VIDEREGÅENDE STATISTIK

Størrelse: px
Starte visningen fra side:

Download "VIDEREGÅENDE STATISTIK"

Transkript

1 MOGENS ODDERSHEDE LARSEN VIDEREGÅENDE STATISTIK herunder kvalitetskontrol Udgave 10a 015

2 FORORD Denne lærebog kan læses på baggrund af en statistisk viden svarende til lærebogen M. Oddershede Larsen : Statistiske grundbegreber. Læsning: Bogen er bygget op således, at de væsentligste begreber søges forklaret anskueligt og ved hjælp af et stort antal eksempler. I slutningen af nogle af kapitlerne er givet en oversigt over centrale formler eller fremgangsmåder. I et appendix sidst i bogen er givet en mere dybtgående statistisk forklaring på formlerne. Efter hvert kapitel er der nogle opgaver og en facitliste til opgaverne findes bagerst i bogen. Hypotesetest for 1 variabel er en repetition De tre hovedemner Faktorer på eller flere niveauer : kapitel 3, 6 og 7 Regressionsanalyse kapitel 8 og Kontrolteori : kapitel 4 og 5 kan læses stort set uafhængigt af hinanden. Kan man af tidsmæssige grunde ikke nå alt, så kan man overspringe en eller flere af delemner som Screeningsforsøg: kapitel 9, Multipel regression: afsnit 8.7 og 8.8 Statistisk godkendelseskontrol:kapitel 5. Regnemidler I eksemplerne er beregningerne er i videst mulig omfang foretaget ved anvendelse af statistikprogrammet SAS.JMP. Ønskes i stedet at anvende TI-Nspire, kan man på hjemmesiden under statistik 3" finde bogen Videregående statistik, version 10b, hvor præces samme pensum er beregnet ved anvendelse af PC-programmet TI-Nspire. Man kan også på samme adresse finde bøger hvor der er anvendt statistikprogrammet STATGRAPHICS og regnearket EXCEL. Ønskes bøger indenfor grundlæggende statistik findes de også på ovenstående adresse under statistik ". 14. august 015 Mogens Oddershede Larsen. -ii-

3 INDHOLD Indhold 1 REPETITION AF HYPOTESETEST FOR 1 VARIABEL 1.1 Indledning Normalfordelt variabel Binomialfordelt variabel... 4 Opgaver... 5 PLANLÆGNING AF FORSØG.1 Indledning Nomenklatur Krav til statistisk gyldigt forsøg FAKTOR PÅ NIVEAUER 3.1 Normalfordelte variable Test af differens mellem middelværdier Parvise observationer (blokforsøg) Binomialfordelte variable Poissonfordelte variable Fordeling ukendt (rangtest) Oversigt over centrale formler i kapitel Test og konfidensintervaller af differens mellem middelværdier for normalfordelte variable Test af differens mellem varians for normalfordelte variable Test og konfidensintervaller af p 1 - p for binomialfordelte variable Test og konfidensintervaller af for Poissonfordelte variable Opgaver STATISTISK PROCESKONTROL 4.1 Indledning Proces i statistisk kontrol Opbygning og alarmkriterier for kontrolkort Kontrolkortanalyse Procesvariablen er normalfordelt Stikprøvestørrelse større end Stikprøvestørrelse n = Tolerancegrænser og kapabilitet Procesvariablen X er diskret iii-

4 Indhold X er binomialfordelt X er Poissonfordelt Opgaver STATISTISK GODKENDELSESKONTROL 5.1 Indledning Enkelt stikprøveplan Rektificerende kontrol Dobbelt stikprøveplan Opgaver FAKTOR PÅ MERE END NIVEAUER 6.1 Indledning Ensidet variansanalyse (normalfordelte variable) Indledning Forklaring af metoder og formler Beregning af ensidet variansanalyse Fuldstændigt randomiseret blokforsøg Binomialfordelte variable Poissonfordelte variable Oversigt over centrale formler i kapitel Oversigt over fremgangsmåde ved ensidet variansanalyse Test af parametre p 1, p,..., p k for binomialfordelte variable Test af parametre 1,,..., k for Poissonfordelte variable Opgaver FAKTORER PÅ ELLER FLERE NIVEAUER. TOSIDET VARIANSANALYSE 7.1 Indledning Planlægning af forsøg Een faktor ad gangen Fuldstændig faktorstruktur Formler og metode Beregning af tosidet variansanalyse Fuldstændigt randomiseret blokforsøg To binomialfordelte eller Poissonfordelte faktorer i et fuldstændigt faktorforsøg Oversigt over fremgangsmåde ved tosidet variansanalyse iv-

5 Indhold Opgaver ENKELT REGRESSIONSANALYSE 8.1 Indledning Bestemmelse af regressionsligning Vurdering af om regressionsligning beskriver data godt Test og konfidensintervaller Transformation af data Enkelt regressionsanalyse med flere y - observationer for hver x - værdi Multipel regressionsanalyse Indledning Analyse med én y - observation for hver x - værdi Polynomial regressionsanalyse Indledning Beregning af polynomial regressionsanalyse Oversigt over fremgangsmåde ved regressionsanalyse Opgaver FLERE END TO FAKTORER, SCREENINGSFORSØG 9.1 Indledning Nomenklatur Definitionsrelationer og aliasrelationer Planlægning af et partielt k faktorforsøg Beregning af et partielt k faktorforsøg Konfundering af blokke Sekventiel forsøgsstrategi Oversigt over fremgangsmåde ved partielt k faktorforsøg Opgaver RANGTEST (FORDELING UKENDT) 10.1 Indledning Wilcoxons rangtest for 1 stikprøve Wilcoxons rangtest for uafhængig stikprøver Kruskal Wallis test Opgaver APPENDIX -v-

6 Indhold 4.1 Begrundelse for grænserne for kontrolkort Formler til beregning af ensidet variansanalyse Formler til beregning af tosidet variansanalyse Transformation af binomial-og Poissonfordelte variable til tosidet variansanalyse Formler til beregning af enkelt regressionsanalyse uden gentagelser Formler til beregning af enkelt regressionsanalyse med lige mange gentagelser Transformation til lineær model Formler til beregning af multipel regressionsanalyse Kruskal-Wallis rangtest for to eller flere variable FACITLISTE STIKORD vi-

7 1. Normalfordelt variabel 1 REPETITION AF HYPOTESETEST FOR 1 VARIABEL 1.1. INDLEDNING De grundlæggende begreber vedrørende hypotesetest, konfidensintervaller og dimensionering af forsøg blev i Statistiske Grundbegreber grundigt beskrevet når vi havde én stikprøve. Beregningerne blev der udført ved anvendelse af pc-programmet TI-Nspire og regnearket Excel. Vi vil i dette afsnit vise hvorledes beregningerne også kan udføres med statistikprogrammet SAS- JMP, samt vise, hvorledes man ved hjælp af SAS.JMP grafisk kan undersøge om data virkelig er normalfordelt. 1.. NORMALFORDELT VARIABEL Eksempel 1.1 Hypotesetest. Normalfordelt variabel. En fabrik der fremstiller plastikprodukter ønsker at evaluere hårheden af rektangulære støbte plastik blokke som anvendes i møbelfabrikationen. Der udtages tilfældigt 50 blokke, og deres hårhed måles (i Brinell enheder). Resultaterne var følgende a) Undersøg om tallene er rimeligt normalfordelt ved at tegne et histogram, et boxplot og et normalfordelingsplot. Angiv endvidere gennemsnit og spredning. b) Hårheden bør være over 60 (brinell enheder). Test på et signifikansniveau på = 5% om dette er tilfældet. c) Forudsat hårheden er signifikant over 60 brinell, skal angives et estimat for hårheden, samt et 95% konfidensinterval for denne. Løsning: a) File, New, DATA Tables, dobbeltklik på øverste felt i første søjle og skriv holdbarhed, indtast data Histogram: På værktøjslinien vælg Analyze Distribution I den fremkomne menu dobbeltklikkes på holdbarhed (under Selected Columns ) Der fremkommer et histogram, et boxplot og en række statistiske oplysninger. For at kunne sammenligne med en normalfordeling tegnes en normalfordelingskurve: Placer cursor på rød pil ved holdbarhed tryk på højre musetast og vælg Continuous Fit normal Der tegnes nu en normalfordelingskurve med samme middelværdi og spredning som fra data. Endvidere tegnes et normal kvartil plot Cursor placeres på holdbarhed og man trykker på højre musetast og vælger Normal Quantile Plot Der er nu bl.a. fremkommet følgende figur og tabel. ok 1

8 1. Repetition af centrale begreber Distributions holdbarhed 350 -,33-1,64-1,8-0, 67 0,0 0,67 1, 81,64, , 0 0,1 0, 0,5 0,8 0,9 0,98 Norm al Quantile Plot Normal(66,18,5,0931) Quantiles 100,0 % maximum 334,90 99,5% 334,90 97,5% 38,93 90,0% 300,99 75,0% quartile 79,73 50,0% median 67,60 5,0% quartile 51,75 10,0% 33,0,5% 01,41 0,5% 194,40 0,0% minimum 194,40 Moments Mean 66,18 Std Dev 5,09313 Std Err Mean 3, Upper 95% Mean 73,34939 Lower 95% Mean 59,08661 N 50 Forklaring af figur og udskrift Histogram og normalfordelingskurven (figur længst til venstre) passer godt sammen, så det viser, at data er rimelig normalfordelt. Boxplot: Den næste figur er et såkaldt boxplot, hvor den midterste streg angiver medianen Boxplot: Den næste figur er et såkaldt boxplot, hvor den midterste streg angiver medianen og kassens grænser angiver henholdsvis 1. og 3. kvartil. 1. kvartil 5.75 er tallet midt mellem tal nr 1 og tal nr 13, osv. Da boxplottet er nogenlunde symmetrisk om medianen, så kan man igen antage at data er rimelig normalfordelt. De isolerede prikker yderst viser, at der er et par værdier, som afviger kraftigt fra de øvrige, og muligvis er fejlmålinger (kaldes outliers).

