2. marts Epibasic er nu opdateret til version 2.02 (obs. der er ikke ændret ved arket C-risk) Start med

Læs mere

9. Chi-i-anden test, case-control data, logistisk regression.

9. Chi-i-anden test, case-control data, logistisk regression. Biostatistik - Cand.Scient.San. 2. semester Karl Bang Christensen Biostatististisk afdeling, KU kach@biostat.ku.dk, 35327491 9. Chi-i-anden test, case-control data, logistisk regression. http://biostat.ku.dk/~kach/css2014/

Læs mere

MPH Introduktionsmodul: Epidemiologi og Biostatistik 23.09.2003

MPH Introduktionsmodul: Epidemiologi og Biostatistik 23.09.2003 Opgave 1 (mandag) Figuren nedenfor viser tilfælde af mononukleose i en lille population bestående af 20 personer. Start og slut på en sygdoms periode er angivet med. 20 15 person number 10 5 1 July 1970

Læs mere

Logistisk Regression. Repetition Fortolkning af odds Test i logistisk regression

Logistisk Regression. Repetition Fortolkning af odds Test i logistisk regression Logistisk Regression Repetition Fortolkning af odds Test i logistisk regression Logisitks Regression: Repetition Y {0,} binær afhængig variabel X skala forklarende variabel π P( Y X x) Odds(Y X x) π /(-π

Læs mere

Statistik for MPH: 7

Statistik for MPH: 7 Statistik for MPH: 7 3. november 2011 www.biostat.ku.dk/~pka/mph11 Attributable risk, bestemmelse af stikprøvestørrelse (Silva: 333-365, 381-383) Per Kragh Andersen 1 Fra den 6. uges statistikundervisning:

Læs mere

Øvelser i epidemiologi og biostatistik, 12. april 2010 Ebeltoft-projektet: Analyse af alkoholrelaterede data mm. Eksempel på besvarelse

Øvelser i epidemiologi og biostatistik, 12. april 2010 Ebeltoft-projektet: Analyse af alkoholrelaterede data mm. Eksempel på besvarelse Øvelser i epidemiologi og biostatistik, 12. april 21 Ebeltoft-projektet: Analyse af alkoholrelaterede data mm. Eksempel på besvarelse 1. Belys ud fra data ved 5 års follow-up den fordom, at der er flere

Læs mere

Faculty of Health Sciences. Logistisk regression: Kvantitative forklarende variable

Faculty of Health Sciences. Logistisk regression: Kvantitative forklarende variable Faculty of Health Sciences Logistisk regression: Kvantitative forklarende variable Susanne Rosthøj Biostatistisk Afdeling Institut for Folkesundhedsvidenskab Københavns Universitet sr@biostat.ku.dk Sammenhæng

Læs mere

Statistik II 4. Lektion. Logistisk regression

Statistik II 4. Lektion. Logistisk regression Statistik II 4. Lektion Logistisk regression Logistisk regression: Motivation Generelt setup: Dikotom(binær) afhængig variabel Kontinuerte og kategoriske forklarende variable (som i lineær reg.) Eksempel:

Læs mere

Epidemiologi og Biostatistik Opgaver i Biostatistik Uge 10: 13. april

Epidemiologi og Biostatistik Opgaver i Biostatistik Uge 10: 13. april Århus 8. april 2011 Morten Frydenberg Epidemiologi og Biostatistik Opgaver i Biostatistik Uge 10: 13. april Opgave 1 ( gruppe 1: sp 1-4, gruppe 5: sp 5-9 og gruppe 6: 10-14) I denne opgaveser vi på et

Læs mere

Statistik FSV 4. semester 2014 Øvelser Uge 2: 11. februar

Statistik FSV 4. semester 2014 Øvelser Uge 2: 11. februar Århus 6. februar 2014 Morten Frydenberg Statistik FSV 4. semester 2014 Øvelser Uge 2: 11. februar Til disse øvelser har I brug for fishoil1.dta, der indeholder data fra det fiskeolie forsøg vi så på ved

Læs mere

MPH specialmodul Epidemiologi og Biostatistik

MPH specialmodul Epidemiologi og Biostatistik MPH specialmodul Epidemiologi og Biostatistik Kvantitative udfaldsvariable 23. maj 2011 www.biostat.ku.dk/~sr/mphspec11 Susanne Rosthøj (Per Kragh Andersen) 1 Kapitelhenvisninger Andersen & Skovgaard:

Læs mere

Statistik II Lektion 3. Logistisk Regression Kategoriske og Kontinuerte Forklarende Variable

Statistik II Lektion 3. Logistisk Regression Kategoriske og Kontinuerte Forklarende Variable Statistik II Lektion 3 Logistisk Regression Kategoriske og Kontinuerte Forklarende Variable Setup: To binære variable X og Y. Statistisk model: Konsekvens: Logistisk regression: 2 binære var. e e X Y P

Læs mere

Statistik for MPH: oktober Attributable risk, bestemmelse af stikprøvestørrelse (Silva: , )

