Integration i flere Variable. Steen Markvorsen Institut for Matematik, DTU

Størrelse: px
Starte visningen fra side:

Download "Integration i flere Variable. Steen Markvorsen Institut for Matematik, DTU"

Transkript

1 Integration i flere Variable Steen Markvorsen Institut for Matematik, DTU 14. februar 2006

2 2

3 Indhold 1 Introduktion Hvad er et punkt og hvordan ser vi det? Summer og integraler Dobbeltsummer, dobbeltintegraler, etc Kurveintegraler Hvad er en kurve? Motivering af kurveintegralet Det tangentielle kurveintegral Fladeintegraler Hvad er en flade? Motivering af fladeintegralet Omdrejningsflader Det ortogonale fladeintegral, fluen Planintegraler Hvad er et område i planen? Rumintegraler Hvad er et rumligt område? Motivering af rumintegralet Omdrejningslegemer Massemidtpunkter Hvad er et massemidtpunkt? Hvad er et kraftmoment? Inertimomenter Hvad er et inertimoment? Vektorfelter og deres flowkurver Hvad er et vektorfelt? Flowkurver for et vektorfelt

4 4 INDHOLD 9 Divergens og Gauss sætning Hvad er divergensen af et vektorfelt? Motivering af divergensen: Volumen-ekspansion Gauss divergens-sætning Rotation og Stokes sætning Hvad er rotationen af et vektorfelt? Stokes sætning En bro mellem divergens og rotation Fladen, randen, og normal-vektorfeltet Tubulære skaller og en afstandsfunktion Integration i skallen The Wall - Væggen Integration langs væggen Bevis for Stokes sætning Hvordan bruges Integrator4? Om at konstruere pakker med Maple-procedurer Eksempel: Beregning af et rumintegral over en massiv kasse

5 Kapitel 1 Introduktion Denne note handler om parameterfremstillinger for kurver, flader og rumlige områder og om integration af funktioner på sådanne geometriske objekter. Formålet er primært at opstille og motivere de generelle definitioner og beregninger af henholdsvis kurve- flade- og rum-integraler. Udgangspunktet er Talor s grænseformel (til 1. orden) for de koordinatfunktioner, der benttes til parameterfremstillingerne for kurverne, fladerne og de rumlige områder. Parameterfremstillingerne betragtes under ét som vektorfunktioner dvs. vektorafbildninger fra de simplest mulige parameterområder (simple delmængder af enten R, R 2, eller R 3 ) ind i rummet, dvs. ind i R 3. For fladerne benttes således altid et rektangulært parameterområde i R 2 ; og for de rumlige områder benttes altid et retvinklet kasseformet parameterområde i R 3. De punktvis lineariserede vektorfunktioner benttes til konstruktion af de såkaldte Jacobifunktioner. Jacobifunktionen for en given parameterfremstilling måler hvor meget parameterområdet lokalt deformeres når det udsættes for den tilhørende afbildning. Det er Jacobi-funktionerne der således giver direkte anledning til approksimerende sumformler for den totale længde, det totale areal og det totale volumen af henholdsvis kurver, flader og rumlige områder. Og det er disse summer, der på naturlig måde motiverer og illustrerer de generelle beregningsudtrk for kurve- flade- og rum-integralerne. Undervejs introduceres Integrator4. Det er en pakke med Maple procedurer, som er udviklet specielt med henblik på eksempelbaseret visuel læring af de indledende integrationsbegreber og deres mangfoldige anvendelser. Vi giver eksempler på, hvordan integration i flere variable anvendes til beregning og forståelse af massemidtpunkter, inertimomenter, kraftmomenter, etc. Flowkurverne for et givet vektorfelt i rummet kan findes og visualiseres med Integrator4. De vigtige begreber divergens og rotation for et vektorfelt fremtræder derved som naturlige størrelser til beskrivelsen af den bevægelse i rummet, der har et givet vektorfelt som hastighedsfelt. Til sidst i noten benttes de gennemgåede metoder og resultater til at præsentere to klassiske perler indenfor flervariabel global analse: Gauss sætning og Stokes sætning for vektorfelter i rummet. Hermed rettes en stor tak til Kurt Munk Andersen og Karsten Schmidt for konstruktive kommentarer og forslag til tidligere versioner af denne note. 5

6 6 KAPITEL 1. INTRODUKTION 1.1 Hvad er et punkt og hvordan ser vi det? Figur 1.1: To detaljer fra Skolen i Athen af Raphael. Se Euclid og Pthagoras i referencen [Mac]. Med henblik på at kunne lokalisere en begivenhed eller et sted p 1 i rummet beskriver vi sædvanligvis stedet med 3 koordinater ( 1, 1, 1 ). Det kan selvsagt kun lade sig gøre hvis vi har et koordinatsstem til rådighed i rummet. Med et passende valgt fast koordinatsstem bliver det muligt at analsere flere punkters beliggenhed i forhold til hinanden. Når koordinaterne for punkterne alle refererer til ét og samme sædvanlige retvinklede (,,)-koordinatsstem kan vi f.eks. udtrkke afstanden d(p 1, p 2 ) mellem to givne punkter p 1 og p 2 ved det velkendte Pthagoræiske udtrk: d(p 1, p 2 ) = ( 1 2 ) 2 + ( 1 2 ) 2 + ( 1 2 ) Figur 1.2: Et punkt og to rette linjestkker i rummet med et sædvanligt retvinklet koordinatsstem. Punktets koordinater med hensn til det viste koordinatsstem er (,,) = ( 1 2, 1, 1 2 ). Det ene linjestkke har konstant -koordinat 1 mens det andet har konstant -koordinat 1 2.

7 1.2. SUMMER OG INTEGRALER 7 Bemærkning 1.1. Som illustreret i Figur 1.2 kan det være en fordel at vise punkter og kurver i rummet i passende fede versioner, således at særligt vigtige punkter optræder som små kugler og kurver figurerer som tuber. Meningen er selvsagt den, at det så tpisk bliver en del lettere at se den indbrdes beliggenhed og de relative størrelser af de geometriske objekter. At visualisere på denne måde hvad der foregår er en af de primære intensioner med Integrator Summer og integraler På den reelle u-akse betragter vi en fast valgt kontinuert reel funktion f (u) på intervallet [0,1]. For et givet helt tal n > 0 gør vi nu følgende. Først deles intervallet [0,1] i n lige store delintervaller, som derved hver får længden δ u = n 1. Delintervallernes venstre endepunkter har u koordinaterne: u 1 = 0, u 2 = 1 n, u 3 = 2 n, u 4 = 3 n,..., u n 1 = n 2 n, u n = n 1 n Det vil sige, at det i te intervals venstre endepunkt har u koordinaten u i = (i 1) 1 n = (i 1)δ u, hvor i = 1,2,3,...,n 1,n. Opgave 1.2. Bemærk, at hvis vi forøger antallet af delintervaller n med 1, og nu ønsker en deling af [0, 1] i n + 1 lige store delintervaller, så vil alle de tidligere placerede n venstre endepunkter i intervallet [0,1] skulle flttes lidt (pånær u 1 ) for at give plads til det ekstra delinterval. Hvor meget? For et fast antal, n,betragter vi nu funktionsværdien af f i hvert af delintervallernes venstre endepunkter, altså de n værdier f (0), f ( 1 n ), f ( 2 n ), f ( 3 n 1 n ),..., f ( n ). Summen af disse værdier vil sædvanligvis afhænge meget af antallet n af funktionsværdier, men hvis vi først dividerer hver enkelt funktionsværdi med n får vi følgende vægtede sum af funktionsværdierne: i=n ( I( f,n,[0,1]) = f (i 1) 1 ) 1 i=n i=n i=1 n n = f ((i 1)δ u ) δ u = f (u i ) δ u. (1.1) i=1 i=1 Udtrkket helt til højre i ovenstående ligning antder, at vi er på vej til at rekonstruere integralet af f (u) over intervallet [0,1] idet vi groft sagt og groft skrevet har: i=n 1 i=1 0 og δ u du når n. Opgave 1.3. Vis, at den vægtede sum af funktionsværdierne af f i ligning (1.1) er begrænset af f s største værdi og af f s mindste værdi i intervallet [0,1]. Den vægtede sum er ikke blot begrænset for alle n, men har også en grænseværdi for n gående imod uendelig, nemlig integralet af f (u) over intervallet [0,1]: 1 lim I( f,n,[0,1]) = f (u)du. n 0.

8 8 KAPITEL 1. INTRODUKTION Hvis vi bentter den samme strategi med en deling af det generelle interval [a,b] på u-aksen i n lige store delintervaller, gælder tilsvarende: Sætning 1.4. Lad f (u) betegne en kontinuert funktion på intervallet [a,b]. For ethvert n inddeles intervallet i n lige store delintervaller, hver med længden δ u = (b a)/n. Disse delintervallers venstre endepunkter har så koordinaterne u i = a + (i 1)δ u for i = 1,2,3,...,n 1,n. Lad I( f,n,[a,b]) betegne følgende sum: Så gælder I( f,n,[a,b]) = = = i=n i=1 i=n i=1 ( f a + (i 1) b a ) ( ) b a n n f (a + (i 1)δ u ) δ u i=n f (u i ) δ u. i=1 b lim I( f,n,[a,b]) = f (u)du. n a Summer af tpen I( f,n,[a,b]) vil vi derfor i det følgende kalde integralsummer. Bemærk, at det helt afgørende i sætningen er, at der faktisk eksisterer en grænseværdi for integralsummerne når blot f (u) er kontinuert på intervallet [a,b]. Opgave 1.5. Lad f (u) = 3u, u [0,1]. Så er I( f,n,[0,1]) = i=n i=1 ( 3(i 1) 1 ) 1 n n Bent Maple først til at beregne denne sum som funktion af n og dernæst til at eftervise sætning 1.4 i dette konkrete tilfælde, dvs. 1 lim I( f,n,[0,1]) = f (u)du = 3 n 0 2 Opgave 1.6. Lad f (u) = 1 + u + u 2, u [ 1,1]. Så er ( I( f,n,[ 1,1]) = = i=n i=1 i=n i=1 ( (i 1) 2 ) ( (i 1) 2 ) ) 2 2 n n n ( 8 + 4n + 2n 2 16i 4in + 8i 2 ) Bent igen Maple til at beregne denne sum som funktion af n og dernæst til at eftervise 1 lim I( f,n,[ 1,1]) = ( 1 + u + u 2 ) du = 8 n 1 3 n 3... (1.2) (1.3). (1.4)

9 1.2. SUMMER OG INTEGRALER u Figur 1.3: Output fra kommandoen leftbo i student-pakken i Maple. Figuren viser arealrepræsentationen af integralsummen I( f,n,[ 1,1]) i opgave 1.6 med n = 20 delintervaller i intervallet [a,b] = [ 1,1]. De 20 addender i summen er repræsenteret ved rektangulære søjler med den fælles bredde (b a)/20 = 1/10 og højder givet ved værdierne af funktionen f (u) = 1 + u + u 2 i delintervallernes venstre endepunkter. Bevis uden brug af Maple, at der gælder følgende om størrelsen af de del-summer, der (pånær faktorer, der kan sættes udenfor tegnet) optræder i det sidste udtrk for I( f,n,[ 1,1]) i ligning (1.3): i=n i=1 i=n i=1 i=n i=1 i=n i=1 i=n i=1 i=n i=1 ( ) 1 = 1 n 2 n 3 ( n ) n 3 = 1 n ( n 2 ) = 1 n 3 ( i n 3 ) ( ) in n 3 ( i 2 ) n 3 = n + 1 2n 2 = n + 1 2n = 2n2 + 3n + 1 6n 2 Find grænseværdien for hver af disse summer for n og eftervis derved igen, at ligning (1.4) er korrekt.