9 1. Normalfordelt variabel Rhomben inde i firkanten angiver et 95% konfidensinterval for middelværdien. Man ser, at den ligger lidt skævt i forhold til boxplottet, men dog ikke så meget, at det spiller nogen rolle, da median =67.6 er ca. = mean (gennemsnit) = 66.7 Normal Kvartil-plot. Her har man ud af x - aksen sørget for at skalaen er sådan, at punkterne burde ligge på den røde rette linie, hvis de fuldstændigt eksakt var normalfordelt. Den røde linie går gennem (0, mean) og har hældning = spredningen. De stiplede linier angiver 95% konfidensinterval for normalfordelingen. Som det ses, ligger punkterne indenfor konfidensintervallet og ligger tæt på linien for de midterste 75% af tallenene. De yderste punkter kan man ikke forvente ligger på linien Man må derfor igen antage, at data er tilnærmelsesvis normalfordelt. Det ses af udskriften, at gennemsnittet x = 66. og et estimat for spredningen er s = 5.09 b) X = holdbarheden af plastblokke X antages normalfordelt med ukendt middelværdi og. H 0 : =60 H: >60 Da spredningen ikke er kendt eksakt anvendes en t-test. Klik på rød pil ved "holdbarhed" og vælg "Test Mean". I den fremkomne menu skriv 60 ok Test Mean=value Hypothesized Value 60 Actual Estimate 66,18 DF 49 Std Dev 5,0931 t Test Test Statistic 1,75 Prob > t 0,0860 Prob > t 0,0430* Prob < t 0,9570 P- værdien = sandsynligheden for at begå en "type 1 fejl", dvs. påstå at 0 =60 selv om det ikke er tilfældet. I Test Statistic er Prob > *t* P-værdi for den tosidede test H: μ 60 Prob > t er P-værdi for den ensidede test H : μ > 60, og Prob < t svarer til H : μ < 60 Da P-værdi = 4.30 % < 5%, forkastes H 0 (svagt). Konklusion: Vi har bevist, at holdbarheden i middel er over 60 brinell. 3

10 1. Repetition af centrale begreber 1.3. BINOMIALFORDELT VARIABEL Eksempel 1.. Binomialtest En fabrikant af chip til computere reklamerer med, at højst % af en bestemt type chip, som fabrikken sender ud på markedet er defekte. Et stort computerfirma, vil købe et meget stort parti af disse chip, hvis påstanden er rigtigt. For at teste påstanden købes 1000 af dem. Det viser sig, at 33 ud af de 1000 er defekte. a) Kan fabrikantens påstand på denne baggrund forkastes på signifikansniveau 5%? b) Forudsat påstanden forkastes, skal angives et estimat for % defekte, samt et 95% konfidensinterval for denne. Løsning: X = antal defekte chips af 1000 X er binomialfordelt b(1000, p). Nulhypotese: H: p 00. Alternativ hypotese Hp : 00. a) Pværdi P( X 33) 1 P( X 3) Kald en søjle for p, og indtast et tilfældigt tal i første række. Placer cursor i p's hoved højre musetast Formula skriv 1-(- vælges fra jmp tastatur) vælg Discrete Probability Binomial Distribution Udfyld pladserne p=0,0, n=1000, k = 33 Apply P-værdi = Da P-værdi < 0.05 forkastes H 0, dvs. fabrikantens påstand om færre end % defekte forkastes. b) Estimat for p: 3.3% Da x = 33 >5 og 33 < kan approksimeres med normalfordelingen ( ) 1000 p radius Øvre grænse nedre grænse 0, , , ,0198 Af formlen for konfidensinterval og benyttelse af "Formula" fås 4

11 Opgaver til kapitel 1 OPGAVER Opgave 1.1 Færdselspolitiet overvejede, om der burde indføres en fartgrænse på 70 km/h på en bestemt landevejsstrækning, hvor der hidtil havde været fartgrænsen 80 km/h. Som et led i analysen af hensigtmæssigheden af den overvejede ændring observeredes inden for et bestemt tidsrum ved hjælp af radarkontrol de forbipasserende bilers fart. Resultatet af målingerne var: 50 observationer Undersøg om tallene er rimeligt normalfordelt ved i TI-Nspire, at tegne et histogram, et boxplot og et normalfordelingsplot. Angiv endvidere gennemsnit og spredning. Opgave 1. Under produktionen forekommer blandt en fabriks affaldsprodukter 1.5 mg/l af et stof A., som i større mængder kan være kræftfremkaldende. Man håber ved en ny og mere kostbar metode, at formindske indholdet af det pågældende stof. a) Ved en række kontrolmålinger efter tilsætning af additivet fandtes følgende resultater (i mg/l) Test på 5% niveau, om målingerne beviser, at der er sket en formindskelse af middelindholdet af stoffet A. b) Forudsat middelindholdet er signifikant under 1.5 mg/l, skal angives et estimat for det nye middelindhold, samt et 95% konfidensinterval for denne. Opgave 1.3 Det forventes, at lovgivningen bliver strammet omkring mængden af skadelige partikler i bilers udstødningsgas. En person mener, at mere end 0% af forsvarets biler ikke vil opfylde de forventede nye krav. Ved en undersøgelse af 40 af forsvarets biler tilfældigt udvalgt, fandt man, at 13 af disse ikke kunne opfylde de nye krav. 1) Test om dette på et signifikansniveau på 5 % er et bevis for, at mere end 0% af forsvarets biler udsender flere skadelige partikler end ønskeligt. ) Under forudsætning af at det er signifikant, at 0% af bilerne ikke opfylder kravet, skal man angive et estimat for hvor mange procent af bilerne, der ikke opfylder de nye krav, samt angive et 95% konfidensinterval herfor. 5

12 1. Repetition af centrale begreber Opgave 1.4 Indenfor en stor virksomhed, der producerer udstyr til forsvaret, er der i middel 0 driftsuheld pr. måned. Da antallet efter indførelsen af nye arbejdsrutiner synes at være vokset målte man i 5 på hinanden følgende måneder antallet af driftsuheld. Resultaterne var måned nr antal/måned Test, om disse data giver et eksperimentelt bevis for, at middelværdien er større end 0 driftsuheld/måned? 6

13 PLANLÆGNING AF FORSØG.1 Indledning.1. INDLEDNING Forsøg er en naturlig del af ingeniørmæssig og anden videnskabelig metode til at træffe beslutninger. Antag eksempelvis, at en ingeniør skal studere virkningerne af 4 hærdningsmetoder på trykstyrken af et materiale. Forsøget ville bestå i, at man fremstillede en række testmaterialer baseret på de 4 hærdningsmetoder, og derefter målte trykstyrken. På basis af disse data kunne man så anvende en statistisk metode til at finde den af de 4 metoder der i middel gav den største trykstyrke. Alle forsøg er planlagte forsøg, men desværre er nogle forsøg særdeles dårlig planlagt, og resulterer i at kostbare ressourcer bliver benyttet ineffektivt. Statistisk planlagte forsøg giver effektivitet og økonomi i den eksperimentelle proces, og brug af statistiske metoder i undersøgelsen af data resulterer i en videnskabelig objektivitet når man skal drage konklusioner. Statistisk baserede forsøg er særlig nyttige til at forbedre en fremstillingsproces eller til at udvikle nye metoder. Ved at benytte statistisk planlagte forsøg, kan ingeniøren bestemme hvilke af de mange procesvariable, såsom temperatur, tryk, hærdningsmetoder osv. der har den største betydning for udfaldet af processen. Brugen af statistisk baserede forsøg kan derfor resultere i produkter, der er lettere at producere, produkter der har en bedre performance og stabilitet (mindre spredning) end konkurrenternes produkter, og kan blive udviklet og produceret på mindre tid, hvilket reducerer udviklingsomkostningerne... NOMENKLATUR I de følgende kapitler benyttes ord, som faktor, niveauer, behandlinger osv. For at forstå hvad disse ord betyder, vil vi forklare dem ud fra følgende forsøg: Eksempel.1 Nomenklatur I forbindelse med nogle brudstyrkebestemmelser for Portland-cement udføres et fuldstændigt randomiseret forsøg til undersøgelse af middelbrudstyrkens afhængighed af cementblandere og cementknusere. Med hver af 3 cementblandere udstøbtes efter blanding med vand 1 cementterninger, som efter en uges lagring underkastedes en brudstyrkeprøve ved hjælp af en af 4 cementknusere. Forsøgsresultaterne var: 7