Statistik for MPH: oktober Attributable risk, bestemmelse af stikprøvestørrelse (Silva: , ) Statistik for MPH: 7 29. oktober 2015 www.biostat.ku.dk/~pka/mph15 Attributable risk, bestemmelse af stikprøvestørrelse (Silva: 333-365, 381-383) Per Kragh Andersen 1 Fra den 6. uges statistikundervisning:

Læs mere

Confounding og stratificeret analyse

Confounding og stratificeret analyse Faculty of Health Sciences Confounding og stratificeret analyse Susanne Rosthøj Biostatistisk Afdeling Institut for Folkesundhedsvidenskab Københavns Universitet sr@biostat.ku.dk Kursets form Seks fredage

Læs mere

Mantel-Haenszel analyser. Stratificerede epidemiologiske analyser

Mantel-Haenszel analyser. Stratificerede epidemiologiske analyser Mantel-Haensel analyser Stratificerede epidemiologiske analyser 1 Den epidemiologiske synsvinkel: 1) Oftest asymmetriske (kausale) sammenhænge (Eksposition Sygdom/død) 2) Risikoen vurderes bedst ved hjælp

Læs mere

Besvarelse af opgavesættet ved Reeksamen forår 2008

Besvarelse af opgavesættet ved Reeksamen forår 2008 Besvarelse af opgavesættet ved Reeksamen forår 2008 10. marts 2008 1. Angiv formål med undersøgelsen. Beskriv kort hvordan cases og kontroller er udvalgt. Vurder om kontrolgruppen i det aktuelle studie

Læs mere

Statikstik II 2. Lektion. Lidt sandsynlighedsregning Lidt mere om signifikanstest Logistisk regression

Statikstik II 2. Lektion. Lidt sandsynlighedsregning Lidt mere om signifikanstest Logistisk regression Statikstik II 2. Lektion Lidt sandsynlighedsregning Lidt mere om signifikanstest Logistisk regression Sandsynlighedsregningsrepetition Antag at Svar kan være Ja og Nej. Sandsynligheden for at Svar Ja skrives

Læs mere

Løsning til øvelsesopgaver dag 4 spg 5-9

Løsning til øvelsesopgaver dag 4 spg 5-9 Løsning til øvelsesopgaver dag 4 spg 5-9 5: Den multiple model Vi tilføjer nu yderligere to variable til vores model : Køn og kolesterol SBP = a + b*age + c*chol + d*mand hvor mand er 1 for mænd, 0 for

Læs mere

Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab. Stratificerede analyser

Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab. Stratificerede analyser Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab Stratificerede analyser Dødsstraf-eksempel Betyder morderens farve noget for risikoen for dødsstraf? 1 Dødsstraf-eksempel: data Variable: Dødsstraf

Læs mere

12. september Epidemiologi og biostatistik. Forelæsning 4 Uge 3, torsdag. Niels Trolle Andersen, Afdelingen for Biostatistik. Regressionsanalyse

12. september Epidemiologi og biostatistik. Forelæsning 4 Uge 3, torsdag. Niels Trolle Andersen, Afdelingen for Biostatistik. Regressionsanalyse . september 5 Epidemiologi og biostatistik. Forelæsning Uge, torsdag. Niels Trolle Andersen, Afdelingen for Biostatistik. Lineær regressionsanalyse - Simpel lineær regression - Multipel lineær regression

Læs mere

2 Epidemiologi og biostatistik. Uge 5, mandag 26. september 2005 Michael Væth, Institut for Biostatistik

2 Epidemiologi og biostatistik. Uge 5, mandag 26. september 2005 Michael Væth, Institut for Biostatistik ... september 1 Epidemiologi og biostatistik. Uge, mandag. september Michael Væth, Institut for Biostatistik. Ikke parametrisk statistiske test : Analyse af overlevelsesdata (ventetidsdata) Censurering

Læs mere

MPH specialmodul i epidemiologi og biostatistik. SAS. Introduktion til SAS. Eksempel: Blodtryk og fedme

MPH specialmodul i epidemiologi og biostatistik. SAS. Introduktion til SAS. Eksempel: Blodtryk og fedme MPH specialmodul i epidemiologi og biostatistik. SAS Introduktion til SAS. Display manager (programmering) Vinduer: program editor (med syntaks-check) log output reproducerbart (program teksten kan gemmes

Læs mere

Statistik kommandoer i Stata opdateret 16/3 2009 Erik Parner

Statistik kommandoer i Stata opdateret 16/3 2009 Erik Parner Statistik kommandoer i Stata opdateret 16/3 2009 Erik Parner Indledning... 1 Hukommelse... 1 Simple beskrivelser... 1 Data manipulation... 2 Estimation af proportioner... 2 Estimation af rater... 2 Estimation

Læs mere

Epidemiologi og biostatistik. Uge 3, torsdag. Erik Parner, Institut for Biostatistik. Regressionsanalyse

Epidemiologi og biostatistik. Uge 3, torsdag. Erik Parner, Institut for Biostatistik. Regressionsanalyse Epidemiologi og biostatistik. Uge, torsdag. Erik Parner, Institut for Biostatistik. Lineær regressionsanalyse - Simpel lineær regression - Multipel lineær regression Regressionsanalyse Regressionsanalyser

Læs mere

MPH specialmodul i epidemiologi og biostatistik. SAS. Introduktion til SAS. Eksempel: Blodtryk og fedme