10 10 KAPITEL 1. INTRODUKTION 1.3 Dobbeltsummer, dobbeltintegraler, etc. For funktioner af to variable har vi tilsvarende Sætning 1.7. Lad f (u,v) betegne en kontinuert reel funktion på et rektangel [a,b] [c,d] i (u,v)- planen. Intervallet [a,b] deles i n lige store delintervaller og intervallet [c,d] deles i m lige store delintervaller. Så har hvert u-delinterval længden δ u = (b a)/n og hvert v-delinterval har længden δ v = (d c)/m. Tilsvarende bliver delepunkternes koordinater i (u,v)-parameterområdet (som jo er rektanglet [a,b] [c,d] i R 2 ): (u 1,v 1 ) = (a,c), (u 1,v j ) = (a,c + ( j 1)δ v ), (u i,v 1 ) = (a + (i 1)δ u,c), (u i,v j ) = (a + (i 1)δ u,c + ( j 1)δ v ),... (u n,v m ) = (a + (n 1)δ u,c + (m 1)δ v ). (1.5) Lad nu II( f,n,m,[a,b] [c,d]) betegne følgende dobbeltsum: II( f,n,m,[a,b] [c,d]) ( i=n ( = f = = j=m j=1 j=m j=1 j=m j=1 i=1 ( i=n i=1 a + (i 1) b a n, c + ( j 1)d c m f (a + (i 1)δ u, c + ( j 1)δ v ) δ u ) δ v ( i=n f ( ) ) u i, v j δu δ v. i=1 ) ( b a n ) ) ( ) d c m (1.6) Så gælder ( ) lim lim II( f,n,m,[a,b] [c,d]) = n m d ( b c a ) f (u,v)du dv. (1.7) Summer af tpen II( f, n, m,[a, b] [c, d]) vil vi kalde dobbelt integralsummer. Opgave 1.8. Lad f (u,v) = uv 2 for u [0,1] og v [ 1,1]. Bestem for ethvert n og m værdien af II( f,n,m,[0,1] [ 1,1]). Brug Maple. Eftervis sætning 1.7, dvs. ligning (1.7) i dette konkrete tilfælde. Opgave 1.9. Overvej, om det er vigtigt at summere, integrere, og finde grænseværdier i netop den rækkefølge, som anvises med parenteserne i ligning (1.7) eller om de kan ombttes vilkårligt. Efterprøv på eksemplet i opgave 1.8.

11 1.3. DOBBELTSUMMER, DOBBELTINTEGRALER, ETC. 11 Figur 1.4: Volumen-repræsentation af integralsummen II( f,10,10,[0,1] [0,1]) for funktionen f (u,v) = uv. De 100 addender i summen er repræsenteret ved søjler med samme kvadratiske tværsnit og med højder, som er givet ved de respektive værdier af funktionen f (u,v) = uv i (u,v)-kvadratets delepunkter. Histogrammer som dette kan konstrueres med Maple s indbggede kommando matriplot. Opgave Formulér den sætning, som generaliserer de to foregående sætninger, dvs. sætning 1.4 og sætning 1.7, til funktioner f (u, v, w) af 3 variable (u, v, w) [a, b] [c, d] [h, l] idet hvert af de tre intervaller først inddeles i henholdsvis n, m, og q lige store delintervaller. Check din sætning på funktionen f (u,v,w) = uvw på samme måde som i Opgaverne 1.5 og 1.6.

12 12 KAPITEL 1. INTRODUKTION

13 Kapitel 2 Kurveintegraler 2.1 Hvad er en kurve? En parametriseret kurve K r i rummet er givet ved en parameterfremstilling således: K r : r(u) = ((u),(u),(u)) R 3, u [a,b]. (2.1) Eksempel 2.1. Figur 2.1 viser tre forskellige parametriseringer af det rette linjestkke fra (0, 2, 1 2 ) til (0,2, 2 1 ). Figur 2.2 viser to forskellige parametriseringer af en cirkel med radius 1 og centrum i (0,0,0). Figur 2.3 viser tilsvarende 2 forskellige parametriseringer af en skruelinje. Figur 2.1: Linjestkket fra (0, 2, 1 2 ) til (0, 2, 1 2 ) er her parametriseret på 3 forskellige måder: r 1(u) = ( 0,2u, 1 2), u [ 1, 1]; r2 (u) = ( 0, 2u 3, 1 2), u [ 1,1], og r3 (u) = ( 0, 2sin( π 2 u), 1 2), u [ 1, 1]. Markeringerne på de enkelte linjestkker stammer fra den inddeling af det fælles parameterinterval [ 1, 1] som består af 20 lige store delintervaller. Bemærk, at længden af de tre kurver klart er den samme, selv om parametriseringerne er ret forskellige. Vi antager her og i det følgende, at de tre koordinatfunktioner (u), (u) og (u) i parameterfremstillingerne er pæne funktioner af u vi antager simplethen, at de kan differentieres vilkårligt mange gange, således at de specielt har kontinuerte afledede (u), (u) og (u) i intervallet [a,b]. Så har vi jo også, at r (u) = (u) 2 + (u) 2 + (u) 2 (2.2) 13

14 14 KAPITEL 2. KURVEINTEGRALER er en kontinuert funktion i intervallet [a, b]. Specielt kan denne funktion derfor integreres over intervallet, og det har vi om lidt brug for i Definition 2.7 nedenfor. Definition 2.2. En parameterfremstilling r(u) for en kurve K r - som i (2.1) - siges at være en regulær parameterfremstilling hvis følgende betingelse er opfldt: r (u) 0 for alle u [a,b]. (2.3) Opgave 2.3. Hvilke af parameterfremstillingerne i figurerne 2.1, 2.2, 2.3, og 2.4 er regulære? Bemærkning 2.4. En parametriseret kurve er andet og mere end blot billedmængden (punktmængden) r([a, b]), idet selve parametriseringen eksempelvis kan foreskrive at dele af punktmængden skal gennemløbes flere gange, se eksempel 2.12 nedenfor. Man kan gerne tænke på intervallet [a, b] som en retlinet elastik i hvile. Vektor-afbildningen r deformerer elastikken (ind i rummet) ved at bøje, strække eller komprimere elastikken. En lokal strækning gør selvfølgelig elastikken lokalt længere, mens en lokal komprimering gør elastikken lokalt kortere. Et første naturligt spørgsmål er derfor hvor lang hele elastikken er efter brug af afbildningen r. Kurveintegralet indføres blandt andet med henblik på at finde den totale længde af den deformerede kurve i rummet. Vi kan ligeledes forestille os, at den parametriserede kurve selv er masseløs, men at den til gengæld efter deformationen med r farves med en maling på en sådan måde at massetætheden af malingen langs med kurven (i gram pr. centimeter, f.eks.) er givet som en funktion f af stedet (,,) i rummet altså sådan at massetætheden af malingen på stedet r(u) er f (r(u)). Opgaven er da at finde den totale masse af den deformerede og farvelagte parametriserede kurve. Bemærk, at med lidt fantasi kan vi endda gerne tillade, at massetætheden f antager negative værdier. Disse forestillinger skal naturligvis kun hjælpe os til at få en passende intuitiv forståelse af de indførte begreber; vi skal senere se adskillige andre tolkninger og brug af kurveintegralet. Figur 2.2: En cirkel i (,)-planen er her parametriseret på 2 forskellige måder: r 1 (u) = (cos(πu), sin(πu), 0), u [ 1, 1], og r 2 (u) = ( cos(πu 3 ), sin(πu 3 ), 0 ), u [ 1, 1]. Markeringerne s- tammer fra den inddeling af parameterintervallet [ 1, 1] som består af 20 lige store delintervaller. Længden af cirklen er 2π - uafhængig af parametriseringen.

15 2.1. HVAD ER EN KURVE? 15 Figur 2.3: En skruelinje i rummet. Se eksempel 2.5. Eksempel 2.5. Skruelinjen i Figur 2.3 er igen præsenteret med 2 forskellige parametriseringer: r 1 (u) = ( cos(2πu), sin(2πu), π 5 u), u [ 1, 1], og r 2 (u) = ( cos(2πu 3 ), sin(2πu 3 ), π 5 u3), u [ 1, 1]. Markeringerne stammer fra den inddeling af parameterintervallet [ 1, 1] som består af 40 lige store delintervaller. Kurverne er igen klart lige lange (se opgave 2.16) Figur 2.4: En knude. Se eksempel 2.6 Eksempel 2.6. Knuden i Figur 2.4 har den noget komplicerede parameterfremstilling r(u) = ( 1 3 cos(u) 1 15 cos(5u) sin(2u), 1 3 sin(u) 1 15 sin(5u) 1 2 cos(2u), 1 3 cos(3u)), hvor u [ π,π]. Definition 2.7. Lad f (,,) betegne en kontinuert funktion på R 3. Kurveintegralet af funktionen f over en parametriseret kurve K r defineres ved K r f dµ = b a f (r(u)) Jacobi r (u)du, hvor (2.4)

16 16 KAPITEL 2. KURVEINTEGRALER Figur 2.5: Carl Gustav Jakob Jacobi ( ). Se [Mac]. Jacobi r (u) = r (u) (2.5) betegner længden af tangentvektoren r (u) til kurven på stedet r(u). Læg mærke til, at det smbol, der står på venstre siden af lighedstegnet i (2.4), kun er et smbol for kurveintegralet. Det integral vi skal regne ud står på højre side og det kan lade sig gøre at integrere, fordi både f, r og r er kontinuerte, således at integranden er kontinuert. Hvis vi indsætter r(u) = ((u),(u),(u)) i udtrkket for kurveintegralet får vi: K r f dµ = b a f ((u),(u),(u)) (u) 2 + (u) 2 + (u) 2 du. (2.6) Bemærkning 2.8. Parameterfremstillingen (2.1) for kurven er regulær hvis parameterfremstillingens Jacobi-funktion er positiv: Jacobi r (u) > 0 for alle u i det givne interval [a,b]. Eksempel 2.9. Givet funktionen f (,, ) = 7 og et parametriseret cirkelstkke C r : r(u) = ((u),(u),(u)) = (cos(u), sin(u), 0), u [ π 2,π]. Kurveintegralet af f over C r er C r f dµ = = = π π/2 π π/2 π π/2 f ((u),(u),(u)) (u) 2 + (u) 2 + (u) 2 du 7cos(u) ( sin(u)) 2 + (cos(u)) 2 du 7cos(u) du = 7. Som nævnt, og som vi vil godtgøre nedenfor - i afsnittet Motivering af kurveintegralet - kan kurveintegraler benttes til at finde længder af parametriserede kurver og til at finde den totale masse af parametriserede kurver med givne massetætheder. Hvis massetætheden er konstant 1 fås længden (man kan finde længden af en sådan kurve ved at veje den):

17 2.1. HVAD ER EN KURVE? 17 Definition Længden af den parametriserede kurve K r : r(u) = ((u),(u),(u)), u [a,b] defineres som kurveintegralet L(K r ) = 1dµ = K r Eksempel Det parametriserede cirkelstkke C r : r(u) = (cos(u), sin(u), 0), u [ π 2,π] b a r (u) du. (2.7) har længden L(C r ) = 1dµ = C r = = π π/2 π π/2 π π/2 (u) 2 + (u) 2 + (u) 2 du ( sin(u)) 2 + (cos(u)) 2 du 1 du = 3π 2. Eksempel Den parametriserede kurve C r : r(u) = (cos(u), sin(u), 0), u [ π 2,7π] har længden L( C r ) = 15π 2 svarende til at parametriseringen snor det lange interval flere gange rundt på enhedscirklen! Eksempel Den parametriserede skruelinje har længden K r : r(u) = (cos(u), sin(u), u), u [ 2π,2π] L(K r ) = 1dµ = K r = = 2π 2π 2π 2π 2π 2π (u) 2 + (u) 2 + (u) 2 du ( sin(u)) 2 + (cos(u)) du 2 du = 4π 2. Definition Parameterfremstillingen i (2.1) for kurven K r siges at være en-entdig hvis der for alle u 1 [a,b] og for alle u 2 [a,b] gælder følgende: u 1 u 2 medfører at r(u 1 ) r(u 2 ). (2.8)

18 18 KAPITEL 2. KURVEINTEGRALER Opgave Hvilke af parameterfremstillingerne i Figurerne 2.1, 2.2, og 2.3, henholdsvis i eksemplerne 2.11, 2.12, og 2.13, er en-entdige? Opgave Vis, at Definition 2.10 giver samme længde for de tre parametriseringer af linjestkket i Figur 2.1, samme længde af de to cirkelstkker i Figur 2.2 og samme længde af de to skruelinjer i Figur 2.3. Opgave Find længden (med 3 decimaler) af knuden i Figur 2.4. Opgave Find regulære, en-entdige parameterfremstillinger af linjestkket (Figur 2.1), cirklen (Figur 2.2), og skruelinjen (Figur 2.3), således at alle har parameterintervallet [0,π]. 2.2 Motivering af kurveintegralet Hvis vi deler intervallet [a,b] i n lige store dele, så har hvert delinterval længden δ u = (b a)/n og delepunkternes koordinater i [a,b] bliver: u 1 = a, u 2 = u 1 + δ u = a + δ u, u 3 = u 2 + δ u = a + 2δ u, u 4 = u 3 + δ u = a + 3δ u,... b = u n + δ u = a + nδ u. Med hver af disse fast valgte værdier af u i som udviklingspunkt kan vi Talorudvikle hver af de 3 koordinat-funktioner for r(u) = ((u), (u), (u)) til første orden med tilhørende epsilonfunktioner: (u) = (u i ) + (u i )(u u i ) + ε (u u i ) u u i (u) = (u i ) + (u i )(u u i ) + ε (u u i ) u u i (u) = (u i ) + (u i )(u u i ) + ε (u u i ) u u i. Disse Talor udviklinger kan vi samle og udtrkke med vektor-notation således: (2.9) (2.10) r(u) = r(u i ) + r (u i ) (u u i ) + ε i (u u i ) ρ i, (2.11) hvor vi bruger den korte skrivemåde ρ i = u u i = (u u i ) 2 for afstanden mellem den variable værdi u og den faste værdi u i i parameterintervallet. Desuden gælder ε i (u u i ) = (ε (u u i ), ε (u u i ), ε (u u i )) (0,0,0) = 0 for u u i. Hvert del-interval [u i,u i +δ u ] afbildes på kurve-stkket r(u), u [u i,u i +δ u ], og dette kurvestkke kan vi approksimere med den lineære del af udtrkket i (2.11), som fås ved at fjerne ε i -bidraget fra højre side i (2.11): r appi (u) = r(u i ) + r (u i ) (u u i ), u [u i,u i + δ u ]. (2.12) Se Figurerne 2.6 og 2.7 hvor de approksimerende linjestkker er vist for en parametriseret cirkel for to forskellige parametriseringer og for forskellige værdier af n. Det i te linjestkke har pr. definition kontakt med kurven i sit ene endepunkt. Det kalder vi kontaktpunktet for linjestkket.