14 . Planlægning af forsøg Cementknusere B 1 B B 3 B 4 Cementblandere A A A Beskriv forsøget. Løsning: Forsøget har to faktorer: Cementblander og Cementknuser. Faktoren Cementblander har 3 niveauer A 1,A, A 3. (niveau hedder på engelsk level ) Faktoren Cementknuser har 4 niveauer B 1,B, B 3., B 4 Forsøget har 1 behandlinger (engelsk treatment) A 1 B 1, A 1 B, A 1 B 3, A 1 B 4, A B 1, A B, A B 3, A B 4,A 3 B 1, A 3 B, A 3 B 3, A 3 B 4 da der er 1 kombinationer af niveauerne (1 celler) Hver behandling har 3 gentagelser, eksempelvis har behandlingen A 1 B 1 3 delforsøg, der resulterede i forsøgsresultaterne Faktorer kan enten være kvalitative eller kvantitative. En faktor som temperatur er kvantitativ, da den jo er en talvariabel, der kan antage alle mulige talværdier (indenfor et givet talområde). En faktor som Cementblander i eksempel.1 er kvalitativ, da den kun har nogle fastlagte niveauer, og man ikke kan tale om eksempelvis cementblander KRAV TIL STATISTISK GYLDIGT FORSØG For at nogle forsøgsresultater skal være statistisk gyldige, skal målingerne være statistisk uafhængige og være repræsentative for det man skal undersøge. Ved statistisk uafhængighed forstås, at resultatet af et delforsøg ikke må afhænge af hvad der skete i de øvrige delforsøg. Det er således ikke korrekt, hvis det arbejdshold, der foretager forsøgene først laver forsøgene med den ene cementblander- derved bliver dygtigere- og så laver forsøgene med de øvrige cementblandere. Det er heller ikke korrekt, at man eksempelvis i eksempel 1.1 først havde målt holdbarheden af 10 blokke, - derefter foretager en test-opdager at man ikke kan vise signifikans. Så tager man 10 blokke mere - testet på de 0 blokke osv., indtil man opnåede signifikans. Dette er ikke "statistisk gyldige" forsøg. 8

15 .3.Krav til statistisk gyldigt forsøg Til belysning af hvad der er et "statistisk" gyldigt forsøg tages udgangspunkt i følgende eksempel. Eksempel.. Planlægning af forsøg. En fabrik der producerer maling, har udviklet to nye additiver A 1 og A, som bevirker en kortere tørretid. Additiv A 1 er det dyreste, men man forventer også, at det giver den korteste tørretid. På grund af prisforskellen, skal tørretiden dog være mindst 10 minutter kortere for A 1, før man vil gå over til den. For at undersøge disse forhold produceres nogle liter maling, som derefter deles op i mindre portioner. Til nogle af portionerne tilsættes additiv A 1 og til andre additiv A. Tørretiden måles derefter. Generelt gælder, at hvert delforsøg i et forsøg udføres under en række forsøgsbetingelser. Alle andre delforsøgsbetingelser end behandlingerne sammenfattes i et begreb, der kaldes forsøgsenheden. I eksempel. er additiverne = behandlingerne og forsøgsenhederne er den enkelte portion maling, anvendt apparatur og personale, tidspunkt for delforsøget og de forhold med hensyn til temperatur, luftfugtighed osv., som gælder på forsøgstidspunktet. Bemærk, at forsøgsenhederne ofte indeholder faktorer, som ikke kan gøres ensartet fra delforsøg til delforsøg. Dette bevirker, at resultatet af de enkelte delforsøg varierer. Dette giver forsøgsvariablens variation eller kort forsøgets støj. Randomisering For at sikre et statistisk gyldigt forsøg foretager man en såkaldt fuldstændig randomisering. Dette betyder at man ved lodtrækning fordeler forsøgsenhederne tilfældigt på behandlingerne. Dette sker, for at man ikke ubevidst kommer til at favorisere en af de to behandlinger. Hvis man eksempelvis helt systematisk i eksempel. først laver alle delforsøg med additiv A 1, kunne dette bevirke en favorisering af A 1 nemlig hvis forsøgsomstændighederne (apparater, personale, luftfugtighed ) er mest gunstige ved begyndelsen af forsøgsperioden. For at anskueliggøre denne randomiseringsproces antager vi, at vi i eksempel. skal lave 4 delforsøg med hver additiv. Endvidere antages, at delforsøgene skal indgå i den almindelige produktionsgang, dvs. at man af tidsmæssige, personalemæssige og på grund af en begrænset mængde apparatur må lade forsøgene forløbe over flere dage. Man tror ikke, at dage, apparatur og laborant har nogen væsentlig betydning for forsøgsresultaterne. Der er sandsynligvis også andre forhold udenfor vor kontrol, og som tilsammen bevirker, at selv om man udfører gentagne delforsøg med samme behandling, så får vi afvigende resultater. For en sikkerheds skyld vælger vi imidlertid at randomisere dage, apparatur og laboranter Lad os antage at der gælder følgende: Mandag er det kun muligt at lave 1 delforsøg, idet apparatur nr. 1 og laborant A er de eneste der er ledige. Tirsdag er der kapacitet ledig til 3 delforsøg: Ét delforsøg hvor apparatur nr og laborant A benyttes Ét delforsøg hvor apparatur nr 1 og laborant B benyttes, og Ét delforsøg hvor apparatur nr 3 og laborant C benyttes. Onsdag kan der også laves 3 delforsøg osv. (se det følgende skema). 9

16 . Planlægning af forsøg Forsøgsenheder Dag Apparatur Laborant mandag 1 A tirsdag A tirsdag 1 B tirsdag 3 C onsdag 3 B onsdag 4 C onsdag 1 A torsdag 3 B Behandlinger (additiv) Vi foretager nu randomiseringen, som kort sagt er en form for lodtrækning. Sædvanligvis vil man benytte et program, der kan generere tilfældige tal (mange lommeregnere har et sådant program). For at anskueliggøre randomiseringen vil vi mere primitivt foretage lodtrækningen på følgende måde. På 4 sedler skrives A 1, på andre 4 sedler skrives A. Hver seddel krølles sammen til en kugle og placeres i en dåse. Sedlerne blandes ved at dåsen rystes (se figur). Hvis den første seddel der udtrækkes er A så betyder det, at det delforsøg der mandag udføres med apparatur 1 og laborant A skal anvende additiv A. Hvis den næste seddel der udtrækkes er A 1 så betyder det, at det delforsøg der tirsdag udføres med apparatur og laborant A skal anvende additiv A 1 osv. Resultaterne kunne eksempelvis være som angivet på følgende skema: Forsøgsenheder Behandlinger Dag Apparatur Laborant (additiv) mandag 1 A A tirsdag A A 1 tirsdag 1 B A 1 tirsdag 3 C A onsdag 3 B A onsdag 4 C A 1 onsdag 1 A A torsdag 3 B A 1 På denne måde sikrer man sig, at vi får et så vidt muligt "statistisk gyldigt" forsøg. Hvis vi derfor efter beregninger (som ses i de følgende kapitler ) konkluderer, at der er forskel på additiverne, så er det "korrekt", idet det ville være helt tilfældigt, hvis én af additiverne har været begunstiget med særlig gode forsøgsenheder. Herved har man også sikret sig, at de to stikprøver (variable) er statistisk uafhængige. 10

17 .3.Krav til statistisk gyldigt forsøg Forsøg bør udføres, så alle behandlinger får lige mange gentagelser. Ved planlægningen af forsøget er det ganske klart, at hvis man eksempelvis har ressourcer til at lave 0 delforsøg, så ville det være en meget dårlig plan, hvis man lavede 18 delforsøg med A 1 og kun delforsøg med A. Der bør i naturligvis tilstræbes at lave 10 delforsøg med hver behandling. Delforsøg kan mislykkes, så målet i praksis ikke bliver opfyldt. I sådanne tilfælde kan de i de følgende kapitler anførte statistiske analyser dog stadig gennemføres. Testene bliver dog mindre robuste (dvs. mere afhængige af, at forudsætningerne gælder), og beregningerne mere komplicerede. Dimensionering Man kan fristes til at tro, at jo flere gentagelser jo bedre. s Da spredningen på et gennemsnit er, er det klart, at hvis antal forsøg n er stort bliver n spredningen lille, og så kan man finde, at der er en signifikant forskel selv om denne forskel er lille. Imidlertid risikerer man med mange gentagelser at opdage så små forskelle, at de ikke har praktisk betydning, og så er de mange delforsøg jo spild af arbejdskraft og penge. Endvidere gælder det jo, at hvis man laver 5 forsøg, så er spredningen formindsket med en faktor 5, mens hvis man laver 100 forsøg så er spredningen formindsket med en faktor 10. Der skal derfor særdeles mange forsøg til for alvor at formindske spredningen på gennemsnittet. Analogt med forklaringen i Statistiske Grundbegreber kan man under visse forudsætninger beregne hvor mange gentagelser (portioner) der skal anvendes for hver behandling, hvis P( fejl af type I) og P( fejl af type II). Man skal naturligvis angive en bagatelgrænse, men desuden kræver beregningerne, at spredningerne ved de to behandlinger er (tilnærmelsesvis) ens, og at man kan give et nogenlunde realistisk skøn for denne fælles spredning. Det er naturligvis en svaghed ved dimensioneringen, at man inden forsøget er udført skal give et sådant skøn. En vurdering heraf kunne baseres på erfaringer fra tilsvarende forsøg. Findes sådanne erfaringer ikke må man først lave nogle få delforsøg og derfra få et rimeligt gæt på spredningen σ. At spredningerne er nogenlunde ens vil i praksis ofte være tilfældet, da forsøgsenhederne jo er valgt ved randomisering. Når forsøget så er lavet, kan man (lidt sent) se, om man har skønnet rigtigt. Dimensioneringen har kun betydning hvis man får en accept, da man så ved, at en eventuel forskel ikke har praktisk betydning. Hvis man får en forkastelse, så ved man der er en signifikant forskel, men om den er af praktisk betydning må en nærmere undersøgelse vise. Formler for dimensionering af variable findes i oversigten i kapitel 3, afsnit