MPH specialmodul i epidemiologi og biostatistik. SAS. Introduktion til SAS. Eksempel: Blodtryk og fedme MPH specialmodul i epidemiologi og biostatistik. SAS Introduktion til SAS. Display manager (programmering) Vinduer: program editor (med syntaks-check) log output reproducerbart (program teksten kan gemmes

Læs mere

Epidemiologiske associationsmål

Epidemiologiske associationsmål Epidemiologiske associationsmål Mads Kamper-Jørgensen, lektor, maka@sund.ku.dk Afdeling for Social Medicin, Institut for Folkesundhedsvidenskab It og sundhed l 16. april 2015 l Dias nummer 1 Sidste gang

Læs mere

MPH specialmodul i biostatistik og epidemiologi SAS-øvelser vedr. case-control studie af malignt melanom.

MPH specialmodul i biostatistik og epidemiologi SAS-øvelser vedr. case-control studie af malignt melanom. MPH specialmodul i biostatistik og epidemiologi SAS-øvelser vedr. case-control studie af malignt melanom. For at I skal kunne regne på tallene fra undersøgelsen har vi taget en delmængde af variablene

Læs mere

Fejlkilder. Kim Overvad Afdeling for Epidemiologi Institut for Folkesundhed Aarhus Universitet Marts 2011

Fejlkilder. Kim Overvad Afdeling for Epidemiologi Institut for Folkesundhed Aarhus Universitet Marts 2011 Fejlkilder Kim Overvad Afdeling for Epidemiologi Institut for Folkesundhed Aarhus Universitet Marts 2011 Læringsmål Tilfældig variation Selektionsproblemer Informationsproblemer Confounding Effekt modifikation

Læs mere

Epidemiologi og biostatistik. Uge 3, torsdag. Erik Parner, Afdeling for Biostatistik. Eksempel: Systolisk blodtryk

Epidemiologi og biostatistik. Uge 3, torsdag. Erik Parner, Afdeling for Biostatistik. Eksempel: Systolisk blodtryk Eksempel: Systolisk blodtryk Udgangspunkt: Vi ønsker at prædiktere det systoliske blodtryk hos en gruppe af personer. Epidemiologi og biostatistik. Uge, torsdag. Erik Parner, Afdeling for Biostatistik.

Læs mere

Korrelation Pearson korrelationen

Korrelation Pearson korrelationen -9- Eidemiologi og biostatistik. Forelæsning Uge, torsdag. Niels Trolle Andersen, Afdelingen for Biostatistik. Korrelation Kliniske målinger - Kliniske målinger og variationskilder - Estimation af størrelsen

Læs mere

1. februar Lungefunktions data fra tirsdags Gennemsnit l/min

1. februar Lungefunktions data fra tirsdags Gennemsnit l/min Epidemiologi og biostatistik Uge, torsdag 3. februar 005 Morten Frydenberg, Afdeling for Biostatistik. og hoste estimation sikkerhedsintervaller antagelr Normalfordelingen Prædiktion Statistisk test (ud

Læs mere

Præcision og effektivitet (efficiency)?

Præcision og effektivitet (efficiency)? Case-kontrol studier PhD kursus i Epidemiologi Københavns Universitet 18 Sep 2012 Søren Friis Center for Kræftforskning, Kræftens Bekæmpelse Valg af design Problemstilling? Validitet? Præcision og effektivitet

Læs mere

24. februar Analyse af overlevelsesdata (ventetidsdata) Ikke parametrisk statistiske test : Det statistiske modelbegreb Modelselektion

24. februar Analyse af overlevelsesdata (ventetidsdata) Ikke parametrisk statistiske test : Det statistiske modelbegreb Modelselektion . februar 00 Ikke parametrisk statistiske test : Ideen bag Epidemiologi og biostatistik. Uge, mandag. februar 00 Morten Frydenberg, Institut for Biostatistik. To grupper: Mann-Whitney / Wilcoxon testet

Læs mere

Hyppigheds- og associationsmål. Kim Overvad Afdeling for Epidemiologi Institut for Folkesundhed Aarhus Universitet Februar 2011

Hyppigheds- og associationsmål. Kim Overvad Afdeling for Epidemiologi Institut for Folkesundhed Aarhus Universitet Februar 2011 Hyppigheds- og associationsmål Kim Overvad Afdeling for Epidemiologi Institut for Folkesundhed Aarhus Universitet Februar 2011 Læringsmål Incidens Incidens rate Incidens proportion Prævalens proportion

Læs mere

Epidemiologi og Biostatistik Opgaver i Biostatistik Uge 7: 23. marts

Epidemiologi og Biostatistik Opgaver i Biostatistik Uge 7: 23. marts Århus 19. marts 2011 Morten Frydenberg Epidemiologi og Biostatistik Opgaver i Biostatistik Uge 7: 23. marts Epibasic er nu opdateret til version 2.04 med arkene Str any og weighted Alle tabeller og tegninger

Læs mere

MPH specialmodul Epidemiologi og Biostatistik

MPH specialmodul Epidemiologi og Biostatistik MPH specialmodul Epidemiologi og Biostatistik Repetition af variansanalyse Overlevelsesanalyse Bestemmelse af stikprøvestørrelse Matchning 30. maj 2011 www.biostat.ku.dk/~sr/mphspec11 Susanne Rosthøj (Per