19 2.2. MOTIVERING AF KURVEINTEGRALET 19 Længde Hvert enkelt af de i alt n approksimerende linjestkker har en længde, se Figur 2.6. Længden af det i te linjestkke er ifølge (2.12) L i = r appi (u i + δ u ) r appi (u i ) = r (u i ) δ u. (2.13) Summen af disse n længder er (for store værdier af n) klart en god approksimation til længden af kurven, således at vi kan skrive L app (n) = n i=1 L i = n i=1 r (u i ) δ u, (2.14) Da ovenstående sum er en integralsum (se afsnit 1.2) for den kontinuerte funktion r (u) over intervallet [a,b], opnås i grænsen, hvor n går imod uendelig: L app (n) L = b a r (u) du for n. (2.15) Vi har dermed motiveret definitionen af længden af en kurve som angivet ovenfor, nemlig som kurveintegralet af den konstante funktion 1 over den parametriserede kurve. Figur 2.6: Kurven r(u) = (cos(2πu), sin(2πu), 0), u [ 1,1], med henholdsvis 5, 10 og 20 approksimerende linjestkker. Det er rimeligt at definere længden af kurven som den totale længde af de approksimerende linjestkker i den grænse hvor antallet af linjestkker går mod uendelig. Figurerne er del af output fra Integrator4-kommandoen kurveintappro. Se i afsnit 11 hvordan Integrator4- pakken downloades og anvendes. Masse Hvis vi antager, at hvert enkelt linjestkke i (2.12) tildeles en konstant massetæthed givet ved værdien af funktionen f (,,) i linjestkkets kontaktpunkt med kurven, så får vi massen af det i te linjestkke: M i = f ((u i ),(u i ),(u i )) r (u i ) δ u = f (r(u i )) r (u i ) δ u.

20 20 KAPITEL 2. KURVEINTEGRALER Figur 2.7: Kurven r(u) = ( cos(2πu 3 ), sin(2πu 3 ), 0 ), u [ 1,1], med henholdsvis 30, 60 og 100 approksimerende linjestkker. Det er stadig rimeligt at definere længden af kurven som den totale længde af de approksimerende linjestkker i den grænse hvor antallet af approksimerende linjestkker går mod uendelig. Figurerne er igen del af output fra kurveintappro - nu anvendt på den ne parameterfremstilling. Den totale masse af hele sstemet af linjestkker er derfor følgende, som er en god approksimation til massen af hele kurven, når kurven tildeles massetætheden f (r(u)) på stedet r(u) : M app (n) = n i=1 M i = n f (r(u i )) r (u i ) δ u. (2.16) i=1 Dette er igen en integralsum, men nu for den kontinuerte funktion f (r(u)) r (u) over intervallet [a,b]. Vi får altså i grænsen, hvor n går mod uendelig: M app (n) M = b a f (r(u)) r (u) du for n. (2.17) Dermed har vi motiveret definitionen af massen af en kurve med massetætheden f (r(u)) (for så vidt denne funktion er positiv i [a, b]) og dermed den generelle definition af kurveintegralet, Definition Det tangentielle kurveintegral Lad V(,, ) være et vektorfelt i rummet (se eventuelt afsnit 8.1). Det tangentielle kurveintegral af V(,,) langs en given parametriseret kurve K r er kurveintegralet af projektionen (med fortegn) af V(r(u)) på kurvens tangent repræsenteret ved r (u). Integranden f i kurveintegralet er altså i dette tilfælde givet ved skalarproduktet (prikproduktet) f (r(u)) = V(r(u)) e(u), hvor e(u) er defineret ved e(u) = { r (u)/ r (u) hvis r (u) 0 0 hvis r (u) = 0.

21 2.3. DET TANGENTIELLE KURVEINTEGRAL 21 Bemærk, at så har vi for alle u: e(u) r (u) = r (u). Det tangentielle kurveintegral Tan(V,K r ) af V langs K r er derfor relativt simpelt at udregne - vi behøver faktisk ikke først at finde Jacobi r (u), altså længden af r (u) : Tan(V,K r ) = V e dµ K r = = = b a b a b a (V(r(u)) e(u)) Jacobi r (u)du V(r(u)) (e(u) r (u) ) du V(r(u)) r (u) du. (2.18) Bemærkning Tilsvarende kan man definere det ortogonale kurveintegral Ort(V,K r ) af V langs K r ved at projicere V(r(u)) vinkelret ind på den plan i rummet, som selv står vinkelret på r (u) og dernæst finde kurveintegralet af længden af den projektion (som funktion af u). Bemærkning Bemærk, at den sidste integrand i (2.18) er kontinuert når V(,,) og r (u) er kontinuerte selv om det ikke umiddelbart fremgår af definitionen (vektorfeltet e(u) er jo ikke nødvendigvis kontinuert - medmindre r(u) er en regulær parameterfremstilling). Eksempel Lad V(,,) = (0,,). Vi ønsker at bestemme det tangentielle kurveintegral af V langs følgende parametriserede stkke af en skruelinje Ved at indsætte i (2.18) fås K r : r(u) = (cos(u), sin(u), u), u [0, π 2 ]. Tan(V,K r ) = = = π/2 0 π/2 0 π/2 0 V(r(u)) r (u)du (0,u,sin(u)) ( sin(u),cos(u),1)du (ucos(u) + sin(u))du = [usin(u)] π/2 0 = π 2 Opgave Lad V(,,) = (0,,). Bestem både det tangentielle og det ortogonale kurveintegral af V langs følgende parametriserede stkke af en cirkel K r : r(u) = (cos(u), sin(u), 0), u [0, π 2 ]. Brug Maple til beregningerne: Hent og brug kurveint-kommandoen fra Integrator4-pakken. Se i afsnit 11 hvordan pakken kan downloades og anvendes til formålet..

22 22 KAPITEL 2. KURVEINTEGRALER Figur 2.8: Skruelinjen r(u) = ( cos(u), sin(u), 1 10 u), u [ 2π,2π] og vektorfeltet V(,,) = (, ( + ), 2) antdet langs skruelinjen. Figuren er en del af output fra Integrator4-kommandoen tangkurveint.

23 Kapitel 3 Fladeintegraler 3.1 Hvad er en flade? En parametriseret flade i rummet er givet ved en parameterfremstilling F r : r(u,v) = ((u,v),(u,v),(u,v)) R 3, u [a,b], v [c,d]. (3.1) Definition 3.1. Lad f (,,) betegne en kontinuert funktion på R 3. Fladeintegralet af funktionen f over den parametriserede flade F r defineres ved d b f dµ = f (r(u,v)) Jacobi r (u,v)dudv, (3.2) F r c a hvor Jacobi r (u,v) = r u(u,v) r v(u,v) (3.3) er arealet af det parallelogram, der på stedet r(u,v) udspændes af de to tangentvektorer r u(u,v) og r v(u,v) til de respektive koordinatkurver igennem punktet r(u,v) på fladen. Definition 3.2. Parameterfremstillingen (3.1) siges at være en regulær parameterfremstilling hvis der gælder følgende: Jacobi r (u,v) > 0 for alle u [a,b], v [c,d]. (3.4) Definition 3.3. Som for parametriserede kurver siges parameterfremstillingen i (3.1) at være en-entdig hvis forskellige punkter i definitionsmængden afbildes i forskellige punkter i billedmængden. Definition 3.4. Arealet af den parametriserede flade F r : r(u,v) = ((u,v),(u,v),(u,v)), u [a,b], v [c,d] defineres som fladeintegralet af den konstante funktion 1: d b A(F r ) = 1dµ = Jacobi r (u,v)dudv, (3.5) F r c a 23

24 24 KAPITEL 3. FLADEINTEGRALER 3.2 Motivering af fladeintegralet Hvis vi ligesom for kurveintegralet deler begge intervallerne [a,b] og [c,d] i henholdsvis n og m lige store dele, så har hvert u-delinterval længden δ u = (b a)/n og hvert v-delinterval har længden δ v = (d c)/m. Tilsvarende bliver delepunkternes koordinater i (u,v)-parameterområdet (som jo er rektanglet [a,b] [c,d] i R 2 ) - jvf. afsnit 1.3: (u 1,v 1 ) = (a,c), (u 1,v j ) = (a,c + ( j 1)δ v ), (u i,v 1 ) = (a + (i 1)δ u,c), (u i,v j ) = (a + (i 1)δ u,c + ( j 1)δ v ),... (b,d) = (a + nδ u,c + mδ v ). Med hvert af disse faste punkter (u i,v j ) som udviklingspunkt kan vi nu som før Talorudvikle hver af de 3 koordinat-funktioner for r(u,v) = ((u,v),(u,v),(u,v)) til første orden med tilhørende epsilon-funktioner: (3.6) r(u,v) = r(u i,v j ) +r u(u i,v j ) (u u i ) +r v(u i,v j ) (v v j ) +ρ i j ε i j (u u i,v v i ), (3.7) hvor u [u i, u i + δ u ], v [ v j, v j + δ v ]. Her betegner ρi j = (u u i ) 2 + (v v j ) 2 afstanden mellem det variable punkt (u,v) og det faste udviklingspunkt (u i,v j ) i parameterområdet. Der gælder her, at ε i j (u u i,v v j ) (0,0,0) = 0 for (u u i,v v j ) (0,0). Hvert delrektangel [u i,u i + δ u ] [v j,v j + δ v ] afbildes på flade-stkket r(u,v), u [u i,u i + δ u ],v [v j,v j + δ v ] og dette fladestkke kan vi approksimere med den lineære del af udtrkket i (3.7), som fås ved at fjerne ε i j -bidraget fra højre side i (3.7): r appi j (u,v) = r(u i,v j ) + r u(u i,v j ) (u u i ) + r v(u i,v j ) (v v j ), (3.8) hvor u og v stadig gennemløber del-intervallerne u [u i, u i + δ u ], v [ v j, v j + δ v ]. Disse lineære approksimationer er parallelogrammer, som udspændes af de to tangentvektorer r u(u i,v j ) δ u og r v(u i,v j ) δ v. Se Figur 3.1 hvor de approksimerende parallelogrammer er vist for en parametrisering af en kegleflade. Areal Hvert enkelt af de ialt n m approksimerende parallelogrammer har et areal. Arealet af det (i, j) te parallelogram er længden af krdsproduktet af de to vektorer, der udspænder det pågældende parallelogram: A i j = (r u(u i,v j ) δ u ) (r v(u i,v j ) δ v ) = Jacobi r (u i,v j ) δ u δ v. (3.9)

25 3.2. MOTIVERING AF FLADEINTEGRALET 25 Opgave 3.5. Bevis denne påstand: Arealet af et parallelogram er længden af krdsproduktet af de to vektorer, der udspænder parallelogrammet. Summen af disse ialt nm arealer er klart en god approksimation til arealet af hele fladestkket, således at vi har A app (n,m) = m n j=1 i=1 A i j = m n j=1 i=1 Jacobi r (u i,v j ) δ u δ v. (3.10) Da ovenstående sum er en dobbelt integralsum for den kontinuerte funktion Jacobi r (u,v) over parameter-rektanglet [a,b] [c,d] får vi i grænsen, hvor n og m begge går mod uendelig (se afsnit 1.3): A app (n,m) A = d b c a Jacobi r (u,v)dudv for n, m. (3.11) Dette er begrundelsen for definitionen af arealet af en parametriseret flade som angivet ovenfor, nemlig som fladeintegralet af den konstante funktion 1. Figur 3.1: Kegle-fladen er givet ved parameterfremstillingen r(u, v) = (u cos(v), u sin(v), u), u [ 1,1], v [ π,π]. Et sstem af koordinatkurver på fladen er vist til venstre og de tilsvarende arealapproksimerende parallelogrammer er vist til højre. Figurerne er del af output fra Integrator4- kommandoen fladeint. Opgave 3.6. Vis, at den givne parameterfremstilling i Figur 3.1 hverken er regulær eller enentdig. Overvej, om der findes en regulær parameterfremstilling for keglefladen. Opgave 3.7. Hvorfor er de approksimerende parallelogrammer på den øvre halvdel af keglefladen i Figur 3.1 mindre end de tilsvarende parallelogrammer (med samme afstand til toppunktet) på den nedre halvdel? Opgave 3.8. Vis, at de approksimerende parallelogrammer til højre i Figur 3.2 alle er kvadrater.