18 3. 1 Faktor på niveauer 3 1 Faktor på to niveauer 3.1. NORMALFORDELTE VARIABLE Test af differens mellem middelværdier I dette afsnit benyttes et eksempel til at forklare metode, teststørrelse osv. Derefter vises hvorledes det samme eksempel regnes med SAS.JMP. Eksempel 3.1. Sammenligning af normalfordelte variable To produktionsmetoder M1 og M ønskes sammenlignet. Der udvælges tilfældigt 0 personer, hvoraf de 10 bliver sat til at arbejde med den ene metode, og de 10 andre med den anden. Efter ugers forløb, beregnede man for hver person det gennemsnitlige tidsforbrug pr. enhed. Da metode 1 er mere kostbar end metode, ønsker man kun at gå over til den, hvis tidsforbruget pr. enhed ved metode 1 er mindst minutter mindre end ved metode. Man fik følgende resultater. M M Undersøg på basis af disse resultater, om det på et signifikansniveau på 5% kan påvises at tidsforbruget ved metode M 1 er mindst minutter mindre end ved metode M. Løsning: a) Lad X 1 = tidsforbrug ved anvendelse af metode M 1 og X = tidsforbrug ved anvendelse af metode M. X 1 og X antages approksimativt normalfordelte med middelværdi og spredning henholdsvis, og,. 1 1 H 0 : 1 Begrundelse: Nulhypotesen udtrykker, at påstanden ikke er opfyldt (nul virkning). H: 1 Begrundelse: Den alternative metode udtrykker det vi ønsker at bevise, så den angiver, at differensen i middeltidsforbruget er større end. I beregningerne antager man, at H 0 : 1, da en forkastelse så sikrer, at H gælder. Der anvendes et færdigt program, der anvender en testmetode (Satterthwaites metode), som er robust overfor mindre afvigelser fra kravet om normalitet, når blot antallet af gentagelser er den samme. Er det ikke tilfældet kan man stadig foretage testen, men så stilles der større krav til, at de variable X 1 og X virkelig er normalfordelte. Formlen for Satterthwaites metode kan findes i afsnit 3.5 oversigt Er den beregnede P-værdi < signifikansniveauet forkastes H 0, dvs. vi har bevist den alternative hypotese H er sand. (sandsynligheden for vi dermed kommer med en forkert konklusion er mindre end ). Er P-værdien > signifikansniveauet accepters H 0, dvs. vi kan ikke på dette grundlag bevise, at H er sand. Får man en accept og er P - værdien ikke meget større end signifikansniveauet, så er det muligt at en stærkere t - test kunne give en forkastelse. Denne stærkere t-test kræver imidlertid at de to spredninger kan antages at være ens. 1

19 3.1 Normalfordelte variable Dette er ofte tilfældet på grund af randomiseringen, men er man i tvivl herom kan man først foretage en test af om spredningerne er ens. Får man en accept heraf, har man naturligvis ikke hermed vist, at varianserne er ens, men da den følgende t - test af middelværdier er robust overfor mindre forskelle i varianserne, blot vi har samme antal gentagelser, er det tilladeligt i den følgende test af middelværdierne, at antage at varianserne er ens. Forklaring på formler For hver af de metoder udføres en række delforsøg. Lad antallet af forsøg være henholdsvis n 1 og n. Vi antager, at X 1 og X er statistisk uafhængige normalfordelte variable med henholdsvis middelværdierne og spredningerne 1 og. H : d H : d Nulhypotese (d er i eksemplet -), eller, og Testproceduren baseres på fordelingen af differensen Y X1 X d. Ifølge additionssætningen (se eventuelt Statistiske Grundbegreber) er Y normalfordelt og fra regnereglerne fås EX1 X d EX1EXd 1 d 1 og VX X d VX VX. 1 1 n1 n Heraf følger, at U X X d 1 er normeret normalfordelt. 1 n1 n Teststørrelsen U X X d 1 gælder kun, hvis spredningerne og er kendt eksakt. 1 1 n n 1 s 1 s Kendes kun deres estimater og må der anvendes andre testprocedurer. Får man ved en F-test en accept af, at varianserne er ens, pooles varianserne sammen til en fælles gennemsnitlig 1 X1 X d varians ( se eventuelt oversigten i afsnit 3.5.1) og størrelsen t = er nu t - fordelt. X X d s 0 s0 s0 n n 1 s n n Hvis stikprøvestørrelserne er store (begge over 30) er det dog tilstrækkelig nøjagtigt at anvende U X X d 1 som teststørrelse. s1 s n n 1 I modsat fald kan anvendes en ret kompliceret procedure, der kaldes "Satterhwaite's metode". Denne er beskrevet i afsnit

20 3. 1 Faktor på niveauer Eksempel 3.1. fortsat Hypoteserne omskrives til H 0 : 1 H: 1 Data indtastes i søjler, idet vi lægger til alle tal fra metode 1. metode tidsforbrug m1 89,8 m1 93,9 m1 91,8 m1 91,0 m1 94,6 m1 91,4 m1 93,4 m1 90,7 m1 9,1 m m 9.4 m 94,6 m 93,0 m 94,0 m 9,4 m 9,9 m 99,4 m 9,1 m 9,8 m 93,4 Analyze Fit y by x Y-Response:Tidsforbrug,x-Factor: Metode ok rød pil øverst på figur, t-test t Test m-m1 Assuming unequal variances Difference 1,0900t Ratio 1,68317 Std Err Dif 0,6694DF 16,99463 Upper CL Dif,504Prob > t 0,119 Lower CL Dif -0,34Prob > t 0,0609 Confidence 0,95Prob < t 0,9391 Da P - værdi = > 0.05 accepteres nulhypotesen, dvs. det er ikke muligt på dette grundlag at bevise, at tidsforbruget ved metode M 1 er minutter mindre end ved metode M. Da P-værdien var så tæt ved 5%, vil vi nu forsøge med den stærkere t-test, hvor kravet er en fælles "poolet" spredning Vi gør som før, men vælger nu Means/Anova/pooled t Vi får som forventet en lidt mindre P-værdi = , men det giver stadig en accept, så konklusionen er den samme. Da P-værdien er så tæt ved 5% er der en god mulighed for, at tidsforbruget ved metode 1 faktisk er minutter mindre end ved metode (begår en fejl af type ). Det ville derfor være rimeligt at bede om at få foretaget flere forsøg. SAS Havde vi fået en P-værdi < 0.05, så ville næste træk være at teste om spredningerne var ens (se eventuelt eksempel 3. hvordan), da vi ellers ikke måtte have anvendt den sidste metode. 14

VIDEREGÅENDE STATISTIK

VIDEREGÅENDE STATISTIK MOGENS ODDERSHEDE LARSEN VIDEREGÅENDE STATISTIK herunder kvalitetskontrol Udgave 10.b 015 FORORD Denne lærebog kan læses på baggrund af en statistisk viden svarende til lærebogen M. Oddershede Larsen :

Læs mere

Hypotesetest. Altså vores formodning eller påstand om tingens tilstand. Alternativ hypotese (hvis vores påstand er forkert) H a : 0

Hypotesetest. Altså vores formodning eller påstand om tingens tilstand. Alternativ hypotese (hvis vores påstand er forkert) H a : 0 Hypotesetest Hypotesetest generelt Ingredienserne i en hypotesetest: Statistisk model, f.eks. X 1,,X n uafhængige fra bestemt fordeling. Parameter med estimat. Nulhypotese, f.eks. at antager en bestemt

Læs mere

Statistisk forsøgsplanlægning. med benyttelse af Statgraphics

Statistisk forsøgsplanlægning. med benyttelse af Statgraphics MOGENS ODDERSHEDE LARSEN Statistisk forsøgsplanlægning med benyttelse af Statgraphics Vekselvirkning CD 10 8 C 1 udbytte 6 4 0 1 3 4 D 11 udgave 00, DTU FORORD Dette notat er baseret på at de studerende

Læs mere

Bilag til Statistik i løb : Statistik og Microsoft Excel tastevejledning / af Lars Bo Kristensen

Bilag til Statistik i løb : Statistik og Microsoft Excel tastevejledning / af Lars Bo Kristensen Bilag til Statistik i løb : Statistik og Microsoft Excel tastevejledning / af Lars Bo Kristensen Microsoft Excel har en del standard anvendelsesmuligheder i forhold til den beskrivende statistik og statistisk

Læs mere

Forelæsning 9: Inferens for andele (kapitel 10)

Forelæsning 9: Inferens for andele (kapitel 10) Kursus 02402 Introduktion til Statistik Forelæsning 9: Inferens for andele (kapitel 10) Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800

Læs mere

Schweynoch, 2003. Se eventuelt http://www.mathematik.uni-kassel.de/~fathom/projekt.htm.