Læs mere

Faculty of Health Sciences. Logistisk regression: Interaktion Kvantitative responsvariable

Faculty of Health Sciences. Logistisk regression: Interaktion Kvantitative responsvariable Faculty of Health Sciences Logistisk regression: Interaktion Kvantitative responsvariable Susanne Rosthøj Biostatistisk Afdeling Institut for Folkesundhedsvidenskab Københavns Universitet sr@biostat.ku.dk

Læs mere

Logistisk Regression. Repetition Fortolkning af odds Test i logistisk regression

Logistisk Regression. Repetition Fortolkning af odds Test i logistisk regression Logistisk Regression Repetition Fortolkning af odds Test i logistisk regression Logistisk Regression: Definitioner For en binær (0/) variabel Y antager vi P(Y)p P(Y0)-p Eksempel: Bil til arbejde vs alder

Læs mere

Logistisk Regression - fortsat

Logistisk Regression - fortsat Logistisk Regression - fortsat Likelihood Ratio test Generel hypotese test Modelanalyse Indtil nu har vi set på to slags modeller: 1) Generelle Lineære Modeller Kvantitav afhængig variabel. Kvantitative

Læs mere

Logistisk regression

Logistisk regression Logistisk regression http://biostat.ku.dk/ kach/css2 Thomas A Gerds & Karl B Christensen 1 / 18 Logistisk regression I dag 1 Binær outcome variable død : i live syg : rask gravid : ikke gravid etc 1 prædiktor

Læs mere

Logistisk regression. Basal Statistik for medicinske PhD-studerende November 2008

Logistisk regression. Basal Statistik for medicinske PhD-studerende November 2008 Logistisk regression Basal Statistik for medicinske PhD-studerende November 2008 Bendix Carstensen Steno Diabetes Center, Gentofte & Biostatististisk afdeling, Københavns Universitet bxc@steno.dk www.biostat.ku.dk/~bxc

Læs mere

En teoretisk årsagsmodel: Operationalisering: Vurdering af epidemiologiske undersøgelser. 1. Informationsproblemer Darts et eksempel på målefejl

En teoretisk årsagsmodel: Operationalisering: Vurdering af epidemiologiske undersøgelser. 1. Informationsproblemer Darts et eksempel på målefejl Vurdering af epidemiologiske undersøgelser Jørn Attermann. februar 00 I denne forelæsning vil vi se på fejl, som kan have betydning for fortolkningen af resultater fra epidemiologiske undersøgelser. Traditionelt

Læs mere

Sammenhængsanalyser. Et eksempel: Sammenhæng mellem rygevaner som 45-årig og selvvurderet helbred som 51 blandt mænd fra Københavns amt.

Sammenhængsanalyser. Et eksempel: Sammenhæng mellem rygevaner som 45-årig og selvvurderet helbred som 51 blandt mænd fra Københavns amt. Sammenhængsanalyser Et eksempel: Sammenhæng mellem rygevaner som 45-årig og selvvurderet helbred som 51 blandt mænd fra Københavns amt. rygevaner som 45 årig * helbred som 51 årig Crosstabulation rygevaner

Læs mere

4. september 2003. π B = Lungefunktions data fra tirsdags Gennemsnit l/min

4. september 2003. π B = Lungefunktions data fra tirsdags Gennemsnit l/min Epidemiologi og biostatistik Uge, torsdag 28. august 2003 Morten Frydenberg, Institut for Biostatistik. og hoste estimation sikkerhedsintervaller antagelr Normalfordelingen Prædiktion Statistisk test (udfra

Læs mere

SKRIFTLIG EKSAMEN I BIOSTATISTIK OG EPIDEMIOLOGI Cand.Scient.San, 2. semester 20. februar 2015 (3 timer)

SKRIFTLIG EKSAMEN I BIOSTATISTIK OG EPIDEMIOLOGI Cand.Scient.San, 2. semester 20. februar 2015 (3 timer) D E T S U N D H E D S V I D E N S K A B E L I G E F A K U L T E T K Ø B E N H A V N S U N I V E R S I T E T B l e g d a m s v e j 3 B 2 2 0 0 K ø b e n h a v n N SKRIFTLIG EKSAMEN I BIOSTATISTIK OG EPIDEMIOLOGI

Læs mere

Uge 13 referat hold 4

Uge 13 referat hold 4 Uge 13 referat hold 4 Gruppearbejde 1a: Er variablen kvotient inkluderet på en hensigtsmæssig måde? Der er to problemer med kvotient: 1) Den er trunkeret ved 6.9 og 10.0, løsningen er at indføre dummyer

Læs mere

Anvendt Statistik Lektion 9. Variansanalyse (ANOVA)

Anvendt Statistik Lektion 9. Variansanalyse (ANOVA) Anvendt Statistik Lektion 9 Variansanalyse (ANOVA) 1 Undersøge sammenhæng Undersøge sammenhænge mellem kategoriske variable: χ 2 -test i kontingenstabeller Undersøge sammenhæng mellem kontinuerte variable:

Læs mere

Hvorfor dør de mindst syge?