26 26 KAPITEL 3. FLADEINTEGRALER Figur 3.2: Denne vindelflade er givet ved parameterfremstillingen r(u, v) = (sinh(u) cos(v), sinh(u) sin(v), v). Figuren er del af output fra Integrator4-kommandoen fladeint og viser en approksimation af fladen med parallelogrammer, som faktisk alle er kvadrater af forskellig størrelse. Se opgave 3.8. Masse Hvis vi nu antager, at hvert enkelt parallelogram i (3.8) tildeles en konstant massetæthed givet ved værdien af funktionen f (,, ) i parallelogrammets kontaktpunkt med fladen, så får vi massen af det (i, j) te parallelogram : M i j = f ((u i,v j ),(u i,v j ),(u i,v j )) Jacobi r (u i,v j ) δ u δ v = f (r(u i,v j )) Jacobi r (u i,v j ) δ u δ v. Den totale masse af hele sstemet af parallelogrammer er derfor følgende, som er en god approksimation til massen af hele fladen når denne gives massetætheden f (r(u, v)) i punktet r(u, v). M app (n,m) = m n j=1 i=1 M i j = m n j=1 i=1 f (r(u i,v j )) Jacobi r (u i,v j ) δ u δ v. (3.12) Dette er en dobbelt integralsum for den kontinuerte funktion f (r(u,v)) Jacobi r (u,v) over parameter-rektanglet [a,b] [c,d]. Vi får altså i grænsen, hvor n og m går mod uendelig: M app (n,m) M = d b c a f (r(u,v))jacobi r (u,v)dudv for n, m. (3.13) Dermed har vi motiveret definitionen af massen af en parametriseret flade med massetætheden f (r(u,v)) og dermed også den generelle definition af fladeintegralet, Definition 3.1.

27 3.3. OMDREJNINGSFLADER Omdrejningsflader Omdrejningsflader er de specielle flader, der fremkommer ved at dreje en plan kurve omkring en ret linje (omdrejningsaksen) som også ligger i samme plan. Kurven kaldes en profil-kurve eller en frembringer-kurve. Det antages, at profilkurven ikke skærer omdrejningsaksen. Profilkurven vælges tpisk i (, )-planen og drejes om -aksen i et (,, )-koordinatsstem. Profil-kurven kan så repræsenteres ved en parameterfremstilling således: G r : r(u) = (g(u),0,h(u)) R 3, u [a,b], (3.14) hvor g(u) > 0 og h(u) er givne funktioner af parameteren u. Den omdrejningsflade, der fremkommer ved at dreje G r en hel gang omkring -aksen har derfor parameterfremstillingen: FG r : r(u,v) = (g(u)cos(v),g(u)sin(v),h(u)) R 3, u [a,b], v [ π,π]. (3.15) Figur 3.3: Omdrejnings-fladen her er givet ved parameterfremstillingen r(u, v) = (g(u)cos(v),g(u)sin(v),h(u)), u [ π,π], v [ π,π], hvor g(u) = sin(u) og h(u) = u. Figurerne er del af output fra fladeint. Opgave 3.9. Vis, at Jacobifunktionen Jacobi r (u,v) for parameterfremstillingen r(u,v) for den generelle omdrejningsflade FG r i (3.15) er givet ved Jacobi r (u,v) = g(u) (h (u)) 2 + (g (u)) 2. (3.16) 3.4 Det ortogonale fladeintegral, fluen Lad V(,,) være et vektorfelt i rummet. Det ortogonale fladeintegral - også kaldet fluen af V(,,) gennem en given parametriseret flade F r er fladeintegralet af projektionen (med fortegn) af V(r(u, v)) på fladens normal repræsenteret ved den enhedsvektor, der er proportional med krdsproduktet r u(u,v) r v(u,v) (hvor dette er forskelligt fra 0). Integranden f i fladeintegralet er da givet ved skalarproduktet (prikproduktet) f (r(u,v)) = V(r(u,v)) n F (u,v),

28 28 KAPITEL 3. FLADEINTEGRALER Figur 3.4: Denne torus er omdrejningsfladen givet ved parameterfremstillingen r(u, v) = (g(u)cos(v),g(u)sin(v),h(u)), u [ π,π], v [ π,π], hvor nu g(u) = 2 + cos(u) og h(u) = sin(u). Figurerne er del af output fra fladeint. hvor n F (u,v) er defineret ved { r n F (u,v) = u(u,v) r v(u,v)/ r u(u,v) r v(u,v) hvis r u(u,v) r v(u,v) 0 0 hvis r u(u,v) r v(u,v) = 0 Fluen af V gennem F r i retningen n F er derfor relativt simpel at udregne - vi behøver ikke først at finde længden af r u(u,v) r v(u,v) (jævnfør omformningen af det tangentielle kurveintegral): Flu(V,F r ) = V n F dµ F r = = = d b c a d b c a d b c a (V(r(u,v)) n F (u,v)) Jacobi r (u,v)dudv (V(r(u,v)) n F (u,v)) r u(u,v) r v(u,v) dudv V(r(u,v)) (r u(u,v) r v(u,v))dudv. (3.17) Bemærkning Tilsvarende kan man definere det tangentielle fladeintegral Tan(V,F r ) af V over fladen F r ved at projicere V(r(u,v)) vinkelret ind på tangentplanen til F r (udspændt af r u(u,v) og r v(u,v) i punktet r(u,v)) og dernæst finde fladeintegralet af længden af denne projektion (som funktion af (u,v)). Bemærkning Bemærk igen, at den sidste integrand i (3.17) er kontinuert og dermed integrabel, selv om det ikke umiddelbart fremgår af definitionen, idet vektorfeltet n F (u,v) ikke nødvendigvis er kontinuert - medmindre r(u,v) er en regulær parameterfremstilling. Opgave Vis, at parameterfremstillingen i Figur 3.5 hverken er regulær eller en-entdig. Find en regulær og en-entdig parameterfremstilling for kalotten. Vis, at arealet af kalotten er uafhængigt af de valgte parameterfremstillinger. Bestem det tangentielle fladeintegral for vektorfeltet V(,, ) = (0, 0, ) langs kuglekalotten.

29 3.4. DET ORTOGONALE FLADEINTEGRAL, FLUXEN 29 Figur 3.5: Denne kalot af en kugleflade er givet ved parameterfremstillingen r(u, v) = (sin(u)cos(v),sin(u)sin(v),cos(u)), u [0, π 3 ], v [ π,π]. Vektorfeltet er givet ved V(,,) = (0,0,). Et sstem af koordinatkurver på fladen er vist til højre sammen med vektorfeltet evalueret i koordinatkurvernes skæringspunkter. Figurerne er en del af output fra fluint-kommandoen anvendt på den givne parameterfremstilling og det givne vektorfelt. Opgave Et solfangertag har form som grafen for funktionen f (,) = 1 2 over det kvadratiske område (,) [ 1,1] [ 1,1] i (,)-planen i et sædvanligt retvinklet (,,)- koordinatsstem i rummet. Se Figur 3.6 til venstre. Lad os lidt simplificerende antage, at Solen stråler fra en skfri himmel ind på solfangertaget til et givet tidspunkt t langs det enhedsvektorfelt i rummet, som til tiden t er parallelt med vektoren V = V(t) = (0, cos(t), sin(t)) hvor t [0,π]. Solen står altså op til tiden t = 0 og sender lige på det tidspunkt vandrette stråler parallelt med -aksen i retningen (0, 1,0). Midt på dagen, til tiden t = π 2 er strålerne lodrette og parallelle med -aksen i retningen (0,0, 1). Til tiden t = π går solen ned, men lige før det sker, sender den (næsten) vandrette stråler parallelt med -aksen i retningen (0,1,0). Den energi solfangeren optager pr. arealenhed og pr. tidsenhed på et givet sted antages at være lig med prikproduktet V n mellem Solstråle-vektorfeltet V og tagfladens indadrettede enhedsnormalvektor n på stedet. Bemærk, at det indadrettede normalfelt n ikke nødvendigvis er lig med n F. Spørgsmål A: 1. Begrund antagelsen om, at energioptaget er lig med prikproduktet V n, og bemærk, at energioptag selvsagt kun kan finde sted hvor omtalte prikprodukt er positiv. 2. Hvad er solfangerens energioptag pr. tidsenhed på et givet tidspunkt, t, på dagen? 3. Hvad er solfangerens totale energioptag på en dag?

30 30 KAPITEL 3. FLADEINTEGRALER Spørgsmål B: Antag, at solfangertaget roteres π/2 omkring -aksen, således at tagrggen bliver parallel med -aksen. Hvad er den roterede solfangers totale energioptag på en dag? Spørgsmål C: Antag, at den oprindelige solfanger kun roteres henholdsvis π/6, π/4, og π/3 omkring - aksen, således at tagrggens vinkel i forhold til -aksen bliver skiftevis netop disse vinkler. Hvad er de roterede solfangeres totale energioptag på en dag? Figur 3.6: Solfangertagene i opgave 3.13 og 3.14 henholdsvis. Opgave Samme spørgsmål (spørgsmål A) som i opgave 3.13 men nu for det tag, der har form som grafen for funktionen f (,) = over cirkelskiven med radius 1 og centrum i (0,0) i (,)-planen, se Figur 3.6 til højre.

31 Kapitel 4 Planintegraler v u Figur 4.1: Dette område i planen er givet ved følgende parameterfremstilling, der repræsenterer polære koordinater i planen: r(u,v) = (ucos(v), usin(v)), u [0,1], v [ π,π]. Figurerne er del af output fra planintappro-kommandoen. Parameterrektanglet ses til venstre. Den deformeres og afbildes (ved brug af r) på det plane område i midten. Til højre er antdet placeringen og størrelsen (pånær en faktor 4) af de til det givne net hørende approksimerende parallelogrammer (her: rektangler). 4.1 Hvad er et område i planen? Et plant område kan betragtes som en flade, der ligger helt i en plan, f.eks. i (,)-planen. Planintegraler er derfor fladeintegraler. Specifikt har vi derfor også direkte følgende motiverede definitioner: Et parametriseret område i planen er givet ved en parameterfremstilling P r : r(u,v) = ((u,v),(u,v)) R 2, u [a,b], v [c,d]. (4.1) Definition 4.1. Lad f (,) betegne en kontinuert funktion på R 2. Planintegralet af funktionen f over det parametriserede område P r defineres ved d b f dµ = f (r(u,v)) Jacobi r (u,v)dudv, (4.2) P r c a 31

32 32 KAPITEL 4. PLANINTEGRALER hvor Jacobi r (u,v) = r u(u,v) r v(u,v) sin(θ(u,v)) (4.3) er arealet af det parallelogram i planen, der på stedet r(u, v) udspændes af de to tangentvektorer r u(u,v) og r v(u,v) til de respektive koordinatkurver igennem punktet r(u,v) i planen (funktionen θ(u,v) [0,π] betegner vinklen mellem disse tangentvektorer). Figur 4.2: Parabelkoordinater. Dette område i planen er givet ved parameterfremstillingen r(u, v) = (uv, 1 2 (u2 v 2 )), u [ 1,1], v [0,1]. Figuren til højre antder igen et sstem af areal-approksimerende parallelogrammer. Figurerne er del af output fra planintappro-kommandoen. Figur 4.3: Elliptiske koordinater. Dette område er givet ved parameterfremstillingen r(u, v) = (cosh(u) cos(v), sinh(u) sin(v)), u [0, 1], v [ π, π]. Figurerne er del af output fra planintapprokommandoen. Definition 4.2. Parameterfremstillingen (4.1) siges at være en regulær parameterfremstilling for det plane område hvis der gælder følgende: Jacobi r (u,v) > 0 for alle u [a,b], v [c,d]. (4.4) Definition 4.3. Som for parametriserede flader siges parameterfremstillingen i (4.1) at være en-entdig hvis forskellige punkter i definitionsmængden afbildes i forskellige punkter i billedmængden i planen.