Schweynoch, 2003. Se eventuelt http://www.mathematik.uni-kassel.de/~fathom/projekt.htm. Projekt 8.5 Hypotesetest med anvendelse af t-test (Dette materiale har været anvendt som forberedelsesmateriale til den skriftlige prøve 01 for netforsøget) Indhold Indledning... 1 χ -test... Numeriske

Læs mere

Epidemiologi og Biostatistik

Epidemiologi og Biostatistik Kapitel 1, Kliniske målinger Epidemiologi og Biostatistik Introduktion til skilder (varianskomponenter) måleusikkerhed sammenligning af målemetoder Mogens Erlandsen, Institut for Biostatistik Uge, torsdag

Læs mere

Program. t-test Hypoteser, teststørrelser og p-værdier. Hormonkonc.: statistisk model og konfidensinterval. Hormonkoncentration: data

Program. t-test Hypoteser, teststørrelser og p-værdier. Hormonkonc.: statistisk model og konfidensinterval. Hormonkoncentration: data Faculty of Life Sciences Program t-test Hypoteser, teststørrelser og p-værdier Claus Ekstrøm E-mail: ekstrom@life.ku.dk Resumé og hængepartier fra sidst. Eksempel: effekt af foder på hormonkoncentration

Læs mere

MOGENS ODDERSHEDE LARSEN. VIDEREGÅENDE STATISTIK II Regressionsanalyse (TI-89 og Statgraphics)

MOGENS ODDERSHEDE LARSEN. VIDEREGÅENDE STATISTIK II Regressionsanalyse (TI-89 og Statgraphics) MOGENS ODDERSHEDE LARSEN VIDEREGÅENDE STATISTIK II Regressionsanalyse (TI-89 og Statgraphics) DANMARKS TEKNISKE UNIVERSITET 6 udgave 005 FORORD Dette notat kan læses på baggrund af en statistisk viden

Læs mere

Personlig stemmeafgivning

Personlig stemmeafgivning Ib Michelsen X 2 -test 1 Personlig stemmeafgivning Efter valget i 2005 1 har man udspurgt en mindre del af de deltagende, om de har stemt personligt. Man har svar fra 1131 mænd (hvoraf 54 % har stemt personligt

Læs mere

Regneregler for middelværdier M(X+Y) = M X +M Y. Spredning varians og standardafvigelse. 1 n VAR(X) Y = a + bx VAR(Y) = VAR(a+bX) = b²var(x)

Regneregler for middelværdier M(X+Y) = M X +M Y. Spredning varians og standardafvigelse. 1 n VAR(X) Y = a + bx VAR(Y) = VAR(a+bX) = b²var(x) Formelsamlingen 1 Regneregler for middelværdier M(a + bx) a + bm X M(X+Y) M X +M Y Spredning varians og standardafvigelse VAR(X) 1 n n i1 ( X i - M x ) 2 Y a + bx VAR(Y) VAR(a+bX) b²var(x) 2 Kovariansen

Læs mere

Teoretisk Statistik, 2. december 2003. Sammenligning af poissonfordelinger

Teoretisk Statistik, 2. december 2003. Sammenligning af poissonfordelinger Uge 49 I Teoretisk Statistik, 2. december 2003 Sammenligning af poissonfordelinger o Generel teori o Sammenligning af to poissonfordelinger o Eksempel Opsummering om multinomialfordelinger Fishers eksakte

Læs mere

Spørgeskemaundersøgelser og databehandling

Spørgeskemaundersøgelser og databehandling DASG. Nye veje i statistik og sandsynlighedsregning. side 1 af 12 Spørgeskemaundersøgelser og databehandling Disse noter er udarbejdet i forbindelse med et tværfagligt samarbejde mellem matematik og samfundsfag

Læs mere

1. Lav en passende arbejdstegning, der illustrerer samtlige enkeltobservationer.

1. Lav en passende arbejdstegning, der illustrerer samtlige enkeltobservationer. Vejledende besvarelse af hjemmeopgave Basal statistik, efterår 2008 En gruppe bestående af 45 patienter med reumatoid arthrit randomiseres til en af 6 mulige behandlinger, nemlig placebo, aspirin eller

Læs mere

Statistik. Deskriptiv statistik, normalfordeling og test. Karsten Juul

Statistik. Deskriptiv statistik, normalfordeling og test. Karsten Juul Statistik Deskriptiv statistik, normalfordeling og test Karsten Juul Intervalhyppigheder En elevgruppe på et gymnasium har spurgt 100 tilfældigt valgte elever på gymnasiet om hvor lang tid det tager dem

Læs mere

1 enote 1: Simple plots og deskriptive statistik. 2 enote2: Diskrete fordelinger. 3 enote 2: Kontinuerte fordelinger

1 enote 1: Simple plots og deskriptive statistik. 2 enote2: Diskrete fordelinger. 3 enote 2: Kontinuerte fordelinger Kursus 02402/02323 Introduktion til statistik Forelæsning 13: Et overblik over kursets indhold Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Building 324, Room 220 Danish Technical University

Læs mere

Statistik i GeoGebra

Statistik i GeoGebra Statistik i GeoGebra Peter Harremoës 13. maj 2015 Jeg vil her beskrive hvordan man kan lave forskellige statistiske analyser ved hjælp af GeoGebra 4.2.60.0. De statistiske analyser svarer til pensum Matematik

Læs mere

Tænk på a og b som to n 1 matricer. a 1 a 2 a n. For hvert i = 1,..., n har vi y i = x i β + u i.

Tænk på a og b som to n 1 matricer. a 1 a 2 a n. For hvert i = 1,..., n har vi y i = x i β + u i. Repetition af vektor-regning Økonometri: Lektion 3 Matrix-formulering Fordelingsantagelse Hypotesetest Antag vi har to n-dimensionelle (søjle)vektorer a 1 b 1 a 2 a =. og b = b 2. a n b n Tænk på a og

Læs mere

Et matematikeksperiment: Bjørn Felsager, Haslev Gymnasium & HF

Et matematikeksperiment: Bjørn Felsager, Haslev Gymnasium & HF Sammenligning af to måleserier En af de mest grundlæggende problemstillinger i statistik består i at undersøge om to forskellige måleserier er signifikant forskellige eller om forskellen på de to serier

Læs mere

Skriftlig Eksamen ST501: Science Statistik Mandag den 11. juni 2007 kl. 15.00 18.00

Skriftlig Eksamen ST501: Science Statistik Mandag den 11. juni 2007 kl. 15.00 18.00 Skriftlig Eksamen ST501: Science Statistik Mandag den 11. juni 2007 kl. 15.00 18.00 Forskningsenheden for Statistik IMADA Syddansk Universitet Alle skriftlige hjælpemidler samt brug af lommeregner er tilladt.

Læs mere

Statistik med TI-Nspire CAS version 3.2. Bjørn Felsager September 2012. [Fjerde udgave]

Statistik med TI-Nspire CAS version 3.2. Bjørn Felsager September 2012. [Fjerde udgave] Statistik med TI-Nspire CAS version 3.2 Bjørn Felsager September 2012 [Fjerde udgave] Indholdsfortegnelse Forord Beskrivende statistik 1 Grundlæggende TI-Nspire CAS-teknikker... 4 1.2 Lister og regneark...

Læs mere

Temaopgave i statistik for

Temaopgave i statistik for Temaopgave i statistik for matematik B og A Indhold Opgave 1. Kast med 12 terninger 20 gange i praksis... 3 Opgave 2. Kast med 12 terninger teoretisk... 4 Opgave 3. Kast med 12 terninger 20 gange simulering...

Læs mere

Eksamen ved. Københavns Universitet i. Kvantitative forskningsmetoder. Det Samfundsvidenskabelige Fakultet

Eksamen ved. Københavns Universitet i. Kvantitative forskningsmetoder. Det Samfundsvidenskabelige Fakultet Eksamen ved Københavns Universitet i Kvantitative forskningsmetoder Det Samfundsvidenskabelige Fakultet 14. december 2011 Eksamensnummer: 5 14. december 2011 Side 1 af 6 1) Af boxplottet kan man aflæse,

Læs mere

Hvad er meningen? Et forløb om opinionsundersøgelser

Hvad er meningen? Et forløb om opinionsundersøgelser Hvad er meningen? Et forløb om opinionsundersøgelser Jette Rygaard Poulsen, Frederikshavn Gymnasium og HF-kursus Hans Vestergaard, Frederikshavn Gymnasium og HF-kursus Søren Lundbye-Christensen, AAU 17-10-2004

Læs mere

Økonometri: Lektion 4. Multipel Lineær Regression: F -test, justeret R 2 og aymptotiske resultater

Økonometri: Lektion 4. Multipel Lineær Regression: F -test, justeret R 2 og aymptotiske resultater Økonometri: Lektion 4 Multipel Lineær Regression: F -test, justeret R 2 og aymptotiske resultater 1 / 35 Hypotesetest for én parameter Antag vi har model y = β 0 + β 1 x 2 + β 2 x 2 + + β k x k + u. Vi

Læs mere

2. Ved et roulettespil kan man vinde 0,10,100, 500 og 1000 kr. Sandsynligheden for gevinsterne ses af følgende skema:

2. Ved et roulettespil kan man vinde 0,10,100, 500 og 1000 kr. Sandsynligheden for gevinsterne ses af følgende skema: Der er hjælp til opgaver med # og facit på side 6 1. Et eksperiment kan beskrives med følgende skema: u 1 2 3 4 5 P(u) 0,3 0,2 0,1 0,2 x Bestem x og sandsynligheden for at udfaldet er et lige tal.. 2.