Hvorfor dør de mindst syge? Hvorfor dør de mindst syge? Torsten Lauritzen Professor, dr.med., Institut for Folkesundhed, Aarhus Universitet Faglig chefrådgiver, Diabetesforeningen Diabetes-udviklingen En ssucces: Faldende risiko

Læs mere

EKG og LVH. RaVL + SV3 > 23 mm for mænd og > 19 mm for kvinder. RV5-6 27 mm og/eller RV5-6 + SV1-2 35 mm

EKG og LVH. RaVL + SV3 > 23 mm for mænd og > 19 mm for kvinder. RV5-6 27 mm og/eller RV5-6 + SV1-2 35 mm EKG og LVH R S avl V3 RaVL + SV3 > 23 mm for mænd og > 19 mm for kvinder RV5-6 27 mm og/eller RV5-6 + SV1-2 35 mm Skema til hjemmeblodtryksregistrering Dato Tidspunkt Måling 1 Måling 2 Måling 3 Morgen

Læs mere

Anvendt Statistik Lektion 9. Variansanalyse (ANOVA)

Anvendt Statistik Lektion 9. Variansanalyse (ANOVA) Anvendt Statistik Lektion 9 Variansanalyse (ANOVA) 1 Undersøge sammenhæng Undersøge sammenhænge mellem kategoriske variable: χ 2 -test i kontingenstabeller Undersøge sammenhæng mellem kontinuerte variable:

Læs mere

Lægevidenskabelig Embedseksamen, 6. semester Forår 2009 Epidemiologi og Biostatistik Rettevejledning

Lægevidenskabelig Embedseksamen, 6. semester Forår 2009 Epidemiologi og Biostatistik Rettevejledning Lægevidenskabelig Embedseksamen, 6. semester Forår 2009 Epidemiologi og Biostatistik Rettevejledning Opgave 1. Angiv studiets formål, design og hvilke associationsmål, der bruges. Beskriv hovedresultaterne

Læs mere

Anvendt Statistik Lektion 5. Sammenligning af to grupper * Sammenligning af middelværdier * Sammenligning af andele

Anvendt Statistik Lektion 5. Sammenligning af to grupper * Sammenligning af middelværdier * Sammenligning af andele Anvendt Statistik Lektion 5 Sammenligning af to grupper * Sammenligning af middelværdier * Sammenligning af andele Motiverende eksempel Antal minutter brugt på rengøring/madlavning: Rengøring/Madlavning

Læs mere

Effektmålsmodifikation

Effektmålsmodifikation Effektmålsmodifikation Mads Kamper-Jørgensen, lektor, maka@sund.ku.dk Afdeling for Social Medicin, Institut for Folkesundhedsvidenskab It og sundhed l 21. april 2015 l Dias nummer 1 Sidste gang Vi snakkede

Læs mere

Regneregler for middelværdier M(X+Y) = M X +M Y. Spredning varians og standardafvigelse. 1 n VAR(X) Y = a + bx VAR(Y) = VAR(a+bX) = b²var(x)

Regneregler for middelværdier M(X+Y) = M X +M Y. Spredning varians og standardafvigelse. 1 n VAR(X) Y = a + bx VAR(Y) = VAR(a+bX) = b²var(x) Formelsamlingen 1 Regneregler for middelværdier M(a + bx) a + bm X M(X+Y) M X +M Y Spredning varians og standardafvigelse VAR(X) 1 n n i1 ( X i - M x ) 2 Y a + bx VAR(Y) VAR(a+bX) b²var(x) 2 Kovariansen

Læs mere

Epidemiologiske associationsmål

Epidemiologiske associationsmål Epidemiologiske associationsmål Mads Kamper-Jørgensen, lektor, maka@sund.ku.dk Afdeling for Social Medicin, Institut for Folkesundhedsvidenskab It og sundhed l 21. april 2016 l Dias nummer 1 Sidste gang

Læs mere

Region Hovedstaden. Forskningscenter for Forebyggelse og Sundhed. Salt og Sundhed. Ulla Toft Forskningscenter for Forebyggelse og Sundhed

Region Hovedstaden. Forskningscenter for Forebyggelse og Sundhed. Salt og Sundhed. Ulla Toft Forskningscenter for Forebyggelse og Sundhed Salt og Sundhed Ulla Toft 1 Salt Salt består af grundstofferne natrium og klor (NaCL). Salt er livsnødvendigt opretholder kroppens væskebalance Men for meget salt er livsfarligt Kroppen har brug for ca.

Læs mere

23. februar Epidemiologi og biostatistik. Uge 5, mandag 27. februar 2006 Michael Væth, Institut for Biostatistik.