33 4.1. HVAD ER ET OMRÅDE I PLANEN? 33 Opgave 4.4. Vis, at Jacobi r (u,v) (i (4.4)) også kan findes som den numeriske værdi af determinanten af den matri, der som søjler har koordinaterne for de to vektorer r u(u,v) og r v(u,v).

34 34 KAPITEL 4. PLANINTEGRALER

35 Kapitel 5 Rumintegraler 5.1 Hvad er et rumligt område? Et parametriseret rumligt område er på samme måde som kurver og flader givet ved en parameterfremstilling, nu med følgende form Ω r : r(u,v,w) = ((u,v,w),(u,v,w),(u,v,w)) R 3, u [a,b], v [c,d], w [h,l]. (5.1) Definition 5.1. Lad f (,,) betegne en kontinuert funktion på R 3. Rumintegralet af funktionen f over det parametriserede rumlige område Ω r defineres ved Ω r f dµ = l d b h c a f (r(u,v,w)) Jacobi r (u,v,w)dudvdw, hvor (5.2) Jacobi r (u,v,w) = [r u(u,v,w), r v(u,v,w), r w(u,v,w)] = (r u(u,v,w) r v(u,v,w)) r w(u,v,w) er volumenet (her beregnet som et rumprodukt) af det parallelepipedum, der på stedet r(u, v, w) udspændes af de tre koordinatkurve-tangentvektorer r u(u,v,w), r v(u,v,w) og r w(u,v,w). Opgave 5.2. Vis, at Jacobi r (u,v,w) også kan findes som den numeriske værdi af determinanten af den matri, der som søjler har koordinaterne for de tre vektorer r u(u,v,w), r v(u,v,w) og r w(u,v,w). Bemærkning 5.3. Parameterfremstillingen i (5.1) kaldes en regulær parameterfremstilling hvis Jacobi r (u,v,w) > 0 for alle u [a,b], v [c,d], w [h,l]. Definition 5.4. Som for kurver og flader vil vi kalde parameterfremstillingen i (5.1) en-entdig hvis forskellige punkter i definitionsmængden afbildes i forskellige punkter i billedmængden. Definition 5.5. Volumenet af det rumlige område Ω r : r(u,v,w) = ((u,v,w),(u,v,w),(u,v,w)), u [a,b], v [c,d], w [h,l] 35 (5.3)

36 36 KAPITEL 5. RUMINTEGRALER defineres som rumintegralet af den konstante funktion 1: Vol(Ω r ) = 1dµ = Ω r l d b h c a Jacobi r (u,v,w)dudvdw. (5.4) Figur 5.1: Billeder af det rumlige område givet ved parameterfremstillingen r(u, v, w) = (uvcos(w),uvsin(w), 1 2 (u2 v 2 )), u [ 1 2,1], v [ 1 2,1], w [π,2π]. Figurerne viser to sstemer af volumen-approksimerende parallellepipida. Figurerne er del af output fra rumint-kommandoen. Opgave 5.6. Vis, at parameterfremstillingen i Figur 5.1 er regulær og en-entdig. w u v Figur 5.2: Det rumlige område i Figur 5.1 opnås ved at vektorafbildningen r deformerer (u, v, w)- parameterkassen (til venstre) ind i (,, )-rummet (som vist til højre). Forskriften for deformationen er netop givet ved parameterfremstillingen r(u,v,w) = (uvcos(w),uvsin(w), 1 2 (u2 v 2 )), u [ 1 2,1], v [ 1 2,1], w [π,2π].

37 5.2. MOTIVERING AF RUMINTEGRALET Motivering af rumintegralet Intervallerne [a,b], [c,d] og [h,l] inddeles i henholdsvis n, m og q lige store dele. Så har hvert u-delinterval længden δ u = (b a)/n, hvert v-delinterval har længden δ v = (d c)/m og hvert w-interval har længden δ w = (l h)/q. Tilsvarende bliver delepunkternes koordinater i (u,v,w)- parameterområdet (som her er det retvinklede kasse-område [a,b] [c,d] [h,k] i R 3, se Figur 5.2): (u 1,v 1,w 1 ) = (a,c,h),... (u i,v j,w k ) = (a + (i 1)δ u,c + ( j 1)δ v,h + (k 1)δ w ),... (b,d,l) = (a + nδ u,c + mδ v,h + qδ w ). (5.5) Med hvert af disse faste punkter (u i,v j,w k ) som udviklingspunkt kan vi igen Talor-udvikle hver af de 3 koordinat-funktioner for r(u,v,w) = ((u,v,w),(u,v,w),(u,v,w)) til første orden og med tilhørende epsilon-funktioner: r(u,v,w) = r(u i,v j,w k ) +r u(u i,v j,w k ) (u u i ) +r v(u i,v j,w k ) (v v j ) +r w(u i,v j,w k ) (w w k ) +ρ i jk ε i jk (u u i,v v j,w w k ), (5.6) hvor u [u i, u i + δ u ], v [ v j, v j + δ v ], w [ w j, w j + δ w ]. Afstanden mellem det variable punkt (u,v,w) og det faste punkt (u i,v j,w k ) i parameterområdet betegnes med ρ i jk og vi har som før ε i jk (u u i,v v j,w w k ) 0 for (u u i,v v j,w w k ) (0,0,0). Hvert parameter-delområde eller delkasse [u i,u i + δ u ] [v j,v j + δ v ] [w k,w k + δ w ] afbildes på det rumlige billed-område r(u,v,w), u [u i,u i + δ u ],v [v j,v j + δ v ],w [w k,w k + δ w ] i billedrummet og dette område kan vi approksimere med den lineære del af udtrkket i (5.6), som fås ved at fjerne ε i jk -bidraget fra højre side i (5.6): r appi jk (u,v,w) = r(u i,v j,w k ) +r u(u i,v j,w k ) (u u i ) +r v(u i,v j,w k ) (v v j ) +r w(u i,v j,w k ) (w w k ), (5.7) hvor vi stadig har at u [u i, u i + δ u ], v [ v j, v j + δ v ], w [ w j, w j + δ w ]. Disse lineære rumlige approksimationer er parallelepipeda, som udspændes af de tre tangentvektorer r u(u i,v j,w k ) δ u, r v(u i,v j,w k ) δ v og r w(u i,v j,w k ) δ w.

38 38 KAPITEL 5. RUMINTEGRALER Volumen Hvert enkelt af de ialt n m q approksimerende parallelepipeda har et volumen. Volumenet af det (i, j, k) te parallelepipedum er den numeriske værdi af rumproduktet af de tre vektorer, der udspænder det pågældende parallelepipedum: Vol i jk = [r u(u i,v j,w k ) δ u ),(r v(u i,v j,w k ) δ v ),(r w(u i,v j,w k ) δ w )] = Jacobi r (u i,v j,w k ) δ u δ v δ w. (5.8) Opgave 5.7. Bevis denne påstand: Volumenet af et parallelepipedum er den numeriske værdi af rumproduktet af de tre udspændende vektorer. Summen af de ialt nmq volumener er en god approksimation til volumenet af hele det rumlige område, således at vi har Vol app (n,m,q) = q m n k=1 j=1 i=1 q m n k=1 j=1 i=1 = Vol i jk Jacobi r (u i,v j,w k ) δ u δ v δ w. (5.9) Da ovenstående sum er en tredobbelt integralsum for den kontinuerte funktion Jacobi r (u,v,w) over parameter-kassen [a,b] [c,d] [h,l] får vi i grænsen, hvor n, m og q alle går mod uendelig: Vol app (n,m,q) Vol = l d b h c a Jacobi r (u,v,w)dudvdw for n, m, q. (5.10) Dette er begrundelsen for definitionen af volumenet af et parametriseret område i rummet som angivet ovenfor, nemlig som rumintegralet af den konstante funktion 1. Figur 5.3: Dette rumlige område er defineret ved hjælp af såkaldte Mawell-Clinderkoordinater. Parameterfremstillingen for området er følgende: r(u, v, w) = (1+u+ep(u) cos(v), v+ep(u) sin(v), w), u [ 1 4, 1 4 ], v [ π,π], w [ 1,1]. Til højre er vist et sstem af approksimerende parallelepipeda (pånær en faktor 8). Figurerne er konstruerede med rumintappro-kommandoen.

39 5.2. MOTIVERING AF RUMINTEGRALET 39 Masse Hvis vi nu antager, at hvert enkelt parallelepipedum givet ved (5.7) tildeles en konstant massetæthed som er givet ved værdien af funktionen f (,,) på stedet r(u i,v j,w k ), så bliver massen af det (i, j,k) te parallelepipedum: M i jk = f ((u i,v j,w k ),(u i,v j,w k ),(u i,v j,w k )) Jacobi r (u i,v j,w k ) δ u δ v δ w = f (r(u i,v j,w k )) Jacobi r (u i,v j,w k ) δ u δ v δ w. (5.11) Den totale masse af hele sstemet af appproksimerende parallelepipeda er derfor følgende, som nødvendigvis er en god approksimation til massen af hele det rumlige område: M app (n,m,q) = q m n M i jk k=1 j=1 i=1 q m n k=1 j=1 i=1 = f (r(u i,v j,w k )) Jacobi r (u i,v j,w k ) δ u δ v δ w. (5.12) Dette er en tredobbelt integralsum for den kontinuerte funktion f (r(u,v,w)) Jacobi r (u,v,w) over parameter-kassen [a,b] [c,d] [h,l]. Vi får i grænsen, hvor n, m og q går mod uendelig: M app (n,m,q) M = for n,m,q. l d b h c a f (r(u,v,w))jacobi r (u,v,w)dudvdw (5.13) Dermed har vi motiveret definitionen af massen af et parametriseret område med massetætheden f (r(u,v,w)) og dermed også den generelle Definition 5.1 af rumintegralet. Figur 5.4: Dette rumlige område er givet ved parameterfremstillingen r(u, v, w) = (u sin(v)cos(w),u sin(v)sin(w),u cos(v)), u [1,2], v [0,π], w [ π,π]. Koordinatkurverne på en af de afgrænsende sideflader er vist til venstre og et sstem af volumen-approksimerende parallellepipida er vist til højre. Figurerne er konstruerede med rumint-kommandoen.

40 40 KAPITEL 5. RUMINTEGRALER Opgave 5.8. I Figur 5.4 betragtes følgende parametrisering af et rumligt område: r(u,v,w) = (u sin(v)cos(w),u sin(v)sin(w),u cos(v)), u [1,2], v [0,π], w [ π,π]. Ved afbildning af det kasseformede parameterområde forventes ialt 6 sideflader for billed-mængden. Vi ser på figuren kun een af de 6 sideflader. Hvor er de andre og hvordan ser de ud? 5.3 Omdrejningslegemer Omdrejningslegemer er de specielle rumlige områder, der fremkommer ved at dreje et plant område (f.eks. defineret i (, )-planen) omkring en omdrejningsakse i samme plan (-aksen), som antages at ligge udenfor området. Jævnfør definitionen af omdrejningsflader i afsnit 3.3. Det plane område - profilområdet - repræsenteres ved en parameterfremstilling således: P r : r(u,v) = (g(u,v),0,h(u,v)) R 3, u [a,b], v [c,d], (5.14) hvor g(u,v) > 0 og h(u,v) er givne funktioner af parametrene u og v. Den flade, der fremkommer ved at dreje profilområdet en hel gang omkring -aksen har derfor parameterfremstillingen: ΩP r : r(u,v,w) = (g(u,v)cos(w), g(u,v)sin(w), h(u,v)) R 3, u [a,b], v [c,d], w [ π,π]. (5.15) Figur 5.1 viser halvdelen af et omdrejningslegeme. Figur 5.4 viser overfladen af et omdrejningslegeme defineret ved brug af kuglekoordinater. Clinder-koordinater i rummet giver tilsvarende velkendte omdrejningslegemer som f.eks. det, der er vist i Figur 5.5. Opgave 5.9. Vis, at Jacobifunktionen Jacobi r (u,v,w) for parameterfremstillingen r(u,v,w) for den generelle omdrejningsflade FG r i (5.15) er givet ved Jacobi r (u,v,w) = g(u,v) g u(u,v)h v(u,v) h u(u,v)g v(u,v). (5.16)

Integration i flere Variable. Steen Markvorsen Institut for Matematik, DTU

Integration i flere Variable. Steen Markvorsen Institut for Matematik, DTU Integration i flere Variable Steen Markvorsen Institut for Matematik, DTU 20. februar 2008 2 Indhold 1 Introduktion 5 1.1 Hvad handler det om?................................ 6 1.2 Approksimerende summer

Læs mere

Kurve- og plan-integraler

Kurve- og plan-integraler enote 22 1 enote 22 Kurve- og plan-integraler Vi vil her med udgangspunkt i de metoder og resultater der er opstillet i enote 21 vise, hvordan Riemann-integralerne derfra kan benyttes til blandt andet

Læs mere

Integration i flere Variable. Steen Markvorsen Institut for Matematik, DTU

Integration i flere Variable. Steen Markvorsen Institut for Matematik, DTU Integration i flere Variable Steen Markvorsen Institut for Matematik, DTU 13. februar 2007 2 Indhold 1 Introduktion 5 1.1 Hvad er et punkt og hvordan ser vi det?...................... 6 1.2 Approksimerende

Læs mere

Integration i flere Variable. Steen Markvorsen DTU Matematik

Integration i flere Variable. Steen Markvorsen DTU Matematik Integration i flere Variable Steen Markvorsen DTU Matematik 20. februar 2009 2 Indhold 1 Introduktion 5 1.1 Hvad handler det om?................................ 6 1.1.1 Rumfang-problemet............................