Læs mere

Statistik noter - Efterår 2009 Keller - Statistics for management and economics

Statistik noter - Efterår 2009 Keller - Statistics for management and economics Statistik noter - Efterår 2009 Keller - Statistics for management and economics Jonas Sveistrup Hansen - stud.merc.it 22. september 2009 1 Indhold 1 Begrebsliste 3 2 Forelæsning 1 - kap. 1-3 3 2.1 Kelvin

Læs mere

Gennemsnit og normalfordeling illustreret med terningkast, simulering og SLUMP()

Gennemsnit og normalfordeling illustreret med terningkast, simulering og SLUMP() Gennemsnit og normalfordeling illustreret med terningkast, simulering og SLUMP() John Andersen, Læreruddannelsen i Aarhus, VIA Et kast med 10 terninger gav følgende udfald Fig. 1 Result of rolling 10 dices

Læs mere

Statikstik II 2. Lektion. Lidt sandsynlighedsregning Lidt mere om signifikanstest Logistisk regression

Statikstik II 2. Lektion. Lidt sandsynlighedsregning Lidt mere om signifikanstest Logistisk regression Statikstik II 2. Lektion Lidt sandsynlighedsregning Lidt mere om signifikanstest Logistisk regression Sandsynlighedsregningsrepetition Antag at Svar kan være Ja og Nej. Sandsynligheden for at Svar Ja skrives

Læs mere

Program. 1. Varianskomponent-modeller (Random Effects) 2. Transformation af data. 1/12

Program. 1. Varianskomponent-modeller (Random Effects) 2. Transformation af data. 1/12 Program 1. Varianskomponent-modeller (Random Effects) 2. Transformation af data. 1/12 Dæktyper og brændstofforbrug Data fra opgave 10.43, side 360: cars 1 2 3 4 5... radial 4.2 4.7 6.6 7.0 6.7... belt

Læs mere

Kursusindhold: X i : tilfældig værdi af ite eksperiment. Antag X i kun antager værdierne 1, 2,..., M.

Kursusindhold: X i : tilfældig værdi af ite eksperiment. Antag X i kun antager værdierne 1, 2,..., M. Kursusindhold: Produkt og marked - matematiske og statistiske metoder Rasmus Waagepetersen Institut for Matematiske Fag Aalborg Universitet February 9, 2015 Sandsynlighedsregning og lagerstyring Normalfordelingen

Læs mere

I. Deskriptiv analyse af kroppens proportioner

I. Deskriptiv analyse af kroppens proportioner Projektet er delt i to, og man kan vælge kun at gennemføre den ene del. Man kan vælge selv at frembringe data, fx gennem et samarbejde med idræt eller biologi, eller man kan anvende de foreliggende data,

Læs mere

Projekt 8.3 Hvordan undersøges om et talmateriale normalfordelt?

Projekt 8.3 Hvordan undersøges om et talmateriale normalfordelt? Projekt 8.3 Hvordan undersøges om et talmateriale normalfordelt? Projektet drejer sig om at udvikle en metode, til at undersøge om et givet talmateriale med rimelighed kan siges at være normalfordelt.

Læs mere

statistik statistik viden fra data statistik viden fra data Jens Ledet Jensen Aarhus Universitetsforlag Aarhus Universitetsforlag

statistik statistik viden fra data statistik viden fra data Jens Ledet Jensen Aarhus Universitetsforlag Aarhus Universitetsforlag Jens Ledet Jensen på data, og statistik er derfor et nødvendigt værktøj i disse sammenhænge. Gennem konkrete datasæt og problemstillinger giver Statistik viden fra data en grundig indføring i de basale

Læs mere

Dig og din puls Lærervejleding

Dig og din puls Lærervejleding Dig og din puls Lærervejleding Indledning I det efterfølgende materiale beskrives et forløb til matematik C, hvori eleverne skal måle hvilepuls og arbejdspuls og beskrive observationerne matematisk. Materialet

Læs mere

Oversigt. Kursus 02402 Introduktion til Statistik. Forelæsning 10: Statistik ved hjælp af simulering. Per Bruun Brockhoff.

Oversigt. Kursus 02402 Introduktion til Statistik. Forelæsning 10: Statistik ved hjælp af simulering. Per Bruun Brockhoff. Kursus 02402 Introduktion til Statistik Forelæsning 10: Statistik ved hjælp af simulering Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800

Læs mere

Taldata 1. Chancer gennem eksperimenter

Taldata 1. Chancer gennem eksperimenter Taldata 1. Chancer gennem eksperimenter Indhold 1. Kast med to terninger 2. Et pindediagram 3. Sumtabel 4. Median og kvartiler 5. Et trappediagram 6. Gennemsnit 7. En statistik 8. Anvendelse af edb 9.

Læs mere

Program. Sammenligning af grupper Ensidet ANOVA. Case 3, del II: Fiskesmag i lammekød. Case 3, del I: A-vitamin i leveren

Program. Sammenligning af grupper Ensidet ANOVA. Case 3, del II: Fiskesmag i lammekød. Case 3, del I: A-vitamin i leveren Faculty of Life Sciences Program Sammenligning af grupper Ensidet ANOVA Claus Ekstrøm E-mail: ekstrom@life.ku.dk Sammenligning af to grupper: tre eksempler Sammenligning af mere end to grupper: ensidet

Læs mere

Statistik (deskriptiv)

Statistik (deskriptiv) Statistik (deskriptiv) Ikke-grupperede data For at behandle ikke-grupperede data i TI, skal data tastes ind i en liste. Dette kan gøres ved brug af List, hvis ikon er nr. 5 fra venstre på værktøjsbjælken

Læs mere

Tovejs-ANOVA (Faktoriel) Regler og problemer kan generaliseres til mere end to hovedfaktorer med tilhørende interaktioner

Tovejs-ANOVA (Faktoriel) Regler og problemer kan generaliseres til mere end to hovedfaktorer med tilhørende interaktioner Tovejs-ANOVA (Faktoriel) Regler og problemer kan generaliseres til mere end to hovedfaktorer med tilhørende interaktioner I modsætning til envejs-anova kan flervejs-anova udføres selv om der er kun én

Læs mere

Statistik II 4. Lektion. Logistisk regression

Statistik II 4. Lektion. Logistisk regression Statistik II 4. Lektion Logistisk regression Logistisk regression: Motivation Generelt setup: Dikotom(binær) afhængig variabel Kontinuerte og kategoriske forklarende variable (som i lineær reg.) Eksempel:

Læs mere

Eksempel: PEFR. Epidemiologi og biostatistik. Uge 1, tirsdag. Erik Parner, Institut for Biostatistik.

Eksempel: PEFR. Epidemiologi og biostatistik. Uge 1, tirsdag. Erik Parner, Institut for Biostatistik. Epidemiologi og biostatistik. Uge, tirsdag. Erik Parner, Institut for Biostatistik. Generelt om statistik Dataanalysen - Deskriptiv statistik - Statistisk inferens Sammenligning af to grupper med kontinuerte

Læs mere

Statistik II Lektion 3. Logistisk Regression Kategoriske og Kontinuerte Forklarende Variable

Statistik II Lektion 3. Logistisk Regression Kategoriske og Kontinuerte Forklarende Variable Statistik II Lektion 3 Logistisk Regression Kategoriske og Kontinuerte Forklarende Variable Setup: To binære variable X og Y. Statistisk model: Konsekvens: Logistisk regression: 2 binære var. e e X Y P

Læs mere

Normalfordelingen. Erik Vestergaard

Normalfordelingen. Erik Vestergaard Normalfordelingen Erik Vestergaard Erik Vestergaard www.matematiksider.dk Erik Vestergaard, 008. Billeder: Forside: jakobkramer.dk/jakob Kramer Side 7: istock.com/elenathewise Side 8: istock.com/jaroon

Læs mere

Excel tutorial om lineær regression

Excel tutorial om lineær regression Excel tutorial om lineær regression I denne tutorial skal du lære at foretage lineær regression i Microsoft Excel 2007. Det forudsættes, at læseren har været igennem det indledende om lineære funktioner.

Læs mere

Statistisk beskrivelse og test

Statistisk beskrivelse og test Statistisk beskrivelse og test 005 Karsten Juul Kapitel 1. Intervalhyppigheder Afsnit 1.1: Histogram En elevgruppe på et gymnasium har spurgt 100 tilfældigt valgte elever på gymnasiet om hvor lang tid

Læs mere

Skolesektionen på www.ballerup.dk

Skolesektionen på www.ballerup.dk Skolesektionen på www.ballerup.dk Louise Callisen Dyhr (ldyh) Marie Louise Gottlieb Frederiksen (mgfr) Janus Askø Madsen (jaam) Nanna Petersen (nshy) Antal tegn: 28319 Afleveringsdato: 21. maj 2014 1 Indledning...

Læs mere

Vejledende besvarelse

Vejledende besvarelse Ib Michelsen Svar: stx B 29. maj 2013 Side 1 1. Udfyld tabellen Vejledende besvarelse Givet funktionen f (x)=4 5 x beregnes f(2) f (2)=4 5 2 =4 25=100 Den udfyldte tabel er derfor: x 0 1 2 f(x) 4 20 100

Læs mere

EKSAMENSOPGAVER I STATISTIK

EKSAMENSOPGAVER I STATISTIK EKSAMENSOPGAVER I STATISTIK 02591 Opgaverne 1-151 er udgået DANMARKS TEKNISKE UNIVERSITET EFTERÅR 2006 Eksamen December 2001 Opgave 152 (10 %) I denne opgave er det ikke nok at henvise til en Statgraphics

Læs mere

Indblik i statistik - for samfundsvidenskab

Indblik i statistik - for samfundsvidenskab Indblik i statistik - for samfundsvidenskab Læs mere om nye titler fra Academica på www.academica.dk Nikolaj Malchow-Møller og Allan H. Würtz Indblik i statistik for samfundsvidenskab Academica Indblik

Læs mere

Arbejdet på kuglens massemidtpunkt, langs x-aksen, er lig med den resulterende kraft gange strækningen:

Arbejdet på kuglens massemidtpunkt, langs x-aksen, er lig med den resulterende kraft gange strækningen: Forsøgsopstilling: En kugle ligger mellem to skinner, og ruller ned af den. Vi måler ved hjælp af sensorer kuglens hastighed og tid ved forskellige afstand på rampen. Vi måler kuglens radius (R), radius