23. februar Epidemiologi og biostatistik. Uge 5, mandag 27. februar 2006 Michael Væth, Institut for Biostatistik. ... februar 1 Eidemiologi og biostatistik. Uge, mandag. februar Michael Væth, Institut for Biostatistik. Ikke arametrisk statistiske test : Analyse af overlevelsesdata (ventetidsdata) Censurering (højre

Læs mere

Faculty of Health Sciences. Miscellaneous: Styrkeberegninger Overlevelsesanalyse Analyse af matchede studier

Faculty of Health Sciences. Miscellaneous: Styrkeberegninger Overlevelsesanalyse Analyse af matchede studier Faculty of Health Sciences Miscellaneous: Styrkeberegninger Overlevelsesanalyse Analyse af matchede studier Forsøgsplanlægning Sammenligning af to grupper : Hvor mange personer skal vi bruge? Det kommer

Læs mere

Løsning til opgave i logistisk regression

Løsning til opgave i logistisk regression Løsning til øvelser i logistisk regression, november 2008 1 Løsning til opgave i logistisk regression 1. Først indlæses data, og vi kan lige sørge for at danne en dummy-variable for cml, som indikator

Læs mere

Anvendt Statistik Lektion 5. Sammenligning af to grupper * Sammenligning af middelværdier * Sammenligning af andele

Anvendt Statistik Lektion 5. Sammenligning af to grupper * Sammenligning af middelværdier * Sammenligning af andele Anvendt Statistik Lektion 5 Sammenligning af to grupper * Sammenligning af middelværdier * Sammenligning af andele Motiverende eksempel Antal minutter brugt på rengøring/madlavning: Rengøring/Madlavning

Læs mere

3 typer. Case-kohorte. Nested case-kontrol. Case-non case (klassisk case-kontrol us.)

3 typer. Case-kohorte. Nested case-kontrol. Case-non case (klassisk case-kontrol us.) EPIDEMIOLOGI CASE-KONTROL STUDIER September 2011 Søren Friis Institut for Epidemiologisk Kræftforskning Kræftens Bekæmpelse Case kontrol studie 3 typer Case-kohorte Nested case-kontrol Case-non case (klassisk

Læs mere

Basal Statistik Logistisk Regression. Dagens Tekst E Sædvanlig Linear Regression (Repetition) Basal Statistik - Logistisk regression 1

Basal Statistik Logistisk Regression. Dagens Tekst E Sædvanlig Linear Regression (Repetition) Basal Statistik - Logistisk regression 1 Basal Statistik Logistisk Regression Judith L. Jacobsen, PhD. Lene Theil Skovgaard http://staff.pubhealth.ku.dk/~lts/basal13_ jlj@statcon.dk Dagens Tekst Logistisk regression Binære data Logit transformation

Læs mere

Eks. 1: Kontinuert variabel som i princippet kan måles med uendelig præcision. tid, vægt,

Eks. 1: Kontinuert variabel som i princippet kan måles med uendelig præcision. tid, vægt, Statistik noter Indhold Datatyper... 2 Middelværdi og standardafvigelse... 2 Normalfordelingen og en stikprøve... 2 prædiktionsinteval... 3 Beregne andel mellem 2 værdier, eller over og unden en værdi

Læs mere

Postoperative komplikationer

Postoperative komplikationer Løsninger til øvelser i kategoriske data, oktober 2008 1 Postoperative komplikationer Udgangspunktet for vurdering af den ny metode må være en nulhypotese om at der er samme komplikationshyppighed, 20%.

Læs mere

En teoretisk årsagsmodel: Operationalisering: Vurdering af epidemiologiske undersøgelser. 1. Informationsproblemer Eksempler på målefejl

En teoretisk årsagsmodel: Operationalisering: Vurdering af epidemiologiske undersøgelser. 1. Informationsproblemer Eksempler på målefejl Vurdering af epidemiologiske undersøgelser Jørn Attermann 6. februar 2006 I denne forelæsning vil vi se på fejl, som kan have betydning for fortolkningen af resultater fra epidemiologiske undersøgelser.

Læs mere

Resultater vedrørende risikofaktorer for hjertekarsygdom og dødelighed i relation til social ulighed - 15 års opfølgning i Sundhedsprojekt Ebeltoft

Resultater vedrørende risikofaktorer for hjertekarsygdom og dødelighed i relation til social ulighed - 15 års opfølgning i Sundhedsprojekt Ebeltoft Resultater vedrørende risikofaktorer for hjertekarsygdom og dødelighed i relation til social ulighed - 15 års opfølgning i Sundhedsprojekt Ebeltoft Fordeling af risikofaktorer i data fra 15-års-opfølgningen

Læs mere

Effekt af elektronisk stabilitetskontrol på personbilers eneuheld

Effekt af elektronisk stabilitetskontrol på personbilers eneuheld Effekt af elektronisk stabilitetskontrol på personbilers eneuheld Tove Hels, ths@transport.dtu.dk Allan Lyckegaard, DTU Transport Inger Marie Bernhoft, DTU Transport Data og formål Vi vil estimere risikoen

Læs mere

Ved undervisningen i epidemiologi/statistik den 8. og 10. november 2011 vil vi lægge hovedvægten på en fælles diskussion af følgende fire artikler:

Ved undervisningen i epidemiologi/statistik den 8. og 10. november 2011 vil vi lægge hovedvægten på en fælles diskussion af følgende fire artikler: Kære MPH-studerende Ved undervisningen i epidemiologi/statistik den 8. og 10. november 2011 vil vi lægge hovedvægten på en fælles diskussion af følgende fire artikler: 1. E.A. Mitchell et al. Ethnic differences