Læs mere

Flade- og rum-integraler

Flade- og rum-integraler enote 25 1 enote 25 Flade- og rum-integraler Flade og rumintegraler opstilles her på stort set samme måde som kurve- og planintegralerne i enote 22, som derved sammen med den grundlæggende generelle indførelse

Læs mere

Integration i flere Variable

Integration i flere Variable Integration i flere Variable Steen Markvorsen Institut for Matematik og Learning Lab DTU 28. januar 2005 2 Indhold Introduktion 5. Hvad er et punkt og hvordan ser vi det?...................... 6.2 Summer

Læs mere

STEEN MARKVORSEN DTU MATEMATIK

STEEN MARKVORSEN DTU MATEMATIK STEEN MARKVORSEN DTU MATEMATIK 2 Indhold 1 Introduktion 5 1.1 Hvad handler det om?................................ 6 1.1.1 Rumfang-problemet............................ 6 1.2 Approksimerende summer og

Læs mere

Flade- og rum-integraler

Flade- og rum-integraler enote 23 1 enote 23 Flade- og rum-integraler Flade og rumintegraler opstilles her på stort set samme måde som kurve- og planintegralerne i enote 22, som derved sammen med den grundlæggende generelle indførelse

Læs mere

Vektorfelter langs kurver

Vektorfelter langs kurver enote 25 1 enote 25 Vektorfelter langs kurver I enote 24 dyrkes de indledende overvejelser om vektorfelter. I denne enote vil vi se på vektorfelternes værdier langs kurver og benytte metoder fra enote

Læs mere

OPGAVE 1 Det nedenstående klip er fra et Maple-ark hvor en reel funktion f (x, y) med definitionsmængden (x,y) x 2 + y 2 < 1 } bliver undersøgt:

OPGAVE 1 Det nedenstående klip er fra et Maple-ark hvor en reel funktion f (x, y) med definitionsmængden (x,y) x 2 + y 2 < 1 } bliver undersøgt: DANMARKS TEKNISKE UNIVERSITET Skriftlig prøve den 7. maj 00. Kursus Navn: Matematik (-timers prøve for forårssemesteret). Kursus nr. 0005 Tilladte hjælpemidler: Alle af DTU tilladte hjælpemidler må medbringes

Læs mere

Gradienter og tangentplaner

Gradienter og tangentplaner enote 16 1 enote 16 Gradienter og tangentplaner I denne enote vil vi fokusere lidt nærmere på den geometriske analyse og inspektion af funktioner af to variable. Vi vil især studere sammenhængen mellem

Læs mere

Eksamen maj 2019, Matematik 1, DTU

Eksamen maj 2019, Matematik 1, DTU Eksamen maj 2019, Matematik 1, DTU NB: Nedenstående udregninger viser flere steder mere end én metode. Det er der IKKE tid til eksamen! Ligeledes er der ikke krav om eller tid til at illustrere med plots.

Læs mere

Funktioner af to variable

Funktioner af to variable enote 15 1 enote 15 Funktioner af to variable I denne og i de efterfølgende enoter vil vi udvide funktionsbegrebet til at omfatte reelle funktioner af flere variable; vi starter udvidelsen med 2 variable,

Læs mere

Eksamen maj 2018, Matematik 1, DTU

Eksamen maj 2018, Matematik 1, DTU Eksamen maj 2018, Matematik 1, DTU NB: Nedenstående udregninger viser flere steder mere end én metode. Det er der IKKE tid til eksamen! Ligeledes er der ikke krav om eller tid til at illustrere med plots!

Læs mere

Mat 1. 2-timersprøve den 13. maj 2017.

Mat 1. 2-timersprøve den 13. maj 2017. Mat. -timersprøve den. maj 7. JE.5.7 Opgave restart:with(plots): En funktion f af to reelle variable er for x, y s, givet ved f:=(x,y)-y/(x^+y^); f d x, y / y x Cy f(x,y); y x Cy Spørgsmål I x, y Kplanen

Læs mere

Andengradsligninger i to og tre variable

Andengradsligninger i to og tre variable enote 0 enote 0 Andengradsligninger i to og tre variable I denne enote vil vi igen beskæftige os med andengradspolynomierne i to og tre variable som også er behandlet og undersøgt med forskellige teknikker

Læs mere

Maj 2013 (alle opgaver og alle spørgsmål)

Maj 2013 (alle opgaver og alle spørgsmål) Maj 2013 (alle opgaver og alle spørgsmål) Alternativ besvarelse (med brug af Maple til beregninger, incl. pakker til VektorAnalyse2 og Integrator8). Jeg gider ikke håndregne i de simple spørgsmål! Her

Læs mere

Kapitel 1. Planintegraler

Kapitel 1. Planintegraler Kapitel Planintegraler Denne tekst er en omarbejdet version af kapitel 7 i Gunnar Mohrs noter til faget DiploMat 2, og opgaverne er et lille udpluk af opgaver fra Mogens Oddershede Larsens bog Matematik

Læs mere

Maj 2015 (alle opgaver og alle spørgsmål)

Maj 2015 (alle opgaver og alle spørgsmål) Maj 2015 (alle opgaver og alle spørgsmål) Alternativ besvarelse (med brug af Maple til beregninger, incl. pakker til VektorAnalyse2 og Integrator8). Ved eksamen er der ikke tid til f.eks. at lave illustrationer,

Læs mere

STEEN MARKVORSEN DTU COMPUTE 2016

STEEN MARKVORSEN DTU COMPUTE 2016 STEEN MARKVORSEN DTU COMPUTE 2016 2 Indhold 1 Regulære flader i rummet 5 1.1 Det sædvanlige koordinatsystem i rummet..................... 5 1.2 Graf-flader for funktioner af to variable......................

Læs mere

Vektorfelter. enote Vektorfelter

Vektorfelter. enote Vektorfelter enote 24 1 enote 24 Vektorfelter I enote 6 indføres og studeres vektorer i plan og rum. I enote 16 ser vi på gradienterne for funktioner f (x, y) af to variable. Et gradientvektorfelt for en funktion af

Læs mere

Integralregning Infinitesimalregning

Integralregning Infinitesimalregning Udgave 2.1 Integralregning Infinitesimalregning Noterne gennemgår begreberne integral og stamfunktion, og anskuer dette som et redskab til bestemmelse af arealer under funktioner. Noterne er supplement

Læs mere

Matematisk modellering og numeriske metoder. Lektion 13

Matematisk modellering og numeriske metoder. Lektion 13 Matematisk modellering og numeriske metoder Lektion 3 Morten Grud Rasmussen 9. november 25 Divergens af et vektorfelt [Sektion 9.8 og.7 i bogen, s. 43]. Definition af og og egenskaber for divergens Lad

Læs mere

MATEMATIK A-NIVEAU-Net Forberedelsesmateriale

MATEMATIK A-NIVEAU-Net Forberedelsesmateriale STUDENTEREKSAMEN SOMMERTERMIN 13 MATEMATIK A-NIVEAU-Net Forberedelsesmateriale 6 timer med vejledning Forberedelsesmateriale til de skriftlige prøver sommertermin 13 st131-matn/a-6513 Forberedelsesmateriale

Læs mere

Supplement til Matematik 1GB. Jan Philip Solovej

Supplement til Matematik 1GB. Jan Philip Solovej Supplement til Matematik 1GB Jan Philip Solovej ii c 2001 Jan Philip Solovej, Institut for Matematiske Fag, Københavns Universitet. Alle har tilladelse til at reproducere hele eller dele af dette materiale

Læs mere

Stokes rotationssætning

Stokes rotationssætning enote 27 1 enote 27 Stokes rotationssætning I denne enote vil vi benytte Gauss divergenssætning fra enote 26 til at motivere, bevise, og illustrere Stokes sætning, som udtrykker en præcis sammenhæng mellem

Læs mere

DTU. License to Thrill

DTU. License to Thrill XM @ DTU License to Thrill Den bedste rette linje S. Markvorsen & P. G. Hjorth Institut for Matematik, Bgning 303S, DTU DK-800 Kgs. Lngb 1 Den bedste rette linje Hvordan findes den "bedste"rette linje

Læs mere

Geometriske grundbegreber 8. lektion

Geometriske grundbegreber 8. lektion 1 / 14 Geometriske grundbegreber 8. lektion Martin Raussen Institut for matematiske fag Aalborg Universitet 1.4.2008 2 / 14 (Regulære) parameterfremstillinger for en flade Eksempler Kurver på flader og

Læs mere

Vektorfunktioner. (Parameterkurver) x-klasserne Gammel Hellerup Gymnasium

Vektorfunktioner. (Parameterkurver) x-klasserne Gammel Hellerup Gymnasium Vektorfunktioner (Parameterkurver) x-klasserne Gammel Hellerup Gymnasium Indholdsfortegnelse VEKTORFUNKTIONER... Centrale begreber... Cirkler... 5 Epicykler... 7 Snurretoppen... 9 Ellipser... 1 Parabler...

Læs mere

Taylor s approksimationsformler for funktioner af én variabel

Taylor s approksimationsformler for funktioner af én variabel enote 4 1 enote 4 Taylor s approksimationsformler for funktioner af én variabel I enote 19 og enote 21 er det vist hvordan funktioner af én og to variable kan approksimeres med førstegradspolynomier i

Læs mere

Matematik A. Studentereksamen. Forberedelsesmateriale til de digitale eksamensopgaver med adgang til internettet

Matematik A. Studentereksamen. Forberedelsesmateriale til de digitale eksamensopgaver med adgang til internettet Matematik A Studentereksamen Forberedelsesmateriale til de digitale eksamensopgaver med adgang til internettet st131-matn/a-6513 Mandag den 6 maj 13 Forberedelsesmateriale til st A Net MATEMATIK Der skal

Læs mere

Analytisk geometri. Et simpelt eksempel på dette er en ret linje. Som bekendt kan en ret linje skrives på formen

Analytisk geometri. Et simpelt eksempel på dette er en ret linje. Som bekendt kan en ret linje skrives på formen Analtisk geometri Mike Auerbach Odense 2015 Den klassiske geometri beskæftiger sig med alle mulige former for figurer: Linjer, trekanter, cirkler, parabler, ellipser osv. I den analtiske geometri lægger

Læs mere

Taylor s approksimationsformler for funktioner af én variabel

Taylor s approksimationsformler for funktioner af én variabel enote 17 1 enote 17 Taylor s approksimationsformler for funktioner af én variabel I enote 14 og enote 16 er det vist hvordan funktioner af én og to variable kan approksimeres med førstegradspolynomier

Læs mere

8 Regulære flader i R 3

8 Regulære flader i R 3 8 Regulære flader i R 3 Vi skal betragte særligt pæne delmængder S R 3 kaldet flader. I det følgende opfattes S som et topologisk rum i sportopologien, se Definition 5.9. En åben omegn U af p S er således

Læs mere

Vektorer og lineær regression

Vektorer og lineær regression Vektorer og lineær regression Peter Harremoës Niels Brock April 03 Planproduktet Vi har set, at man kan gange en vektor med et tal Et oplagt spørgsmål er, om man også kan gange to vektorer med hinanden

Læs mere

Hvis man ønsker mere udfordring, kan man springe den første opgave af hvert emne over.

Hvis man ønsker mere udfordring, kan man springe den første opgave af hvert emne over. Opsamling Hvis man ønsker mere udfordring, kan man springe den første opgave af hvert emne over.. Brøkregning, parentesregneregler, kvadratsætningerne, potensregneregler og reduktion Udregn nedenstående

Læs mere

Vektorer og lineær regression. Peter Harremoës Niels Brock

Vektorer og lineær regression. Peter Harremoës Niels Brock Vektorer og lineær regression Peter Harremoës Niels Brock April 2013 1 Planproduktet Vi har set, at man kan gange en vektor med et tal. Et oplagt spørgsmål er, om man også kan gange to vektorer med hinanden.

Læs mere

Hvis man ønsker mere udfordring, kan man springe de første 10 opgaver over. , og et punkt er givet ved: P (2, 1).