Læs mere

Oversigt. Kursus 02402 Introduktion til Statistik. Forelæsning 1: Intro og beskrivende statistik. Per Bruun Brockhoff. Praktisk Information

Oversigt. Kursus 02402 Introduktion til Statistik. Forelæsning 1: Intro og beskrivende statistik. Per Bruun Brockhoff. Praktisk Information Kursus 02402 Forelæsning 1: Intro og beskrivende statistik Oversigt 1 Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800 Lyngby Danmark e-mail:

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin maj-juni 11/12 Institution VUC Holstebro-Lemvig-Struer Uddannelse Fag og niveau Lærer(e) Hold Hf/hfe Matematik

Læs mere

ANVENDT STATISTIK (med anvendelse af Excel)

ANVENDT STATISTIK (med anvendelse af Excel) MOGENS ODDERSHEDE LARSEN ANVENDT STATISTIK (med anvendelse af Excel) Hyppighed 0 18 16 14 1 10 8 6 4 0 6,94 7,0 7,1 7,18 7,6 7,34 7,4 7,5 7,58 7,66 Mere Hyppighed. udgave 008 FORORD Notatet er bygget op

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Sommer 2015 Institution Campus vejle Uddannelse Fag og niveau Lærer(e) Hold HHX Matematik B (Valghold) PEJE

Læs mere

Introduktion til GLIMMIX

Introduktion til GLIMMIX Introduktion til GLIMMIX Af Jens Dick-Nielsen jens.dick-nielsen@haxholdt-company.com 21.08.2008 Proc GLIMMIX GLIMMIX kan bruges til modeller, hvor de enkelte observationer ikke nødvendigvis er uafhængige.

Læs mere

Oversigt. 1 Intro: Regneeksempel og TV-data fra B&O. 2 Model. 3 Beregning - variationsopspaltning og ANOVA tabellen. 4 Hypotesetest (F-test)

Oversigt. 1 Intro: Regneeksempel og TV-data fra B&O. 2 Model. 3 Beregning - variationsopspaltning og ANOVA tabellen. 4 Hypotesetest (F-test) Kursus 02402/02323 Introducerende Statistik Forelæsning 11: Tovejs variansanalyse, ANOVA Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800

Læs mere

At træffe sine valg i en usikker verden - eller den statistiske modellerings rolle.

At træffe sine valg i en usikker verden - eller den statistiske modellerings rolle. At træffe sine valg i en usikker verden - eller den statistiske modellerings rolle. Af E. Susanne Christensen. Lektor i statistik. Institut for Matematiske Fag. Aalborg Universitet. I mange tilfælde og

Læs mere

Excel tutorial om indekstal og samfundsfag 2008

Excel tutorial om indekstal og samfundsfag 2008 Excel tutorial om indekstal og samfundsfag 2008 I denne note skal vi behandle data fra CD-rommen Samfundsstatistik 2008, som indeholder en mængde data, som er relevant i samfundsfag. Vi skal specielt analysere

Læs mere

Program. Logistisk regression. Eksempel: pesticider og møl. Odds og odds-ratios (igen)

Program. Logistisk regression. Eksempel: pesticider og møl. Odds og odds-ratios (igen) Faculty of Life Sciences Program Logistisk regression Claus Ekstrøm E-mail: ekstrom@life.ku.dk Odds og odds-ratios igen Logistisk regression Estimation og inferens Modelkontrol Slide 2 Statistisk Dataanalyse

Læs mere

Vejledning til Gym18-pakken

Vejledning til Gym18-pakken Vejledning til Gym18-pakken Copyright Maplesoft 2014 Vejledning til Gym18-pakken Contents 1 Vejledning i brug af Gym18-pakken... 1 1.1 Installation... 1 2 Deskriptiv statistik... 2 2.1 Ikke-grupperede

Læs mere

matx.dk Undersøgelsesdesign Statistik Dennis Pipenbring

matx.dk Undersøgelsesdesign Statistik Dennis Pipenbring matx.dk Undersøgelsesdesign Statistik Dennis Pipenbring 7. april 2011 Indhold 1 Undersøgelsesdesign 5 1.1 Kausalitet............................. 5 1.2 Validitet og bias......................... 6 1.3

Læs mere

Program dag 2 (11. april 2011)

Program dag 2 (11. april 2011) Program dag 2 (11. april 2011) Dag 2: 1) Hvordan kan man bearbejde data; 2) Undersøgelse af datamaterialet; 3) Forskellige typer statistik; 4) Indledende dataundersøgelser; 5) Hvad kan man sige om sammenhænge;

Læs mere

Projekt 1 Spørgeskemaanalyse af Bedst på Nettet

Projekt 1 Spørgeskemaanalyse af Bedst på Nettet Projekt 1 Spørgeskemaanalyse af Bedst på Nettet D.29/2 2012 Udarbejdet af: Katrine Ahle Warming Nielsen Jannie Jeppesen Schmøde Sara Lorenzen A) Kritik af spørgeskema Set ud fra en kritisk vinkel af spørgeskemaet

Læs mere

Skriv punkternes koordinater i regnearket, og brug værktøjet To variabel regressionsanalyse.

Skriv punkternes koordinater i regnearket, og brug værktøjet To variabel regressionsanalyse. Opdateret 28. maj 2014. MD Ofte brugte kommandoer i Geogebra. Generelle Punktet navngives A Geogebra navngiver punktet Funktionen navngives f Funktionen navngives af Geogebra Punktet på grafen for f med

Læs mere

ISCC. IMM Statistical Consulting Center. Brugervejledning til beregningsmodul til robust estimation af nugget effect. Technical University of Denmark

ISCC. IMM Statistical Consulting Center. Brugervejledning til beregningsmodul til robust estimation af nugget effect. Technical University of Denmark IMM Statistical Consulting Center Technical University of Denmark ISCC Brugervejledning til beregningsmodul til robust estimation af nugget effect Endelig udgave til Eurofins af Christian Dehlendorff 15.

Læs mere

Simpel Lineær Regression

Simpel Lineær Regression Simpel Lineær Regression Mål: Forklare variablen y vha. variablen x. Fx forklare Salg (y) vha. Reklamebudget (x). Vi antager at sammenhængen mellem y og x er beskrevet ved y = β 0 + β 1 x + u. y: Afhængige

Læs mere

Projektopgave Observationer af stjerneskælv

Projektopgave Observationer af stjerneskælv Projektopgave Observationer af stjerneskælv Af: Mathias Brønd Christensen (20073504), Kristian Jerslev (20072494), Kristian Mads Egeris Nielsen (20072868) Indhold Formål...3 Teori...3 Hvorfor opstår der

Læs mere

Kapitel 4 Sandsynlighed og statistiske modeller

Kapitel 4 Sandsynlighed og statistiske modeller Kapitel 4 Sandsynlighed og statistiske modeller Peter Tibert Stoltze stat@peterstoltze.dk Elementær statistik F2011 1 Indledning 2 Sandsynlighed i binomialfordelingen 3 Normalfordelingen 4 Modelkontrol

Læs mere

Fagligt samspil mellem Ma-B og SA-A Lisbeth Basballe, Mariagerfjord Gymnasium og Marianne Kesselhahn, Egedal Gymnasium og HF

Fagligt samspil mellem Ma-B og SA-A Lisbeth Basballe, Mariagerfjord Gymnasium og Marianne Kesselhahn, Egedal Gymnasium og HF Fagligt samspil mellem Ma-B og SA-A Lisbeth Basballe, Mariagerfjord Gymnasium og Marianne Kesselhahn, Egedal Gymnasium og HF Vi ønskede at planlægge og afprøve et undervisningsforløb, hvor anvendelse af

Læs mere

SPAM-mails. ERFA & Søren Noah s A4-Ark 2010. Køber varer via spam-mails. Læser spam-mails. Modtager over 40 spam-mails pr. dag. Modtager spam hver dag

SPAM-mails. ERFA & Søren Noah s A4-Ark 2010. Køber varer via spam-mails. Læser spam-mails. Modtager over 40 spam-mails pr. dag. Modtager spam hver dag SPAM-mails Køber varer via spam-mails Læser spam-mails Modtager over 40 spam-mails pr. dag Modtager spam hver dag 0 10 20 30 40 50 60 70 80 90 ERFA & Søren Noah s A4-Ark 2010 Datapræsentation: lav flotte

Læs mere

Statistik for ankomstprocesser

Statistik for ankomstprocesser Statistik for ankomstprocesser Anders Gorst-Rasmussen 20. september 2006 Resumé Denne note er en kortfattet gennemgang af grundlæggende statistiske værktøjer, man kunne tænke sig brugt til at vurdere rimeligheden

Læs mere

IDRÆTSSTATISTIK BIND 1

IDRÆTSSTATISTIK BIND 1 IDRÆTSSTATISTIK BIND 1 ii Det Naturvidenskabelige Fakultet Aarhus Universitet Reprocenter Preben Blæsild og Jørgen Granfeldt 2001 ISBN 87-87436-05-1 Bd.1 iii Forord Denne bog er skrevet til brug i et statistikkursus

Læs mere

Regnetest B: Praktisk regning. Træn og Test. Niveau: 9. klasse. Med brug af lommeregner

Regnetest B: Praktisk regning. Træn og Test. Niveau: 9. klasse. Med brug af lommeregner Regnetest B: Praktisk regning Træn og Test Niveau: 9. klasse Med brug af lommeregner 1 INFA-Matematik: Informatik i matematikundervisningen Et delprojekt under INFA: Informatik i skolens fag Et forskningsprogram