Læs mere

Simpel og multipel logistisk regression

Simpel og multipel logistisk regression Faculty of Health Sciences Logistisk regression Simpel og multipel logistisk regression 16. Maj 2012 Analyse af en binær responsvariabel. syg/rask, død/levende, ja/nej... Ud fra en eller flere forklarende

Læs mere

Man indlæser en såkaldt frequency-table i SAS ved følgende kommandoer:

Man indlæser en såkaldt frequency-table i SAS ved følgende kommandoer: 1 IHD-Lexis 1.1 Spørgsmål 1 Man indlæser en såkaldt frequency-table i SAS ved følgende kommandoer: data ihdfreq; input eksp alder pyrs cases; lpyrs=log(pyrs); cards; 0 2 346.87 2 0 1 979.34 12 0 0 699.14

Læs mere

Statistik og skalavalidering. Opgave 1

Statistik og skalavalidering. Opgave 1 Statistik og skalavalidering Opgave 1 Opgavens formål: Denne opgave har, ligesom det vil være tilfældet for de fleste andre øvelsesopgaver på dette kursus, flere forskellige formål. For det første et praktisk/teknisk

Læs mere

applies equally to HRT and tibolone this should be made clear by replacing HRT with HRT or tibolone in the tibolone SmPC.

applies equally to HRT and tibolone this should be made clear by replacing HRT with HRT or tibolone in the tibolone SmPC. Annex I English wording to be implemented SmPC The texts of the 3 rd revision of the Core SPC for HRT products, as published on the CMD(h) website, should be included in the SmPC. Where a statement in

Læs mere

Intern validitet: Fejlkilder og tolkningsproblemer i epidemiologiske undersøgelser

Intern validitet: Fejlkilder og tolkningsproblemer i epidemiologiske undersøgelser Intern validitet: Fejlkilder og tolkningsproblemer i epidemiologiske undersøgelser Jørn Attermann 23. september 2009 Vurdering af den interne validitet af en epidemiologisk undersøgelse: Informationsproblemer

Læs mere

Epidemiologi og Biostatistik

Epidemiologi og Biostatistik Kapitel 1, Kliniske målinger Epidemiologi og Biostatistik Introduktion til skilder (varianskomponenter) måleusikkerhed sammenligning af målemetoder Mogens Erlandsen, Institut for Biostatistik Uge, torsdag

Læs mere

Kursus i Epidemiologi og Biostatistik. Epidemiologiske mål. Studiedesign. Svend Juul

Kursus i Epidemiologi og Biostatistik. Epidemiologiske mål. Studiedesign. Svend Juul Kursus i Epidemiologi og Biostatistik Epidemiologiske mål Studiedesign Svend Juul 1 Pludselig uventet spædbarnsdød (vuggedød, Sudden Infant Death Syndrome, SIDS) Uventet dødsfald hos et rask spædbarn (8

Læs mere

Statistikøvelse Kandidatstudiet i Folkesundhedsvidenskab 28. September 2004

Statistikøvelse Kandidatstudiet i Folkesundhedsvidenskab 28. September 2004 Statistikøvelse Kandidatstudiet i Folkesundhedsvidenskab 28. September 2004 Formål med Øvelsen: Formålet med øvelsen er at analysere om risikoen for død er forbundet med to forskellige vacciner BCG (mod

Læs mere

2 Logaritme- og eksponentialfunktion 6

2 Logaritme- og eksponentialfunktion 6 Indhold 1 Kontingenstabeller 2 1.1 Krydstabeller....................................... 2 1.2 Forventede under nulhypotesen............................. 4 1.3 Ki-kvadrat test......................................

Læs mere

Studiedesign. Rikke Guldberg Ulrik Schiøler Kesmodel Øjvind Lidegaard

Studiedesign. Rikke Guldberg Ulrik Schiøler Kesmodel Øjvind Lidegaard Studiedesign Rikke Guldberg Ulrik Schiøler Kesmodel Øjvind Lidegaard Studiedesign Økologiske studier Tværsnitsstudier Case-kontrolstudier Kohortestudier Randomiserede studier Hvorfor er det vigtigt at

Læs mere

Logistisk regression

Logistisk regression Logistisk regression Test af antagelsen om lineære effekter Modelkonstruktion og modelsøgning Hvilke variable og hvilke interaktioner skal inkluderes i regressionsmodellerne? 1 Logistiske regressionsmodeller

Læs mere

Krydstabeller Forventede under nulhypotesen Ki-kvadrat test Residualanalyse Eksakt test

Krydstabeller Forventede under nulhypotesen Ki-kvadrat test Residualanalyse Eksakt test 1 Kontingenstabeller Krydstabeller Forventede under nulhypotesen Ki-kvadrat test Residualanalyse Eksakt test 2 Logaritme- og eksponentialfunktion 3 Logistisk regression Sammenligning af odds for 2 grupper

Læs mere

Resumé: En statistisk analyse resulterer ofte i : Et estimat θˆmed en tilhørende se

Resumé: En statistisk analyse resulterer ofte i : Et estimat θˆmed en tilhørende se Epidemiologi og biostatistik. Uge, torsdag 5. februar 00 Morten Frydenberg, Institut for Biostatistik. Type og type fejl Statistisk styrke Nogle speciale metoder: Normalfordelte data : t-test eksakte sikkerhedsintervaller