Hvis man ønsker mere udfordring, kan man springe de første 10 opgaver over. , og et punkt er givet ved: P (2, 1). Plangeometri Hvis man ønsker mere udfordring, kan man springe de første 10 opgaver over Opgave 1 To linjer er givet ved ligningerne: x y 0 og x b y 4 0, hvor b er en konstant a) Beregn konstanten b således,

Læs mere

Matematik A 5 timers skriftlig prøve

Matematik A 5 timers skriftlig prøve Højere Teknisk Eksamen august 2009 HTX092-MAA Matematik A 5 timers skriftlig prøve Undervisningsministeriet Fredag den 28. august 2009 kl. 9.00-14.00 Side 1 af 9 sider Matematik A 2009 Prøvens varighed

Læs mere

Epistel E2 Partiel differentiation

Epistel E2 Partiel differentiation Epistel E2 Partiel differentiation Benny Lautrup 19 februar 24 Funktioner af flere variable kan differentieres efter hver enkelt, med de øvrige variable fasthol Definitionen er f(x, y) x f(x, y) f(x +

Læs mere

π er irrationel Frank Nasser 10. december 2011

π er irrationel Frank Nasser 10. december 2011 π er irrationel Frank Nasser 10. december 2011 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Indhold 1 Introduktion

Læs mere

Reeksamen i Calculus. Første Studieår ved Det Tekniske Fakultet for IT og Design samt Det Ingeniør- og Naturvidenskabelige Fakultet. 17.

Reeksamen i Calculus. Første Studieår ved Det Tekniske Fakultet for IT og Design samt Det Ingeniør- og Naturvidenskabelige Fakultet. 17. Reeksamen i Calculus Første Studieår ved Det Tekniske Fakultet for IT og Design samt Det Ingeniør- og Naturvidenskabelige Fakultet 17. februar 2017 Dette eksamenssæt består af 11 nummererede sider med

Læs mere

Besvarelser til Calculus Ordinær Eksamen - 3. Januar 2017

Besvarelser til Calculus Ordinær Eksamen - 3. Januar 2017 Besvarelser til Calculus Ordinær Eksamen - 3. Januar 17 Mikkel Findinge Bemærk, at der kan være sneget sig fejl ind. Kontakt mig endelig, hvis du skulle falde over en sådan. Dette dokument har udelukkende

Læs mere

Det teknisk-naturvidenskabelige basisår Matematik 1A, Efterår 2005, Hold 3 Prøveopgave B

Det teknisk-naturvidenskabelige basisår Matematik 1A, Efterår 2005, Hold 3 Prøveopgave B Det teknisk-naturvidenskabelige basisår Matematik 1A, Efterår 2005, Hold 3 Opgaven består af fire dele, hver med en række spørgsmål, efterfulgt af en liste af teorispørgsmål. I alle opgavespørgsmålene

Læs mere

Bevægelsens Geometri

Bevægelsens Geometri Bevægelsens Geometri Vi vil betragte bevægelsen af et punkt. Dette punkt kan f.eks. være tyngdepunktet af en flue, et menneske, et molekyle, en galakse eller hvad man nu ellers har lyst til at beskrive.

Læs mere

Projekt 4.6 Løsning af differentialligninger ved separation af de variable

Projekt 4.6 Løsning af differentialligninger ved separation af de variable Projekt 4.6 Løsning af differentialligninger ved separation af de variable Differentialligninger af tpen d hx () hvor hx ()er en kontinuert funktion, er som nævnt blot et stamfunktionsproblem. De løses

Læs mere

Supplerende opgaver. 0. Opgaver til første uge. SO 1. MatGeo

Supplerende opgaver. 0. Opgaver til første uge. SO 1. MatGeo SO 1 Supplerende opgaver De efterfølgende opgaver er supplerende opgaver til brug for undervisningen i Matematik for geologer. De er forfattet af Hans Jørgen Beck. Opgaverne falder i fire samlinger: Den

Læs mere

(c) Opskriv den reelle Fourierrække for funktionen y(t) fra (b), og afgør dernæst om y(t) er en lige eller ulige funktion eller ingen af delene.

(c) Opskriv den reelle Fourierrække for funktionen y(t) fra (b), og afgør dernæst om y(t) er en lige eller ulige funktion eller ingen af delene. MATEMATIK 3 EN,MP 4. februar 2016 Eksamenopgaver fra 2011 2016 (jan. 2016) Givet at 0 for 0 < t < 1 mens e (t 1) cos(7(t 1)) for t 1, betragt da begyndelsesværdiproblemet for t > 0: y (t) + 2y (t) + 50y(t)

Læs mere

Mat H /05 Note 2 10/11-04 Gerd Grubb

Mat H /05 Note 2 10/11-04 Gerd Grubb Mat H 1 2004/05 Note 2 10/11-04 Gerd Grubb Nødvendige og tilstrækkelige betingelser for ekstremum, konkave og konvekse funktioner. Fremstillingen i Kapitel 13.1 2 af Sydsæters bog [MA1] suppleres her med

Læs mere

Eksamen i Calculus. Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet og Det Sundhedsvidenskabelige Fakultet. 6.

Eksamen i Calculus. Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet og Det Sundhedsvidenskabelige Fakultet. 6. Eksamen i Calculus Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet og Det Sundhedsvidenskabelige Fakultet 6. juni 16 Dette eksamenssæt består af 1 nummererede sider med 14 afkrydsningsopgaver.

Læs mere

Hvis man ønsker mere udfordring, kan man springe de første 10 opgaver over. 1, og et punkt er givet ved: (2, 1)

Hvis man ønsker mere udfordring, kan man springe de første 10 opgaver over. 1, og et punkt er givet ved: (2, 1) Plangeometri Hvis man ønsker mere udfordring, kan man springe de første 10 opgaver over. Opgave 1 To linjer er givet ved ligningerne: x y 0 og x b y 4 0, hvor b er en konstant. a) Beregn konstanten b således,

Læs mere

VEKTORGEOMETRI del 2 Skæringer Projektioner Vinkler Afstande

VEKTORGEOMETRI del 2 Skæringer Projektioner Vinkler Afstande VEKTORGEOMETRI del Skæringer Projektioner Vinkler Afstande x-klasserne Gammel Hellerup Gymnasium Februar 019 ; Michael Szymanski ; mz@ghg.dk 1 Indhold OVERSIGT... 3 SKÆRINGSPUNKTER OG RØRINGSPUNKTER...

Læs mere

Besvarelser til Calculus Ordinær eksamen - Forår - 6. Juni 2016

Besvarelser til Calculus Ordinær eksamen - Forår - 6. Juni 2016 Besvarelser til Calculus Ordinær eksamen - Forår - 6. Juni 16 Mikkel Findinge Bemærk, at der kan være sneget sig fejl ind. Kontakt mig endelig, hvis du skulle falde over en sådan. Dette dokument har udelukkende

Læs mere

Gauss divergenssætning

Gauss divergenssætning enote 26 1 enote 26 Gauss divergenssætning I denne enote vil vi bruge flowkurver for vektorfelter til at undersøge hvordan overfladen af et rumligt område deformeres ved flowet og dermed afspejler en tilsvarende

Læs mere

Trekants- beregning for hf

Trekants- beregning for hf Trekants- beregning for hf C C 5 l 5 A 34 8 B 018 Karsten Juul Indhold 1. Vinkler... 1 1.1 Regler for vinkler.... 1. Omkreds, areal, højde....1 Omkreds..... Rektangel....3 Kvadrat....4 Højde....5 Højde-grundlinje-formel

Læs mere

Differential- ligninger

Differential- ligninger Differential- ligninger Et oplæg 2007 Karsten Juul Dette hæfte er tænkt brugt som et oplæg der kan gennemgås før man går i gang med en lærebogs fremstilling af emnet differentialligninger Læreren skal

Læs mere

Delmængder af Rummet

Delmængder af Rummet Delmængder af Rummet Frank Villa 15. maj 2012 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Indhold 1 Introduktion

Læs mere

Afstande, skæringer og vinkler i rummet

Afstande, skæringer og vinkler i rummet Afstande, skæringer og vinkler i rummet Frank Villa 2. maj 202 c 2008-20. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Indhold

Læs mere

Vi begynder med at repetere noget af det tidligere gennemgåede som vi skal bruge.

Vi begynder med at repetere noget af det tidligere gennemgåede som vi skal bruge. Cykloider Vi begynder med at repetere noget af det tidligere gennemgåede som vi skal bruge Retningspunkt (repetition) Figur 1 viser enhedscirklen Det viste punkt P er anbragt sådan at den øverste af buerne

Læs mere

Eksamen i Calculus. Første Studieår ved Det Tekniske Fakultet for IT og Design samt Det Ingeniør- og Naturvidenskabelige Fakultet. 3.

Eksamen i Calculus. Første Studieår ved Det Tekniske Fakultet for IT og Design samt Det Ingeniør- og Naturvidenskabelige Fakultet. 3. Eksamen i Calculus Første Studieår ved Det Tekniske Fakultet for IT og Design samt Det Ingeniør- og Naturvidenskabelige Fakultet. januar 7 Dette eksamenssæt består af 9 nummererede sider med afkrydsningsopgaver.

Læs mere

Afstande, skæringer og vinkler i rummet

Afstande, skæringer og vinkler i rummet Afstande, skæringer og vinkler i rummet Frank Nasser 9. april 20 c 2008-20. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her.

Læs mere

Mere om differentiabilitet

Mere om differentiabilitet Mere om differentiabilitet En uddybning af side 57 i Spor - Komplekse tal Kompleks funktionsteori er et af de vigtigste emner i matematikken og samtidig et af de smukkeste I bogen har vi primært beskæftiget

Læs mere

Løsninger til eksamensopgaver på A-niveau 2017

Løsninger til eksamensopgaver på A-niveau 2017 Løsninger til eksamensopgaver på A-niveau 017 18. maj 017: Delprøven UDEN hjælpemidler Opgave 1: Alle funktionerne f, g og h er lineære funktioner (og ingen er mere lineære end andre) og kan skrives på

Læs mere

Det teknisk-naturvidenskabelige basisår Matematik 1A, Efterår 2005, Hold 3 Prøveopgave A

Det teknisk-naturvidenskabelige basisår Matematik 1A, Efterår 2005, Hold 3 Prøveopgave A Det teknisk-naturvidenskabelige basisår Matematik 1A, Efterår 2005, Hold 3 Prøveopgave A Opgaven består af tre dele, hver med en række spørgsmål, efterfulgt af en liste af teorispørgsmål. I alle opgavespørgsmålene

Læs mere

Funktion af flere variable

Funktion af flere variable Funktion af flere variable Preben Alsholm 6. oktober 2008 1 Funktion af flere variable 1.1 Punktmængder i R k : Definitioner Punktmængder i flerdimensionale rum: Definitioner q Normen af x 2 R k er kxk

Læs mere

Reeksamen i Calculus

Reeksamen i Calculus Reeksamen i Calculus Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet og Det Sundhedsvidenskabelige Fakultet 9. august 6 Dette eksamenssæt består af nummererede sider med 4 afkrydsningsopgaver.

Læs mere

To find the English version of the exam, please read from the other end! Eksamen i Calculus

To find the English version of the exam, please read from the other end! Eksamen i Calculus To find the English version of the exam, please read from the other end! Se venligst bort fra den engelske version på bagsiden hvis du følger denne danske version af prøven. Eksamen i Calculus Første Studieår

Læs mere

STEEN MARKVORSEN DTU COMPUTE 2017

STEEN MARKVORSEN DTU COMPUTE 2017 STEEN MARKVORSEN DTU COMPUTE 2017 2 Indhold 1 Regulære flader i rummet 5 1.1 Det sædvanlige koordinatsystem i rummet..................... 5 1.2 Graf-flader for funktioner af to variable......................