Læs mere

Simulering af stokastiske fænomener med Excel

Simulering af stokastiske fænomener med Excel Simulering af stokastiske fænomener med Excel John Andersen, Læreruddannelsen i Aarhus, VIA Det kan være en ret krævende læreproces at udvikle fornemmelse for mange begreber fra sandsynlighedsregningen

Læs mere

Sandsynlighedregning

Sandsynlighedregning MOGENS ODDERSHEDE LARSEN Sandsynlighedregning + = - P(A B) = P(A) + P(B) P(A B). 1. udgave 2007 FORORD Dette notat giver en kort gennemgang af de grundlæggende begreber i sandsynlighedsregning. Det forudsættes,

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Termin hvori undervisningen afsluttes: maj-juni, 2014 IBC-Kolding

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Termin hvori undervisningen afsluttes: Juni 2013 Roskilde

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Sommer 2014 Institution Campus Vejle Uddannelse HHX Fag og niveau Matematik B ( Valghold ) Lærer(e) LSP (

Læs mere

Easy Guide i GallupPC

Easy Guide i GallupPC Easy Guide i GallupPC Version. 6.00.00 Gallup A/S Masnedøgade 22-26 DK 2100 København Ø Telefon 39 27 27 27 Fax 39 27 50 80 Indhold SÅDAN KOMMER DU I GANG MED AT ANVENDE GALLUPPC... 2 TILFØJELSE AF UNDERSØGELSER

Læs mere

1. Opbygning af et regneark

1. Opbygning af et regneark 1. Opbygning af et regneark Et regneark er et skema. Vandrette rækker og lodrette kolonner danner celler, hvori man kan indtaste tal, tekst, datoer og formler. De indtastede tal og data kan bearbejdes

Læs mere

GPS stiller meget præcise krav til valg af målemetode

GPS stiller meget præcise krav til valg af målemetode GPS stiller meget præcise krav til valg af målemetode 1 Måleteknisk er vi på flere måder i en ny og ændret situation. Det er forhold, som påvirker betydningen af valget af målemetoder. - Der er en stadig

Læs mere

Tilpas: Hurtig adgang

Tilpas: Hurtig adgang Tilpas: Hurtig adgang Genveje, Se skærmtips Se tips Hold alt tasten nede. Og brug bogstaver Word Fanen Filer PDF dokument Brug skabelon Visninger Husk Luk ved fuldskærmsvisning Brug zoom skyder Marker,

Læs mere

Diagrammer visualiser dine tal

Diagrammer visualiser dine tal Diagrammer visualiser dine tal Indledning På de efterfølgende sider vil du blive præsenteret for nye måder at arbejde med Diagrammer på i Excel. Vejledningen herunder er vist i Excel 2007 versionen, og

Læs mere

18. december 2013 Mat B eksamen med hjælpemidler Peter Harremoës. P = 100 x 0.6 y 0.4 1000 = 100 x 0.6 y 0.4 10 = x 0.6 y 0.4 10 y 0.4 = x 0.

18. december 2013 Mat B eksamen med hjælpemidler Peter Harremoës. P = 100 x 0.6 y 0.4 1000 = 100 x 0.6 y 0.4 10 = x 0.6 y 0.4 10 y 0.4 = x 0. Opgave 6 Vi sætter P = 1000 og isolerer x i ligningen Se Bilag 2! P = 100 x 0.6 y 0.4 1000 = 100 x 0.6 y 0.4 10 = x 0.6 y 0.4 10 y 0.4 = x 0.6 ( 10 y 0.4 )1 /0.6 = x 10 1 /0.6 y 0.4 /0.6 = x x = 10 5 /3

Læs mere

Vejledning i at tegne boksplot i Excel 2007

Vejledning i at tegne boksplot i Excel 2007 Vejledning i at tegne boksplot i Excel 2007 Indhold Tegning af boksplot. Man kan ikke tegne flere boksplot på samme figur i Excel 2007, men man kan sammenligne to boksplot ved at tegne dem hver for sig

Læs mere

Kom i gang med JMP. Jens E. Overø. Gorm Gabrielsen. Statistik og analyse for økonomistuderende. Lektor i statistik. Lektor i statistik

Kom i gang med JMP. Jens E. Overø. Gorm Gabrielsen. Statistik og analyse for økonomistuderende. Lektor i statistik. Lektor i statistik Gorm Gabrielsen Lektor i statistik Jens E. Overø Lektor i statistik Kom i gang med JMP Statistik og analyse for økonomistuderende Copyright 2011 SAS Institute A/S, Copenhagen Denmark ISBN 978-87-984612-1-0

Læs mere

Introduktion til SPSS

Introduktion til SPSS Introduktion til SPSS Øvelserne på dette statistikkursus skal gennemføres ved hjælp af det såkaldte SPSS program. Det er erfaringsmæssigt sådan, at man i forbindelse af øvelserne på statistikkurser bruger

Læs mere

Matematik B. Højere handelseksamen

Matematik B. Højere handelseksamen Matematik B Højere handelseksamen hh141-mat/b-23052014 Fredag den 23. maj 2014 kl. 9.00-13.00 Matematik B Prøven består af to delprøver. Delprøven uden hjælpemidler består af opgave 1 til 5 med i alt 5

Læs mere

INDLEDNING...2 DATAMATERIALET... 2 KARAKTERISTIK AF POPULATIONEN... 4

INDLEDNING...2 DATAMATERIALET... 2 KARAKTERISTIK AF POPULATIONEN... 4 Indholdsfortegnelse INDLEDNING...2 DATAMATERIALET... 2 KARAKTERISTIK AF OULATIONEN... 4 DELOGAVE 1...5 BEGREBSVALIDITET... 6 Differentiel item funktionsanalyser...7 Differentiel item effekt...10 Lokal

Læs mere

FORMATERING AF REGNEARK

FORMATERING AF REGNEARK FORMATERING AF REGNEARK Indtil nu har vi set på, hvordan du kan udføre beregninger i dit regneark, og hvordan du kan redigere i regnearket, for hurtigt at få opstillet modellerne. Vi har derimod overhovedet

Læs mere

For at få tegnet en graf trykkes på knappen for graftegning. Knap for graftegning

For at få tegnet en graf trykkes på knappen for graftegning. Knap for graftegning Graftegning på regneark. Ved hjælp af Excel regneark kan man nemt tegne grafer. Man åbner for regnearket ligger under Microsoft Office. Så indtaster man tallene fra tabellen i regnearkets celler i en vandret

Læs mere

STATISTIKNOTER Simple binomialfordelingsmodeller

STATISTIKNOTER Simple binomialfordelingsmodeller STATISTIKNOTER Simple binomialfordelingsmodeller Jørgen Larsen IMFUFA Roskilde Universitetscenter Februar 1999 IMFUFA, Roskilde Universitetscenter, Postboks 260, DK-4000 Roskilde. Jørgen Larsen: STATISTIKNOTER:

Læs mere

Tak for kaffe! 17-10-2004 Tak for kaffe! Side 1 af 16

Tak for kaffe! 17-10-2004 Tak for kaffe! Side 1 af 16 Tak for kaffe! Jette Rygaard Poulsen, Frederikshavn Gymnasium og HF-kursus Hans Vestergaard, Frederikshavn Gymnasium og HF-kursus Søren Lundbye-Christensen, AAU 17-10-2004 Tak for kaffe! Side 1 af 16 Tak

Læs mere

Byggeøkonomuddannelsen

Byggeøkonomuddannelsen Byggeøkonomuddannelsen Risikoanalyse Successiv kalkulation Ken L. Bechmann 18. november 2013 1 Dagens emner Risikoanalyse og introduktion hertil Kalkulation / successiv kalkulation Øvelser og småopgaver

Læs mere

Afsluttende statistisk evaluering af SSD-projektet, Vejle kommune

Afsluttende statistisk evaluering af SSD-projektet, Vejle kommune Afsluttende statistisk evaluering af SSD-projektet, Vejle kommune Nedenstående er en beskrivelse af den kvantitative evaluering af projekt Trivsel gennem bevægelseslæring og forflytningskundskab. Vær opmærksom

Læs mere

Eksempel I. Tiden mellem kundeankomster på et posthus er eksponential fordelt med middelværdi µ =2minutter.

Eksempel I. Tiden mellem kundeankomster på et posthus er eksponential fordelt med middelværdi µ =2minutter. Eksempel I Tiden mellem kundeankomster på et posthus er eksponential fordelt med middelværdi µ =2minutter. Per Bruun Brockhoff IMM DTU 02402 Eksempler 1 Eksempel I Tiden mellem kundeankomster på et posthus

Læs mere

Hemmeligheden bag god maling!

Hemmeligheden bag god maling! Hemmeligheden bag god maling! Der findes mange forskellige typer og kvaliteter af maling på markedet. Ligeledes er der mange meninger om, hvad der adskiller god kvalitets-maling fra de billige malinger.

Læs mere

Om at finde bedste rette linie med Excel

Om at finde bedste rette linie med Excel Om at finde bedste rette linie med Excel Det er en vigtig og interessant opgave at beskrive fænomener i naturen eller i samfundet matematisk. Dels for at få en forståelse af sammenhængende indenfor det

Læs mere

Per Vejrup-Hansen STATISTIK. med Excel. 2. udgave

Per Vejrup-Hansen STATISTIK. med Excel. 2. udgave Per Vejrup-Hansen STATISTIK med Excel 2. udgave Per Vejrup-Hansen Statistik med Excel Per Vejrup-Hansen Statistik med Excel 2. trykte udgave 2012 1. e-bogsudgave 2012 Samfundslitteratur 2012 e-isbn: 978-87-593-1736-5

Læs mere