Læs mere

Multipel Lineær Regression

Multipel Lineær Regression Multipel Lineær Regression Trin i opbygningen af en statistisk model Repetition af MLR fra sidst Modelkontrol Prædiktion Kategoriske forklarende variable og MLR Opbygning af statistisk model Specificer

Læs mere

Analyse af binære responsvariable

Analyse af binære responsvariable Analyse af binære responsvariable Susanne Rosthøj Biostatistisk Afdeling Institut for Folkesundhedsvidenskab Københavns Universitet 23. november 2012 Har mænd lettere ved at komme ind på Berkeley? UC Berkeley

Læs mere

Statikstik II 2. Lektion. Lidt sandsynlighedsregning Lidt mere om signifikanstest Logistisk regression

Statikstik II 2. Lektion. Lidt sandsynlighedsregning Lidt mere om signifikanstest Logistisk regression Statikstik II 2. Lktion Lidt sandsynlighdsrgning Lidt mr om signifikanstst Logistisk rgrssion Lidt sandsynlighdsrgning Lad A vær n hændls (t llr flr mulig udfald af t ksprimnt ) Fx A Dt rgnr i morgn P(A)

Læs mere

Module 4: Ensidig variansanalyse

Module 4: Ensidig variansanalyse Module 4: Ensidig variansanalyse 4.1 Analyse af én stikprøve................. 1 4.1.1 Estimation.................... 3 4.1.2 Modelkontrol................... 4 4.1.3 Hypotesetest................... 6 4.2

Læs mere

Workshop 6 Sundhedsprofilen metode og muligheder. Anne Helms Andreasen, Forskningscenter for Forebyggelse og Sundhed

Workshop 6 Sundhedsprofilen metode og muligheder. Anne Helms Andreasen, Forskningscenter for Forebyggelse og Sundhed Workshop 6 Sundhedsprofilen metode og muligheder Anne Helms Andreasen, Forskningscenter for Forebyggelse og Sundhed Metode og muligheder Design Beskrivelse af deltagere og ikke-deltagere Vægtning for design

Læs mere

Statistik II 1. Lektion. Analyse af kontingenstabeller

Statistik II 1. Lektion. Analyse af kontingenstabeller Statistik II 1. Lektion Analyse af kontingenstabeller Kursusbeskrivelse Omfang 5 kursusgange (forelæsning + opgaveregning) 5 kursusgange (mini-projekt) Emner Analyse af kontingenstabeller Logistisk regression

Læs mere

Uge 43 I Teoretisk Statistik, 21. oktober Forudsigelser

Uge 43 I Teoretisk Statistik, 21. oktober Forudsigelser Uge 43 I Teoretisk Statistik,. oktober 3 Simpel lineær regressionsanalyse Forudsigelser Fortolkning af regressionsmodellen Ekstreme observationer Transformationer Sammenligning af to regressionslinier

Læs mere

Statistik FSV 4. semester 2014 Holdundervisning Uge 1: 4. februar Introduktion til Stata

Statistik FSV 4. semester 2014 Holdundervisning Uge 1: 4. februar Introduktion til Stata Århus 27. januar 2014 Morten Frydenberg Statistik FSV 4. semester 2014 Holdundervisning Uge 1: 4. februar Introduktion til Stata Hvad er Stata? Stata er et program, der kan lave statistiske analyser af

Læs mere

Introduktion til overlevelsesanalyse

Introduktion til overlevelsesanalyse Faculty of Health Sciences Introduktion til overlevelsesanalyse Kaplan-Meier estimatoren Susanne Rosthøj Biostatistisk Afdeling Institut for Folkesundhedsvidenskab Københavns Universitet sr@biostat.ku.dk

Læs mere

Økonometri 1. Oversigt. Mere om dataproblemer Gentagne tværsnit og panel data I

Økonometri 1. Oversigt. Mere om dataproblemer Gentagne tværsnit og panel data I Oversigt Økonometri 1 Mere om dataproblemer Gentagne tværsnit og panel data I Info om prøveeksamen Mere om proxyvariabler og målefejl fra sidste gang. Selektion og dataproblemer Intro til nyt emne: Observationer

Læs mere

Resultater. Formål. Results. Results. Må ikke indeholde. At fåf. kendskab til rapportering af resultater. beskrivelse

Resultater. Formål. Results. Results. Må ikke indeholde. At fåf. kendskab til rapportering af resultater. beskrivelse Formål Resultater kendskab til rapportering af resultater Andreas H. Lundh Infektionsmedicinsk Afdeling, Hvidovre Hospital Anders W. JørgensenJ Øre-næse-halsafdeling, Århus Universitetshospital Mål At

Læs mere

Epidemiologi og Biostatistik

Epidemiologi og Biostatistik Epidemiologi og Biostatistik Kliniske målinger (Kapitel. +.1 + 11.-11 + 1.1-) Introduktion til skilder (varianskomponenter) måleusikkerhed sammenligning af målemetoder Mogens Erlandsen, Institut for Biostatistik

Læs mere