Læs mere

Vektorer i 3D. 1. Grundbegreber. 1. Koordinater. Enhedsvektorerne. Vektor OP. De ortogonale enhedsvektorer kaldes for: Hvis punkt p har koordinaterne:

Vektorer i 3D. 1. Grundbegreber. 1. Koordinater. Enhedsvektorerne. Vektor OP. De ortogonale enhedsvektorer kaldes for: Hvis punkt p har koordinaterne: Vektorer i 3D. Grundegreer. Koordinater z k P OP i 0 j x y Enhedsvektorerne De ortogonale enhedsvektorer kaldes for: i, j og k Vektor OP Hvis punkt p har koordinaterne: P ( a a a3 ) Så har vektor OP koordinaterne:

Læs mere

Højere Teknisk Eksamen maj 2008. Matematik A. Forberedelsesmateriale til 5 timers skriftlig prøve NY ORDNING. Undervisningsministeriet

Højere Teknisk Eksamen maj 2008. Matematik A. Forberedelsesmateriale til 5 timers skriftlig prøve NY ORDNING. Undervisningsministeriet Højere Teknisk Eksamen maj 2008 HTX081-MAA Matematik A Forberedelsesmateriale til 5 timers skriftlig prøve NY ORDNING Undervisningsministeriet Fra onsdag den 28. maj til torsdag den 29. maj 2008 Forord

Læs mere

Affine transformationer/afbildninger

Affine transformationer/afbildninger Affine transformationer. Jens-Søren Kjær Andersen, marts 2011 1 Affine transformationer/afbildninger Følgende afbildninger (+ sammensætninger af disse) af planen ind i sig selv kaldes affine: 1) parallelforskydning

Læs mere

Hvis man ønsker mere udfordring, kan man springe de første 7 opgaver over. Skitser det omdrejningslegeme, der fremkommer, når grafen for f ( x)

Hvis man ønsker mere udfordring, kan man springe de første 7 opgaver over. Skitser det omdrejningslegeme, der fremkommer, når grafen for f ( x) Integralregning 3 Hvis man ønsker mere udfordring, kan man springe de første 7 opgaver over. Opgave Skitser det omdrejningslegeme, der fremkommer, når grafen for f ( x) x i [,] drejes 36 om x-aksen. Vis,

Læs mere

Introduktion til differentialregning 1. Jens Siegstad og Annegrethe Bak

Introduktion til differentialregning 1. Jens Siegstad og Annegrethe Bak Introduktion til differentialregning 1 Jens Siegstad og Annegrete Bak 16. juli 2008 1 Indledning I denne note vil vi kort introduktion til differentilregning, idet vi skal bruge teorien i et emne, Matematisk

Læs mere

Projekt 1.4 Tagrendeproblemet en instruktiv øvelse i modellering med IT.

Projekt 1.4 Tagrendeproblemet en instruktiv øvelse i modellering med IT. Projekt 1.4 Tagrendeproblemet en instruktiv øvelse i modellering med IT. Projektet kan bl.a. anvendes til et forløb, hvor en af målsætningerne er at lære om samspillet mellem værktøjsprogrammernes geometriske

Læs mere

Forslag til hjemmeopgaver, som forbereder arbejdet med de nye emner den pågældende kursusgang, men primært er baseret på gymnasiepensum:

Forslag til hjemmeopgaver, som forbereder arbejdet med de nye emner den pågældende kursusgang, men primært er baseret på gymnasiepensum: Forslag til hjemmeopgaver, som forbereder arbejdet med de ne emner den pågældende kursusgang, men primært er baseret på gmnasiepensum: Ordinær kursusgang : Introduktion til vektorer og matricer. Regning

Læs mere

To find the English version of the exam, please read from the other end! Eksamen i Calculus

To find the English version of the exam, please read from the other end! Eksamen i Calculus To find the English version of the exam, please read from the other end! Se venligst bort fra den engelske version på bagsiden hvis du følger denne danske version af prøven. Eksamen i Calculus Første Studieår

Læs mere

Aalborg Universitet - Adgangskursus. Eksamensopgaver. Matematik B til A

Aalborg Universitet - Adgangskursus. Eksamensopgaver. Matematik B til A Aalborg Universitet - Adgangskursus Eksamensopgaver Matematik B til A Undervisningsministeriet Universitetsafdelingen ADGANGSEKSAMEN Til ingeniøruddannelserne Matematik A xxdag den y.juni 00z kl. 9.00

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin August 2016til juni 2019 Institution VID gymnasier Uddannelse Fag og niveau Lærer(e) Hold Uddannelsestid i

Læs mere

Matematik A, STX. Vejledende eksamensopgaver

Matematik A, STX. Vejledende eksamensopgaver Matematik A, STX EKSAMENSOPGAVER Vejledende eksamensopgaver 2015 Løsninger HF A-NIVEAU AF SAEID Af JAFARI Anders J., Mark Af K. & Saeid J. Anders J., Mark K. & Saeid J. Kun delprøver 2 Kun delprøve 2,

Læs mere

Erik Vestergaard 1. Opgaver. i Lineære. funktioner. og modeller

Erik Vestergaard   1. Opgaver. i Lineære. funktioner. og modeller Erik Vestergaard www.matematikfsik.dk Opgaver i Lineære funktioner og modeller Erik Vestergaard www.matematikfsik.dk Erik Vestergaard, Haderslev. www.matematikfsik.dk Teknik. Aflæse forskrift fra graf...

Læs mere

Optimale konstruktioner - når naturen former. Opgaver. Opgaver og links, der knytter sig til artiklen om topologioptimering

Optimale konstruktioner - når naturen former. Opgaver. Opgaver og links, der knytter sig til artiklen om topologioptimering Opgaver Opgaver og links, der knytter sig til artiklen om solsikke Opgave 1 Opgave 2 Opgaver og links, der knytter sig til artiklen om bobler Opgave 3 Opgave 4 Opgaver og links, der knytter sig til artiklen

Læs mere

Nøgleord og begreber Ortogonalt komplement Tømrerprincippet. [LA] 13 Ortogonal projektion

Nøgleord og begreber Ortogonalt komplement Tømrerprincippet. [LA] 13 Ortogonal projektion Oversigt [LA] 11, 12, 13 Nøgleord og begreber Ortogonalt komplement Tømrerprincippet Ortogonal projektion Projektion på 1 vektor Projektion på basis Kortest afstand August 2002, opgave 6 Tømrermester Januar

Læs mere

Matematiske hjælpemidler. Koordinater. 2.1 De mange bredder.

Matematiske hjælpemidler. Koordinater. 2.1 De mange bredder. 2. Matematiske hjælpemidler. Koordinater. 2.1 De mange bredder. 2.1 I Figur 1.1 i kapitel 1 er der vist et ideelt Kartesiske eller Euklidiske koordinatsystem, med koordinater ( X, Y, Z) = ( X 1, X 2, X

Læs mere

Matricer og lineære ligningssystemer

Matricer og lineære ligningssystemer Matricer og lineære ligningssystemer Grete Ridder Ebbesen Virum Gymnasium Indhold 1 Matricer 11 Grundlæggende begreber 1 Regning med matricer 3 13 Kvadratiske matricer og determinant 9 14 Invers matrix

Læs mere

VUC Vestsjælland Syd, Slagelse Nr. 1 Institution: Projekt Trigonometri

VUC Vestsjælland Syd, Slagelse Nr. 1 Institution: Projekt Trigonometri VUC Vestsjælland Syd, Slagelse Nr. 1 Institution: 333247 2015 Anders Jørgensen, Mark Kddafi, David Jensen, Kourosh Abady og Nikolaj Eriksen 1. Indledning I dette projekt, vil man kunne se definitioner

Læs mere

Spor Matematiske eksperimenter. Komplekse tal af Michael Agermose Jensen og Uwe Timm.

Spor Matematiske eksperimenter. Komplekse tal af Michael Agermose Jensen og Uwe Timm. Homografier Möbius transformationer Følgende tema, handler om homografier, inspireret af professor Børge Jessens noter, udgivet på Københavns Universitet 965-66. Noterne er herefter blevet bearbejdet og

Læs mere

Ting man gør med Vektorfunktioner

Ting man gør med Vektorfunktioner Ting man gør med Vektorfunktioner Frank Nasser. april 11 c 8-11. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Bemærk: Dette

Læs mere

Opgave 1 Opskriv følgende vinkler i radianer 180, 90, 135, 270, 60, 30.

Opgave 1 Opskriv følgende vinkler i radianer 180, 90, 135, 270, 60, 30. Opgaver Polære koordinater Opgave 1 Opskriv følgende vinkler i radianer 180, 90, 15, 70, 60, 0. Opgave Bestem sin π Opgave. Et punkt p i xy-planen er givet ved de kartesiske koordinater,. Bestem p s polære

Læs mere

Ting man gør med Vektorfunktioner

Ting man gør med Vektorfunktioner Ting man gør med Vektorfunktioner Frank Villa 3. august 13 Dette dokument er en del af MatBog.dk 8-1. IT Teaching Tools. ISBN-13: 978-87-9775--9. Se yderligere betingelser for brug her. Indhold 1 Introduktion

Læs mere

Matematik A. 5 timers skriftlig prøve. Højere Teknisk Eksamen i Grønland maj 2009 GLT091-MAA. Undervisningsministeriet

Matematik A. 5 timers skriftlig prøve. Højere Teknisk Eksamen i Grønland maj 2009 GLT091-MAA. Undervisningsministeriet Højere Teknisk Eksamen i Grønland maj 2009 GLT091-MAA Matematik A 5 timers skriftlig prøve Undervisningsministeriet Fredag den 29. maj 2009 kl. 9.00-14.00 Matematik A 2009 Prøvens varighed er 5 timer.

Læs mere

EKSAMENSOPGAVELØSNINGER CALCULUS 2 (2005) JANUAR 2006 AARHUS UNIVERSITET.. Beregn den retningsafledede D u f(0, 0).

EKSAMENSOPGAVELØSNINGER CALCULUS 2 (2005) JANUAR 2006 AARHUS UNIVERSITET.. Beregn den retningsafledede D u f(0, 0). EKSAMENSOPGAVELØSNINGER CALCULUS 2 (2005) JANUAR 2006 AARHUS UNIVERSITET H.A. NIELSEN & H.A. SALOMONSEN Opgave. Lad f betegne funktionen f(x, y) = x cos(y) + y sin(x). ) Angiv gradienten f. 2) Lad u betegne

Læs mere

A U E R B A C H M I K E # e z. a z. # a. # e x. # e y. a x

A U E R B A C H M I K E   # e z. a z. # a. # e x. # e y. a x M A T E M A T I K B A M I K E A U E R B A C H WWW.MATHEMATICUS.DK z a z # e z # a a x # e x ay # e y y x Matematik B A 2. udgave, 207 Disse noter er skrevet til matematikundervisning på stx og kan frit

Læs mere

Integralregning ( 23-27)

Integralregning ( 23-27) Integralregning ( -7) -7 Side Bestem ved håndkraft samtlige stamfunktioner til hver af funktionerne a) f() =, + 7 ) f() = 7 + 7 c) f() = ep() + ln() d) f() = e ep() + Bestem ved håndkraft samtlige stamfunktioner

Læs mere

Matematik A August 2016 Delprøve 1

Matematik A August 2016 Delprøve 1 Anvendelse af løsningerne læses på hjemmesiden www.matematikhfsvar.page.tl Sættet løses med begrænset tekst og konklusion. Formålet er jo, at man kan se metoden, og ikke skrive af! Opgave 1 - Vektorer,

Læs mere

Matematik A. Studentereksamen

Matematik A. Studentereksamen Matematik A Studentereksamen 2stx101-MAT/A-01062010 Tirsdag den 1. juni 2010 kl. 9.00-14.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål. Delprøven

Læs mere

D = 0. Hvis rører parablen x- aksen i et enkelt punkt, dvs. den tilhørende andengradsligning

D = 0. Hvis rører parablen x- aksen i et enkelt punkt, dvs. den tilhørende andengradsligning Projekt 55 Andengradspolynomier af to variable Kvadratiske funktioner i to variable - de tre typer paraboloider f() = A + B + C, hvor A 0 Et andengradspolynomium i en variabel har en forskrift på formen

Læs mere

Matematik F2 Opgavesæt 2

Matematik F2 Opgavesæt 2 Opgaver uge 2 I denne uge kigger vi nærmere på Cauchy-Riemann betingelserne, potensrækker, konvergenskriterier og flertydige funktioner. Vi skal også se på integration langs en ve i den komplekse plan.

Læs mere

z j 2. Cauchy s formel er værd at tænke lidt nærmere over. Se på specialtilfældet 1 dz = 2πi z

z j 2. Cauchy s formel er værd at tænke lidt nærmere over. Se på specialtilfældet 1 dz = 2πi z Matematik F2 - sæt 3 af 7 blok 4 f(z)dz = 0 Hovedemnet i denne uge er Cauchys sætning (den der står i denne sides hoved) og Cauchys formel. Desuden introduceres nulpunkter og singulariteter: simple poler,

Læs mere

Cirkulær hyperboloide (snoet trætårn i Camp Adventure ved Gisselfeld Kloster v/ Haslev)

Cirkulær hyperboloide (snoet trætårn i Camp Adventure ved Gisselfeld Kloster v/ Haslev) Cirkulær hyperboloide (snoet trætårn i Camp Adventure ved Gisselfeld Kloster v/ Haslev) https://en.wikipedia.org/wiki/quadric#euclidean_space Ligning og parametrisering https://en.wikipedia.org/wiki/hyperboloid

Læs mere

MATEMATIK A-NIVEAU. Kapitel 1

MATEMATIK A-NIVEAU. Kapitel 1 MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 01 Kapitel 1 016 MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik 01

Læs mere